US3730844A - Polynucleotide analysis - Google Patents

Polynucleotide analysis Download PDF

Info

Publication number
US3730844A
US3730844A US00175756A US3730844DA US3730844A US 3730844 A US3730844 A US 3730844A US 00175756 A US00175756 A US 00175756A US 3730844D A US3730844D A US 3730844DA US 3730844 A US3730844 A US 3730844A
Authority
US
United States
Prior art keywords
polynucleotide
nucleoside
terminal
adsorbed
anion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00175756A
Inventor
P Gilham
H Weith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Purdue Research Foundation
Original Assignee
Purdue Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Purdue Research Foundation filed Critical Purdue Research Foundation
Application granted granted Critical
Publication of US3730844A publication Critical patent/US3730844A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/42Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving phosphatase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase

Definitions

  • Polynucleotides or polyribonucleotides are known to be long chain polymers containing various individual nucleoside or ribonucleoside units.
  • Each nucleoside unit consists of a ribose containing a purine or pyrimidine substituent.
  • the ribose portions of adjacent nucleosides are linked through phosphate groups. It is often of importance in biochemical and medical research to know the specific order in which the nucleoside units are attached in the formation of the polynucleotide molecule.
  • a stepwise chemical and enzymatic degradation procedure was then proposed. This process involved reaction with a phosphatase to remove the terminal 3' phosphate group of the polynucleotide, oxidation of the unsubstituted cis-hydroxyl groups of the terminal nucleoside unit to dialdehyde groups, followed by alkaline catalyzed elimination of the terminal nucleoside fragment. The so-produced fragment was then identified for its purine or pyrimidine substituent. This procedure was then repeated for each nucleoside unit of the polynucleotide molecule.
  • This proposed procedure had several disadvantages. First, there was no simple and efficient means for separating the liberated nucleoside fragment since all the reaction components and products were in solution. Second, great care must be taken to avoid the simultaneous presence in the reaction mixture of the phosphatase, periodate and alkali. Otherwise, the cleavage of the nucleoside fragments might occur in an uncontrolled manner to produce erroneous results.
  • a process improvement was then suggested to employ ion exchange chromatography to separate the liberated nucleoside residue from the remaining polynucleotide molecule after each degradation cycle. This was successful but had the disadvantages of being quite time consuming and of sustaining significant material losses. It could therefore be used only for a relatively few degradation cycles and thus could not be used for analysis of more complex polynucleotide molecules.
  • a process for the sequential analysis of a polynucleotide which comprises (1) adsorbing on a strongly-basic anion-exchange material a polynucleotide having its terminal 3' phosphate group previously removed, (2) treating the adsorbed polynucleotide with a periodate to oxidize the unsubstituted cis-hydroxyl groups of the terminal nucleoside unit of the polynucleotide to dialdehyde groups, (3) adding L-rhamnose to react with and remove any remaining periodate material, (4) treating the adsorbed polynucleotide with an amine to remove the terminal nucleoside unit from the polynucleotide molecule and at substantially the same time with a phosphatase to remove the resulting terr minal 3' phosphate group from the remaining polynucleotide molecule, (5) separating the soproduced nucleoside residue from the adsorbed
  • polynucleotides useful as raw materials in the sequential analysis process of the present invention are well known polyribonucleotide compounds which occur naturally in biological materials or can be produced synthetically.
  • the polynucleotide In order to be initially useful in this process the polynucleotide must have its terminal 3' phosphate group removed. This is conveniently accomplished through the known use of an alkaline phosphatase.
  • the strongly basic anion-exchange materials useful in the present invention are well-known and are commercially available. They are prepared, for example, by suspension polymerization of styrene and divinylbenzene. The resulting polymer beads are reacted with chloromethyl ether, in the presence of aluminum chloride or zinc chloride catalyst, to introduce CHgCl groups on the benzene rings of the polymer.
  • This product is then aminated with trimethylamine, for example, to form a highly ionized quaternary ammonium group on the benzene rings.
  • Strongly basic anion-exchange resins having quaternary ammonium reactive groups are sold under the following illustrative tradenames by the indicated suppliers.
  • the periodate compounds useful to oxidize the cishydroxyl groups of the dephosphorylated terminal nucleoside unit of the polynucleotide are well-known, and the general reaction conditions are known.
  • hydroxyl-containing materials such as ethylene glycol and butane-2, 3-diol,to react with excess periodate is also known. It is preferred in the process of the present invention to employ L-rhamnose since this material has been found to be most efficient and is the fastest reacting substance for this purpose. This tends to reduce the overall process time, which is an advantage over the prior art.
  • alkaline materials such as amines
  • amines to degrade the polynucleotide by removal of the terminal nucleoside fragment. It is preferred in the process of the present invention to employ a mixture of cyclohexylamine and N,N,N,N'-tetramethylglycinamide-HCl since this mixture provides improved pH control at the desired level of pH 8.5 during this step of the overall process.
  • reaction of the polynucleotide with the periodate, the treatment with the L-rhamnose and the separation of the degraded nucleoside fragment from the adsorbed polynucleotide be carried out at about 1 C. and the amine reaction with the polynucleotide to degrade and remove the terminal nucleoside fragment be carried out at about 45 C.
  • the principal point of technical advancement of the present invention resides in the adsorption of the polynucleotide on an insoluble support, reacting various materials with this insolubilized form of polynucleotide and easily separating the soluble degraded nucleoside fragments from the insolubilized remaining portion of the polynucleotide. It is important, therefore, at the time that reaction products are to be separated from the polynucleotide that all of the remaining polynucleotide be adsorbed by the anionexchange material.
  • Such a polynucleotide is completely readsorbed when the displacing anion concentration is reduced by dilution to about 0.1 molar.
  • a polynucleotide containing only two nucleoside units is released when the competitive anion concentration exceeds about 0.4 molar and is completely readsorbed when the competitive anion concentration is below about 0.05 molar.
  • the nucleoside fragment When the nucleoside fragment is separated from the polynucleotide, it can be analyzed for its purine or pyrimidine base by well-known methods. For example, the effluent from the degradation cycle containing the terminal nucleoside unit, amine and phosphatase is evaporated to dryness. Formic acid is added, and the resulting reaction mixture is heated in an autoclave.
  • This acid treatment converts the terminal nucleoside residue into free purine or pyrimidine base which is then identified by anion exchange chromatography.
  • the polynucleotide to be analyzed was then treated with alkaline phosphatase to remove the terminal 3 phosphate group.
  • An aqueous solution containing about nanomoles of the thus dephosphorylated polynucleotide was passed through the above resin bed and recirculated through the bed several times by means of a recirculating pump and associated tubing. Most of the polynucleotide was adsorbed by the resin. Any unadsorbed polynucleotide was then removed from the resin by further washing with distilled water.
  • a 0.5 ml. portion of 0.2 molar sodium metaperiodate solution was then passed through the bed and recirculated through the bed at 1 C. for about 15 min.
  • This periodate solution oxidized the cis-hydroxyl groups on the terminal nucleoside unit to dialdehyde groups and, because of its ionic effect, also displaced the polynucleotide from the resin.
  • the solution being recirculated through the resin thus contained polynucleotide.
  • a 0.5 ml. portion of 1 molar L-rhamnose solution was then added to the circulating solution, and the recirculation through the bed was continued for 5 min. during which time the L-rhamnose destroyed any previously unreacted periodate.
  • a 4.6 ml. portion of cold distilled water was then added to the reaction vessel so as to dilute the resulting iodate ion concentration to about 0.017 molar.
  • Recirculation of the total liquid mixture was continued for 10 minutes to allow the polynucleotide to become readsorbed by the resin bed.
  • the liquids were then drained from the resin bed, and the resin bed was washed with 1 ml. of cold distilled water.
  • a 0.1 ml. portion of bacterial alkaline phosphatase was then added to the resin bed followed by 0.1 ml. of an amine solution containing 1 molar cyclohexylamine and 2 molar N,N,N',N' -tetramethylglycinamide-HCI.
  • An additional 0.1 ml. of amine solution was added and the liquids were circulated through the resin bed at 45 C. for 2 hours.
  • This aminephosphatase mixture removed the terminal nucleoside unit from the remainder of the polynucleotide molecule and also removed the so-generated terminal 3 phosphate group. This solution, because of its ionic effect, also displaced the polynucleotide from the resin bed. A 5.0 ml. portion of distilled water was then added a to the reaction mixture so as to dilute theamine concentration to about 0.04 molar. The temperature in the resin bed was reduced to about 1 C. and the above liquid mixture was recirculated through the resin bed at 1 C. for 15 min. to allow the polynucleotide (minus its original terminal nucleoside unit) to become readsorbed by the resin bed.
  • the diluted amine phosphatase-terminal nucleoside fragment mixture was then drained from the resin bed into a screw cap test tube.
  • the reaction vessel and the resin bed were then washed with 1 ml. of cold distilled water which was also drained into the above test tube.
  • the total time for the above periodate oxidation, terminal nucleoside elimination and dephosphorylation was about 200 min.
  • the resin bed containing adsorbed polynucleotide was then treated again by the above reaction steps to eliminate a further terminal nucleoside unit. This procedure was repeated until all the neucleoside units of the polynucleotide were separately removed.
  • Each of the combined effluents from a single degradation cycle having an average volume of about 8 ml. was individually heated at 100 C. in a sealed tube for two hours.
  • the resulting free purine or pyrimidine base in each test tube was individually analyzed by anion exchange chromatography.
  • a process for the sequential analysis of a polynucleotide which comprises l) adsorbing on a strongly-basic anion-exchange material a polynucleotide having its terminal 3' phosphate group previously removed, (2) treating the adsorbed polynucleotide with a periodate to oxidize the unsubstituted cishydroxyl groups of the terminal nucleoside unit of the polynucleotide to dialdehyde groups, (3) adding L- rhamnose to react with and remove any remaining periodate material, (4) treating the adsorbed polynucleotide with an amine to remove the terminal nucleoside unit from the polynucleotide molecule and at substantially the same time with a phosphatase to removethe resulting terminal 3' phosphate group from the remaining polynucleotide molecule, (5 separating the so-produced nucleoside residue from the adsorbed polynucleotide for subsequent identification,
  • steps (2), (3) and (5) take place at about 1 C. and step (4) takes place at about 45 C.

Abstract

Sequential analysis of a polynucleotide to determine the particular order of nucleoside units therein can be conveniently carried out by adsorbing a polynucleotide on a strongly basic anion-exchange material, oxidizing the terminal nucleoside of the polynucleotide with a periodate, removing any excess periodate by reaction with L-rhamnose, treating the adsorbed polynucleotide with an amine to remove the terminal nucleoside residue from the polynucleotide molecule and with a phosphatase to remove the resulting terminal phosphate group from the remaining polynucleotide molecule, separating the so-produced nucleoside residue from the adsorbed polynucleotide for subsequent identification and then repeating the above procedure for each remaining nucleoside unit of the polynucleotide.

Description

United States Patent [191 Gilham et al.
[451 May 1, 1973 [54] POLYNUCLEOTIDE ANALYSIS [75] Inventors: Peter Thomas Gilham; Herbert Lee Weith, both of West Lafayette, lnd.
[73] Assignee: Purdue Research Lafayette, Ind.
[22] Filed: Aug. 27, 1971 [2l] App]. No.: 175,756
Foundation,
[52] US. Cl. ....195/103.5 R, 195/28 N, 260/2115 R OTHER PUBLICATIONS Method in EnZymOl gY, Volume Xll, Nucleic Acids Part B Pages 224-235 (1968).
Primary Examiner-Alvin E. Tanenholtz Attorney-Joseph C. Schwalbach et al.
[ 5 7 ABSTRACT Sequential analysis of a polynucleotide to determine the particular order of nucleoside units therein can be conveniently carried out by adsorbing a polynucleotide on a strongly basic anion-exchange material, oxidizing the terminal nucleoside of the polynucleotide with a periodate, removing any excess periodate by reaction with L-rhamnose, treating the adsorbed polynucleotide with an amine to remove the terminal nucleoside residue from the polynucleotide molecule and with a phosphatase to remove the resulting terminal phosphate group from the remaining polynucleotide molecule, separating the so-produced nucleoside residue from the adsorbed polynucleotide for subsequent identification and then repeating the above procedure for each remaining nucleoside unit of the polynucleotide.
4 Claims, No Drawings POLYNUCLEOTIDE ANALYSIS BACKGROUND OF THE INVENTION Polynucleotides or polyribonucleotides are known to be long chain polymers containing various individual nucleoside or ribonucleoside units. Each nucleoside unit consists of a ribose containing a purine or pyrimidine substituent. The ribose portions of adjacent nucleosides are linked through phosphate groups. It is often of importance in biochemical and medical research to know the specific order in which the nucleoside units are attached in the formation of the polynucleotide molecule. Various techniques have been proposed in the prior art for degradation of the polynucleotide molecule into separate nucleoside fragments which can then be individually analyzed to deter mine the purine or pyrimidine bases from which they were formed. The final desired analytical result is the particular sequence of bases in the polynucleotide chain.
One technique proposed for analysis ofa polynucleotide involved exonucleolytic enzymes which allegedly would split off the terminal nucleoside units one at a time for subsequent analysis. This enzymatic technique was not successful because the proposed enzymes had variable and non-reproducible activity and produced inaccurate results.
A stepwise chemical and enzymatic degradation procedure was then proposed. This process involved reaction with a phosphatase to remove the terminal 3' phosphate group of the polynucleotide, oxidation of the unsubstituted cis-hydroxyl groups of the terminal nucleoside unit to dialdehyde groups, followed by alkaline catalyzed elimination of the terminal nucleoside fragment. The so-produced fragment was then identified for its purine or pyrimidine substituent. This procedure was then repeated for each nucleoside unit of the polynucleotide molecule. This proposed procedure had several disadvantages. First, there was no simple and efficient means for separating the liberated nucleoside fragment since all the reaction components and products were in solution. Second, great care must be taken to avoid the simultaneous presence in the reaction mixture of the phosphatase, periodate and alkali. Otherwise, the cleavage of the nucleoside fragments might occur in an uncontrolled manner to produce erroneous results.
A process improvement was then suggested to employ ion exchange chromatography to separate the liberated nucleoside residue from the remaining polynucleotide molecule after each degradation cycle. This was successful but had the disadvantages of being quite time consuming and of sustaining significant material losses. It could therefore be used only for a relatively few degradation cycles and thus could not be used for analysis of more complex polynucleotide molecules.
Attempts to precipitate the liberated nucleoside residues in order to separate them from the remaining polynucleotide molecule have also been unsuccessful due to excessive manipulation and consequent losses of material.
It is an object of the present invention to provide an accurate and convenient process for the sequential degradation of a polynucleotide into distinct reproducible nucleoside fragments which can subsequently be identified as to their purine or pyrimidine bases.
SUMMARY or THE INVENTION In accordance with the present invention, a process is provided for the sequential analysis of a polynucleotide which comprises (1) adsorbing on a strongly-basic anion-exchange material a polynucleotide having its terminal 3' phosphate group previously removed, (2) treating the adsorbed polynucleotide with a periodate to oxidize the unsubstituted cis-hydroxyl groups of the terminal nucleoside unit of the polynucleotide to dialdehyde groups, (3) adding L-rhamnose to react with and remove any remaining periodate material, (4) treating the adsorbed polynucleotide with an amine to remove the terminal nucleoside unit from the polynucleotide molecule and at substantially the same time with a phosphatase to remove the resulting terr minal 3' phosphate group from the remaining polynucleotide molecule, (5) separating the soproduced nucleoside residue from the adsorbed polynucleotide for subsequent identification, and then repeating the above steps (2) through (5) inclusive for each remaining nucleoside unit of the polynucleotide.
DESCRIPTION OF THE ENVENTION The polynucleotides useful as raw materials in the sequential analysis process of the present invention are well known polyribonucleotide compounds which occur naturally in biological materials or can be produced synthetically. In order to be initially useful in this process the polynucleotide must have its terminal 3' phosphate group removed. This is conveniently accomplished through the known use of an alkaline phosphatase.
The strongly basic anion-exchange materials useful in the present invention are well-known and are commercially available. They are prepared, for example, by suspension polymerization of styrene and divinylbenzene. The resulting polymer beads are reacted with chloromethyl ether, in the presence of aluminum chloride or zinc chloride catalyst, to introduce CHgCl groups on the benzene rings of the polymer.
This product is then aminated with trimethylamine, for example, to form a highly ionized quaternary ammonium group on the benzene rings.
Strongly basic anion-exchange resins having quaternary ammonium reactive groups are sold under the following illustrative tradenames by the indicated suppliers.
Tradename Supplier Dowex 1 Dow Chemical Co. Dowex 2 Dow Chemical Co. Dowex 21 K Dow Chemical Co. Amberlite IRA-400 Rohm and Haas Co. Amberlite C6400 Rohm and Haas Co. Amberlite [RA-401 Rohm and Haas Co. Nalcite SBR National Aluminate Co. Nalcite SBR? National Aluminate Co.
Duolite A-lOl D Duolitc A-l02 D Pen'nutit S-l00 Permutit 8-200 Diamond Alkali Co. Diamond Alkali Co. The Permutit Co. The Permutit Co.
The periodate compounds useful to oxidize the cishydroxyl groups of the dephosphorylated terminal nucleoside unit of the polynucleotide are well-known, and the general reaction conditions are known.
The use of hydroxyl-containing materials, such as ethylene glycol and butane-2, 3-diol,to react with excess periodate is also known. It is preferred in the process of the present invention to employ L-rhamnose since this material has been found to be most efficient and is the fastest reacting substance for this purpose. This tends to reduce the overall process time, which is an advantage over the prior art.
The use of alkaline materials, such as amines, to degrade the polynucleotide by removal of the terminal nucleoside fragment is known in the art. It is preferred in the process of the present invention to employ a mixture of cyclohexylamine and N,N,N,N'-tetramethylglycinamide-HCl since this mixture provides improved pH control at the desired level of pH 8.5 during this step of the overall process.
While the temperature conditions under which this process is carried out are not narrowly critical, it is preferred that the reaction of the polynucleotide with the periodate, the treatment with the L-rhamnose and the separation of the degraded nucleoside fragment from the adsorbed polynucleotide be carried out at about 1 C. and the amine reaction with the polynucleotide to degrade and remove the terminal nucleoside fragment be carried out at about 45 C.
The principal point of technical advancement of the present invention resides in the adsorption of the polynucleotide on an insoluble support, reacting various materials with this insolubilized form of polynucleotide and easily separating the soluble degraded nucleoside fragments from the insolubilized remaining portion of the polynucleotide. It is important, therefore, at the time that reaction products are to be separated from the polynucleotide that all of the remaining polynucleotide be adsorbed by the anionexchange material. This is accomplished by dilution of the liquid in contact with the anion-exchange material to the point that the concentrations of anions, other than'those of the polynucleotide, are reduced to a level such that they do not displace the polynucleotide being adsorbed by the anion-exchange material. The specific conditions under which a polynucleotide is released from the anion-exchange material and readsorbed by it are dependent on the size of the polynucleotide molecule. For example, a polynucleotide having ten nucleoside units is released from the anion-exchange material when the competitive anion concentration exceeds about 1 molar. Such a polynucleotide is completely readsorbed when the displacing anion concentration is reduced by dilution to about 0.1 molar. A polynucleotide containing only two nucleoside units is released when the competitive anion concentration exceeds about 0.4 molar and is completely readsorbed when the competitive anion concentration is below about 0.05 molar.
When the nucleoside fragment is separated from the polynucleotide, it can be analyzed for its purine or pyrimidine base by well-known methods. For example, the effluent from the degradation cycle containing the terminal nucleoside unit, amine and phosphatase is evaporated to dryness. Formic acid is added, and the resulting reaction mixture is heated in an autoclave.
This acid treatment converts the terminal nucleoside residue into free purine or pyrimidine base which is then identified by anion exchange chromatography.
The process of the present invention is described in additional detail in the following illustrative example.
EXAMPLE A 0.1 ml portion of Dowex 1 X 2 anion-exchange resin in the chloride form and having a particle size of minus 400 mesh was placed in a glass tube and positioned by plugs of glass wool. The resulting resin bed was washed with a buffer mixture of 0.5 molar sodium chloride and 0.01 molar tris (hydroxymethyl) aminomethane having a pH of 7.5 and then with cold distilled water to remove excess buffer solution. The temperature of the resin bed was maintained at about 1 C. by means ofa water bath surrounding the resin bed.
The polynucleotide to be analyzed was then treated with alkaline phosphatase to remove the terminal 3 phosphate group. An aqueous solution containing about nanomoles of the thus dephosphorylated polynucleotide was passed through the above resin bed and recirculated through the bed several times by means of a recirculating pump and associated tubing. Most of the polynucleotide was adsorbed by the resin. Any unadsorbed polynucleotide was then removed from the resin by further washing with distilled water. A 0.5 ml. portion of 0.2 molar sodium metaperiodate solution was then passed through the bed and recirculated through the bed at 1 C. for about 15 min. This periodate solution oxidized the cis-hydroxyl groups on the terminal nucleoside unit to dialdehyde groups and, because of its ionic effect, also displaced the polynucleotide from the resin. The solution being recirculated through the resin thus contained polynucleotide. A 0.5 ml. portion of 1 molar L-rhamnose solution was then added to the circulating solution, and the recirculation through the bed was continued for 5 min. during which time the L-rhamnose destroyed any previously unreacted periodate. A 4.6 ml. portion of cold distilled water was then added to the reaction vessel so as to dilute the resulting iodate ion concentration to about 0.017 molar. Recirculation of the total liquid mixture was continued for 10 minutes to allow the polynucleotide to become readsorbed by the resin bed. The liquids were then drained from the resin bed, and the resin bed was washed with 1 ml. of cold distilled water. A 0.1 ml. portion of bacterial alkaline phosphatase was then added to the resin bed followed by 0.1 ml. of an amine solution containing 1 molar cyclohexylamine and 2 molar N,N,N',N' -tetramethylglycinamide-HCI. An additional 0.1 ml. of amine solution was added and the liquids were circulated through the resin bed at 45 C. for 2 hours. This aminephosphatase mixture removed the terminal nucleoside unit from the remainder of the polynucleotide molecule and also removed the so-generated terminal 3 phosphate group. This solution, because of its ionic effect, also displaced the polynucleotide from the resin bed. A 5.0 ml. portion of distilled water was then added a to the reaction mixture so as to dilute theamine concentration to about 0.04 molar. The temperature in the resin bed was reduced to about 1 C. and the above liquid mixture was recirculated through the resin bed at 1 C. for 15 min. to allow the polynucleotide (minus its original terminal nucleoside unit) to become readsorbed by the resin bed. The diluted amine phosphatase-terminal nucleoside fragment mixture was then drained from the resin bed into a screw cap test tube. The reaction vessel and the resin bed were then washed with 1 ml. of cold distilled water which was also drained into the above test tube. The total time for the above periodate oxidation, terminal nucleoside elimination and dephosphorylation was about 200 min. The resin bed containing adsorbed polynucleotide was then treated again by the above reaction steps to eliminate a further terminal nucleoside unit. This procedure was repeated until all the neucleoside units of the polynucleotide were separately removed.
Each of the combined effluents from a single degradation cycle having an average volume of about 8 ml. was individually heated at 100 C. in a sealed tube for two hours. The resulting free purine or pyrimidine base in each test tube was individually analyzed by anion exchange chromatography.
This above procedure was employed to confirm the l. A process for the sequential analysis of a polynucleotide which comprises l) adsorbing on a strongly-basic anion-exchange material a polynucleotide having its terminal 3' phosphate group previously removed, (2) treating the adsorbed polynucleotide with a periodate to oxidize the unsubstituted cishydroxyl groups of the terminal nucleoside unit of the polynucleotide to dialdehyde groups, (3) adding L- rhamnose to react with and remove any remaining periodate material, (4) treating the adsorbed polynucleotide with an amine to remove the terminal nucleoside unit from the polynucleotide molecule and at substantially the same time with a phosphatase to removethe resulting terminal 3' phosphate group from the remaining polynucleotide molecule, (5 separating the so-produced nucleoside residue from the adsorbed polynucleotide for subsequent identification, and then repeating the above steps (2) through (5) inclusive for each remaining nucleoside unit of the polynucleotide.
2. A process according to claim 1 wherein steps (2), (3) and (5) take place at about 1 C. and step (4) takes place at about 45 C.
3. A process according to claim 1 wherein prior to steps (2), (4) and (5) the concentrations of anions, other than those of the polynucleotide, in the liquid in contact with the anion-exchange material are reduced to a level such that they do not displace the polynucleotide from being adsorbed by the anion-exchange material.
4. A process according to claim 1 wherein the quaternary ammonium reactive groups.

Claims (3)

  1. 2. A process according to claim 1 wherein steps (2), (3) and (5) take place at about 1* C. and step (4) takes place at about 45* C.
  2. 3. A process according to claim 1 wherein prior to steps (2), (4) and (5) the concentrations of anions, other than those of the polynucleotide, in the liquid in contact with the anion-exchange material are reduced to a level such that they do not displace the polynucleotide from being adsorbed by the anion-exchange material.
  3. 4. A process according to claim 1 wherein the strongly-basic anion-exchange material is a polystyrene cross-linked with divinylbenzene and containing quaternary ammonium reactive groups.
US00175756A 1971-08-27 1971-08-27 Polynucleotide analysis Expired - Lifetime US3730844A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17575671A 1971-08-27 1971-08-27

Publications (1)

Publication Number Publication Date
US3730844A true US3730844A (en) 1973-05-01

Family

ID=22641511

Family Applications (1)

Application Number Title Priority Date Filing Date
US00175756A Expired - Lifetime US3730844A (en) 1971-08-27 1971-08-27 Polynucleotide analysis

Country Status (8)

Country Link
US (1) US3730844A (en)
JP (1) JPS5123359B2 (en)
CA (1) CA977660A (en)
DE (1) DE2241513C3 (en)
FR (1) FR2151941A5 (en)
GB (1) GB1398728A (en)
IT (1) IT994037B (en)
SE (1) SE376656B (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109078A (en) * 1975-03-27 1978-08-22 Schering Aktiengesellschaft N-(polysaccharidyl)-nitrogen heterocycles, especially pyrimidine or purine bases, and process for their preparation
US4302204A (en) * 1979-07-02 1981-11-24 The Board Of Trustees Of Leland Stanford Junior University Transfer and detection of nucleic acids
EP0060123A1 (en) * 1981-03-07 1982-09-15 Colin Henry Self Assay and use
US4595655A (en) * 1979-10-03 1986-06-17 Self Colin H Assay method and reagent therefor
US4769321A (en) * 1979-10-03 1988-09-06 Self Colin H Assay method and reagent therefor
WO1989003432A1 (en) 1987-10-07 1989-04-20 United States Department Of Energy Method for rapid base sequencing in dna and rna
US5807522A (en) * 1994-06-17 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods for fabricating microarrays of biological samples
US6344316B1 (en) 1996-01-23 2002-02-05 Affymetrix, Inc. Nucleic acid analysis techniques
US6355432B1 (en) 1989-06-07 2002-03-12 Affymetrix Lnc. Products for detecting nucleic acids
US6379895B1 (en) 1989-06-07 2002-04-30 Affymetrix, Inc. Photolithographic and other means for manufacturing arrays
US6403957B1 (en) 1989-06-07 2002-06-11 Affymetrix, Inc. Nucleic acid reading and analysis system
US6410229B1 (en) 1995-09-15 2002-06-25 Affymetrix, Inc. Expression monitoring by hybridization to high density nucleic acid arrays
US20020137096A1 (en) * 1989-06-07 2002-09-26 Affymetrix, Inc. Apparatus comprising polymers
US20030012695A1 (en) * 1994-06-17 2003-01-16 Tidhar Dari Shalon Substrates comprising polynucleotide microarrays
US6551784B2 (en) 1989-06-07 2003-04-22 Affymetrix Inc Method of comparing nucleic acid sequences
US6566495B1 (en) 1989-06-07 2003-05-20 Affymetrix, Inc. Very large scale immobilized polymer synthesis
US20040092032A1 (en) * 1991-11-22 2004-05-13 Affymetrix, Inc. Combinatorial strategies for polymer synthesis
US20040248147A1 (en) * 1990-12-06 2004-12-09 Affymetrix, Inc. Arrays for detecting nucleic acids
US6849462B1 (en) 1991-11-22 2005-02-01 Affymetrix, Inc. Combinatorial strategies for polymer synthesis
US20050118706A1 (en) * 1989-06-07 2005-06-02 Affymetrix, Inc. Polymer arrays
US20060194258A1 (en) * 1989-06-07 2006-08-31 Affymetrix, Inc. Polypeptide array synthesis
US7378236B1 (en) 1994-06-17 2008-05-27 The Board Of Trustees Of The Leland Stanford Junior University Method for analyzing gene expression patterns
US20080227653A1 (en) * 1989-06-07 2008-09-18 Fodor Stephen P A Expression monitoring by hybridization to high density oligonucleotide arrays
US20100216656A1 (en) * 1994-10-21 2010-08-26 Affymetrix, Inc. Methods of enzymatic discrimination enhancement and surface-bound double-stranded dna
CN104316621A (en) * 2014-11-17 2015-01-28 上海征泰饲料有限公司 Method for measuring total nucleotide in protein products

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149546U (en) * 1979-04-16 1980-10-28
US4704256A (en) * 1980-09-23 1987-11-03 California Institute Of Technology Apparatus for the sequential performance of chemical processes
JPS5913644U (en) * 1982-04-24 1984-01-27 三國工業株式会社 Throttle valve air volume adjustment device
DE3312929A1 (en) * 1982-06-02 1983-12-08 Gesellschaft für Biotechnologische Forschung mbH (GBF), 3300 Braunschweig METHOD FOR SEQUENCE ANALYZING AN OPTIONALLY MODIFIED OLIGORIBONUCLEOTIDS OR OLIGODESOXYRIBONUKLETIDS
JPS60187347U (en) * 1984-05-22 1985-12-12 小松ゼノア株式会社 vaporizer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Method in Enzymology, Volume XII, Nucleic Acids Part B Pages 224 235 (1968). *

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109078A (en) * 1975-03-27 1978-08-22 Schering Aktiengesellschaft N-(polysaccharidyl)-nitrogen heterocycles, especially pyrimidine or purine bases, and process for their preparation
US4302204A (en) * 1979-07-02 1981-11-24 The Board Of Trustees Of Leland Stanford Junior University Transfer and detection of nucleic acids
US4595655A (en) * 1979-10-03 1986-06-17 Self Colin H Assay method and reagent therefor
US4769321A (en) * 1979-10-03 1988-09-06 Self Colin H Assay method and reagent therefor
EP0060123A1 (en) * 1981-03-07 1982-09-15 Colin Henry Self Assay and use
WO1989003432A1 (en) 1987-10-07 1989-04-20 United States Department Of Energy Method for rapid base sequencing in dna and rna
US4962037A (en) * 1987-10-07 1990-10-09 United States Of America Method for rapid base sequencing in DNA and RNA
US6747143B2 (en) 1989-06-07 2004-06-08 Affymetrix, Inc. Methods for polymer synthesis
US20050214828A1 (en) * 1989-06-07 2005-09-29 Affymetrix, Inc. Very large scale immobilized polymer synthesis
US20080227653A1 (en) * 1989-06-07 2008-09-18 Fodor Stephen P A Expression monitoring by hybridization to high density oligonucleotide arrays
US6355432B1 (en) 1989-06-07 2002-03-12 Affymetrix Lnc. Products for detecting nucleic acids
US6379895B1 (en) 1989-06-07 2002-04-30 Affymetrix, Inc. Photolithographic and other means for manufacturing arrays
US6403957B1 (en) 1989-06-07 2002-06-11 Affymetrix, Inc. Nucleic acid reading and analysis system
US6403320B1 (en) 1989-06-07 2002-06-11 Affymetrix, Inc. Support bound probes and methods of analysis using the same
US20060194258A1 (en) * 1989-06-07 2006-08-31 Affymetrix, Inc. Polypeptide array synthesis
US6416952B1 (en) 1989-06-07 2002-07-09 Affymetrix, Inc. Photolithographic and other means for manufacturing arrays
US6440667B1 (en) 1989-06-07 2002-08-27 Affymetrix Inc. Analysis of target molecules using an encoding system
US20020137096A1 (en) * 1989-06-07 2002-09-26 Affymetrix, Inc. Apparatus comprising polymers
US6491871B1 (en) 1989-06-07 2002-12-10 Affymetrix, Inc. System for determining receptor-ligand binding affinity
US7087732B2 (en) 1989-06-07 2006-08-08 Affymetrix, Inc. Nucleotides and analogs having photoremovable protecting groups
US6955915B2 (en) 1989-06-07 2005-10-18 Affymetrix, Inc. Apparatus comprising polymers
US6551784B2 (en) 1989-06-07 2003-04-22 Affymetrix Inc Method of comparing nucleic acid sequences
US6566495B1 (en) 1989-06-07 2003-05-20 Affymetrix, Inc. Very large scale immobilized polymer synthesis
US20030108899A1 (en) * 1989-06-07 2003-06-12 Affymetrix, Inc. Very large scale immobilized polymer synthesis
US20030119008A1 (en) * 1989-06-07 2003-06-26 Affymetrix, Inc. Nucleotides and analogs having photoremovable protecting groups
US6610482B1 (en) 1989-06-07 2003-08-26 Affymetrix, Inc. Support bound probes and methods of analysis using the same
US6630308B2 (en) 1989-06-07 2003-10-07 Affymetrix, Inc. Methods of synthesizing a plurality of different polymers on a surface of a substrate
US6646243B2 (en) 1989-06-07 2003-11-11 Affymetrix, Inc. Nucleic acid reading and analysis system
US6660234B2 (en) 1989-06-07 2003-12-09 Affymetrix, Inc. Apparatus for polymer synthesis
US20040038268A1 (en) * 1989-06-07 2004-02-26 Affymetrix, Inc. Support bound probes and methods of analysis using the same
US20050208537A1 (en) * 1989-06-07 2005-09-22 Affymetrix, Inc. Very large scale immobilized polymer synthesis
US6919211B1 (en) 1989-06-07 2005-07-19 Affymetrix, Inc. Polypeptide arrays
US20050153363A1 (en) * 1989-06-07 2005-07-14 Pirrung Michael C. Polymer arrays
US20050153362A1 (en) * 1989-06-07 2005-07-14 Pirrung Michael C. Polymer arrays
US20050118706A1 (en) * 1989-06-07 2005-06-02 Affymetrix, Inc. Polymer arrays
US20050079529A1 (en) * 1989-06-07 2005-04-14 Affymetrix, Inc. Very large scale immobilized polymer synthesis
US20040248147A1 (en) * 1990-12-06 2004-12-09 Affymetrix, Inc. Arrays for detecting nucleic acids
US6864101B1 (en) 1991-11-22 2005-03-08 Affymetrix, Inc. Combinatorial strategies for polymer synthesis
US7691330B1 (en) 1991-11-22 2010-04-06 Affymetrix, Inc. Combinatorial strategies for polymer synthesis
US20050124000A1 (en) * 1991-11-22 2005-06-09 Affymetrix, Inc. Combinatorial strategies for polymer synthesis
US6943034B1 (en) 1991-11-22 2005-09-13 Affymetrix, Inc. Combinatorial strategies for polymer synthesis
US20040092032A1 (en) * 1991-11-22 2004-05-13 Affymetrix, Inc. Combinatorial strategies for polymer synthesis
US7736906B2 (en) 1991-11-22 2010-06-15 Affymetrix, Inc. Combinatorial strategies for polymer synthesis
US6849462B1 (en) 1991-11-22 2005-02-01 Affymetrix, Inc. Combinatorial strategies for polymer synthesis
US6110426A (en) * 1994-06-17 2000-08-29 The Board Of Trustees Of The Leland Stanford Junior University Methods for fabricating microarrays of biological samples
US5807522A (en) * 1994-06-17 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods for fabricating microarrays of biological samples
US7378236B1 (en) 1994-06-17 2008-05-27 The Board Of Trustees Of The Leland Stanford Junior University Method for analyzing gene expression patterns
US20030012695A1 (en) * 1994-06-17 2003-01-16 Tidhar Dari Shalon Substrates comprising polynucleotide microarrays
US7442499B2 (en) 1994-06-17 2008-10-28 The Board Of Trustees Of The Leland Stanford Junior University Substrates comprising polynucleotide microarrays
US7323298B1 (en) 1994-06-17 2008-01-29 The Board Of Trustees Of The Leland Stanford Junior University Microarray for determining the relative abundances of polynuceotide sequences
US20100216656A1 (en) * 1994-10-21 2010-08-26 Affymetrix, Inc. Methods of enzymatic discrimination enhancement and surface-bound double-stranded dna
US8236493B2 (en) 1994-10-21 2012-08-07 Affymetrix, Inc. Methods of enzymatic discrimination enhancement and surface-bound double-stranded DNA
US6548257B2 (en) 1995-09-15 2003-04-15 Affymetrix, Inc. Methods of identifying nucleic acid probes to quantify the expression of a target nucleic acid
US6410229B1 (en) 1995-09-15 2002-06-25 Affymetrix, Inc. Expression monitoring by hybridization to high density nucleic acid arrays
US20050202500A1 (en) * 1995-09-15 2005-09-15 Affymetrix, Inc. Expression monitoring to high density oligonucleotide arrays
US6927032B2 (en) 1995-09-15 2005-08-09 Affymetrix, Inc. Expression monitoring by hybridization to high density oligonucleotide arrays
US20050158746A1 (en) * 1995-09-15 2005-07-21 Affymetrix Inc. Expression monitoring by hybridization to high density oligonucleotide arrays
US6344316B1 (en) 1996-01-23 2002-02-05 Affymetrix, Inc. Nucleic acid analysis techniques
US20050158772A1 (en) * 1996-01-23 2005-07-21 Affymetrix, Inc. Nucleic acid analysis techniques
CN104316621A (en) * 2014-11-17 2015-01-28 上海征泰饲料有限公司 Method for measuring total nucleotide in protein products
CN104316621B (en) * 2014-11-17 2017-01-11 上海征泰饲料有限公司 Method for measuring total nucleotide in protein products

Also Published As

Publication number Publication date
DE2241513A1 (en) 1973-03-15
JPS4835890A (en) 1973-05-26
GB1398728A (en) 1975-06-25
JPS5123359B2 (en) 1976-07-16
CA977660A (en) 1975-11-11
DE2241513C3 (en) 1974-06-12
DE2241513B2 (en) 1973-11-15
SE376656B (en) 1975-06-02
FR2151941A5 (en) 1973-04-20
IT994037B (en) 1975-10-20

Similar Documents

Publication Publication Date Title
US3730844A (en) Polynucleotide analysis
Cohn [107] Methods of isolation and characterization of mono-and polynucleotides by ion exchange chromatography
Sulston et al. Nonenzymatic synthesis of oligoadenylates on a polyuridylic acid template.
Stevenson Investigations of aminopolysaccharides in soils: I. Colorimetric determination of hexosamines in soil hydrolysates
Mirzabekov et al. 5 s RNA conformation. Studies of its partial T1 ribonuclease digestion by gel electrophoresis and two-dimensional thin-layer chromatography
Kakoi et al. Solvent extraction of palladium with bis (2, 4, 4,-trimethylpentyl) dithiophosphinic acid and bis (2, 4, 4,-trimethylpentyl) monothiophosphinic acid
Lesko Jr et al. Interaction of nucleic acids. V. Chemical linkage of 3, 4-benzopyrene to deoxyribonucleic acid in aqueous solution
Keith et al. Stepwise degradation of polyribonucleotides
Randerath et al. Sequence analysis of nonradioactive RNA fragments by periodate-phosphatase digestion and chemical tritium labeling: characterization of large oligonucleotides and oligonucleotides containing modified nucleosides
US3433782A (en) Separation and recovery of oligonucleotides
US3556727A (en) Purification of aqueous hydrogen peroxide solutions containing dissolved organic compound by use of nonionic porous resin
US3044906A (en) Separation of fructose from glucose using a cation exchange resin salt
GB1482134A (en) Apparatus and method for quantitative analysis of ionic species by liquid column chromatography
Rothbart et al. Separation of the oligophosphates
Oikawa et al. Ion chromatographic determination of bromate in bread
Stanley Jr [48] Fractionation of oligoribonucleotides according to degree of polymerization
US2684322A (en) Ion exchange purification of vitamin b12
US3184334A (en) Separation of dextran from fructose using ion exchange resins
US3254003A (en) Process for removing transglucosidase from amyloglucosidase
RU2226177C2 (en) Method of sorption recovery of uranium from solutions and pulps
Schuessler et al. Radiolysis of DNA studied by HPL-gel chromatography
RU2033440C1 (en) Method of extraction of copper from solution
SU778780A1 (en) Method of producing ferrocyanide sorbents
SU889611A1 (en) Method of modifying zeolites
SU703929A1 (en) Method for recovering scandium from solutions containing scandium and thorium impurities