Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3736936 A
Publication typeGrant
Publication date5 Jun 1973
Filing date13 Dec 1971
Priority date13 Dec 1971
Also published asDE2260128A1, DE2260128B2
Publication numberUS 3736936 A, US 3736936A, US-A-3736936, US3736936 A, US3736936A
InventorsA Basiulis, E Reed
Original AssigneeHughes Aircraft Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Cryogenic heat transfer device
US 3736936 A
Abstract
Heat transfer devices especially suitable for cryosurgery are disclosed each including an elongated tubular housing of low thermal conductivity having an open end and a closed end. A conical probe member of high thermal conductivity is mounted at and extends from the closed end of the housing. A capillary wick lining the inner lateral surface of the housing is adapted to convey a volatile working fluid such as liquid nitrogen at a temperature of -196 DEG C from the vicinity of the open end of the housing to the vicinity of the closed end. A working fluid reservoir is disposed about the open end of the housing in fluid communication with the capillary wick. An annular evacuated chamber is provided about the outer surface of the reservoir and a substantial portion of the outer lateral surface of the housing to afford thermal insulation.
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1 Basiulis et a1. [4 June 5, 1973 [54] CRYOGENIC HEAT TRANSFER 3,532,094 10/1970 Stahl "128/3031 DEVICE 3,568,464 3/1971 Drayson 3,618,610 11/1971 Hannant ..128/303.1 [75 lnventorsz Algerd Basluhs, Redondo Beach,

E1mer E. Reed, Jr., Downey, b Primary Examiner-Aldrich F. Medbery ofcahf- Attorney-W. H. MacAllister, Jr. and Allen A. Dicke, [73] Assignee: Hughes Aircraft Co., Culver City, v

' Calif. 22 Pl d D 13 1971 [57] ABSTRACT I 1 1e Heat transfer devices especially suitable for cryosur- [21] Appl. No.: 207,431 gery are disclosed each including an elongated tubular housing of low thermal conductivity having an open end and a closed end. A conical probe member of [52] US. Cl. ..l28/303.l, 128/400,6121/g/9l5 g thermal conductivity is mounted at and extends from the closed end of the housing. A capillary wick mm t e inner atera su ace 0 t e ousm 1s ntif|...s....A6h1b 17/36, F25d132/(8)03$0|lk4:)1l/())(0 g h l rf f h h g o are 1 62 adapted to convey a volatile working fluid such as I liquid nitrogen at a temperature of 196C from the vicinity of the open end of the housing to the vicinity [56] References cued of the closed end. A working fluid reservoir is UNITED STATES PATENTS disposedabout the open end of the housing in fluid communication with the capillary wick. An annular 3,190,081 6/1965 .Pytryga ..62/293 evacuated chamber is provided about the outer sur- 3,421,508 H 9 Nestrock ..l28/303.l face of the reservoir and a substantial portion of the 3,434,477 1969 Thomas, "123/3031 outer lateral surface of the housing to afford thermal 3,455,304 7/1969 Gans ..12s/303.1 insumiom 12/1969 Ziegler ..62/293 13 Claims, 3 Drawing Figures PAIENIEUJHH 519/6 SHEET 10F 2 Fig. 1.

PATENTEUJUN 5 I973 SHEET 2 [1F 2 CRYOGENIC HEAT TRANSFER DEVICE FIELD OF THE INVENTION This invention relates generally to heat transfer devices, and more particularly relates to a wholly selfcontained, handheld cryogenic surgery tool which is readily portable, easily and quickly activated and convenient to use.

DESCRlPTlON OF THE PRIOR ART Certain surgical operations, such as a hemorroidectomy, may be performed quickly and painlessly by freezing the cells of the affected tissue. As subfreezing temperatures are reached and ice formation occurs in the cell, cellular organization is irreversibly altered. As the frozen tissue thaws, water is removed from the interior of the cell, resulting in cellular dehydration and destruction. Cryosurgical techniques are also being used in the treatment of chronic cervicitis, endometrial carcinoma, Parkinsonism, cataracts, and other diseases.

The usual procedure in cryosurgery is to lower the temperature of the diseased tissue to at least about 20C. There are a variety of techniques for achieving such low tissue temperatures. One method is to dip an applicator such as a cotton swab or copper disk into liquid nitrogen (which is at l96C) and then apply it to the diseased tissue. However, the use of such an applicator usually requires repeated applications, and great care must be taken to insure that only the diseased tissue is destroyed and not the surrounding healthy tissue.

Apparatus presently employed for performing cryosurgery consists of a control console with a liquid nitrogen supply and a cryoprobe. The console houses a Dewar container, having a capacity of 5 liters, and associated control and monitoring circuits. A heating system for thawing the cryoprobe is also included in the console. An input hose conveys liquid nitrogen from the Dew'ar' container to thecryoprobe, while an output hose returns the liquid nitrogen to the console where it is exhausted into the atmosphere. In operation, liquid nitrogen (at -l96 C) is placed in the Dewar container, and the container is sealed. Pressure within the container is increased, forcing the nitrogen through the input hose to the cryoprobe. The cryoprobe tip is cooled to about 1 80C by the flow of the liquid nitrogen past the cryoprobe. The liquid nitrogen is then returned to the supply console via the output hose to be exhausted to the atmosphere as a vapor.

Although the aforedescribed apparatus has been used successfully in performing cryosurgery, about one minute of operation time is required before stabilization at the desired low temperature is achieved, largely because of the inefficiency of cooling by liquid flow. Moreover, since the cryoprobe is connected to the console unit by bulky hoses, two hands are required to hold the cryoprobe apparatus during the surgery. Thus, the apparatus is rather cumbersome to use, and the surgeon must be assisted in all but the simplest of operations. In addition, the entire apparatus (including the control and supply console) is relatively bulky and weights about 100 pounds, and a relatively large supply of liquid nitrogen is required for the apparatus to operate properly. Thus, a constraint is imposed on use of the apparatus by the availability of manpower to move both the apparatus itself and an adequate supply of liquid nitrogen to the site where the operation is to be performed.

SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a simple, reliable and convenient heat transfer device especially suitable for operation at cryogenic temperatures.

It is a further object of the present invention to provide a heat transfer device for performing cryosurgery which reaches the desired operating temperature very quickly and maintains that temperature readily.

It is a still further object of the invention to provide a small, handheld cryosurgery tool which is completely self-contained and readily portable.

In accordance with the foregoing objects, a heat transfer device according to the invention includes an elongated housing of low thermal conductivity having an open end and a closed end. A probe member of high thermal conductivity is mounted at and extends outwardly from the closed end of the housing. A capillary wick is longitudinally disposed within the housing for conveying a volatile working fluid from the vicinity of the open end of the housing to the vicinity of the closed end. A working fluid reservoir is provided about the open end of the housing in fluid communication with the capillary wick. Thermal insulation is provided about the outer surface of the reservoir and a substantial portion of the outer lateral surface of the housing.

The foregoing and other objects and features of the present invention will become readily apparent from the following detailed description of preferred embodiments of the invention when considered in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS In the drawings:

FIG. 1 is a longitudinal sectional view illustrating a heat transfer device according to one embodiment of the present invention;

FIG. 2 is a perspective view illustrating a heat transfer device according to another embodiment of the invention; and

FIG. 3 is a longitudinal sectional view of a portion of the device of FIG. 2 as taken along line 3-3 of FIG. 2.

Referring more specifically to FIG. 1, a heat transfer device according to the invention may be seen to include a thin-walled elongated tubular housing 10 having a closed end 11 and an open opposite end 12 which may be of reduced diameter as shown. The housing is preferably of a material of low thermal conductivity such as stainless steel, for example. The vicinity of the closed end 11 of the housing 10 functions as an evaporation region where a working fluid contained within the housing is vaporized by applied heat; A tapered probe 14, shown as having a generally conical configuration, is mounted within extension 10a of the housing 10 with its base contacting the housing end wall 11 alternatively, separate end wall member 11 may be eliminated with the base of probe 14 constituting an end wall for the housing 10. The probe 14, which should be of a material of high thermal conductivity, absorbs heat from a source, such as living tissue for example, and transfers heat by conduction to the housing wall 11. The probe may be held in place by frictional force with the inner lateral surface of housing extension 10a or, alternatively, by threads provided on extension 10a and probe 14. It is pointed out that while a particular probe shape has been illustrated, the shape of probe 14 is not critical and may vary depending upon the particular application of the heat transfer device.

A capillary wick 15 lines the inner lateral surface of the housing 10. The wick 15 may be made of any material through which fluid can travel by capillary forces, examples of suitable wick materials being felt cloth, stainless steel screen, and sintered metal fibers. It is pointed out that the capillary wick 15 need not line the entire inner lateral surface of housing 10, and other wick arrangements such as a plurality of longitudinally extending wick strips circumferentially spaced along the inner surface of housing 10 may be employed in the alternative.

A working fluid reservoir 16 is provided for the housing 10 in the vicinity of its open end 12. The reservoir 16 is defined by a tubular member 17 coaxially mounted about housing 10 at its open end region and an annular member 19 extending inwardly from the lower edge of member 17 to the outer surface of housing 10. The annular member 19 is welded or otherwise attached to the member 17 and to the housing 10 so as to form a fluid tight seal therewith. The reservoir members l7 and 19 are preferably of a material of low thermal conductivity such as stainless steel, for'example. In order to provide fluid communication between the reservoir 16 and the capillary wick 15, a plurality of circumferentially spaced apertures 18 may be provided in housing 10 just above where it is sealed to annular reservoir member 19.

In order to provide thermal insulation for the device, a tubular metal shell is coaxially disposed about the housing 10 and the reservoir members 19 and 17 in a manner providing an annular space between the shell 20 and the members 10, 17 and 19, the end regions of the shell 20 being in hermetically bonded relationship with the respective end regions of the housing 10 and the reservoir member 17. The annular space between the shell 20 and the housing 10 and reservoir members 17 and 19 is evacuated to provide the desired thermal insulation. A coating of fiberglass or plastic may be applied over the outer surface of the shell 20 to provide additional thermal insulation, if desired.

The open upper end of reservoir 16, which affords a fluid inlet to the reservoir 16, may be covered by a cap 21 during operation of the device. The cap 21 consists of a flat circular member 22 having a central exhaust port 23 axially aligned with the opening in end 12 of housing 10 and a lip 24 projecting downwardly from the circumferential edge of member 22. Thermal insulation for the cap 21 may be afforded by an evacuated chamber defined by members 22, 24, and a metal shell 25 disposed about and spaced from the members 22 and 24 and in a hermetically bonded relationship there with.

The cap 21 may be attached to the reservoir 16 by mating threads 26 on the inner surface of an annular extension 27 of the shell 25 and on the outer surface of the shell 20 adjacent its upper end. A fluid tight seal may be provided between the cap 21 and the reservoir 16 by means of an O ring 28 disposed in an annular groove-defining member 29 mounted between the shell 20 and the reservoir member 17 at the upper ends thereof, and an annular flange 30 projecting from the cap 21 into the groove of member 29 and adapted to compress O ring 28.

In operation of the heat transfer device of FIG. 1, a suitable low temperature working fluid 40 at a temperature below its boiling temperature is poured into the reservoir 16. Examples of particular working fluids which may be employed are liquid nitrogen at l96 C, oxygenat l83 C, or freon at -8l C.

The working liquid 40 in the reservoir 16 flows into the housing 10 through apertures 18, wetting the capillary wick 15. The liquid 40 moves into the wick l5 and is conveyed by capillary action along the wick 15 toward the end of the housing 10 adjacent the probe 14 as long as wick 15 is not saturated. However, once the wick 15 becomes saturated, additional liquid i'sprecluded from entering the housing 10 via apertures 18.

Upon reaching the evaporator wall 11, the liquid 40 becomes vaporized because the temperature of evaporator wall 11 is initially much higher than the boiling temperature of the liquid 40. It is well known that in the process of vaporization a liquid will absorb heat from its surroundings and thereby lower the temperature of the surroundings. Thus, as the liquid 40 reaching evaporator wall 11 continues to be vaporized, the temperature of evaporator wall 11 (and hence probe 14) is lowered to the boiling temperature of the liquid 40.

When the probe 14 is placed in contact with a heat source, such as living tissue for example, heat is transferred from the heat source to the probe 14 and con veyed by conduction to the evaporator 11, causing a slight rise in the temperature of evaporator 11. This in turn causes more liquid 40 to be vaporized which again lowers the temperature of evaporator 11 and probe 14. Thus, the probe 14 is maintained essentially at the boiling temperature of the working fluid 40.

Since the vaporizing fluid causes a pressure increase in the region of the housing 10 adjacent the evaporator 11', the vapor travels along the housing to the vicinity of the open end 12. There some of the vapor condenses into liquid as it contacts the colder temperature of the capillary wick 15. The remaining vapor passes through the opening at end 12 and is exhausted to the atmosphere through port 23.

A heat transfer device according to another embodiment of the present invention is illustrated in FIGS. 2 and 3. Components in the embodiment of FIGS. 2 and 3 which are similar to respective components in the embodiment of FIG. 1 are designated by the same reference numerals as their corresponding components in FIG. 1 except for the addition ofa prefix numeral l The embodiment of FIGS. 2 and 3 differs from the embodiment of FIG. 1 in that housing is bent by about 45 in the region 150 where housing 110 enters reservoir 116. Also, apertures 118 providing fluid communication between the reservoir 116 and the housing 110 are located closer to the open end 112 ofthe-housing 110. The reservoir 116, including tubular member 117 and end member 119, as well as thermally insulating outer shell member 125, is detachable from the remainder of the device in order to facilitate filling the reservoir 116 with working fluid. Mating threads 126 are provided on the outer surface of shell near its end region and on the inner surface of enlarged tubular extension 152 of a funnel-like transition member 154 hermetically bonded to the shell 120 surrounding the portion of housing 110 outside of reservoir 116. An essentially U-shaped vent tube 160, mounted within the reservoir 116 by means not shown, has one end extending into the housing 110 to the vicinity of bend and the other end extending to a region 162 externally of the housing 110 in the vicinity of the transition member 154. The vent tube 160 conveys vaporized working fluid through the contained liquid 140 in the reservoir 116 to the region 162 from where it is vented to the atmosphere externally of the reservoir via an essentially L-shaped exhaust tube 164.

It should be apparent from the foregoing that the present invention provides a self-contained, simple, and readily portable heat transfer device which is especially suitable for performing cryosurgery. Moreover, the device reaches the desired low operating temperature very quickly and maintains that temperature readily. In fact, heat transfer devices according to FIG. 1 and FIGS. 2-3 have been constructed which weigh slightly over two pounds and reach an operating temperature of l96 C within 30 seconds after their respective reservoirs 16 and 116 have been filled with liquid nitrogen at a temperature ofl96 C.

Although the present invention has been shown and described with reference to particular embodiments, nevertheless, various changes and modifications obvious to one skilled in the art to which the invention pertains are deemed to lie within the purview of the invention.

What is claimed is:

1. A heat transfer device comprising:

an elongated housing of low thermal conductivity having an open end and a closed end;

a probe member of high thermal conductivity mounted at said closed end of said housing and extending therefrom;

capillary wick means longitudinally disposed within said housing for conveying a volatile working fluid from the vicinity of said open end to the vicinity of said closed end of said housing;

means defining a working fluid reservoir disposed about said open end of said housing in fluid communication with said capillary wick means; and

thermally insulating means disposed about the outer surface of said reservoir means and a substantial portion of the outer lateral surface of said housing.

2. Aheat transfer device according to claim 1 and further including means for providing a vapor exhaust path from said reservoir.

3. A heat transfer device according to claim 2 wherein said means defining said reservoir includes a removable cap member having a vapor exhaust port therein.

4. A heat transfer device according to claim 1 wherein said means defining said reservoir includes first and second detachable members, and means for forming a hermetic seal between said first and second members when in attached relationship.

5. A heat transfer device according to claim 1 wherein said thermally insulating means includes a shell member disposed about and spaced from said housing and a portion of said reservoir means and hermetically bonded thereto, the space between said shell member and said housing and said reservoir portion being evacuated.

6. A heat transfer device for performing cryosurgery by freezing comprising:

an elongated tubular housing of low thermal conductivity having an open end and a closed end;

a tapered probe member of high thermal conductivity mounted at said closed end of said housing with its portion of greatest cross-section adjacent to said closed end;

capillary wick means longitudinally disposed along the inner lateral surface of said housing for conveying a volatile working fluid from the vicinity of said open end to the vicinity of said closed end of said housing;

means coaxially disposed about said housing in the vicinity of said open end for defining a working fluid reservoir, said housing defining a plurality of circumferentially spaced apertures in its lateral surface near said open end to provide fluid communication between said reservoir and said capillary wick means;

means for providing a vapor exhaust path from said reservoir; and

thermally insulating means disposed about the outer surface of said reservoir means and a substantial portion of the outer lateral surface of said housing.

7. A heat transfer device according to claim 6 wherein said means defining said reservoir includes a removable cap member having a vapor exhaust port therein.

8. A heat transfer device according to claim 6 wherein said housing is bent in the region where it enters said working fluid reservoir.

9. A heat transfer device according to claim 6 and further including an essentially U-shaped vent tube having one end extending into said housing via said open end, and an essentially L-shaped exhaust tube in vapor communication with the other end of said vent tube and extending externally of said means defining said reservoir.

10. A heat transfer device comprising:

an elongated housing having an open end and a closed end;

a probe member of high thermal conductivity mounted at said closed end of said housing and extending therefrom;

capillary means longitudinally disposed within said housing for conveying a volatile working fluid liquid from the vicinity of said open end to the vicinity of said closed end of said housing;

means defining a working fluid reservoir disposed about said open end of said housing in fluid communication with said capillary means for containing volatile working fluid liquid; and

thermal insulating means disposed about some of the outer surface of said reservoir means and some of the outer lateral surface of said housing for thermally insulating those surfaces.

11. A heat transfer device for performing cryosurgery by freezing comprising:

an elongated tubular housing having an open end and a closed end;

a tapered probe member of high thermal conductivity mounted at said "closed end of said housing with its portion of greatest cross-section adjacent to said closed end;

capillary means longitudinally disposed along said housing for conveying a volatile working fluid liq uid from the vicinity of said open end to the vicinity of said closed end of said housing;

means disposed about said housing in the vicinity of said open end for defining a working fluid liquid reservoir, said housing having a plurality of circumferentially spaced apertures in its lateral surface for receiving cryogenic liquid and transporting cryogenic liquid along said capillary means;

probe means connected to said capillary means to deliver heat to said cryogenic liquid working fluid to boil said fluid into a gas whereby said probe means is cooled; and

vapor conduit means for conducting cryogen gas away from said probe means.

13. The heat transfer device of claim 12 wherein said capillary means and said cryogen gas conduit means are housed in the same housing.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3190081 *26 Jul 196322 Jun 1965Sulfrian Cryogenics IncCryogenic applicator with probe means
US3421508 *31 Aug 196614 Jan 1969Union Mfg CoCryosurgical probe
US3434477 *23 Nov 196625 Mar 1969Univ NorthwesternSurgical instrument
US3455304 *6 Oct 196615 Jul 1969Mt Sinai Hospital Of ClevelandCryoextractor
US3485060 *16 May 196823 Dec 1969Beech Aircraft CorpLivestock branding apparatus
US3532094 *20 Jul 19676 Oct 1970Stahl Norman OCryogenic-instrument with detachable probe
US3568464 *10 Mar 19699 Mar 1971Drayson James EFreeze branding iron
US3618610 *22 Apr 19709 Nov 1971Kidde & Co WalterCryogenic surgical apparatus
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3786814 *15 Dec 197222 Jan 1974T ArmaoMethod of preventing cryoadhesion of cryosurgical instruments and cryosurgical instruments
US5738682 *24 Oct 199614 Apr 1998Koninklijke Utermohlen N.V.Apparatus for cooling surfaces
US6092527 *3 Feb 199825 Jul 2000Stc Technologies Inc.Method for cooling surfaces
US6161543 *15 Oct 199719 Dec 2000Epicor, Inc.Methods of epicardial ablation for creating a lesion around the pulmonary veins
US638709029 Feb 200014 May 2002Orasure Tehcnologies, Inc.Methods and apparatus for cooling surfaces
US66489074 Oct 200118 Nov 2003Seacoast Technologies, Inc.Neurosurgical device for thermal therapy
US66525664 Oct 200125 Nov 2003Seacoast Technologies, Inc.Neurosurgical device for thermal therapy including spiral element
US66600264 Oct 20019 Dec 2003Seacoast Technologies, Inc.Multi-tipped cooling probe
US67432004 Oct 20011 Jun 2004Seacoast Technologies, Inc.Expandable device for thermal therapy
US68490722 Apr 20011 Feb 2005The General Hospital CorporationMethods and apparatus for thermally affecting tissue
US68997264 Oct 200131 May 2005Seacoast Technologies, Inc.Expandable device for thermal therapy including spiral element
US692382611 Sep 20032 Aug 2005Seacoast Technologies, Inc.Neurosurgical device for thermal therapy
US708362017 Jul 20031 Aug 2006Medtronic, Inc.Electrosurgical hemostat
US709423513 Jan 200422 Aug 2006Medtronic, Inc.Method and apparatus for tissue ablation
US71185663 Feb 200310 Oct 2006Medtronic, Inc.Device and method for needle-less interstitial injection of fluid for ablation of cardiac tissue
US71287402 Apr 200331 Oct 2006Jacobs Clemens JMethod for interrupting conduction paths within the heart
US715684516 Sep 20052 Jan 2007Medtronic, Inc.Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US716610520 Sep 200523 Jan 2007Medtronic, Inc.Pen-type electrosurgical instrument
US716914431 Oct 200330 Jan 2007Medtronic, Inc.Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US724715518 May 200424 Jul 2007Medtronic, Inc.Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US725004820 Aug 200431 Jul 2007Medtronic, Inc.Ablation system and method of use
US725005126 Apr 200631 Jul 2007Medtronic, Inc.Method and apparatus for tissue ablation
US72941433 Feb 200313 Nov 2007Medtronic, Inc.Device and method for ablation of cardiac tissue
US730932528 Jun 200518 Dec 2007Medtronic, Inc.Helical needle apparatus for creating a virtual electrode used for the ablation of tissue
US734785814 Oct 200325 Mar 2008Medtronic, Inc.Method and system for treatment of atrial tachyarrhythmias
US73645783 Dec 200429 Apr 2008Medtronic, Inc.System and method of performing an electrosurgical procedure
US73679729 Sep 20036 May 2008Medtronic, Inc.Ablation system
US74225887 Dec 20069 Sep 2008Medtronic, Inc.Pen-type electrosurgical instrument
US743525018 Feb 200514 Oct 2008Medtronic, Inc.Method and apparatus for tissue ablation
US747027230 Jun 200430 Dec 2008Medtronic, Inc.Device and method for ablating tissue
US749785729 Apr 20033 Mar 2009Medtronic, Inc.Endocardial dispersive electrode for use with a monopolar RF ablation pen
US750723528 May 200224 Mar 2009Medtronic, Inc.Method and system for organ positioning and stabilization
US75663342 Jun 200528 Jul 2009Medtronic, Inc.Ablation device with jaws
US761501520 Jun 200310 Nov 2009Medtronic, Inc.Focused ultrasound ablation devices having selectively actuatable emitting elements and methods of using the same
US762878030 Nov 20048 Dec 2009Medtronic, Inc.Devices and methods for interstitial injection of biologic agents into tissue
US76781082 Jun 200516 Mar 2010Medtronic, Inc.Loop ablation apparatus and method
US767811129 Nov 200516 Mar 2010Medtronic, Inc.Device and method for ablating tissue
US769980530 Nov 200720 Apr 2010Medtronic, Inc.Helical coil apparatus for ablation of tissue
US770688213 May 200527 Apr 2010Medtronic, Inc.Methods of using high intensity focused ultrasound to form an ablated tissue area
US770689426 Apr 200527 Apr 2010Medtronic, Inc.Heart wall ablation/mapping catheter and method
US774062323 Jun 200522 Jun 2010Medtronic, Inc.Devices and methods for interstitial injection of biologic agents into tissue
US774456210 Oct 200629 Jun 2010Medtronics, Inc.Devices and methods for interstitial injection of biologic agents into tissue
US77585762 Jun 200520 Jul 2010Medtronic, Inc.Clamping ablation tool and method
US77585802 Jun 200520 Jul 2010Medtronic, Inc.Compound bipolar ablation device and method
US779446011 Aug 200814 Sep 2010Medtronic, Inc.Method of ablating tissue
US781803915 Jul 200519 Oct 2010Medtronic, Inc.Suction stabilized epicardial ablation devices
US782439916 Feb 20062 Nov 2010Medtronic, Inc.Ablation system and method of use
US78714092 Feb 200918 Jan 2011Medtronic, Inc.Endocardial dispersive electrode for use with a monopolar RF ablation pen
US78750288 Jul 200925 Jan 2011Medtronic, Inc.Ablation device with jaws
US793882212 May 201010 May 2011Icecure Medical Ltd.Heating and cooling of cryosurgical instrument using a single cryogen
US795962620 Jul 200714 Jun 2011Medtronic, Inc.Transmural ablation systems and methods
US796396321 Jan 200521 Jun 2011Medtronic, Inc.Electrosurgical hemostat
US79678145 Feb 201028 Jun 2011Icecure Medical Ltd.Cryoprobe with vibrating mechanism
US796781525 Mar 201028 Jun 2011Icecure Medical Ltd.Cryosurgical instrument with enhanced heat transfer
US796781625 Jan 200228 Jun 2011Medtronic, Inc.Fluid-assisted electrosurgical instrument with shapeable electrode
US797570331 Aug 200612 Jul 2011Medtronic, Inc.Device and method for needle-less interstitial injection of fluid for ablation of cardiac tissue
US808000529 Jul 201020 Dec 2011Icecure Medical Ltd.Closed loop cryosurgical pressure and flow regulated system
US808373313 Apr 200927 Dec 2011Icecure Medical Ltd.Cryosurgical instrument with enhanced heat exchange
US816281212 Mar 201024 Apr 2012Icecure Medical Ltd.Combined cryotherapy and brachytherapy device and method
US81629333 Mar 200424 Apr 2012Medtronic, Inc.Vibration sensitive ablation device and method
US816294120 Dec 201024 Apr 2012Medtronic, Inc.Ablation device with jaws
US817283714 Jun 20108 May 2012Medtronic, Inc.Clamping ablation tool and method
US82214029 Dec 200517 Jul 2012Medtronic, Inc.Method for guiding a medical device
US822141527 Jul 200717 Jul 2012Medtronic, Inc.Method and apparatus for tissue ablation
US826264927 Jul 200711 Sep 2012Medtronic, Inc.Method and apparatus for tissue ablation
US827307218 Nov 200925 Sep 2012Medtronic, Inc.Devices and methods for interstitial injection of biologic agents into tissue
US833376412 May 200418 Dec 2012Medtronic, Inc.Device and method for determining tissue thickness and creating cardiac ablation lesions
US840921930 Sep 20092 Apr 2013Medtronic, Inc.Method and system for placement of electrical lead inside heart
US841457311 Oct 20069 Apr 2013Medtronic, Inc.Device and method for ablation of cardiac tissue
US851233720 Aug 200420 Aug 2013Medtronic, Inc.Method and system for treatment of atrial tachyarrhythmias
US856840931 Oct 200729 Oct 2013Medtronic Advanced Energy LlcFluid-assisted medical devices, systems and methods
US86230109 Jun 20097 Jan 2014Medtronic, Inc.Cardiac mapping instrument with shapeable electrode
US863253323 Feb 201021 Jan 2014Medtronic Advanced Energy LlcFluid-assisted electrosurgical device
WO1996029944A1 *22 Mar 19963 Oct 1996Cryo Medical ProductsCold-chargeable cryosurgical device
Classifications
U.S. Classification606/25, 606/116, 62/293, 607/105
International ClassificationA61B18/02, A61B18/00, F25B19/00
Cooperative ClassificationF25B19/005, A61B2018/00095, A61B18/02, A61B2018/00101
European ClassificationA61B18/02