US3742918A - Electronically controlled fuel-supply system for compression-ignition engine - Google Patents

Electronically controlled fuel-supply system for compression-ignition engine Download PDF

Info

Publication number
US3742918A
US3742918A US00036814A US3742918DA US3742918A US 3742918 A US3742918 A US 3742918A US 00036814 A US00036814 A US 00036814A US 3742918D A US3742918D A US 3742918DA US 3742918 A US3742918 A US 3742918A
Authority
US
United States
Prior art keywords
engine
fuel
valve means
channel
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00036814A
Inventor
F Murtin
L Mercier
J Barat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ELECTRONIQUE INFORMATIQUE SOC
Original Assignee
ELECTRONIQUE INFORMATIQUE SOC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ELECTRONIQUE INFORMATIQUE SOC filed Critical ELECTRONIQUE INFORMATIQUE SOC
Application granted granted Critical
Publication of US3742918A publication Critical patent/US3742918A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/36Controlling fuel injection of the low pressure type with means for controlling distribution
    • F02D41/365Controlling fuel injection of the low pressure type with means for controlling distribution with means for controlling timing and distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • One or more cylinders of a compression-ignition engine are connected to respective supply conduits through control valves normally spring-biased into a closed position.
  • a feed pump periodically delivers fuel under [51] Int. Cl. F02b 3/00 pressure, fr m a reservoir, to a distributing channel [58] Field of Search 123/32 E, 32 EL, leading to the supply conduit or conduits, this channel 123/ 139 E also having a return conduit for each cylinder with a bypass valve closed during all or part of the compres- [56] Referen e Cited sion stroke of the pump.
  • our invention aims at providing a closely controllable supply of fuel to the combustion chamber or chambers of an internal-combustion engine.
  • a fuel-supply system for one or more cylinders of an internal-combustion engine, e.g. in an automotive vehicle, wherein an enginedriven pump preferably of the reciprocating-piston type delivers fuel under pressure to a distributing channel from which a first conduit extends to an injector of a cylinder served thereby, another extension conduit returning excess fuel to a drain (usually to the reservoir or tank feeding the pump).
  • the first conduit contains a normally closed valve biased by a force less than that exerted upon the valve body by the pump pressure whereby, in response to a pressure buildup within the channel upon a blocking of the drain during a compression stroke of the pump, this control valve is forced open to admit fuel to the cylinder (or to an antechamber periodically communicating therewith) for a period depending upon various operating parameters which control a bypass valve in the second conduit to close and open the fuel-return path.
  • the temporary closure of this bypass valve therefore, determines the injection interval which may extend over all or part of that compression stroke.
  • the distributing channel has a plurality of branches each with its own supply and return conduit, each branch further containing a shut-off valve ahead of these conduits for isolating them from the corresponding conduits in the other branch or branches during their mutually staggered operating phases.
  • Each compression stroke of the pump finds only one of these shut-off valves open to feed the corresponding injector in the rhythm of a gating signal controlling the associated bypass valve.
  • the timing of the injection interval with reference to a compression stroke assigned to the corresponding engine cylinder is advantageously controlled by a logic network forming part of a computer responsive to the aforementioned operating parameters, such as engine speed and load.
  • This network may include a pair of cascaded pulse generators, such as bistable elements, whose output pulses can be made to vary in length under the control of an analog voltage representing a respective parameter.
  • the first pulse generator may be periodically started by an invariable timing signal derived from the engine itself, thus in correlation with the engine-driven feed pump; the second pulse generator then produces the gating signal which coincides with the injection interval.
  • FIG. I shows part of a fuel-injection system embodying the invention
  • FIG. 2 is a diagram of an injection-control network for the system of FIG. 1;
  • FIG. 3 is a set of graphs relating to the network of FIG. 2;
  • FIG. 4 is a cross-sectional view of a modified control valve for the system of FIG. 1;
  • FIG. 5 is a diagram of a control network, similar to that of FIG. 2, for a four-cylinder engine;
  • FIG. 6 is a set of graphs similar to FIG. 3, relating to the system of FIG. 5;
  • FIG. 7 is an overall schematic view of the complete fuel system of a four-cylinder engine embodying the invention.
  • FIG. 8 is a cross-sectional view of another modified control valve.
  • FIG. 9 is a schematic representation of a measuring device to be used in the control circuit of FIG. 2 or 5.
  • FIG. 1 illustrates the basic components of an injection mechanism in accordance with our invention as applied to a single-cylinder engine.
  • a combustion chamber 102 formed by a cylinder wall and a piston 101, is equipped with an injection nozzle B having an orifice 30. This orifice is normally blocked by the tip 29 of a needle 31 whose shank is continuously urged by a spring 33 against a valve seat 28.
  • the supply of pressurized fuel is effected by means of a positive-displacement pump P, driven from a shaft 1 which is synchronized with the engine crankshaft and may be the usual cam shaft in a single-cylinder engine operating on a four-stroke cycle.
  • a cam 1a mounted on the shaft 1 entrains a follower lb attached to a pump piston 3 biased by a return spring 2 into continuous contact with the cam 10.
  • the piston 3 reciprocates in a pumping chamber within a block 4. At the bottom of its operating stroke the piston uncovers an inlet 7 to which fuel is fed from a reservoir R (FIG. 7) under the influence of gravity or by a separate low-head pump.
  • the pumping cycle coincides with a revolution of the shaft 1 and the delivery volume is so dimensioned that during a potential injection period, measured in terms of degrees of crankshaft rotation, the fuel delivered by the pump (at a predetermined rate varying with crankshaft speed) equals the maximum quantity consumable in the engine.
  • Channel 10 also communicates with an orifice ll of a valve cylinder 17 from which a conduit 15, under the control of an evaluating network described hereinafter with reference to FIG. 2, returns excess fuel to the reservoir to regulate the amount of fuel actually injected.
  • This is achieved by means of a bypass valve V which, when open, reduces the pressure in distributing channel 10 to a near-atmosphere level whereupon the restoring spring 33 is no longer opposed by an overriding hydraulic pressure and the injection orifice 30 is blocked by the needle 31. Closure of this bypass valve during the pumping stroke, therefore, actuates the injector and admits fuel to the combustion space.
  • a plunger 14 reciprocating in valve cylinder 17 has a transverse passage 13 which in one extreme position of the piston, i.e., at the lower end of its stroke, connects the port 11 with a confronting discharge port 12 at the entrance of conduit 15.
  • a spring 16 surrounds a narrowed stem 18 of the plunger and abuts a shoulder 16a in the wall of the cylinder 17 so as to urge the plunger against the cylinder bottom 34, thereby maintaining the passage 13 aligned with ports 11 and 12.
  • the upper end of the stem 18 carries a cylindrical core 19 of high magnetic permeability forming part of a solenoid whose coil 22 sits in a permeable yoke 20 provided with a cylindrical bore 21 accommodating this core.
  • FIG. 2 we have shown an evaluating network for controlling the energization of coil 22 and, thereby, the timing and duration of the fuel injection.
  • a magnetic proximity sensor 35 serving as a timer synchronized with pump P of FIG. 1, comprises a magnetic coil 38 whose core 37 periodically co-operates with a rotating ferromagnetic armature 36 on a shaft 360 driven from the engine crankshaft at a suitable speed, i.e., with a step-down ratio of 2:1 in a fourstroke engine, so as to perform one revolution during each engine cycle.
  • the variable inductance of this circuit induces a sharp pulse 43, see also FIG. 3, on an output conductor 40 each time the armature 36 passes close to the coil.
  • the pulse thus generated is used to operate a normally inoperative flip-flop 39, thereby initiating a rectangular timing pulse 44 (as also shown in FIG. 3) on the one output 42 of this flip-flop.
  • Bistable circuits of flip-flops are well known in the electronics art and are for example disclosed in the textbook Pulse and Digital Circuits by Jacob MILLMAN and Herbert TAUB, McGraw-Hill Book Company, Inc., New York 1956, pages et seq.
  • Flip-flops have a one" and a zero input and a one and a zero output, changing over from an inoperative or off state to an operative or on" state when they receive a trigger pulse on their one input and from their operative state to their inoperative state when they receive a reset pulse on their zero input.
  • Pulse 44 charges a capacitor 45a in an integrating network 45 applying a substantially linearly rising voltage to one input 49 of a comparator 47 which is shown as a differential operational amplifier; the other input 48 of comparator 47 carries a reference voltage generated by a potentiometer 46 which can be adjusted either manually or in response to a variable system parameter as described below with reference to FIG. 9.
  • the comparator output, appearing on a lead 41, is differentiated by a resistance 50 and a feedback condenser 51. The appearance of this signal resets the flipflop 39, thereby terminating the timing pulse 44 after a period varying with the potential on lead 48.
  • the duration of the timing pulse 44 is governed by the setting of potentiometer 46 whose controlling parameter, in a preferred embodiment, is substantially proportional to engine speed.
  • the trailing edge of the pulse 44 controls another flip-flop 52 to generate a rectangular gating signal 57 (FIG. 3) on a conductor 58.
  • the signal 57 enters a power amplifier 59 whose output energizes the coil 22 of the bypass valve V, FIG. 1, thereby initiating the injection phase of cylinder 102.
  • the length of the injection period is governed by the gating pulse 57 whose duration, in turn, is controlled by the output of a comparator 56 represented as a differential operational amplifier.
  • Signal 57 charges a capacitor 54a of an integrating network 54 feeding one input of the comparator, its other input receiving a reference voltage from a potentiometer 55 under the control of a driver-operated accelerator pedal D.
  • potentiometer 55 establishes a variable threshold potential whose magnitude depends on a significant parameter of the system (here engine load).
  • Gating pulse 57 whose leading edge may be timed to occur shortly before the piston 101 reaches its upper dead-center position TDC as indicated in FIG. 3, could terminate before or after the end of the compression stroke.
  • the start and the end of this gating pulse, and therefore of the injection interval are determined by the respective settings of potentiometers 46, 55.
  • the system may be expanded by the addition of injectors, by-pass valves and pulse generators individual to each cylinder.
  • the pump need not be duplicated if its capacity is sufficient to maintain the required flow rates and pressures.
  • FIG. 4 shows, for this purpose, the combination of a shut-off valve V with the bypass valve V illustrated in FIG. 1; the two valves are identical and combined in a common housing A, corresponding elements of valve V having been designated by the same reference numerals as those of valve V preceded by a l in the position of the hundreds digit.
  • FIG. 5 An injector-control network M designed for a fourcylinder engine is illustrated in FIG. 5, the corresponding control signals being shown in FIG. 6.
  • Starting pulses for this system are derived from a timer 136 differing from timer 35, FIG. 2, in that an armature 137 on its shaft 136a successively coacts, during each engine cycle consisting of two crankshaft revolutions, with four magnetic pickup coils 140, 141, 142 and 143 whose cores 135 are equiangularly spaced apart around the axis of rotation.
  • the pulses generated by these sensors, shown in FIG. 6, are designated 146, 147, 145 and 149, respectively.
  • a common evaluation network of the type shown in FIG. 2 is used to control all four injectors; this network, operating at four times the pulse rate needed for a single cylinder, is triggered by each starting pulse (signals 146, 147, 145, 149) through an OR gate 163 working into lead 46.
  • OR gates are well known in the art and are, for example, disclosed in the textbook above referred to, at pages 394-397.
  • Flip-flops 150, 151, 152 and 153 are included in the timing circuits for the four cylinders to actuate the injectors thereof in their firing order.
  • Each starting pulse 146 149 is applied to the one input of the associated flip-flop as well as to the zero" input of the immediately preceding flip-flop so that each flip-flop 150 153 remains operated for a quarter-turn on shaft 136a.
  • pulse 146 brings flip-flop 150 to state one" and generates a rectangular pulse 159 on the set one output 155 thereof, at the same time resetting the flip-flop 153 to terminate a similar pulse 162 on the one output 155 of the latter flip-flop.
  • Similar pulses 161), 161 appear on the one outputs 156, 157 of flip-flops 151 and 152, each lasting for a quarter-revolution of the shaft 136a.
  • the inversions 189-192 of signals 159-162, appearing on the zero outputs of the flip-flops 150, 151, 152 and 153, are fed to respective power amplifiers 151, 152, 163 and 184 which, in turn, energize the coils 122,, 122 122,, and 122 associated with the shut-off valves V (FIG. 4) of the four injectors of the system.
  • the signals 159-162 from the one outputs 155-155 of flip-flops 156-153 go to respective AND gates 164, 165, 166, 167 which also have other inputs, connected via an OR gate to output lead 58 of flip-flop 52, and third inputs tied in parallel to an enabling lead 168 originating at a control circuit 139.
  • Another enabling lead 144 extends from circuit 139 to AND gates 164167 by way of OR gate 145.
  • Lead 144 may be energizable under the control of a temperature sensor in the cylinder block, during a warmup period, to make the period of conductivity of AND gates 164-467 no longer time-modulated but constant, i.e., independent of the gating pulse 57 on lead 58 when the engine is cold, thereby allowing injection to take place for a full quarter-turn of shaft 1360 or for some fixed shorter period as determined by, say, a cam on that shaft controlling a switch in circuit 139.
  • Lead 168 may be deenergized under negative load, as during downhill driv ing, by switches responsive to a retracted accelerator pedal and an engine speed (as measured by the analog voltage on lead 48) exceeding a predetermined threshold, a circuit of this type having been described in copending application Ser. No. 7,78l filed by two of us, Fernand Murtin and Loic Mercier, on 2 Feb. 1970.
  • the AND gates 164, 165, 166 and 167 become conductive upon the simultaneous presence of a respective signal 159, 160, 161, or 162 are respectively amplified in components and a gating pulse 57 on lead 56.
  • the resulting injection signals shown in FIG. 6, are relatively staggered trigger pulses 173, 174, and 176, respectively. These signals traverse amplifiers 177, 178, 179 and 180 to actuate the bypass valves V (FIG. 4) associated with the four injectors by energizing their solenoid coils 22,, 22 22 and 22,.
  • the graph 193 shows the four compression strokes of the fuel-supply pump spanning the injection signals within an engine cycle t,,t,.
  • FIG. 7 A complete injection-control system for a fourcylinder engine of the four-stroke type, embodying the features of FIGS. 1, 4 and 6, is depicted diagrammatically in FIG. 7.
  • the fuel is supplied from reservoir R to the main pump P by an ancillary pump N.
  • the pump P rotates at twice the crankshaft speed to provide a pressure pulse for each of the four injectors B,, B B and B, serving the cylinders.
  • These injectors are connected with respective branches 10,, 10 16 10., of channel 10 through individual supply conduits 26,, 26 26,, and 26,, by way of the corresponding dual control valves A,, A A A which receive energizing signals for their associated relay coils via electrical leads C,, C C and C, originating in the logic network M of FIG. 5.
  • Network M receives information in analog form on the angular position a of the crankshaft on a line I,, on the engine speed so on a line I and on the position of accelerator pedal D on a line I Line I, symbolizes an electrical or mechanical link to the potentiometer 46, e.g. as described hereinafter with reference to FIG. 9, whereas line I, is the output of sensor 136.
  • the return or overflow conduits have been designated 15,, 15 15,, 15,, merging in a common drain 15.
  • the venting channel 6 of the pump piston 3 sharpens the trailing edges of the hydraulic pulses 193 shown in FIG. 6.
  • a similar sharpening of the actual injection pulses can be achieved by a two-stage energization of the controlling valve, as also disclosed in the copending application Ser. No. 7,781 referred to above, i.e., the valve V of FIG. 1 or 4 giving access to the drain 15. This has been illustrated in FIG.
  • a modified bypass valve V" has the core 19 of its solenoid 20, 22 extended at 219 into the yoke 220 of a similar solenoid with electromagnetic coil 222 shown connected, via wires 224 and 225, to the output of a power amplifier 277 energized from the zero output of an ancillary flipflop 250 individually associated with flip-flop 150.
  • Flipflop 250 whose one input is tied to the zero output 155 of companion flip-flip 150, has its zero input connected to the zero output 53 of flip-flop 39 (not shown in FIG. 8) by way of a delay line 253 whereby amplifier 277 is de-energized shortly after the start of the next gating pulse 57.
  • the conductive intervals of amplifier 250 and corresponding amplifiers associated with the companion flip-flops of bistable units 151, 152, 153 are shown at 273, 274, 275 and 276 in FIG. 6; it will be noted that, thanks to a suitable choice of delay time 8 introduced by network 253, they partly overlap the corresponding trigger pulses 173-176.
  • the measurement of the engine speed as a criterion for the operation of the computer network M can be accomplished, advantageously, with the aid of a massflow meter of the general type disclosed in U.S. Pat. No. 3,470,741 to Enoch J. Durbin.
  • FIG. 9 shows an air-intake duct or manifold 103 serving one or more cylinders 100; individual injectors B, not shown in FIG. 9, are provided for these cylinders as indicated in FIG. 1.
  • a high-voltage d-c source 300 has its negative termi nal connected to a corona emitter 301 in the form of a sharp-edged conductive disk centrally disposed within duct 103.
  • a poppet valve 104 when opened by the cam shaft (not shown) in the usual manner, permits the piston associated with engine cylinder 100 to draw air through the manifold 103 into its combustion chamber 102 at a rate determined by the engine speed and by the position of a throttle or butterfly valve 105 controlled by the driver of the vehicle through the accelerator D (FIGS. 2 and 7).
  • the corona originating at electrode 301 ionizes some of the molecules of the air stream traversing the duct 103, causing them to drift toward two longitudinally spaced, positive (here grounded) annular electrodes 302 and 303 forming part of the manifold wall.
  • the resultant of the transverse drift velocity of these ions, due to the concentric field, and their axial speed component, imparted by the flow of the air stream toward the cylinder, is inclined at a small angle to the plane of disk 301 whereby ring 303 is driven negative with reference to ring 302.
  • a condenser 304 and a resistor 305 form an integrating network connected across electrodes 302 and 303; condenser 304 is bridged by an electronic breakdown device 306, such as a gas-filled diode, to form therewith a relaxation oscillator generating a sawtooth wave of a frequency depending on the rate of charge of the condenser through resistor 305.
  • a pulse counter 307 counts the cycles of this sawtooth wave and generates an output voltage v proportional to that count, which is matched in a comparator 308 with a reference voltage v to provide a positive or negative control signal for a servo motor 309 driving the potentiometer 46.
  • the output of comparator 308 could be directly fed to a pulse generator replacing the flip-flop 39, to vary the length of timing pulses 44, or the voltage v could be applied to lead 48 of comparator 47 in FIGS. 2 and 5.
  • the air in duct 103 is low, i.e., if the engine races with butterfly valve 105 nearly closed, the air will flow rapidly to impart a substantial axial velocity component to the migrating ions, yet their mean transverse speed will also be elevated in view of the low air density. If the valve 105 is opened further with the engine speed unchanged, the increased air density reduces the transverse speed component of the ions but the longitudinal flow velocity also decreases with corresponding reduction of the axial speed component.
  • the angle included between the ion path and a direction perpendicular to the duct axis is practically a function of engine speed alone and substantially independent of throttle position.
  • a system for controlling the fuel supply to a compression-ignition engine having at least one piston cylinder provided with a fuel injector comprising:
  • pump means disposed between said source and said channel for delivering fuel at high pressure to said channel;
  • first valve means in said first conduit provided with biasing means normally maintaining same in a closed position
  • said gating means including a first pulse generator controlled by the engine for establishing a first period beginning at a predetermined point in a cycle, a second pulse generator controlled by said first pulse generator for establishing a second period beginning with the end of said first period, a first circuit responsive to a first operating parameter of the engine and connected to said first pulse generator for varying the length of said first period, and a second circuit responsive to a second operating parameter of the engine and connected to said second pulse generator for varying the length of said second period, said second valve means being closable by said gate means for the duration of said second period.
  • said pump means comprises a reciprocable pump piston for performing a succession of compression strokes timed to span an injection interval established by the opening of said first valve means and closure of said second valve means, said pump piston being coupled with the engine for correlating said compression strokes with the timing of said first period.
  • said first circuit includes a mass-flow meter disposed in an air intake of said cylinder.
  • said gating means further includes a control circuit for selectively placing said second valve means under the exclusive control of said first pulse generator for closure during said first period.
  • a system for controlling the fuel supply to a com- 10 pression-ignition engine having at least one piston cylinder provided with a fuel injector comprising:
  • a distributing channel provided with a first extension conduit terminating at said injector and with a second extension conduit leading to a drain from excess fuel;
  • pump means disposed between said source and said channel for delivering fuel at high pressure to said channel;
  • first valve means in said first conduit provided with biasing means normally maintaining same in a closed position
  • second valve means in said second conduit for intermittently blocking the path from said channel to said drain, said second valve means being provided with electromagnetic actuating means energizable for closing same and spring means effective in a deenergized state of said actuating means for holding said second valve means open, said actuating means including an ancillary actuator of insufficient power to overcome the action of said spring means and a main actuator capable of doing so when aided by said ancillary actuator; and
  • said gating means for periodically closing and opening said second valve means with concurrent opening of said first valve means against the force of said biasing means, said gating means including a generator of first energizing pulses for said ancillary actuator and a generator of second energizing pulses, overlapping said first energizing pulses, for

Abstract

One or more cylinders of a compression-ignition engine are connected to respective supply conduits through control valves normally spring-biased into a closed position. A feed pump periodically delivers fuel under pressure, from a reservoir, to a distributing channel leading to the supply conduit or conduits, this channel also having a return conduit for each cylinder with a bypass valve closed during all or part of the compression stroke of the pump. The closure of this bypass valve, during a gating interval established by an electronic network, causes a pressure buildup in the supply conduit sufficient to open the control valve against the force of its loading spring so that fuel under pressure enters the injector throughout the gating interval whose timing and duration may be determined by one or more operating parameters, such as throttle position and engine speed, fed into the network.

Description

United States Patent 91 Murtin et al.
[75] lnventorszFernand Murtin; Loic Mercier;
Jean Barat, all of Paris, France [73] Assignee: Societe Industrielle dElectronique et dlniormatique, Paris, France [22] Filed: May 13, 1970 [21] Appl. No.: 36,814
[30] Foreign Application Priority Data May 14, 1969 France 6915592 [52] 11.5. CI. 123/32 EA, 123/32 AE, 123/32 R 1451 July 3,1973
Primary Examiner-Laurence M. Goodridge Assistant Examiner-Ronald B. Cox Attorney-Karl F. Ross 5 7 ABSTRACT One or more cylinders of a compression-ignition engine are connected to respective supply conduits through control valves normally spring-biased into a closed position. A feed pump periodically delivers fuel under [51] Int. Cl. F02b 3/00 pressure, fr m a reservoir, to a distributing channel [58] Field of Search 123/32 E, 32 EL, leading to the supply conduit or conduits, this channel 123/ 139 E also having a return conduit for each cylinder with a bypass valve closed during all or part of the compres- [56] Referen e Cited sion stroke of the pump. The closure of this bypass UNITED STATES PATENTS valve, during a gating interval established by an elec- 2,499,706 3/1950 wad 123/32 trOmCPCtWmIF' causes a pressure bulldup m theisupply 2,569,090 9/1951 Booth 23/32 conduit sufficient to open the control valve against the 2,363,437 2/1958 Bessiere" 23/32 force of its loadmg sprmg so that fuel under pressure 3 20 2/1962 Senine 123/32 enters the injector throughout the gating interval whose 3,430,616 3/1969 Glockler 123/32 timing and duration may be determined by one or more 3,456,628 7/1969 Bassot 123/32 operating parameters, such as throttle position and en- 3,500,802 3/1970 Long 123/32 gine speed fed into the network 3,533,381 10/1970 Schmid 123/32 6 Claims, 9 Drawing Figures 'T' 181 189 30/? /.J46 /l59 I22 t Ll i TL I55 164 177 PATENTEUJUL3 1915 3. 742.918
FUEL SUPPLY muscnom FIG.
Fermnd R. C Murfin Loic Mercier Jean Bare? INVENTORS.
z ss A Attorney PATENTEDJULB ma 3.742.918
sum w 0 w FUEL L G C NET 02 AiSERVO/E M Loic Mercier F l G. 7 Jean Baraf INVENTORS.
Attorney Fernand R C. Murfin,
PAIENTEBJULB I975 I 3.742.918
sum HF.
Fernand R. C. Murfin Loic Mercier dean Bare? INVENTORS.
" Attorn y PATENTED JUL 3 I975 SHEH 8W 8 PULSE 307 COUNTER RELAXAfIoN OSCILLATOR POTENTIOHETEE SERVO FIG. 9
- Fernand RC. Murfin Loic Mercier Jean Bare? INVENTORS.
55 Attorney IELIECTRONICALLY CONTROLLED FUEL-SUPPLY SYSTEM FOR COMPRESSION-IGNITION ENGINE Our present invention relates to fuel-injection systems for compression-ignition engines deriving their energy from the burning of an inflammable fluid in air.
Conventional injection systems for such engines rely on a fuel pump to meter accurately a given quantity of liquid hydrocarbons to the injectors, usually associating a separate pump with each cylinder. Because of the very small quantities of liquid involved in each combustion cycle, the mechanical complexity and precision required in these metering pumps is high. On account of their inherent inertia, these pumps cannot be quickly adjusted to changing operating conditions in order to adapt their delivery rate to variations in, say, the terrain traveled by an automotive vehicle equipped with such an engine.
Since the operating efficiency, responsiveness to changes in load, and the proportion of unburned fuel in the exhaust gases are all affected by the closing and timing of the fuel injection for each cylinder, our invention aims at providing a closely controllable supply of fuel to the combustion chamber or chambers of an internal-combustion engine.
A more specific object of this invention is to provide simple and effective means for so controlling this fuel supply in response to certain operating parameters as to minimize pollution of the atmosphere by unburned combustion residue.
These objects are realized, pursuant to our present invention, by the provision of a fuel-supply system for one or more cylinders of an internal-combustion engine, e.g. in an automotive vehicle, wherein an enginedriven pump preferably of the reciprocating-piston type delivers fuel under pressure to a distributing channel from which a first conduit extends to an injector of a cylinder served thereby, another extension conduit returning excess fuel to a drain (usually to the reservoir or tank feeding the pump). The first conduit contains a normally closed valve biased by a force less than that exerted upon the valve body by the pump pressure whereby, in response to a pressure buildup within the channel upon a blocking of the drain during a compression stroke of the pump, this control valve is forced open to admit fuel to the cylinder (or to an antechamber periodically communicating therewith) for a period depending upon various operating parameters which control a bypass valve in the second conduit to close and open the fuel-return path. The temporary closure of this bypass valve, therefore, determines the injection interval which may extend over all or part of that compression stroke.
According to a more specific feature of our invention, applicable to a multicylinder engine, the distributing channel has a plurality of branches each with its own supply and return conduit, each branch further containing a shut-off valve ahead of these conduits for isolating them from the corresponding conduits in the other branch or branches during their mutually staggered operating phases. Each compression stroke of the pump finds only one of these shut-off valves open to feed the corresponding injector in the rhythm of a gating signal controlling the associated bypass valve.
The timing of the injection interval with reference to a compression stroke assigned to the corresponding engine cylinder, i.e., the duration of that interval and/or the time of its inception within the compression phase, is advantageously controlled by a logic network forming part of a computer responsive to the aforementioned operating parameters, such as engine speed and load. This network may include a pair of cascaded pulse generators, such as bistable elements, whose output pulses can be made to vary in length under the control of an analog voltage representing a respective parameter. The first pulse generator may be periodically started by an invariable timing signal derived from the engine itself, thus in correlation with the engine-driven feed pump; the second pulse generator then produces the gating signal which coincides with the injection interval.
The above and other features of our invention will be described in detail hereinafter with reference to the accompanying drawing in which:
FIG. I shows part of a fuel-injection system embodying the invention;
FIG. 2 is a diagram of an injection-control network for the system of FIG. 1;
FIG. 3 is a set of graphs relating to the network of FIG. 2;
FIG. 4 is a cross-sectional view of a modified control valve for the system of FIG. 1;
FIG. 5 is a diagram of a control network, similar to that of FIG. 2, for a four-cylinder engine;
FIG. 6 is a set of graphs similar to FIG. 3, relating to the system of FIG. 5;
FIG. 7 is an overall schematic view of the complete fuel system of a four-cylinder engine embodying the invention;
FIG. 8 is a cross-sectional view of another modified control valve; and
FIG. 9 is a schematic representation of a measuring device to be used in the control circuit of FIG. 2 or 5.
FIG. 1 illustrates the basic components of an injection mechanism in accordance with our invention as applied to a single-cylinder engine. A combustion chamber 102, formed by a cylinder wall and a piston 101, is equipped with an injection nozzle B having an orifice 30. This orifice is normally blocked by the tip 29 of a needle 31 whose shank is continuously urged by a spring 33 against a valve seat 28. The needle 31, forming part of an injection-control valve, slides in a body 32 whose upper end is integral with a retainer 33a for the spring 33 surrounding an extension 31a of the needle. When fuel is supplied under pressure, via a conduit 26, to the injector B, the action of the fluid upon the beveled tip 29 overcomes the bias of the spring 33 and lifts the needle 31 out of the valve seat 28, thereby enabling fuel to be sprayed into the combustion space 102 via the orifice 30. Upon the reduction of the supply pressure, the spring 33 returns the needle into contact with the valve seat, thus cutting off further fuel flow to the cylinder.
The supply of pressurized fuel is effected by means of a positive-displacement pump P, driven from a shaft 1 which is synchronized with the engine crankshaft and may be the usual cam shaft in a single-cylinder engine operating on a four-stroke cycle. A cam 1a mounted on the shaft 1 entrains a follower lb attached to a pump piston 3 biased by a return spring 2 into continuous contact with the cam 10.
The piston 3 reciprocates in a pumping chamber within a block 4. At the bottom of its operating stroke the piston uncovers an inlet 7 to which fuel is fed from a reservoir R (FIG. 7) under the influence of gravity or by a separate low-head pump.
As the piston 3 moves upward, the inlet port 7 is blocked and the fuel trapped in an overlying space 8 is forced, past a check valve 9, into a distributing channel communicating with the supply conduit 26. At the top of the stroke a venting bore 6, machined into the piston, registers with the inlet port 7 and permits a rapid drop of the pressure in the space 8 to the supply level. This results in the closure of the valve 9 with very little reverse flow from channel 10.
The pumping cycle coincides with a revolution of the shaft 1 and the delivery volume is so dimensioned that during a potential injection period, measured in terms of degrees of crankshaft rotation, the fuel delivered by the pump (at a predetermined rate varying with crankshaft speed) equals the maximum quantity consumable in the engine.
Channel 10 also communicates with an orifice ll of a valve cylinder 17 from which a conduit 15, under the control of an evaluating network described hereinafter with reference to FIG. 2, returns excess fuel to the reservoir to regulate the amount of fuel actually injected. Thisis achieved by means of a bypass valve V which, when open, reduces the pressure in distributing channel 10 to a near-atmosphere level whereupon the restoring spring 33 is no longer opposed by an overriding hydraulic pressure and the injection orifice 30 is blocked by the needle 31. Closure of this bypass valve during the pumping stroke, therefore, actuates the injector and admits fuel to the combustion space.
A plunger 14 reciprocating in valve cylinder 17 has a transverse passage 13 which in one extreme position of the piston, i.e., at the lower end of its stroke, connects the port 11 with a confronting discharge port 12 at the entrance of conduit 15. A spring 16 surrounds a narrowed stem 18 of the plunger and abuts a shoulder 16a in the wall of the cylinder 17 so as to urge the plunger against the cylinder bottom 34, thereby maintaining the passage 13 aligned with ports 11 and 12.
The upper end of the stem 18 carries a cylindrical core 19 of high magnetic permeability forming part of a solenoid whose coil 22 sits in a permeable yoke 20 provided with a cylindrical bore 21 accommodating this core.
When the coil 22 is energized by a signal current on wires 24 and 25, an upward force is exerted on the core 19 and the plunger 14 is raised, thereby compressing the spring 16 and blocking the return conduit 15. In this position, the injection system is enabled and will supply fuel to the combustion chamber 102 so long as the pump pressure exceeds the biasing force of spring 33. De-energization of coil 22 then terminates the fuelinjection phase.
In FIG. 2 we have shown an evaluating network for controlling the energization of coil 22 and, thereby, the timing and duration of the fuel injection.
A magnetic proximity sensor 35, serving as a timer synchronized with pump P of FIG. 1, comprises a magnetic coil 38 whose core 37 periodically co-operates with a rotating ferromagnetic armature 36 on a shaft 360 driven from the engine crankshaft at a suitable speed, i.e., with a step-down ratio of 2:1 in a fourstroke engine, so as to perform one revolution during each engine cycle. The variable inductance of this circuit induces a sharp pulse 43, see also FIG. 3, on an output conductor 40 each time the armature 36 passes close to the coil.
The pulse thus generated is used to operate a normally inoperative flip-flop 39, thereby initiating a rectangular timing pulse 44 (as also shown in FIG. 3) on the one output 42 of this flip-flop. Bistable circuits of flip-flops are well known in the electronics art and are for example disclosed in the textbook Pulse and Digital Circuits by Jacob MILLMAN and Herbert TAUB, McGraw-Hill Book Company, Inc., New York 1956, pages et seq. Flip-flops have a one" and a zero input and a one and a zero output, changing over from an inoperative or off state to an operative or on" state when they receive a trigger pulse on their one input and from their operative state to their inoperative state when they receive a reset pulse on their zero input. Pulse 44 charges a capacitor 45a in an integrating network 45 applying a substantially linearly rising voltage to one input 49 of a comparator 47 which is shown as a differential operational amplifier; the other input 48 of comparator 47 carries a reference voltage generated by a potentiometer 46 which can be adjusted either manually or in response to a variable system parameter as described below with reference to FIG. 9. The comparator output, appearing on a lead 41, is differentiated by a resistance 50 and a feedback condenser 51. The appearance of this signal resets the flipflop 39, thereby terminating the timing pulse 44 after a period varying with the potential on lead 48. Thus, the duration of the timing pulse 44 is governed by the setting of potentiometer 46 whose controlling parameter, in a preferred embodiment, is substantially proportional to engine speed.
The trailing edge of the pulse 44, as derived from the reset output 53 of flip-flop 39 through a differentiating circuit including a capacitor 53a and a resistor 53b, controls another flip-flop 52 to generate a rectangular gating signal 57 (FIG. 3) on a conductor 58. The signal 57 enters a power amplifier 59 whose output energizes the coil 22 of the bypass valve V, FIG. 1, thereby initiating the injection phase of cylinder 102.
The length of the injection period is governed by the gating pulse 57 whose duration, in turn, is controlled by the output of a comparator 56 represented as a differential operational amplifier. Signal 57 charges a capacitor 54a of an integrating network 54 feeding one input of the comparator, its other input receiving a reference voltage from a potentiometer 55 under the control of a driver-operated accelerator pedal D. Like potentiometer 46, therefore, potentiometer 55 establishes a variable threshold potential whose magnitude depends on a significant parameter of the system (here engine load). Gating pulse 57, whose leading edge may be timed to occur shortly before the piston 101 reaches its upper dead-center position TDC as indicated in FIG. 3, could terminate before or after the end of the compression stroke. Thus, the start and the end of this gating pulse, and therefore of the injection interval, are determined by the respective settings of potentiometers 46, 55.
When the engine to be fitted with our improved injection system contains several cylinders, the system may be expanded by the addition of injectors, by-pass valves and pulse generators individual to each cylinder. The pump need not be duplicated if its capacity is sufficient to maintain the required flow rates and pressures.
When the number of pumps is smaller than the number of cylinders to which fuel is supplied, the individual injectors are, in effect, multiplied to a pressurized fuel supply manifold. In such a system it behooves to isolate each injector from the manifold at all times except during staggered periods set aside for its respective injection phases. FIG. 4 shows, for this purpose, the combination of a shut-off valve V with the bypass valve V illustrated in FIG. 1; the two valves are identical and combined in a common housing A, corresponding elements of valve V having been designated by the same reference numerals as those of valve V preceded by a l in the position of the hundreds digit.
In FIG. .4 the path from distributing channel to supply conduit 26 leads via ports 111, 112 and the in tervening passage 113 of plunger 114, the port 112 opening into a conduit 110 terminating at the inlet port 11 of valve V. Current flowing through solenoid coil 122, via wires 124 and 125, blocks this path so as to disconnect the conduit 26 from the common distributing channel 16. Thus, injection can take place only upon simultaneous closure of valve V and opening of valve V by the energization of coil 22 and de-energization of coil 122.
An injector-control network M designed for a fourcylinder engine is illustrated in FIG. 5, the corresponding control signals being shown in FIG. 6.
Starting pulses for this system are derived from a timer 136 differing from timer 35, FIG. 2, in that an armature 137 on its shaft 136a successively coacts, during each engine cycle consisting of two crankshaft revolutions, with four magnetic pickup coils 140, 141, 142 and 143 whose cores 135 are equiangularly spaced apart around the axis of rotation. The pulses generated by these sensors, shown in FIG. 6, are designated 146, 147, 145 and 149, respectively.
A common evaluation network of the type shown in FIG. 2 is used to control all four injectors; this network, operating at four times the pulse rate needed for a single cylinder, is triggered by each starting pulse (signals 146, 147, 145, 149) through an OR gate 163 working into lead 46. OR gates are well known in the art and are, for example, disclosed in the textbook above referred to, at pages 394-397.
Flip- flops 150, 151, 152 and 153 are included in the timing circuits for the four cylinders to actuate the injectors thereof in their firing order. Each starting pulse 146 149 is applied to the one input of the associated flip-flop as well as to the zero" input of the immediately preceding flip-flop so that each flip-flop 150 153 remains operated for a quarter-turn on shaft 136a. Thus, pulse 146 brings flip-flop 150 to state one" and generates a rectangular pulse 159 on the set one output 155 thereof, at the same time resetting the flip-flop 153 to terminate a similar pulse 162 on the one output 155 of the latter flip-flop. Similar pulses 161), 161 appear on the one outputs 156, 157 of flip- flops 151 and 152, each lasting for a quarter-revolution of the shaft 136a.
The inversions 189-192 of signals 159-162, appearing on the zero outputs of the flip- flops 150, 151, 152 and 153, are fed to respective power amplifiers 151, 152, 163 and 184 which, in turn, energize the coils 122,, 122 122,, and 122 associated with the shut-off valves V (FIG. 4) of the four injectors of the system.
The signals 159-162 from the one outputs 155-155 of flip-flops 156-153 go to respective AND gates 164, 165, 166, 167 which also have other inputs, connected via an OR gate to output lead 58 of flip-flop 52, and third inputs tied in parallel to an enabling lead 168 originating at a control circuit 139. Another enabling lead 144 extends from circuit 139 to AND gates 164167 by way of OR gate 145. Lead 144 may be energizable under the control of a temperature sensor in the cylinder block, during a warmup period, to make the period of conductivity of AND gates 164-467 no longer time-modulated but constant, i.e., independent of the gating pulse 57 on lead 58 when the engine is cold, thereby allowing injection to take place for a full quarter-turn of shaft 1360 or for some fixed shorter period as determined by, say, a cam on that shaft controlling a switch in circuit 139. Lead 168 may be deenergized under negative load, as during downhill driv ing, by switches responsive to a retracted accelerator pedal and an engine speed (as measured by the analog voltage on lead 48) exceeding a predetermined threshold, a circuit of this type having been described in copending application Ser. No. 7,78l filed by two of us, Fernand Murtin and Loic Mercier, on 2 Feb. 1970.
Since, generally, the signal from controller 139 on lead 168 is a steady d-c voltage, the AND gates 164, 165, 166 and 167 become conductive upon the simultaneous presence of a respective signal 159, 160, 161, or 162 are respectively amplified in components and a gating pulse 57 on lead 56. The resulting injection signals, shown in FIG. 6, are relatively staggered trigger pulses 173, 174, and 176, respectively. These signals traverse amplifiers 177, 178, 179 and 180 to actuate the bypass valves V (FIG. 4) associated with the four injectors by energizing their solenoid coils 22,, 22 22 and 22,. The graph 193 shows the four compression strokes of the fuel-supply pump spanning the injection signals within an engine cycle t,,t,.
A complete injection-control system for a fourcylinder engine of the four-stroke type, embodying the features of FIGS. 1, 4 and 6, is depicted diagrammatically in FIG. 7.
The fuel is supplied from reservoir R to the main pump P by an ancillary pump N. The pump P rotates at twice the crankshaft speed to provide a pressure pulse for each of the four injectors B,, B B and B, serving the cylinders. These injectors are connected with respective branches 10,, 10 16 10., of channel 10 through individual supply conduits 26,, 26 26,, and 26,, by way of the corresponding dual control valves A,, A A A which receive energizing signals for their associated relay coils via electrical leads C,, C C and C, originating in the logic network M of FIG. 5. Network M receives information in analog form on the angular position a of the crankshaft on a line I,, on the engine speed so on a line I and on the position of accelerator pedal D on a line I Line I, symbolizes an electrical or mechanical link to the potentiometer 46, e.g. as described hereinafter with reference to FIG. 9, whereas line I, is the output of sensor 136. The return or overflow conduits have been designated 15,, 15 15,, 15,, merging in a common drain 15.
While extremely sharp pulse fronts may be obtained in the electronic components of our control system, it is more difficult to achieve similar precision in the initiation and cutoff of hydraulic fluid flow, largely because of the inertia of the moving components including the fluid and the compressibility of the latter.
The venting channel 6 of the pump piston 3 (FIG. 1) sharpens the trailing edges of the hydraulic pulses 193 shown in FIG. 6. A similar sharpening of the actual injection pulses can be achieved by a two-stage energization of the controlling valve, as also disclosed in the copending application Ser. No. 7,781 referred to above, i.e., the valve V of FIG. 1 or 4 giving access to the drain 15. This has been illustrated in FIG. 8 where a modified bypass valve V" has the core 19 of its solenoid 20, 22 extended at 219 into the yoke 220 of a similar solenoid with electromagnetic coil 222 shown connected, via wires 224 and 225, to the output of a power amplifier 277 energized from the zero output of an ancillary flipflop 250 individually associated with flip-flop 150. Flipflop 250, whose one input is tied to the zero output 155 of companion flip-flip 150, has its zero input connected to the zero output 53 of flip-flop 39 (not shown in FIG. 8) by way of a delay line 253 whereby amplifier 277 is de-energized shortly after the start of the next gating pulse 57. The conductive intervals of amplifier 250 and corresponding amplifiers associated with the companion flip-flops of bistable units 151, 152, 153 are shown at 273, 274, 275 and 276 in FIG. 6; it will be noted that, thanks to a suitable choice of delay time 8 introduced by network 253, they partly overlap the corresponding trigger pulses 173-176.
Pulse 273, whose leading edge coincides with that of the first pulse 44 shown in FIG. 6, energizes the coil 222 of the first bypass valve V" to an extent insufficient to overcome the force of its spring 16 so that the valve will not close until the next gating pulse 57 gives rise to the corresponding trigger pulse 173. Since only a small current is now required to raise the plunger 14, closure of the bypass leading to drain is virtually instantaneous. Conversely, the subsequent deenergization of coil 222 does not yet permit the spring 16 to reopen the valve; this action occurs only upon the termination of pulse 173, again with almost instantaneous effect.
The measurement of the engine speed as a criterion for the operation of the computer network M can be accomplished, advantageously, with the aid of a massflow meter of the general type disclosed in U.S. Pat. No. 3,470,741 to Enoch J. Durbin. This has been illustrated in FIG. 9 which shows an air-intake duct or manifold 103 serving one or more cylinders 100; individual injectors B, not shown in FIG. 9, are provided for these cylinders as indicated in FIG. 1.
A high-voltage d-c source 300 has its negative termi nal connected to a corona emitter 301 in the form of a sharp-edged conductive disk centrally disposed within duct 103. A poppet valve 104, when opened by the cam shaft (not shown) in the usual manner, permits the piston associated with engine cylinder 100 to draw air through the manifold 103 into its combustion chamber 102 at a rate determined by the engine speed and by the position of a throttle or butterfly valve 105 controlled by the driver of the vehicle through the accelerator D (FIGS. 2 and 7).
The corona originating at electrode 301 ionizes some of the molecules of the air stream traversing the duct 103, causing them to drift toward two longitudinally spaced, positive (here grounded) annular electrodes 302 and 303 forming part of the manifold wall. The resultant of the transverse drift velocity of these ions, due to the concentric field, and their axial speed component, imparted by the flow of the air stream toward the cylinder, is inclined at a small angle to the plane of disk 301 whereby ring 303 is driven negative with reference to ring 302. I
A condenser 304 and a resistor 305 form an integrating network connected across electrodes 302 and 303; condenser 304 is bridged by an electronic breakdown device 306, such as a gas-filled diode, to form therewith a relaxation oscillator generating a sawtooth wave of a frequency depending on the rate of charge of the condenser through resistor 305. A pulse counter 307 counts the cycles of this sawtooth wave and generates an output voltage v proportional to that count, which is matched in a comparator 308 with a reference voltage v to provide a positive or negative control signal for a servo motor 309 driving the potentiometer 46. If desired, the output of comparator 308 could be directly fed to a pulse generator replacing the flip-flop 39, to vary the length of timing pulses 44, or the voltage v could be applied to lead 48 of comparator 47 in FIGS. 2 and 5.
If the back pressure in duct 103 is low, i.e., if the engine races with butterfly valve 105 nearly closed, the air will flow rapidly to impart a substantial axial velocity component to the migrating ions, yet their mean transverse speed will also be elevated in view of the low air density. If the valve 105 is opened further with the engine speed unchanged, the increased air density reduces the transverse speed component of the ions but the longitudinal flow velocity also decreases with corresponding reduction of the axial speed component. Thus, the angle included between the ion path and a direction perpendicular to the duct axis is practically a function of engine speed alone and substantially independent of throttle position.
Our improved system has been found to operate with great precision, enabling the establishment of injection intervals with an accuracy on the order of a fraction of a degree of crankshaft revolution. A fuel-utilization rate of up to 99 percent, corresponding to an almost total suppression of unburned combustion residue contributing to air pollution, can be achieved in this way, with virtually total elimination of CO and NH in the exhaust fumes.
We claim:
1. A system for controlling the fuel supply to a compression-ignition engine having at least one piston cylinder provided with a fuel injector, comprising:
a source of fuel for said engine;
a distributing channel provided with a first extension conduit terminating at said injector and with a second extension conduit leading to a drain for excess fuel;
pump means disposed between said source and said channel for delivering fuel at high pressure to said channel;
first valve means in said first conduit provided with biasing means normally maintaining same in a closed position;
electrically controlled second valve means in said second conduit for intermittently blocking the path from said channel to said drain; and
electronic gating means for periodically closing said second valve means during recurrent operating cycles of the engine with simultaneous opening of said first valve means against the force of said biasing means, said gating means including a first pulse generator controlled by the engine for establishing a first period beginning at a predetermined point in a cycle, a second pulse generator controlled by said first pulse generator for establishing a second period beginning with the end of said first period, a first circuit responsive to a first operating parameter of the engine and connected to said first pulse generator for varying the length of said first period, and a second circuit responsive to a second operating parameter of the engine and connected to said second pulse generator for varying the length of said second period, said second valve means being closable by said gate means for the duration of said second period.
2. A system as defined in claim 1 wherein said pump means comprises a reciprocable pump piston for performing a succession of compression strokes timed to span an injection interval established by the opening of said first valve means and closure of said second valve means, said pump piston being coupled with the engine for correlating said compression strokes with the timing of said first period.
3. A system as defined in claim 1 wherein said first circuit includes a generator of speed-dependent analog voltage, said second circuit including a generator of analog controlled by an accelerator pedal.
4. A system as defined in claim 1 wherein said first circuit includes a mass-flow meter disposed in an air intake of said cylinder.
5. A system as defined in claim 1 wherein said gating means further includes a control circuit for selectively placing said second valve means under the exclusive control of said first pulse generator for closure during said first period.
6. A system for controlling the fuel supply to a com- 10 pression-ignition engine having at least one piston cylinder provided with a fuel injector, comprising:
a source of fuel for said engine;
a distributing channel provided with a first extension conduit terminating at said injector and with a second extension conduit leading to a drain from excess fuel;
pump means disposed between said source and said channel for delivering fuel at high pressure to said channel;
first valve means in said first conduit provided with biasing means normally maintaining same in a closed position;
second valve means in said second conduit for intermittently blocking the path from said channel to said drain, said second valve means being provided with electromagnetic actuating means energizable for closing same and spring means effective in a deenergized state of said actuating means for holding said second valve means open, said actuating means including an ancillary actuator of insufficient power to overcome the action of said spring means and a main actuator capable of doing so when aided by said ancillary actuator; and
electronic gating means for periodically closing and opening said second valve means with concurrent opening of said first valve means against the force of said biasing means, said gating means including a generator of first energizing pulses for said ancillary actuator and a generator of second energizing pulses, overlapping said first energizing pulses, for
said main actuator.

Claims (6)

1. A system for controlling the fuel supply to a compressionignition engine having at least one piston cylinder provided with a fuel injector, comprising: a source of fuel for said engine; a distributing channel provided with a first extension conduit terminating at said injector and with a second extension conduit leading to a drain for excess fuel; pump means disposed between said source and said channel for delivering fuel at high pressure to said channel; first valve means in said first conduit provided with biasing means normally maintaining same in a closed position; electrically controlled second valve means in said second conduit for intermittently blocking the path from said channel to said drain; and electronic gating means for periodically closing said second valve means during recurrent operating cycles of the engine with simultaneous opening of said first valve means against the force of said biasing means, said gating means including a first pulse generator controlled by the engine for establishing a first period beginning at a predetermined point in a cycle, a second pulse generator controlled by said first pulse generator for establishing a second period beginning with the end of said first period, a first circuit responsive to a first operating parameter of the engine and connected to said first pulse generator for varying the length of said first period, and a second circuit responsive to a second operating parameter of the engine and connected to said second pulse generator for varying the length of said second period, said second valve means being closable by said gate means for the duration of said second period.
2. A system as defined in claim 1 wherein said pump means comprises a reciprocable pump piston for performing a succession of compression strokes timed to span an injection interval established by the opening of said first valve means and closure of said second valve means, said pump piston being coupled with the engine for correlating said compression strokes with the timing of said first period.
3. A system as defined in claim 1 wherein said first circuit includes a generator of speed-dependent analog voltage, said second circuit including a generator of analog controlled by an accelerator pedal.
4. A system as defined in claim 1 wherein said first circuit includes a mass-flow meter disposed in an air intake of said cylinder.
5. A system as defined in claim 1 wherein said gating means further includes a control circuit for selectively placing said second valve means under the exclusive control of said first pulse generator for closure during said first period.
6. A system for controlling the fuel supply to a compression-ignition engine having at least one piston cylinder provided with a fuel injector, comprising: a source of fuel for said engine; a distributing channel provided with a first extension conduit terminating at said injector and with a second extension conduit leading to a drain from excess fuel; pump means disposed between said source and said channel for delivering fuel at high pressure To said channel; first valve means in said first conduit provided with biasing means normally maintaining same in a closed position; second valve means in said second conduit for intermittently blocking the path from said channel to said drain, said second valve means being provided with electromagnetic actuating means energizable for closing same and spring means effective in a de-energized state of said actuating means for holding said second valve means open, said actuating means including an ancillary actuator of insufficient power to overcome the action of said spring means and a main actuator capable of doing so when aided by said ancillary actuator; and electronic gating means for periodically closing and opening said second valve means with concurrent opening of said first valve means against the force of said biasing means, said gating means including a generator of first energizing pulses for said ancillary actuator and a generator of second energizing pulses, overlapping said first energizing pulses, for said main actuator.
US00036814A 1969-05-14 1970-05-13 Electronically controlled fuel-supply system for compression-ignition engine Expired - Lifetime US3742918A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR6915592A FR2059768A5 (en) 1969-05-14 1969-05-14

Publications (1)

Publication Number Publication Date
US3742918A true US3742918A (en) 1973-07-03

Family

ID=9034033

Family Applications (1)

Application Number Title Priority Date Filing Date
US00036814A Expired - Lifetime US3742918A (en) 1969-05-14 1970-05-13 Electronically controlled fuel-supply system for compression-ignition engine

Country Status (6)

Country Link
US (1) US3742918A (en)
DE (1) DE2023733A1 (en)
ES (1) ES378752A1 (en)
FR (1) FR2059768A5 (en)
GB (1) GB1310596A (en)
NL (1) NL7006945A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3851635A (en) * 1969-05-14 1974-12-03 F Murtin Electronically controlled fuel-supply system for compression-ignition engine
US3971348A (en) * 1974-05-08 1976-07-27 International Harvester Company Computer means for sequential fuel injection
US3991733A (en) * 1973-09-28 1976-11-16 The Lucas Electrical Company Limited Spark ignition systems for internal combustion engines
US4033310A (en) * 1972-10-04 1977-07-05 C.A.V. Limited Fuel pumping apparatus with timing correction means
US4051817A (en) * 1974-04-18 1977-10-04 Nippon Soken, Inc. Fuel injection system for an internal combustion engine
FR2457518A1 (en) * 1979-05-23 1980-12-19 Lucas Industries Ltd TRANSDUCER CALIBRATION DEVICE
US4459963A (en) * 1981-03-28 1984-07-17 Robert Bosch Gmbh Electrically controlled fuel injection apparatus for multi-cylinder internal combustion engines
EP0114378A2 (en) * 1983-01-25 1984-08-01 Klöckner-Humboldt-Deutz Aktiengesellschaft Fuel injection apparatus for internal combustion engine
US4566417A (en) * 1983-04-18 1986-01-28 Nippondenso Co., Ltd. Fuel injection control apparatus for diesel engines
US4586656A (en) * 1984-08-14 1986-05-06 United Technologies Diesel Systems, Inc. Solenoid valve, particularly as bypass valve with fuel injector
EP0243871A2 (en) * 1986-05-02 1987-11-04 Nippondenso Co., Ltd. Fuel injection system
US4838232A (en) * 1984-08-14 1989-06-13 Ail Corporation Fuel delivery control system
WO1994007015A1 (en) * 1992-09-18 1994-03-31 General Electric Company Electronic fuel injection system for large compression ignition engine
US5421521A (en) * 1993-12-23 1995-06-06 Caterpillar Inc. Fuel injection nozzle having a force-balanced check
US5628293A (en) * 1994-05-13 1997-05-13 Caterpillar Inc. Electronically-controlled fluid injector system having pre-injection pressurizable fluid storage chamber and direct-operated check
US5673669A (en) * 1994-07-29 1997-10-07 Caterpillar Inc. Hydraulically-actuated fluid injector having pre-injection pressurizable fluid storage chamber and direct-operated check
US5687693A (en) * 1994-07-29 1997-11-18 Caterpillar Inc. Hydraulically-actuated fuel injector with direct control needle valve
US5697342A (en) * 1994-07-29 1997-12-16 Caterpillar Inc. Hydraulically-actuated fuel injector with direct control needle valve
US5826562A (en) * 1994-07-29 1998-10-27 Caterpillar Inc. Piston and barrell assembly with stepped top and hydraulically-actuated fuel injector utilizing same
CN1053260C (en) * 1997-05-16 2000-06-07 清华大学 Electrically controlled diesel oil jetting system including linearly arranged pump, pipe, valve and nozzle
US6082332A (en) * 1994-07-29 2000-07-04 Caterpillar Inc. Hydraulically-actuated fuel injector with direct control needle valve
US6425375B1 (en) 1998-12-11 2002-07-30 Caterpillar Inc. Piston and barrel assembly with stepped top and hydraulically-actuated fuel injector utilizing same
US6467462B2 (en) * 1999-12-28 2002-10-22 Robert Bosch Gmbh Fuel injection system for internal combustion engines
US6575137B2 (en) 1994-07-29 2003-06-10 Caterpillar Inc Piston and barrel assembly with stepped top and hydraulically-actuated fuel injector utilizing same
US6575139B2 (en) * 2000-03-15 2003-06-10 Robert Bosch Gmbh Injection device comprising an actuator for controlling the needle stroke
US6755622B1 (en) * 1998-12-29 2004-06-29 J. Eberspächer GmbH & Co. KG Fuel metering pump for a heater, especially an additional heater or a parking heater of a motor vehicle

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2835228A1 (en) * 1978-08-11 1980-02-28 Bosch Gmbh Robert DEVICE FOR CONTROLLING ELECTROMAGNETIC CONSUMERS, ESPECIALLY ELECTROMAGNETIC INJECTION VALVES IN INTERNAL COMBUSTION ENGINES
US4232647A (en) * 1978-11-13 1980-11-11 The Bendix Corporation Control circuit for diesel injection system
FR2448042B1 (en) * 1979-01-31 1985-11-29 Lucas Ind Plc FUEL SUPPLY DEVICE FOR INTERNAL COMBUSTION ENGINE
US4355620A (en) * 1979-02-08 1982-10-26 Lucas Industries Limited Fuel system for an internal combustion engine
US4295453A (en) * 1979-02-09 1981-10-20 Lucas Industries Limited Fuel system for an internal combustion engine
US4329951A (en) * 1979-04-21 1982-05-18 Lucas Industries Limited Fuel injection system
US4393651A (en) * 1980-09-02 1983-07-19 Chandler Evans Inc. Fuel control method and apparatus
US4355619A (en) * 1980-10-01 1982-10-26 The Bendix Corporation Fast response two coil solenoid driver
JPS57116139A (en) * 1981-01-09 1982-07-20 Hitachi Ltd Emergency operating device for electrically controlled injection pump
MX154828A (en) * 1981-12-24 1987-12-15 Lucas Ind Plc IMPROVEMENTS IN A FUEL INJECTION SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
GB2129163B (en) * 1982-10-21 1986-07-30 Lucas Ind Plc Liquid fuel pumping apparatus
DE3427730A1 (en) * 1984-07-27 1986-02-06 Motorenfabrik Hatz Gmbh & Co Kg, 8399 Ruhstorf FUEL INJECTION SYSTEM
GB8703419D0 (en) * 1987-02-13 1987-03-18 Lucas Ind Plc Fuel injection pump
GB8802878D0 (en) * 1988-02-09 1988-03-09 Lucas Ind Plc Fuel injection system
JP2003517433A (en) 1998-04-06 2003-05-27 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing Grignard compound

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR733342A (en) * 1931-05-22 1932-10-04 Improvements to fuel injection devices for combustion engines
US2499706A (en) * 1948-04-09 1950-03-07 Patrick C Ward Injection pump
US2569090A (en) * 1945-10-27 1951-09-25 Thompson Prod Inc Electrical control device
FR1066357A (en) * 1952-11-07 1954-06-04 Renault Improvement of power control methods in internal combustion engines
US2863437A (en) * 1956-01-31 1958-12-09 Bessiere Pierre Etienne Fuel injection devices for multicylinder engines
US3020897A (en) * 1959-11-18 1962-02-13 Sony Corp Ignition system for an internal combustion engine
DE1451988A1 (en) * 1965-01-19 1969-02-13 Gerhard Lerch Electronically controlled fuel injection
US3430616A (en) * 1966-11-11 1969-03-04 Bosch Gmbh Robert Fuel injection control system
US3456628A (en) * 1966-04-13 1969-07-22 Sopromi Soc Proc Modern Inject High-speed fuel injection system
DE1939611A1 (en) * 1968-08-07 1970-02-19 Toyota Motor Co Ltd Control for fuel injection
US3500802A (en) * 1968-03-21 1970-03-17 Gillett Tool Co Control circuit for precision fuel metering systems
US3533381A (en) * 1968-05-24 1970-10-13 Bosch Gmbh Robert Temperature sensitive control circuit for internal combustion engines having a fuel injection system
US3543734A (en) * 1967-02-08 1970-12-01 Ass Eng Ltd Fuel injection systems

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR733342A (en) * 1931-05-22 1932-10-04 Improvements to fuel injection devices for combustion engines
US2569090A (en) * 1945-10-27 1951-09-25 Thompson Prod Inc Electrical control device
US2499706A (en) * 1948-04-09 1950-03-07 Patrick C Ward Injection pump
FR1066357A (en) * 1952-11-07 1954-06-04 Renault Improvement of power control methods in internal combustion engines
US2863437A (en) * 1956-01-31 1958-12-09 Bessiere Pierre Etienne Fuel injection devices for multicylinder engines
US3020897A (en) * 1959-11-18 1962-02-13 Sony Corp Ignition system for an internal combustion engine
DE1451988A1 (en) * 1965-01-19 1969-02-13 Gerhard Lerch Electronically controlled fuel injection
US3456628A (en) * 1966-04-13 1969-07-22 Sopromi Soc Proc Modern Inject High-speed fuel injection system
US3430616A (en) * 1966-11-11 1969-03-04 Bosch Gmbh Robert Fuel injection control system
US3543734A (en) * 1967-02-08 1970-12-01 Ass Eng Ltd Fuel injection systems
US3500802A (en) * 1968-03-21 1970-03-17 Gillett Tool Co Control circuit for precision fuel metering systems
US3533381A (en) * 1968-05-24 1970-10-13 Bosch Gmbh Robert Temperature sensitive control circuit for internal combustion engines having a fuel injection system
DE1939611A1 (en) * 1968-08-07 1970-02-19 Toyota Motor Co Ltd Control for fuel injection

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3851635A (en) * 1969-05-14 1974-12-03 F Murtin Electronically controlled fuel-supply system for compression-ignition engine
US4033310A (en) * 1972-10-04 1977-07-05 C.A.V. Limited Fuel pumping apparatus with timing correction means
US3991733A (en) * 1973-09-28 1976-11-16 The Lucas Electrical Company Limited Spark ignition systems for internal combustion engines
US4051817A (en) * 1974-04-18 1977-10-04 Nippon Soken, Inc. Fuel injection system for an internal combustion engine
US3971348A (en) * 1974-05-08 1976-07-27 International Harvester Company Computer means for sequential fuel injection
FR2457518A1 (en) * 1979-05-23 1980-12-19 Lucas Industries Ltd TRANSDUCER CALIBRATION DEVICE
US4459963A (en) * 1981-03-28 1984-07-17 Robert Bosch Gmbh Electrically controlled fuel injection apparatus for multi-cylinder internal combustion engines
EP0114378A2 (en) * 1983-01-25 1984-08-01 Klöckner-Humboldt-Deutz Aktiengesellschaft Fuel injection apparatus for internal combustion engine
EP0114378A3 (en) * 1983-01-25 1986-08-20 Klockner-Humboldt-Deutz Aktiengesellschaft Fuel injection apparatus for internal combustion engine
US4566417A (en) * 1983-04-18 1986-01-28 Nippondenso Co., Ltd. Fuel injection control apparatus for diesel engines
US4586656A (en) * 1984-08-14 1986-05-06 United Technologies Diesel Systems, Inc. Solenoid valve, particularly as bypass valve with fuel injector
US4838232A (en) * 1984-08-14 1989-06-13 Ail Corporation Fuel delivery control system
EP0243871A2 (en) * 1986-05-02 1987-11-04 Nippondenso Co., Ltd. Fuel injection system
EP0243871A3 (en) * 1986-05-02 1989-10-11 Nippondenso Co., Ltd. Fuel injection system
EP0724074A3 (en) * 1992-09-18 1998-10-07 General Electric Company Electronic fuel injection system for large compression ignition engine
US5394851A (en) * 1992-09-18 1995-03-07 General Electric Company Electronic fuel injection system for large compression ignition engine
AU664120B2 (en) * 1992-09-18 1995-11-02 General Electric Company Electronic fuel injection system for large compression ignition engine
EP0724074A2 (en) * 1992-09-18 1996-07-31 General Electric Company Electronic fuel injection system for large compression ignition engine
WO1994007015A1 (en) * 1992-09-18 1994-03-31 General Electric Company Electronic fuel injection system for large compression ignition engine
US5421521A (en) * 1993-12-23 1995-06-06 Caterpillar Inc. Fuel injection nozzle having a force-balanced check
US5628293A (en) * 1994-05-13 1997-05-13 Caterpillar Inc. Electronically-controlled fluid injector system having pre-injection pressurizable fluid storage chamber and direct-operated check
US5738075A (en) * 1994-07-29 1998-04-14 Caterpillar Inc. Hydraulically-actuated fuel injector with direct control needle valve
US5697342A (en) * 1994-07-29 1997-12-16 Caterpillar Inc. Hydraulically-actuated fuel injector with direct control needle valve
US5687693A (en) * 1994-07-29 1997-11-18 Caterpillar Inc. Hydraulically-actuated fuel injector with direct control needle valve
US5673669A (en) * 1994-07-29 1997-10-07 Caterpillar Inc. Hydraulically-actuated fluid injector having pre-injection pressurizable fluid storage chamber and direct-operated check
US5826562A (en) * 1994-07-29 1998-10-27 Caterpillar Inc. Piston and barrell assembly with stepped top and hydraulically-actuated fuel injector utilizing same
US6065450A (en) * 1994-07-29 2000-05-23 Caterpillar Inc. Hydraulically-actuated fuel injector with direct control needle valve
US6082332A (en) * 1994-07-29 2000-07-04 Caterpillar Inc. Hydraulically-actuated fuel injector with direct control needle valve
US6575137B2 (en) 1994-07-29 2003-06-10 Caterpillar Inc Piston and barrel assembly with stepped top and hydraulically-actuated fuel injector utilizing same
CN1053260C (en) * 1997-05-16 2000-06-07 清华大学 Electrically controlled diesel oil jetting system including linearly arranged pump, pipe, valve and nozzle
US6425375B1 (en) 1998-12-11 2002-07-30 Caterpillar Inc. Piston and barrel assembly with stepped top and hydraulically-actuated fuel injector utilizing same
US6755622B1 (en) * 1998-12-29 2004-06-29 J. Eberspächer GmbH & Co. KG Fuel metering pump for a heater, especially an additional heater or a parking heater of a motor vehicle
US6467462B2 (en) * 1999-12-28 2002-10-22 Robert Bosch Gmbh Fuel injection system for internal combustion engines
US6575139B2 (en) * 2000-03-15 2003-06-10 Robert Bosch Gmbh Injection device comprising an actuator for controlling the needle stroke

Also Published As

Publication number Publication date
DE2023733A1 (en) 1971-01-07
FR2059768A5 (en) 1971-06-04
GB1310596A (en) 1973-03-21
ES378752A1 (en) 1973-02-01
NL7006945A (en) 1970-11-17

Similar Documents

Publication Publication Date Title
US3742918A (en) Electronically controlled fuel-supply system for compression-ignition engine
US3851635A (en) Electronically controlled fuel-supply system for compression-ignition engine
US4022165A (en) Fuel injection system for successively introducing multiple fuel quantities in an engine cylinder
DE3101831C2 (en)
US3522794A (en) Electronically controlled injection system for an internal combustion engine
US3747577A (en) Temperature-dependent resistance arrangement for controlling fuel injection as a function of air intake
US2980090A (en) Fuel injection system
US3724436A (en) Fuel feed control device for internal combustion engines
US3762379A (en) System for injecting metered quantity of fuel into engine
US3616784A (en) Fuel supply system for an internal combustion engine providing time and voltage compensated cranking enrichment
US4782809A (en) Fuel injector with electronic control circuit
US4022174A (en) Electromagnetically actuated pumps
US3824967A (en) Electronic fuel injection system
GB1567041A (en) Fuel injection system
US2948273A (en) Fuel supply system
GB1451612A (en) Diesel internal combustion engines
US3685526A (en) Fuel control system for internal combustion engines
GB1351991A (en) Fuel injection apparatus for internal combustion engines
US3752137A (en) Apparatus for controlling rate of fuel injection
US3913536A (en) Fuel injection system for an internal combustion engine
US3623459A (en) Fuel supply control system having acceleration compensation
US3727592A (en) Electronic fuel injection system
US3896773A (en) Electronic fuel injection system
EP0840849A2 (en) Process for controlling the ignition point in internal combustion engines
US3606869A (en) Apparatus for electrically synchronizing fuel injection with fuel ignition in an internal combustion engine