US3727783A - Noneverting bottom for thermoplastic bottles - Google Patents

Noneverting bottom for thermoplastic bottles Download PDF

Info

Publication number
US3727783A
US3727783A US00153268A US3727783DA US3727783A US 3727783 A US3727783 A US 3727783A US 00153268 A US00153268 A US 00153268A US 3727783D A US3727783D A US 3727783DA US 3727783 A US3727783 A US 3727783A
Authority
US
United States
Prior art keywords
bottle
lobes
strap
cylinder
generally cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00153268A
Inventor
K Carmichael
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Application granted granted Critical
Publication of US3727783A publication Critical patent/US3727783A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0223Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by shape
    • B65D1/0261Bottom construction
    • B65D1/0284Bottom construction having a discontinuous contact surface, e.g. discrete feet

Definitions

  • ABSTRACT A generally cylindrical thermoplastic bottle for bottling liquids under pressure such as beer, soda and "215/1 99/171 220/70 aerosols, having a noneverting bottom under conditions of bottling and use wherein the bottom comprises at least three lobes around the bottom perimeter of the bottom on which the bottle stands, strap sections located between each lobe and a generally circu- Primary Examiner-Joseph R. Leclair Assistant ExaminerStephen Marcus Attorney-Louis Del Vecchio [52] US. Cl. [51 Int. Cl. ..B65d 1/02 [58] Field of Search ..215/1 R, l C; 220/3,
  • the bottom of the bottle can include a 3,643,829 2/1972 Lachner ..2l5/l C reinforcing ring attached to the re-entrantcylinden 3,468,443 9/1969 Marcus 150/.5
  • PATENTEI APR 1 H975 SHEET 2 BF 3 H W w 4 m .HI/ 4 .M m 6 m. 2 I u u m H V m3 w mflmmfl/ I 4. w M F 4///////M//I(H ⁇ ⁇ v ⁇ ATTORNEY PATENTEU APR 1 7 1915 sum 3 [IF 3 FIGJZ" m T.
  • thermoplastic bottles useful in bottling liquids under pressure such as sodas, beer and aerosols and is particularly concerned with providing a bottle having a bottom that will not evert during use.
  • thermoplastic bottles can be used to bottle beverages for consumer use. If the bottle is used to contain carbonated beverages such as soda or beer, the bottle must be designed to constrain the autogenous pressure in the bottle while remaining dimensionally stable in shape and volume.
  • Thermoplastics however, by nature will deform at moderate temperatures under relatively small loads and therefore, when formed into plastic bottles and used in bottling liquids under pressure, they will deform in normal use. For example, at a temperature of about 50C. and under an autogenous pressure of about 100 psig, i.e., about the highest pressure typically found in a soda or beer bottle, plastic bottles have a tendency to deform into the shape of a sphere. One way of significantly reducing this tendency is to-make the shell of the bottle very thick. While functional, this is not economical and, furthermore, tends to make the bottle so rigid that it fractures in normal use.
  • the bottom of a bottle is conventionally rather flat, permitting the bottle to stand upright. In unpressurized applications, this is not a severe requirement and flat-bottomed bottles can be used successfully. ln pressurized applications, however, a flat bot-- tom is inherently a poor shape to hold rigid and the bottom tends to evert into the shape of hemisphere, increasing the volume of the bottle, distorting the bottom shape and eliminating the possibilityof the bottle being able to stand on a flat surface. Therefore, the low stress capabilities of the plastic coupled with high temperatures for extended time periods under sufficient internal pressure, will cause the plastic to creep or deform so that shape and volume change excessively even though the contents, i.e., gas and the liquid, are successfully contained within the bottle.
  • the present invention provides a thermoplastic bottle having a noneverting bottom when subjected to temperatures up to about 50C. and autogenous pressures up to about 100 psig.
  • the bottle is a generally cylindrical, biaxially oriented, thermoplastic bottle having a shell thickness at the right cylinder section of at least about mils and at least about mils in the bottom section.
  • the bottle is preferably prepared from a polymer having a modulus of elasticity at yield of 180,000 psi; a tensile strength of at least 5,000 psi; a Poisson's Ratio of 0.35 to 0.4; and a deformation constant equal to the slope of the log (reciprocal of the strain rate) versus strain having a value of at least about 0.65.
  • the bottom of the bottle consists essentially of at least three lobes around the bottom perimeter of the bottle on which the bottle stands, strap sections located between each lobe, an axially aligned re-entrant cylinder and a generally circular and axially aligned recessed disc-like section with a smooth transition of material between the lobes, straps, re-entrant cylinder and recessed sections of the base.
  • D the outside diameter of the bottle taken perpendicular to the major axis of the bottle, i.e., an imaginary line running from top center to the bottom center, where the bottom section of the bottle meets the generally cylindrical section of the bottle.
  • the strap sections each begin at the generally cylindrical section of the bottle and extend downward toward the central axis of the bottle with a radius of about 0.45 to 0.70 D, including about to of arc wherein the width of each strap is determined by the following formula:
  • t shell thickness of'a strap
  • the lobes fit in between the strap sections and each lobe starts at the generally cylindrical section extending downward with a radiusof about 0.2-1.5 D measured from the plane between the generally cylindrical section and the bottom section of the bottle including about 20 to 40 of arc and is connected to a toroidal knuckle having a radius of about 0.03 to 0.1 D including about 90 to of are directed down. and inward toward the central axis of the bottle wherein the toroidal knuckle forms the standing surface of the bottle and the center of curvature of the toroidal knuckle is located a distance of about 0.3 to 0.4 D away from the central axis of the bottle.
  • toroidal knuckle having a radius of about 0.02 to 0.04 D including about 180 of arc.
  • the wall lengths need not be the same.
  • areinforcing ring is attached to the re-entrant cylinder adding an increased amount of eversion resistance to the bottom of the bottle.
  • FIG. 1 is a front view of a three-lobed plastic bottle made according to the present invention.
  • FIG. 2 is a bottom view of the bottle shown in FIG. 1.
  • FIG. 3 is a cross section of the bottle shown in FIG. 1 taken along the line 3-3 of FIG. 2.
  • FIG.4 is a schematic showing the curves in the bottom of the bottle taken along line 3-3 of FIG. 2.
  • FIG. 5 is a front view of a six-lobed plastic bottle made according to the present invention.
  • FIG. 6 is a bottom view of the six-lobed bottle shown in FIG. 5.
  • FIG. 7 is a cross section of the bottle shown in FIG. 5 taken along line 77 of FIG. 6.
  • FIG. 8 is a schematic showing the curves in the bottom of the bottle taken along line 88 of FIG. 6.
  • FIG. 9 is a front view of a four-lobed plastic bottle made according to the present invention incorporating the alternate embodiments of (a) a re-entrant cylinder and (b) a reinforcing ring in the bottom of the bottle.
  • FIG. 10 is a bottom view of the bottle shown in FIG. 9.
  • FIG. 11 is a cross section of the bottle shown in FIG. 9 taken along line 11-11 of FIG. 10.
  • FIG. 12 is a schematic showing the curves in the bottom of the bottle taken along line 1212 of FIG. 10.
  • FIG. 1 shows a front view of a thermoplastic bottle incorporating the noneverting bottom design of the present invention.
  • the bottle 1 is a hollow container having an opening 2 at one end used to pour liquid into or out of the bottle.
  • the bottle is madeup of a lip portion 3 surrounding opening 2, a narrow, generally cylindrical neck section 4, a cone frustum section 5, a large, generally cylindrical section 6 and a noneverting bottom section 7 which will be described below in detail.
  • the upper configuration of the bottle is not critical to this invention.
  • the neck portion can be short with a definite shoulder in the bottle or elongated with a smooth transition into the generally cylindrical portion of the bottle.
  • the main portion of the bottle namely, the generally cylindrical section, can be fluted or otherwise shaped to obtain a desirably aesthetic appearance.
  • evert is used in its common sense, i.e., to turn outward; and a bottle having a noneverting bottom is used to mean a bottle in which the bottom will not turn outward under normal use conditions to a point where it is unsightly or would not stand.
  • Normal use conditions are generally no greater than a temperature of about 050C. and an autogenous, i.e., internal positive, pressure up to about 100 psig. It is to be understood that under an autogenous pressure some movement, usually nominal elongation, will occur that is not eversion.
  • Eversion can be caused by a number of factors. Perhaps the two most important factors are (a) overstressing of the plastic material used to make the bottle, particularly where the internal pressure of the bottle causes stresses in the bottle that exceed the yield stress of the material resulting in large material deflections and deformations; and (b) geometric instability.
  • the noneverting bottle of the present invention balances the type and amount of thermoplastic material used with a particular geometric design to the bottom of the bottle.
  • FIGS. 1 to 4 of the drawings With particular reference to FIG. 4 drawn as an aid to show the curves involved in a three-lobed bottom along the line 3-3 of FIG. 2.
  • D equals the outside diameter of the bottle taken perpendicular to the major axis of the bottle, i.e., imaginary line running from top center to bottom center, where the bottom section of the bottle meets the generally cylindrical section of the bottle. All dimensions are outside dimensions, i.e., mold dimensions.
  • the set points for the bottle are three lobes 8, 9, and 10.
  • the portions of the bottom between the lobes and the strap sections curve to form smooth transitions between the lobes and the straps.
  • the inward extending portions of the lobes and strap sections in uniform circumferential spacing, meet around the base 14 of a reentrant cylinder 15 formed by two spaced-apart side wall sections 16 and l7joined by a toroidal knuckle 18.
  • strap sections begin at the right cylinder section indicated by 20, 21 and 22 and extend downward in a circular manner toward the central axis of the bottle with a radius (R,) of about 0.45 to 0.70 D, including about to of arc-and terminating at the base 14 of the bottom of the re-entrant cylinder.
  • R radius
  • the width of each strap is determined by the following formula: I
  • F is the fraction of the total load on the lobes of the bottle carried by the straps and is greater than zero and less than one (O F l ).
  • the most conservative value for F would be 1 in which case the straps would be designed to carry all of the pressure load on the lobes.
  • F can be determined by first making anexperimental lobed bottle having strap widths designed according to Equation 1 wherein the value of F is approximated, the value of yield stress is known from independent testing of the thermoplastic, a value is given to C, between 0.75 and 0.95 with the lower value being the more conservative design, a design pressure is used for P, the actual dimensions of the bottle are measured for radius R and thickness T and the number of lobes N is determined by counting the number on the bottle. Thereafter, the experimental bottle is pressurized and the amount of pressure that the bottle can withstand without undergoing permanent deformation is measured. Using this value ofpressure for P, Equation 1 is resolved for F. This value of F can then be used to design the width of the straps.
  • F was about 1/3 to l/2.
  • the strap sections generally have a uniform width, however, they can have a varying widthin which case the average width is used in the formula. In a strap having a varying width satisfactory results have been achieved when the strap section connected to the right cylinder section is relatively wide and the width of the strap uniformly diminishes or tapers as the strap extends around toward the central axis of the bottle.
  • the polymer has a tensile yield stress (Syp) of 6000 psi.
  • the bottle is designed to withstand an autogenous pressure (P) of l00 psig, the fraction of the total load (F) on the lobes of the bottle to be carried by the straps is 0.33 and the design stress factor is 0.875.
  • Equation 1 the minimum width requirement of Equation 1 is provided to determine the lower limit on design width but may be exceeded to obtain other desirable effects.
  • the lobes 8, 9, and 10 fit between the strap sections and each lobe starts at the right cylinder section 23, 24 and 25 and extends downward with aradius (R of about 0.8-1 .5 D measured from the plane between the right cylinder section and the bottom section of the bottle and includes about 20 to 40 of are which is in turn connected to a toroidal knuckle 26, 27 and 28 having a radius (R of about 0.03 to 0.10 D, including about to of are directed inward and upward toward the central axis of the bottle.
  • the toroidal knuckle forms the standing surface of the bottle and the central curvature of the toroidal knuckle is located a distance (L of about 0.3 to 0.4 D away from the center line (42) of the bottle.
  • the toroidal knuckle is met with a smooth transition of material directed into the base 14 of the re-entrant cylinder in the bottom of the bottle.
  • the re-entrant cylinder 15 defined by spaced apart side walls 16 and 17 wherein each side wall has a length L, and L respectively, of about 0.05 to 0.22 D. However, the side walls 16 and 17 need not be the same length.
  • the side walls are joined by a toroidal-knuckle 18 having a radius R, of about 0.02 to 0.04 D with an arc of about
  • the re-entrant cylinder is very significant to the structural integrity of the plastic bottles of this invention. It acts as a structural arch supporting the internal pressures of the bottle and also acts as a retaining band to retain the straps and lobes otherwise the lobes, in particular, tend to diametrically bulge, increasing the diameter of the bottom causing serious problems in packaging, shipping and storing.
  • FIGS. 5-8 show such a variation on a bottle having six lobes and six straps.
  • the bottle. itself 29 is generally cylindrical having a typical bottle shape from the top or lip portion down through the right cylinder section to the bottom.
  • the bottom section is made up of six lobes 30, 31, 32, 33, 34 and 35 equally sized and uniformly spaced around the bottom of the bottle with six strap sections 36, 37, 38, 39, 40 and 41 equally sized and uniformly spaced in between the lobes.
  • the width of each strap is first determined by Equation 1 above, and the lobes are sized to fit in between each strap.
  • the lobes and straps each meet in the base 42 of the re-entrant cylinder 43 in the bottom of the bottle.
  • One wall of the re-entrant cylinder then terminates in the central disc 50 of the base. 7
  • FIG. 8 illustrates the curves along line 88 of FIG. 6 involved to form the bottom of the bottle
  • R is the radius of curvature for the strap sections
  • R is the radius of curvature for the lobes
  • R is the radius of curvature for each of the toroidal knuckles 44, 45, 46, 47, 48 and 49 on which the bottle sits
  • R is the radius of the toroidal knuckle connecting the two side walls of the re-entrant cylinder 43.
  • L and L represent the length of the side walls forming the distance between the center line (Q) of the bottle and the center of the radius of curvature of the toroidal knuckles that establish the seat of the bottle.
  • the re-entrant cylinder has a reinforcing ring adding an increased amount of eversion resistance to the bottom of the bottle.
  • FIGS. 9, 10, 11 and 12 show the incorporation of re-entrant cylinder, coupled with a reinforcing ring, in the bottom section of a four-lobed bottle wherein the straps and lobes have the same geometric configuration as described above.
  • FIG. '9 shows the front view of a fourlobed bottle 51 having a typical bottle shape from the top or lip portion of the bottle down through the right cylinder section of the bottle.
  • the bottom section is attached to the right cylinder section and has four lobes 52, 53, 54 and 55 and four hemispherical strap sections 56, 57, 58 and 59 spaced between the four lobes.
  • the lobes and strap sections have the same general geometric configuration as the lobes and straps described above, except that there are four of each instead of three.
  • a re-entrant cylinder 60 is formed in the same manner as that described above by two spaced-apart side wall sections 61 and 62 each having a length of about 0.05 to 0.22 D joined by a 180 toroidal knuckle 63 having a radius of about 0.02 to 0.04 D as discussed above.
  • a reinforcing ring 64 is formed on the toroidal knuckle 63.
  • the reinforcing ring is formed by two concentric contacting side wall sections 65 and 66 each having a length of about 0.05 to 0.20 D joined by a toroidal knuckle 67.
  • the lobes and strap sections are connected to the outer wall 61 of the re-entrant cylinder and the inner wall 62 is connected to the recessed central disc 68.
  • Thermoplastics useful in preparing bottles having a bottom designedaccording to the present invention are polyethylene terephthalate, acrylonitrile/styrene/met hyl acrylate copolymer, acrylonitrile/ethylene/methyl acrylate copolymer, methacrylonitrile copolymers, polycarbonate s, polys ulfones, polybis(p-aminocyclohexyl)-dodecaneamide or polyformaldehyde resin.
  • Polyethylene,terephthalate is preferred because of its excellent strength properties, particularly a high Inherent; viscosity: natural logarithm tensile strength, excellent impact strength and relatively low creep. This high tensile strength is particularly important since.
  • the bottles of this invention are designed with strap sections that extend from the'side walls to the reentrant cylinder and are placed in tension as internal bottle pressure is applied.
  • the strength of the strap sections in tension plus the strength added from the axially aligned reentrant cylinder is great enoughthat the whole bottom area is not needed to support the internal pressure of the bottle, therefore,
  • part of the bottom area can be used to form the lobes on which the bottle stands.
  • Polyethylene terephthalate useful in preparing the thermoplastic articles of this invention includes (a) polymers wherein at least about 97 percent of the polymer contains the repeating ethylene terephthalate units of the formula:
  • ester-forming components (b) copolymers of ethylene terephthaiate wherein up to about 10 mole percent of the copolymer is derived from other ester-forming components which are substituted for corresponding amounts of the usual glycol and/or the carboxylicreactants.
  • ester-forming components include the monomer units of diethylene glycol; propane-l ,3-diol; butane-l ,4-diol; polytetramethylene glycol; polyethylene glycol;"polypropylene glycol; 1,4-hydroxymethylcyclohexane and the like; or isophthalic, bibenzoic, naphthalene 1,4- or 2,6-carboxylic, adipic, sebacic, decanel l O-dicarboxylic acid, and the like.
  • the specific limits on the comonome'r are governed by the glass transition temperature of the polymer. It has been found that when the glass transition temperature extends below about 50C., a copolymer having reduced mechanical properties results. Accordingly, this corresponds to the addition of no more than about 10 mole percent of a comonomer.
  • the polyethylene terephthalate polymer can include various additives that do not adversely affect the polymer in use such as stabilizers, e.g., antioxidants or ultraviolet light screening agents, extrusion aids, additives designed to make the polymer more degradable or combustible, such as oxidation catalysts, as well as dyes or pigments.
  • stabilizers e.g., antioxidants or ultraviolet light screening agents, extrusion aids
  • additives designed to make the polymer more degradable or combustible such as oxidation catalysts, as well as dyes or pigments.
  • the polyethylene terephthalate should have an inherent viscosity (10 percent concentration of polymer in a 37.5/62.5 weight percent solution of tetrachloroetha'ne/phenol, respectively, at 30C.) of at least 0.55' to obtain the desired end properties in the article s formed and preferably the inherent viscosity is at least about 0.7 to obtain an article having excellent toughness properties, i.e., resistance to impact loading.
  • the viscosity of the polymer solution is measured relative to that of the solvent alone and the viscosity of solution fl ll az yset where C is the concentration expressed polymer per 100 milliliters of solution.
  • the plastic bottle preferably has a shell thickness in the right cylinder section of at least -abo'ut'20 mils and at least about 30 mils in the bottom section with at least the following characteristics, particularly in the bottom portion of the bottle:
  • a deformation constant equal to the slope of the log (reciprocal of the strain rate) versus strain having a value of at least about 0.65.
  • the modulus of elasticity at yield is the ratio of stress to strain of a specimen in tension wherein the tensile in grams of yield stress is that stress at which the specimen begins to stretch without an increase in load.
  • the modulus of elasticity at yield is determined by ASTM D-882, Tensile Properties of Thin Plastic Sheeting.
  • the tensile strength at break is also determined by ASTM D886 wherein a specimen is placed under increasing tension until it breaks.
  • the deformation constant is a measure of creep. Creep is usually measured on polymers by placing a sample under a fixed load, i.e., stress, at a constant temperature and measuring the strain deformation as a function of time.
  • the curves for thermoplastics have a characteristic shape in which the rate of strain decreases as a function of time.
  • a plot of the log (reciprocal of the strain rate) versus strain results in a linear plot over a substantial part of the creep curvev
  • the slope of the straight line segment herein referred to as the deformation constant is mathematically expressed as:
  • This deformation constant is applicable to related thermoplastics and can be used to comparethe creep behavior by comparingthe slope values.
  • a deformation constant equal to indicates that the sample being tested is extending at its natural strain rate or for the load indicated, the strain rate is constant.
  • a deformation constant of infinity indicates that there is no measurable strain indicated.
  • the deformation constant is at least about 0.65, indicating a deformation of less than percent in 100 hours at 50C. with an autogenous pressure of 75 psig.
  • a preferred process for preparing bottles having the bottom geometry designed according to the present invention is disclosed in US. Pat. application Ser. No. 93,571, filed Nov. 30, .1970, hereby incorporated by reference.
  • the process produces a hollow, biaxially oriented, thermoplastic article by extruding a hollow, cylindrical, thermoplastic slug with a ramrod through an annular orifice into a slidable mold at a temperature within its molecular orientation range to a shape relatively larger than the original shape of the slug wherein the mold has an annular bead recess at one end to accept and hold one end of the extrudate while simultaneously drawing the extrudate in the direction of extrusion and expanding the extrudate by forcing a gas or liquid against the interior portions of the extrudate, expanding the extrudate to conform to the mold while sliding the mold past the extrusion orifice as continuous extrusion takes place.
  • the lobes and strap sections of the bottle are formed by properly shaping the mold and expanding the polymer to conform to the mold.
  • the reentrant cylinder and reinforcing ring are formed by first forming the bottle including lobes and strap sections, then reversing the direction of the mold, against the direction of extrusion forming the recessed re-entrant cylinder and/or reinforcing ring in the bottom of the bottle.
  • the mold cavity is shaped to EXAMPLE 1
  • Plastic bottles are prepared according to the process of US. Pat. application Ser. No. 93,571, filed Nov.
  • thermoplastic slug is extruded through an annular orifice into a slidable mold wherein the mold has a bead recess at one end to accept the extrudate. Then the mold is made to slide by the extrusion orifice as continuous extrusion takes place, drawing the extrudate as the mold slides while the extrudate is simultaneously forced against the interior walls of the mold by introducing a fluid under pressure into the interior of the extrudate.
  • the slug is amorphous and is prepared from polyethylene terephthalate having an inherent viscosity of about 0.85. v
  • Three different molds are used each producing 10 bottles having (a) three-lobed bottoms such as that shown in FIGS. 1-4, (b) four-lobed bottoms such as that shown in FIGS. 9-12 except that the reinforcing ring is not included, and (c) six-lobed bottoms such as that shown in FIGS. 5-8.
  • the straps are specifically formed of metal in relief to obtain the desired strap design.
  • the lobes in the three-lobed bottle I lobed bottle have a width of about 1.08 of an inch where the strap connects to the right cylinder section tapering to a width of about 0.625 of an inch where the strap connects to the circular recessed section of the bottom.
  • the straps in the six-lobed bottle have a width of about 0.60 of an inch where the strap connects to the right cylinder section tapering to a width of about 0.30 of an inch where the strap connects to the circular recessed section of the bottom.
  • Each bottle holds a capacity of about 10 ounces and has an inside diameter at the right cylinder section of about 2.25 inches with a corresponding shell thickness of about 20 mils. In the bottom section of the bottle, the average thickness of the shell is about mils.
  • the bottles are tested by filling each bottle with about 10 ounces of liquid (water) and pressurizing the bottle to I psig. at room temperature for about 2 minutes. In all cases, the bottle elongates in the axial direction a nominal amount but the bottom does not evert and will stand on a flat surface.
  • the internal pressure in the bottle is reduced to 80 psig. and the bottles are stored for 5 days at 50C. In all cases the bottles do not evert.
  • EXAMPLE 2 A four-lobed bottle is prepared in the same manner as that disclosed in Example 1 except that the bottom is provided with a re-entrant cylinder and a reinforcing ring such as that described in the specification and particularly illustrated in FIGS. 11 and 12.
  • the contacting side walls of the reinforcing ring have a length of about 0.5 inch and an overall thickness of about 0.1 inch.
  • This bottle is tested by filling it with about ounces of water and pressurizing the bottle. It is found that this bottle withstands about 300 psig. pressure at room temperature for about 2 minutes. While the bottle elongates in the axial direction a nominal amount, the bottom does not evert and it will stand on a flat surface.
  • a generally cylindrical thermoplastic bottle biaxially oriented at least in the generally cylindrical section, the improvement wherein the bottom configuration consists essentially of at least three lobes around the bottom perimeter of the bottle on which the bottle stands; strap sections located between each lobe; an axially aligned re-entrant cylinder; and a generally circular and axially aligned recessed section with a smooth transition of material between the lobes, straps, re-entrant cylinder, and recessed sections of the base wherein a.
  • the strap sections begin at the generally cylindrical section of the bottle and extend downward toward the central axis of the bottle with a radius of about 0.45 to 0.7 D, including about 75 to 90 of arc and terminating in the base of the re-entrant cylinder and the width of each strap is determined by the w average width of an individual strap,
  • N number of straps
  • F fraction of the total load on the lobes of the bottle to be carried by the straps
  • t shell thickness of a strap
  • the lobes fit in between the strap sections and each lobe starts at the generally cylindrical section of the bottle extending downward with a radius of about 0.2-1.5 D measured from the plane between the right cylinder section and the bottom section of the bottle, including about 20 to 40 of arc and is connected to a toroidal knuckle having a radius of about 0.03 to 0.1 D including about to of are directed down and inward toward the central axis of the bottle terminating in the base of the re-entrant cylinder wherein the toroidal knuckle forms the standing surface of the bottle and the center of curvature of the toroidal knuckle is located a distance of about 0.3 to 0.4 D away from the central axis of the bottle; and
  • the axially aligned re-entrant cylinder in the bot tom of the bottle is defined by two concentric walls each having a length of about 0.05 to 0.22 D wherein one wall is connected to the inward extending portions of lobes and strap sections, in uniform circumferential spacing around the base of this wall, the other wall is connected to the recessed central disc and the two walls are interconnected with a toroidal knuckle having a radius of about 0.02 to 0.04 1) including about of are where D equals the outside diameter of the bottle taken perpendicular to the major axis of the bottle where the bottom section of the bottle meets the generally cylindrical section of the bottle.
  • the bottle of claim 1 having three lobes and three strap sections.
  • the bottle of claim 1 having four lobes and four strap sections.
  • the bottle of claim 1 having six lobes and six strap sections.
  • the bottle of claim 1 having a reinforcing ring of thermoplastic on the interior surface of the toroidal knuckle connecting the walls of the re-entrant cylinder wherein the reinforcing ring is formed of two concentric contacting side wall sections each having a length of about 0.05 to 0.20 D.
  • thermoplastic is polyethylene terephthalate having an inherent viscosity of at least about 0.55.
  • the bottle of claim 7 having a shell thickness of at least 20 mils in the generally cylindrical section and 30 mils in the bottom section, prepared from a polymer having a modulus of elasticity at yield of at least about l80,000 psi, a tensile strength of at least 5,000 psi, a Poisson's ratio of 0.35 to 0.4 and a deformation constant equal to the slope of the log (reciprocal of the strain rate) versus strain having a value of at least about 0.65.

Abstract

A generally cylindrical thermoplastic bottle for bottling liquids under pressure such as beer, soda and aerosols, having a noneverting bottom under conditions of bottling and use wherein the bottom comprises at least three lobes around the bottom perimeter of the bottom on which the bottle stands, strap sections located between each lobe and a generally circular and axially aligned, recessed section defining a re-entrant cylinder of the base. To further improve eversion resistance, the bottom of the bottle can include a reinforcing ring attached to the reentrant cylinder.

Description

United States Patent 1191 1111 3,727,783
Carmichael Apr. 17, 1973 1 1 NONEVERTING BOTTOM FOR 3,043,461 7/1962 Glassco ..220 70 THERMOPLASTIC BOTFLES 3,038,627 6/1962 Daley ..220/70 2,541,065 2/1951 Jabour 220 70 Inventor: Keith Stewart Carmichael, Wllmmg- 3,598,270 8/l97l Adomaitisetal ..215/1 (3 ton, Del.
[73] Assignee: E. I. du Pont de Nemours and Company, Wilmington, Del.
[22] Filed: June 15, 1971 21 Appl. No; 153,268 [57] ABSTRACT A generally cylindrical thermoplastic bottle for bottling liquids under pressure such as beer, soda and "215/1 99/171 220/70 aerosols, having a noneverting bottom under conditions of bottling and use wherein the bottom comprises at least three lobes around the bottom perimeter of the bottom on which the bottle stands, strap sections located between each lobe and a generally circu- Primary Examiner-Joseph R. Leclair Assistant ExaminerStephen Marcus Attorney-Louis Del Vecchio [52] US. Cl. [51 Int. Cl. ..B65d 1/02 [58] Field of Search ..215/1 R, l C; 220/3,
220/60, 70; ISO/.5; 99/171 B [56] References Cited lar and axially aligned, recessed section defining a re- UNITED STATES PATENTS entrant cylinder of the base. To further improve eversion resistance, the bottom of the bottle can include a 3,643,829 2/1972 Lachner ..2l5/l C reinforcing ring attached to the re-entrantcylinden 3,468,443 9/1969 Marcus 150/.5
3,403,804 10/l968 Colombo ..2l5/l C 8 Clains, 12 Drawing Figures PATENTEDAPRIYIW I 3727. 783
sum 1 or 3 FIGJ l 26 *3 I INVENTOR ATTORNEY KEITH STEWART CARIICIMEL':
cab/27. 783
PATENTEI] APR 1 H975 SHEET 2 BF 3 H W w 4 m .HI/ 4 .M m 6 m. 2 I u u m H V m3 w mflmmfl/ I 4. w M F 4///////M//I(H\ \\\\\v\\\ ATTORNEY PATENTEU APR 1 7 1915 sum 3 [IF 3 FIGJZ" m T. m V m WAR] OA'RHICHAEL ATTORNEY BACKGROUND OF THE INVENTION This invention relates to the art of manufacturing thermoplastic bottles useful in bottling liquids under pressure such as sodas, beer and aerosols and is particularly concerned with providing a bottle having a bottom that will not evert during use.
It is known that thermoplastic bottles can be used to bottle beverages for consumer use. If the bottle is used to contain carbonated beverages such as soda or beer, the bottle must be designed to constrain the autogenous pressure in the bottle while remaining dimensionally stable in shape and volume.
Thermoplastics, however, by nature will deform at moderate temperatures under relatively small loads and therefore, when formed into plastic bottles and used in bottling liquids under pressure, they will deform in normal use. For example, at a temperature of about 50C. and under an autogenous pressure of about 100 psig, i.e., about the highest pressure typically found in a soda or beer bottle, plastic bottles have a tendency to deform into the shape of a sphere. One way of significantly reducing this tendency is to-make the shell of the bottle very thick. While functional, this is not economical and, furthermore, tends to make the bottle so rigid that it fractures in normal use. It has been found, however, that by making a thin-shelled bottle and molecularly orienting the polymer, the yield stress in the side walls can be improved sufficiently to resist this tendency to deform. However, it is very difficult to molecularly orient the polymer'in the bottom of the bottle. Therefore, the bottom retains this tendency to deform, i.e., evert.
In general, the bottom of a bottle is conventionally rather flat, permitting the bottle to stand upright. In unpressurized applications, this is not a severe requirement and flat-bottomed bottles can be used successfully. ln pressurized applications, however, a flat bot-- tom is inherently a poor shape to hold rigid and the bottom tends to evert into the shape of hemisphere, increasing the volume of the bottle, distorting the bottom shape and eliminating the possibilityof the bottle being able to stand on a flat surface. Therefore, the low stress capabilities of the plastic coupled with high temperatures for extended time periods under sufficient internal pressure, will cause the plastic to creep or deform so that shape and volume change excessively even though the contents, i.e., gas and the liquid, are successfully contained within the bottle.
Therefore, it is desirable to find a way of making a plastic bottle useful in bottling liquids under pressure having a bottom that will not evert and will, at the same time, maintain a base sufficient for the bottle to stand on when used to bottle liquids under pressure.
SUMMARY OF THE lNVENTlON Accordingly, the present invention provides a thermoplastic bottle having a noneverting bottom when subjected to temperatures up to about 50C. and autogenous pressures up to about 100 psig. The bottle is a generally cylindrical, biaxially oriented, thermoplastic bottle having a shell thickness at the right cylinder section of at least about mils and at least about mils in the bottom section. The bottle is preferably prepared from a polymer having a modulus of elasticity at yield of 180,000 psi; a tensile strength of at least 5,000 psi; a Poisson's Ratio of 0.35 to 0.4; and a deformation constant equal to the slope of the log (reciprocal of the strain rate) versus strain having a value of at least about 0.65.
The bottom of the bottle consists essentially of at least three lobes around the bottom perimeter of the bottle on which the bottle stands, strap sections located between each lobe, an axially aligned re-entrant cylinder and a generally circular and axially aligned recessed disc-like section with a smooth transition of material between the lobes, straps, re-entrant cylinder and recessed sections of the base. In the following description, D the outside diameter of the bottle taken perpendicular to the major axis of the bottle, i.e., an imaginary line running from top center to the bottom center, where the bottom section of the bottle meets the generally cylindrical section of the bottle.
The strap sections each begin at the generally cylindrical section of the bottle and extend downward toward the central axis of the bottle with a radius of about 0.45 to 0.70 D, including about to of arc wherein the width of each strap is determined by the following formula:
where:
w average width of an individual strap,
N number of straps,
R outside radius of the generally cylindrical section of the bottle taken where the bottom meets the generally cylindrical section and is equal to D/2,
P= autogenous design pressure,
Syp yield stress of the thermoplastic,
C 0.75-0.95 (design stress factor),
F fraction of the total load on the lobes of the bottle to be carried by the straps,
t= shell thickness of'a strap, and
The lobes fit in between the strap sections and each lobe starts at the generally cylindrical section extending downward with a radiusof about 0.2-1.5 D measured from the plane between the generally cylindrical section and the bottom section of the bottle including about 20 to 40 of arc and is connected to a toroidal knuckle having a radius of about 0.03 to 0.1 D including about 90 to of are directed down. and inward toward the central axis of the bottle wherein the toroidal knuckle forms the standing surface of the bottle and the center of curvature of the toroidal knuckle is located a distance of about 0.3 to 0.4 D away from the central axis of the bottle. g
The inward extending portions of the lobes and strap sections, in uniform circumferential spacing, then meet around the base of a re-entrant cylinder which is axially aligned and recessed in the bottom of the bottle. The
disc and the two walls are interconnected with a toroidal knuckle having a radius of about 0.02 to 0.04 D including about 180 of arc. The wall lengths need not be the same.
In an alternate embodiment, areinforcing ring is attached to the re-entrant cylinder adding an increased amount of eversion resistance to the bottom of the bottle.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front view of a three-lobed plastic bottle made according to the present invention.
FIG. 2 is a bottom view of the bottle shown in FIG. 1.
FIG. 3 is a cross section of the bottle shown in FIG. 1 taken along the line 3-3 of FIG. 2.
FIG.4 is a schematic showing the curves in the bottom of the bottle taken along line 3-3 of FIG. 2.
FIG. 5 is a front view of a six-lobed plastic bottle made according to the present invention.
FIG. 6 is a bottom view of the six-lobed bottle shown in FIG. 5.
FIG. 7 is a cross section of the bottle shown in FIG. 5 taken along line 77 of FIG. 6.
FIG. 8 is a schematic showing the curves in the bottom of the bottle taken along line 88 of FIG. 6.
FIG. 9 is a front view of a four-lobed plastic bottle made according to the present invention incorporating the alternate embodiments of (a) a re-entrant cylinder and (b) a reinforcing ring in the bottom of the bottle.
FIG. 10 is a bottom view of the bottle shown in FIG. 9.
FIG. 11 is a cross section of the bottle shown in FIG. 9 taken along line 11-11 of FIG. 10.
FIG. 12 is a schematic showing the curves in the bottom of the bottle taken along line 1212 of FIG. 10.
DETAILS OF THE INVENTION FIG. 1 shows a front view of a thermoplastic bottle incorporating the noneverting bottom design of the present invention. The bottle 1 is a hollow container having an opening 2 at one end used to pour liquid into or out of the bottle. The bottle is madeup of a lip portion 3 surrounding opening 2, a narrow, generally cylindrical neck section 4, a cone frustum section 5, a large, generally cylindrical section 6 and a noneverting bottom section 7 which will be described below in detail. The upper configuration of the bottle is not critical to this invention. For example, the neck portion can be short with a definite shoulder in the bottle or elongated with a smooth transition into the generally cylindrical portion of the bottle. The main portion of the bottle, namely, the generally cylindrical section, can be fluted or otherwise shaped to obtain a desirably aesthetic appearance.
The term evert" is used in its common sense, i.e., to turn outward; and a bottle having a noneverting bottom is used to mean a bottle in which the bottom will not turn outward under normal use conditions to a point where it is unsightly or would not stand. Normal use conditions are generally no greater than a temperature of about 050C. and an autogenous, i.e., internal positive, pressure up to about 100 psig. It is to be understood that under an autogenous pressure some movement, usually nominal elongation, will occur that is not eversion.
Eversion can be caused by a number of factors. Perhaps the two most important factors are (a) overstressing of the plastic material used to make the bottle, particularly where the internal pressure of the bottle causes stresses in the bottle that exceed the yield stress of the material resulting in large material deflections and deformations; and (b) geometric instability. The noneverting bottle of the present invention balances the type and amount of thermoplastic material used with a particular geometric design to the bottom of the bottle. a
The bottom geometry of the bottle will now be described in relation to FIGS. 1 to 4 of the drawings with particular reference to FIG. 4 drawn as an aid to show the curves involved in a three-lobed bottom along the line 3-3 of FIG. 2.
In describing the bottom geometry and as hereinafter used, D equals the outside diameter of the bottle taken perpendicular to the major axis of the bottle, i.e., imaginary line running from top center to bottom center, where the bottom section of the bottle meets the generally cylindrical section of the bottle. All dimensions are outside dimensions, i.e., mold dimensions. g
The set points for the bottle are three lobes 8, 9, and 10. In between the lobes are strap sections 11, 12, and 13. The portions of the bottom between the lobes and the strap sections curve to form smooth transitions between the lobes and the straps. The inward extending portions of the lobes and strap sections, in uniform circumferential spacing, meet around the base 14 of a reentrant cylinder 15 formed by two spaced-apart side wall sections 16 and l7joined by a toroidal knuckle 18.
Side wall 17 then connects with the center portion 19 of the bottom of the bottle which has a generally circular configuration that is axially aligned and usually recessed to a position where it is about tangent to the bottom portion of the curve defining straps 11, 12 and 13.
In more particular detail, strap sections begin at the right cylinder section indicated by 20, 21 and 22 and extend downward in a circular manner toward the central axis of the bottle with a radius (R,) of about 0.45 to 0.70 D, including about to of arc-and terminating at the base 14 of the bottom of the re-entrant cylinder. The width of each strap is determined by the following formula: I
EQUATION 1 where: v
w average width of an individual strap,
N= number of straps, I
R outside radius of the generally cylindrical section of the bottle taken where the bottom meets the generally cylindrical section and is equal to D/2,
P= autogenous design pressure,
Syp yield stress of the thermoplastic,
C 0.75-0.95 (design stress factor),
F fraction of the total load on the lobes of the bottle to be carried by the straps,
= shell thickness of a strap, and
In the formula, F is the fraction of the total load on the lobes of the bottle carried by the straps and is greater than zero and less than one (O F l The most conservative value for F would be 1 in which case the straps would be designed to carry all of the pressure load on the lobes.
F can be determined by first making anexperimental lobed bottle having strap widths designed according to Equation 1 wherein the value of F is approximated, the value of yield stress is known from independent testing of the thermoplastic, a value is given to C, between 0.75 and 0.95 with the lower value being the more conservative design, a design pressure is used for P, the actual dimensions of the bottle are measured for radius R and thickness T and the number of lobes N is determined by counting the number on the bottle. Thereafter, the experimental bottle is pressurized and the amount of pressure that the bottle can withstand without undergoing permanent deformation is measured. Using this value ofpressure for P, Equation 1 is resolved for F. This value of F can then be used to design the width of the straps.
Typically, in a three-lobed bottom bottle such as that illustrated in the drawings having a capacity of ounces, an inside diameter of about 2.25 inches and three straps each 7/16 inch wide, F was about 1/3 to l/2.
The strap sections generally have a uniform width, however, they can have a varying widthin which case the average width is used in the formula. In a strap having a varying width satisfactory results have been achieved when the strap section connected to the right cylinder section is relatively wide and the width of the strap uniformly diminishes or tapers as the strap extends around toward the central axis of the bottle.
A typical calculation for the width of a strap (w) follows wherein a four-lobed bottle (N=4) is made having a radius (R,) of 1.125 inches and a shell thickness (2) of 0.03 inch. The polymer has a tensile yield stress (Syp) of 6000 psi. The bottle is designed to withstand an autogenous pressure (P) of l00 psig, the fraction of the total load (F) on the lobes of the bottle to be carried by the straps is 0.33 and the design stress factor is 0.875.
w=0.4 inch reasons or perhaps to provide increased eversion to protect the bottle from everting from some unexpected or unusual conditions. Therefore, the minimum width requirement of Equation 1 is provided to determine the lower limit on design width but may be exceeded to obtain other desirable effects.
The lobes 8, 9, and 10 fit between the strap sections and each lobe starts at the right cylinder section 23, 24 and 25 and extends downward with aradius (R of about 0.8-1 .5 D measured from the plane between the right cylinder section and the bottom section of the bottle and includes about 20 to 40 of are which is in turn connected to a toroidal knuckle 26, 27 and 28 having a radius (R of about 0.03 to 0.10 D, including about to of are directed inward and upward toward the central axis of the bottle. The toroidal knuckle forms the standing surface of the bottle and the central curvature of the toroidal knuckle is located a distance (L of about 0.3 to 0.4 D away from the center line (42) of the bottle. The toroidal knuckle is met with a smooth transition of material directed into the base 14 of the re-entrant cylinder in the bottom of the bottle.
The re-entrant cylinder 15 defined by spaced apart side walls 16 and 17 wherein each side wall has a length L, and L respectively, of about 0.05 to 0.22 D. However, the side walls 16 and 17 need not be the same length. The side walls are joined by a toroidal-knuckle 18 having a radius R, of about 0.02 to 0.04 D with an arc of about The re-entrant cylinder is very significant to the structural integrity of the plastic bottles of this invention. It acts as a structural arch supporting the internal pressures of the bottle and also acts as a retaining band to retain the straps and lobes otherwise the lobes, in particular, tend to diametrically bulge, increasing the diameter of the bottom causing serious problems in packaging, shipping and storing.
The number of straps and lobes on a bottle can vary and FIGS. 5-8 show such a variation on a bottle having six lobes and six straps.
Referring to the drawings, the bottle. itself 29 is generally cylindrical having a typical bottle shape from the top or lip portion down through the right cylinder section to the bottom. The bottom section is made up of six lobes 30, 31, 32, 33, 34 and 35 equally sized and uniformly spaced around the bottom of the bottle with six strap sections 36, 37, 38, 39, 40 and 41 equally sized and uniformly spaced in between the lobes. The width of each strap is first determined by Equation 1 above, and the lobes are sized to fit in between each strap. The lobes and straps each meet in the base 42 of the re-entrant cylinder 43 in the bottom of the bottle. One wall of the re-entrant cylinder then terminates in the central disc 50 of the base. 7
FIG. 8 illustrates the curves along line 88 of FIG. 6 involved to form the bottom of the bottle wherein R is the radius of curvature for the strap sections, R is the radius of curvature for the lobes, R is the radius of curvature for each of the toroidal knuckles 44, 45, 46, 47, 48 and 49 on which the bottle sits and R is the radius of the toroidal knuckle connecting the two side walls of the re-entrant cylinder 43. L and L represent the length of the side walls forming the distance between the center line (Q) of the bottle and the center of the radius of curvature of the toroidal knuckles that establish the seat of the bottle. More specific geometric details are discussed above in reference to the threelobed bottle along with definitions of R R R R and L L and L in still another embodiment, the re-entrant cylinder has a reinforcing ring adding an increased amount of eversion resistance to the bottom of the bottle. FIGS. 9, 10, 11 and 12 show the incorporation of re-entrant cylinder, coupled with a reinforcing ring, in the bottom section of a four-lobed bottle wherein the straps and lobes have the same geometric configuration as described above.
Referring to the drawings, FIG. '9 shows the front view of a fourlobed bottle 51 having a typical bottle shape from the top or lip portion of the bottle down through the right cylinder section of the bottle. The bottom section, more particularly illustrated in FIGS. l0, l1 and 12, is attached to the right cylinder section and has four lobes 52, 53, 54 and 55 and four hemispherical strap sections 56, 57, 58 and 59 spaced between the four lobes. The lobes and strap sections have the same general geometric configuration as the lobes and straps described above, except that there are four of each instead of three.
A re-entrant cylinder 60 is formed in the same manner as that described above by two spaced-apart side wall sections 61 and 62 each having a length of about 0.05 to 0.22 D joined by a 180 toroidal knuckle 63 having a radius of about 0.02 to 0.04 D as discussed above. A reinforcing ring 64 is formed on the toroidal knuckle 63. The reinforcing ring is formed by two concentric contacting side wall sections 65 and 66 each having a length of about 0.05 to 0.20 D joined by a toroidal knuckle 67.
The lobes and strap sections are connected to the outer wall 61 of the re-entrant cylinder and the inner wall 62 is connected to the recessed central disc 68.
Thermoplastics useful in preparing bottles having a bottom designedaccording to the present invention are polyethylene terephthalate, acrylonitrile/styrene/met hyl acrylate copolymer, acrylonitrile/ethylene/methyl acrylate copolymer, methacrylonitrile copolymers, polycarbonate s, polys ulfones, polybis(p-aminocyclohexyl)-dodecaneamide or polyformaldehyde resin. Polyethylene,terephthalate is preferred because of its excellent strength properties, particularly a high Inherent; viscosity: natural logarithm tensile strength, excellent impact strength and relatively low creep. This high tensile strength is particularly important since. the bottles of this invention are designed with strap sections that extend from the'side walls to the reentrant cylinder and are placed in tension as internal bottle pressure is applied. The strength of the strap sections in tension plus the strength added from the axially aligned reentrant cylinder is great enoughthat the whole bottom area is not needed to support the internal pressure of the bottle, therefore,
part of the bottom area can be used to form the lobes on which the bottle stands.
Polyethylene terephthalate useful in preparing the thermoplastic articles of this invention includes (a) polymers wherein at least about 97 percent of the polymer contains the repeating ethylene terephthalate units of the formula:
with the remainder being minor amounts of ester-forming components, and (b) copolymers of ethylene terephthaiate wherein up to about 10 mole percent of the copolymer is derived from other ester-forming components which are substituted for corresponding amounts of the usual glycol and/or the carboxylicreactants. Other ester-forming components include the monomer units of diethylene glycol; propane-l ,3-diol; butane-l ,4-diol; polytetramethylene glycol; polyethylene glycol;"polypropylene glycol; 1,4-hydroxymethylcyclohexane and the like; or isophthalic, bibenzoic, naphthalene 1,4- or 2,6-carboxylic, adipic, sebacic, decanel l O-dicarboxylic acid, and the like.
The specific limits on the comonome'r are governed by the glass transition temperature of the polymer. it has been found that when the glass transition temperature extends below about 50C., a copolymer having reduced mechanical properties results. Accordingly, this corresponds to the addition of no more than about 10 mole percent of a comonomer. One exception to this, for example, is the addition of bibenzoic acid where the glass transition temperature of the copolymer remains above 50C. and does not drop with the addition of more than 10 mole percent. Others would be obvious to those skilled in the art. I
In addition, the polyethylene terephthalate polymer can include various additives that do not adversely affect the polymer in use such as stabilizers, e.g., antioxidants or ultraviolet light screening agents, extrusion aids, additives designed to make the polymer more degradable or combustible, such as oxidation catalysts, as well as dyes or pigments.
The polyethylene terephthalate should have an inherent viscosity (10 percent concentration of polymer in a 37.5/62.5 weight percent solution of tetrachloroetha'ne/phenol, respectively, at 30C.) of at least 0.55' to obtain the desired end properties in the article s formed and preferably the inherent viscosity is at least about 0.7 to obtain an article having excellent toughness properties, i.e., resistance to impact loading. ,The viscosity of the polymer solution is measured relative to that of the solvent alone and the viscosity of solution fl ll az yset where C is the concentration expressed polymer per 100 milliliters of solution.
In the preferred embodiment wherein the ther-I moplastic is polyethylene terephthalate, the plastic bottle preferably has a shell thickness in the right cylinder section of at least -abo'ut'20 mils and at least about 30 mils in the bottom section with at least the following characteristics, particularly in the bottom portion of the bottle:
a. a modulus of elasticityat yield of 180,000 psi;
a tensile strength at break of at least 5,000 psi;
a Poissons Ratio of 0.35 to 0.4; and
a deformation constant equal to the slope of the log (reciprocal of the strain rate) versus strain having a value of at least about 0.65.
The modulus of elasticity at yield is the ratio of stress to strain of a specimen in tension wherein the tensile in grams of yield stress is that stress at which the specimen begins to stretch without an increase in load. The modulus of elasticity at yield is determined by ASTM D-882, Tensile Properties of Thin Plastic Sheeting.
The tensile strength at break is also determined by ASTM D886 wherein a specimen is placed under increasing tension until it breaks.
The deformation constant is a measure of creep. Creep is usually measured on polymers by placing a sample under a fixed load, i.e., stress, at a constant temperature and measuring the strain deformation as a function of time. The curves for thermoplastics have a characteristic shape in which the rate of strain decreases as a function of time. A plot of the log (reciprocal of the strain rate) versus strain results in a linear plot over a substantial part of the creep curvev The slope of the straight line segment herein referred to as the deformation constant, is mathematically expressed as:
DC= [dlog (dt/de) ]/de where DC deformation constant,
dt differential of time, and
dz differential of the strain.
This deformation constant is applicable to related thermoplastics and can be used to comparethe creep behavior by comparingthe slope values. A deformation constant equal to indicates that the sample being tested is extending at its natural strain rate or for the load indicated, the strain rate is constant. A deformation constant of infinity indicates that there is no measurable strain indicated.
For bottles prepared from polyethylene terephthalate according to the preferred embodiment of the present invention, the deformation constant is at least about 0.65, indicating a deformation of less than percent in 100 hours at 50C. with an autogenous pressure of 75 psig.
A preferred process for preparing bottles having the bottom geometry designed according to the present invention is disclosed in US. Pat. application Ser. No. 93,571, filed Nov. 30, .1970, hereby incorporated by reference. The process produces a hollow, biaxially oriented, thermoplastic article by extruding a hollow, cylindrical, thermoplastic slug with a ramrod through an annular orifice into a slidable mold at a temperature within its molecular orientation range to a shape relatively larger than the original shape of the slug wherein the mold has an annular bead recess at one end to accept and hold one end of the extrudate while simultaneously drawing the extrudate in the direction of extrusion and expanding the extrudate by forcing a gas or liquid against the interior portions of the extrudate, expanding the extrudate to conform to the mold while sliding the mold past the extrusion orifice as continuous extrusion takes place. The lobes and strap sections of the bottle are formed by properly shaping the mold and expanding the polymer to conform to the mold. The reentrant cylinder and reinforcing ring are formed by first forming the bottle including lobes and strap sections, then reversing the direction of the mold, against the direction of extrusion forming the recessed re-entrant cylinder and/or reinforcing ring in the bottom of the bottle. Alternatively, the mold cavity is shaped to EXAMPLE 1 Plastic bottles are prepared according to the process of US. Pat. application Ser. No. 93,571, filed Nov. 30, I970, wherein a hollow thermoplastic slug is extruded through an annular orifice into a slidable mold wherein the mold has a bead recess at one end to accept the extrudate. Then the mold is made to slide by the extrusion orifice as continuous extrusion takes place, drawing the extrudate as the mold slides while the extrudate is simultaneously forced against the interior walls of the mold by introducing a fluid under pressure into the interior of the extrudate.
The slug is amorphous and is prepared from polyethylene terephthalate having an inherent viscosity of about 0.85. v
Three different molds are used each producing 10 bottles having (a) three-lobed bottoms such as that shown in FIGS. 1-4, (b) four-lobed bottoms such as that shown in FIGS. 9-12 except that the reinforcing ring is not included, and (c) six-lobed bottoms such as that shown in FIGS. 5-8. In the mold the straps are specifically formed of metal in relief to obtain the desired strap design. The lobes in the three-lobed bottle I lobed bottle have a width of about 1.08 of an inch where the strap connects to the right cylinder section tapering to a width of about 0.625 of an inch where the strap connects to the circular recessed section of the bottom. The straps in the six-lobed bottle have a width of about 0.60 of an inch where the strap connects to the right cylinder section tapering to a width of about 0.30 of an inch where the strap connects to the circular recessed section of the bottom.
Each bottle holds a capacity of about 10 ounces and has an inside diameter at the right cylinder section of about 2.25 inches with a corresponding shell thickness of about 20 mils. In the bottom section of the bottle, the average thickness of the shell is about mils.
The following dimensions also obtain:
3-lobed a (radius of seating toroidal knuckle) 0.09 0.13 0.13
4 5.1 (radius of toroidal knuckle in reentrant cylinder) 0.05 0.05 0.05
1 (side wall of re-entrant cylinder) 0.375 0.375 0.375 1 (side wall of re-entrant cylinder) 0.375 0.250 0.250 a (center line of bottle to center of toroidal knuckle on which the bottle sits) 0.625 0.75 0.75
The bottles are tested by filling each bottle with about 10 ounces of liquid (water) and pressurizing the bottle to I psig. at room temperature for about 2 minutes. In all cases, the bottle elongates in the axial direction a nominal amount but the bottom does not evert and will stand on a flat surface.
Thereafter, the internal pressure in the bottle is reduced to 80 psig. and the bottles are stored for 5 days at 50C. In all cases the bottles do not evert.
EXAMPLE 2 A four-lobed bottle is prepared in the same manner as that disclosed in Example 1 except that the bottom is provided with a re-entrant cylinder and a reinforcing ring such as that described in the specification and particularly illustrated in FIGS. 11 and 12. The contacting side walls of the reinforcing ring have a length of about 0.5 inch and an overall thickness of about 0.1 inch.
This bottle is tested by filling it with about ounces of water and pressurizing the bottle. It is found that this bottle withstands about 300 psig. pressure at room temperature for about 2 minutes. While the bottle elongates in the axial direction a nominal amount, the bottom does not evert and it will stand on a flat surface.
I claim:
1. In a generally cylindrical thermoplastic bottle, biaxially oriented at least in the generally cylindrical section, the improvement wherein the bottom configuration consists essentially of at least three lobes around the bottom perimeter of the bottle on which the bottle stands; strap sections located between each lobe; an axially aligned re-entrant cylinder; and a generally circular and axially aligned recessed section with a smooth transition of material between the lobes, straps, re-entrant cylinder, and recessed sections of the base wherein a. the strap sections begin at the generally cylindrical section of the bottle and extend downward toward the central axis of the bottle with a radius of about 0.45 to 0.7 D, including about 75 to 90 of arc and terminating in the base of the re-entrant cylinder and the width of each strap is determined by the w average width of an individual strap,
N= number of straps,
R outside radius of the generally cylindrical section of the bottle taken where the bottom meets the generally cylindrical section and is equal to D/2, P= autogenous design pressure,
Syp= yield stress of the thermoplastic,
C =0.75-0.95 (design stress factor),
F= fraction of the total load on the lobes of the bottle to be carried by the straps,
t= shell thickness of a strap, and
b. the lobes fit in between the strap sections and each lobe starts at the generally cylindrical section of the bottle extending downward with a radius of about 0.2-1.5 D measured from the plane between the right cylinder section and the bottom section of the bottle, including about 20 to 40 of arc and is connected to a toroidal knuckle having a radius of about 0.03 to 0.1 D including about to of are directed down and inward toward the central axis of the bottle terminating in the base of the re-entrant cylinder wherein the toroidal knuckle forms the standing surface of the bottle and the center of curvature of the toroidal knuckle is located a distance of about 0.3 to 0.4 D away from the central axis of the bottle; and
c. the axially aligned re-entrant cylinder in the bot tom of the bottle is defined by two concentric walls each having a length of about 0.05 to 0.22 D wherein one wall is connected to the inward extending portions of lobes and strap sections, in uniform circumferential spacing around the base of this wall, the other wall is connected to the recessed central disc and the two walls are interconnected with a toroidal knuckle having a radius of about 0.02 to 0.04 1) including about of are where D equals the outside diameter of the bottle taken perpendicular to the major axis of the bottle where the bottom section of the bottle meets the generally cylindrical section of the bottle.
2. The bottle of claim 1 having three lobes and three strap sections.
3. The bottle of claim 1 having four lobes and four strap sections.
4. The bottle of claim 1 having five lobes and strap sections.
5. The bottle of claim 1 having six lobes and six strap sections.
6. The bottle of claim 1 having a reinforcing ring of thermoplastic on the interior surface of the toroidal knuckle connecting the walls of the re-entrant cylinder wherein the reinforcing ring is formed of two concentric contacting side wall sections each having a length of about 0.05 to 0.20 D.
7. The bottle of claim 1 wherein the thermoplastic is polyethylene terephthalate having an inherent viscosity of at least about 0.55.
8. The bottle of claim 7 having a shell thickness of at least 20 mils in the generally cylindrical section and 30 mils in the bottom section, prepared from a polymer having a modulus of elasticity at yield of at least about l80,000 psi, a tensile strength of at least 5,000 psi, a Poisson's ratio of 0.35 to 0.4 and a deformation constant equal to the slope of the log (reciprocal of the strain rate) versus strain having a value of at least about 0.65.
five

Claims (8)

1. In a generally cylindrical thermoplastic bottle, biaxially oriented at least in the generally cylindrical section, the improvement wherein the bottom configuration consists essentially of at least three lobes around the bottom perimeter of the bottle on which the bottle stands; strap sections located between each lobe; an axially aligned re-entrant cylinder; anD a generally circular and axially aligned recessed section with a smooth transition of material between the lobes, straps, re-entrant cylinder, and recessed sections of the base wherein a. the strap sections begin at the generally cylindrical section of the bottle and extend downward toward the central axis of the bottle with a radius of about 0.45 to 0.7 D, including about 75* to 90* of arc and terminating in the base of the reentrant cylinder and the width of each strap is determined by the following formula:
2. The bottle of claim 1 having three lobes and three strap sections.
3. The bottle of claim 1 having four lobes and four strap sections.
4. The bottle of claim 1 having five lobes and five strap sections.
5. The bottle of claim 1 having six lobes and six strap sections.
6. The bottle of claim 1 having a reinforcing ring of thermoplastic on the interior surface of the toroidal knuckle connecting the walls of the re-entrant cylinder wherein the reinforcing ring is formed of two concentric contacting side wall sections each having a length of about 0.05 to 0.20 D.
7. The bottle of claim 1 wherein the thermoplastic is polyethylene terephthalate having an inherent viscosity of at least about 0.55.
8. The bottle of claim 7 having a shell thickness of at least 20 mils in the generally cylindrical section and 30 mils in the bottom section, prepared from a polymer having a modulus of elasticity at yield of at least about 180,000 psi, a tensile strength of at least 5,000 psi, a Poisson''s ratio of 0.35 to 0.4 and a deformation constant equal to the slope of the log (reciprocal of the strain rate) versus strain having a value of at least about 0.65.
US00153268A 1971-06-15 1971-06-15 Noneverting bottom for thermoplastic bottles Expired - Lifetime US3727783A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15326871A 1971-06-15 1971-06-15

Publications (1)

Publication Number Publication Date
US3727783A true US3727783A (en) 1973-04-17

Family

ID=22546474

Family Applications (1)

Application Number Title Priority Date Filing Date
US00153268A Expired - Lifetime US3727783A (en) 1971-06-15 1971-06-15 Noneverting bottom for thermoplastic bottles

Country Status (8)

Country Link
US (1) US3727783A (en)
AU (1) AU460886B2 (en)
BE (1) BE784888A (en)
CA (1) CA949472A (en)
DE (1) DE2229312A1 (en)
FR (1) FR2141963B1 (en)
GB (1) GB1360107A (en)
IT (1) IT956483B (en)

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037752A (en) * 1975-11-13 1977-07-26 Coors Container Company Container with outwardly flexible bottom end wall having integral support means and method and apparatus for manufacturing thereof
FR2435396A1 (en) * 1978-09-08 1980-04-04 Yoshino Kogyosho Co Ltd PRESSURE RESISTANT PLASTIC BOTTLE
US4249667A (en) * 1979-10-25 1981-02-10 The Continental Group, Inc. Plastic container with a generally hemispherical bottom wall having hollow legs projecting therefrom
US4294366A (en) * 1980-03-17 1981-10-13 Owens-Illinois, Inc. Free-standing plastic bottle
US4301933A (en) * 1979-01-10 1981-11-24 Yoshino Kogyosho Co., Ltd. Synthetic resin thin-walled bottle
US4318489A (en) * 1980-07-31 1982-03-09 Pepsico, Inc. Plastic bottle
US4335821A (en) * 1979-07-03 1982-06-22 The Continental Group, Inc. Blow molded plastic material bottle bottom
US4352435A (en) * 1979-01-10 1982-10-05 Yoshino Kogyosho Co., Ltd. Synthetic resin made thin-walled bottle
US4355728A (en) * 1979-01-26 1982-10-26 Yoshino Kogyosho Co. Ltd. Synthetic resin thin-walled bottle
US4368825A (en) * 1980-11-28 1983-01-18 Standard Oil Company (Indiana) Self-standing bottle structure
US4520936A (en) * 1982-05-20 1985-06-04 Polybottle Blow moulded plastic containers
US4598831A (en) * 1983-10-31 1986-07-08 Nissei Asb Machine Co., Ltd. Heat-resistant synthetic resin bottle
US4865206A (en) * 1988-06-17 1989-09-12 Hoover Universal, Inc. Blow molded one-piece bottle
US4867323A (en) * 1988-07-15 1989-09-19 Hoover Universal, Inc. Blow molded bottle with improved self supporting base
US4892205A (en) * 1988-07-15 1990-01-09 Hoover Universal, Inc. Concentric ribbed preform and bottle made from same
US4949861A (en) * 1988-11-14 1990-08-21 American National Can Company Rectangular plastic container with panel support
US4978015A (en) * 1990-01-10 1990-12-18 North American Container, Inc. Plastic container for pressurized fluids
US5024340A (en) * 1990-07-23 1991-06-18 Sewell Plastics, Inc. Wide stance footed bottle
US5024339A (en) * 1989-02-27 1991-06-18 Mendle Limited Plastics bottle
US5064080A (en) * 1990-11-15 1991-11-12 Plastipak Packaging, Inc. Plastic blow molded freestanding container
US5071015A (en) * 1990-12-11 1991-12-10 Hoover Universal, Inc. Blow molded PET container with ribbed base structure
US5072841A (en) * 1986-02-14 1991-12-17 Norderney Investments Limited Plastic containers
US5133468A (en) * 1991-06-14 1992-07-28 Constar Plastics Inc. Footed hot-fill container
US5139162A (en) * 1990-11-15 1992-08-18 Plastipak Packaging, Inc. Plastic blow molded freestanding container
WO1993006018A1 (en) * 1991-09-27 1993-04-01 The Procter & Gamble Company Container of thermoplastic material for containing liquids
US5222615A (en) * 1985-07-30 1993-06-29 Yoshino Kogyosho Co., Ltd. Container having support structure in its bottom section
US5242085A (en) * 1990-12-17 1993-09-07 The Coca-Cola Company Liquid container system
US5261543A (en) * 1991-07-30 1993-11-16 Sipa S.P.A. Plastic bottle for containing both under-pressure and non under-pressure liquids
US5287978A (en) * 1990-11-15 1994-02-22 Plastipak Packaging, Inc. Plastic blow molded freestanding container
US5320230A (en) * 1992-06-08 1994-06-14 Yuan Fang Limited Base configuration for biaxial stretched blow molded pet containers
US5344045A (en) * 1990-12-17 1994-09-06 The Coca-Cola Company Liquid container system
US5381927A (en) * 1990-12-17 1995-01-17 The Coca-Cola Company Method of dispensing from a liquid container system
US5427258A (en) * 1992-04-09 1995-06-27 Continental Pet Technologies, Inc. Freestanding container with improved combination of properties
US5452815A (en) * 1992-06-08 1995-09-26 Yuan Fang Limited Base configuration for biaxial stretched blow molded pet containers
US5507402A (en) * 1993-05-05 1996-04-16 Aci Operations Pty. Ltd. Plastic bottle with a self supporting base structure
US5529196A (en) * 1994-09-09 1996-06-25 Hoover Universal, Inc. Carbonated beverage container with footed base structure
US5549210A (en) * 1993-12-13 1996-08-27 Brunswick Container Corporation Wide stance footed bottle with radially non-uniform circumference footprint
US5615790A (en) * 1990-11-15 1997-04-01 Plastipak Packaging, Inc. Plastic blow molded freestanding container
USD380383S (en) * 1996-05-01 1997-07-01 Anheuser-Busch Incorporated Container bottom
US5664695A (en) * 1995-01-06 1997-09-09 Plastipak Packaging, Inc. Plastic blow molded freestanding container
AU688306B2 (en) * 1993-05-05 1998-03-12 Graham Packaging Pet Technologies Inc. Improved plastics bottle
USRE36639E (en) * 1986-02-14 2000-04-04 North American Container, Inc. Plastic container
US6085924A (en) * 1998-09-22 2000-07-11 Ball Corporation Plastic container for carbonated beverages
US6179142B1 (en) 1998-04-13 2001-01-30 The Coca-Cola Company Wire-frame bottle and method of manufacturing same
US6409374B1 (en) 2001-04-30 2002-06-25 Boyd I. Willat Beverage tasting vessel with aerating ridges and agitating ribs
WO2002085755A1 (en) * 2001-04-19 2002-10-31 Graham Packaging Company, L.P. Multi-functional base for a plastic wide-mouth, blow-molded container
US20030196926A1 (en) * 2001-04-19 2003-10-23 Tobias John W. Multi-functional base for a plastic, wide-mouth, blow-molded container
US6644539B2 (en) 2001-10-12 2003-11-11 Tetra Laval Holdings & Finance, Sa Package with bottom panel stand-offs
US20040173565A1 (en) * 1999-12-01 2004-09-09 Frank Semersky Pasteurizable wide-mouth container
US20040211746A1 (en) * 2001-04-19 2004-10-28 Graham Packaging Company, L.P. Multi-functional base for a plastic, wide-mouth, blow-molded container
US20050092759A1 (en) * 2003-11-05 2005-05-05 Willat Boyd I. Wine glass
US20060138074A1 (en) * 2002-09-30 2006-06-29 Melrose David M Container structure for removal of vacuum pressure
US20060231985A1 (en) * 2005-04-15 2006-10-19 Graham Packaging Company, Lp Method and apparatus for manufacturing blow molded containers
US20060255005A1 (en) * 2002-09-30 2006-11-16 Co2 Pac Limited Pressure reinforced plastic container and related method of processing a plastic container
US20070045220A1 (en) * 2005-08-08 2007-03-01 Plastipak Packaging, Inc. Plastic container
US20070051073A1 (en) * 2003-07-30 2007-03-08 Graham Packaging Company, L.P. Container handling system
US20070119726A1 (en) * 2004-11-01 2007-05-31 Willat Wine glass
US20070144932A1 (en) * 2003-11-05 2007-06-28 Willat Wine glass
US20070181403A1 (en) * 2004-03-11 2007-08-09 Graham Packaging Company, Lp. Process and device for conveying odd-shaped containers
US20070199916A1 (en) * 2000-08-31 2007-08-30 Co2Pac Semi-rigid collapsible container
US20070199915A1 (en) * 2000-08-31 2007-08-30 C02Pac Container structure for removal of vacuum pressure
US20070235905A1 (en) * 2006-04-07 2007-10-11 Graham Packaging Company L.P. System and method for forming a container having a grip region
US20070251465A1 (en) * 2006-03-13 2007-11-01 The Iams Company Pet container
US20080047964A1 (en) * 2000-08-31 2008-02-28 C02Pac Plastic container having a deep-set invertible base and related methods
US20080047865A1 (en) * 2003-11-05 2008-02-28 By The Glass, Llc Wine glass
US20080302758A1 (en) * 2007-06-08 2008-12-11 Ravi Mody Container base
US20080308522A1 (en) * 2007-05-11 2008-12-18 Alcan Global Pharmaceutical Packaging Inc. Easy grip bottle
US20100018838A1 (en) * 2008-07-23 2010-01-28 Kelley Paul V System, Apparatus, and Method for Conveying a Plurality of Containers
EP2163483A1 (en) * 2008-09-15 2010-03-17 Krones AG Plastic container
US20100170199A1 (en) * 2009-01-06 2010-07-08 Kelley Paul V Method and System for Handling Containers
US7799264B2 (en) 2006-03-15 2010-09-21 Graham Packaging Company, L.P. Container and method for blowmolding a base in a partial vacuum pressure reduction setup
US20110011873A1 (en) * 2008-03-25 2011-01-20 Toyo Seikan Kaisha, Ltd Synthetic resin container
US7900425B2 (en) 2005-10-14 2011-03-08 Graham Packaging Company, L.P. Method for handling a hot-filled container having a moveable portion to reduce a portion of a vacuum created therein
WO2011088092A1 (en) * 2010-01-18 2011-07-21 Graham Packaging Company, L.P. Plastic aerosol container with footed base
US8636944B2 (en) 2008-12-08 2014-01-28 Graham Packaging Company L.P. Method of making plastic container having a deep-inset base
US8747727B2 (en) 2006-04-07 2014-06-10 Graham Packaging Company L.P. Method of forming container
US20140197127A1 (en) * 2011-08-31 2014-07-17 Amcor Limited Lightweight container base
US8919587B2 (en) 2011-10-03 2014-12-30 Graham Packaging Company, L.P. Plastic container with angular vacuum panel and method of same
US8962114B2 (en) 2010-10-30 2015-02-24 Graham Packaging Company, L.P. Compression molded preform for forming invertible base hot-fill container, and systems and methods thereof
US9022776B2 (en) 2013-03-15 2015-05-05 Graham Packaging Company, L.P. Deep grip mechanism within blow mold hanger and related methods and bottles
US9073660B2 (en) 2012-06-29 2015-07-07 Krones Ag Plastics material container with straight aperture areas
US9089233B2 (en) 2003-11-05 2015-07-28 Govino, Llc Wine glass
US9133006B2 (en) 2010-10-31 2015-09-15 Graham Packaging Company, L.P. Systems, methods, and apparatuses for cooling hot-filled containers
USD740124S1 (en) 2012-10-17 2015-10-06 Krones Ag Bottle
US9150320B2 (en) 2011-08-15 2015-10-06 Graham Packaging Company, L.P. Plastic containers having base configurations with up-stand walls having a plurality of rings, and systems, methods, and base molds thereof
USD751909S1 (en) 2012-06-29 2016-03-22 Krones Ag Bottle neck
WO2017035489A1 (en) * 2015-08-27 2017-03-02 Plastipak Packaging, Inc. Plastic container and base portion for plastic container
US9707711B2 (en) 2006-04-07 2017-07-18 Graham Packaging Company, L.P. Container having outwardly blown, invertible deep-set grips
US9969517B2 (en) 2002-09-30 2018-05-15 Co2Pac Limited Systems and methods for handling plastic containers having a deep-set invertible base
US9993959B2 (en) 2013-03-15 2018-06-12 Graham Packaging Company, L.P. Deep grip mechanism for blow mold and related methods and bottles
US9994378B2 (en) 2011-08-15 2018-06-12 Graham Packaging Company, L.P. Plastic containers, base configurations for plastic containers, and systems, methods, and base molds thereof
US10246238B2 (en) 2000-08-31 2019-04-02 Co2Pac Limited Plastic container having a deep-set invertible base and related methods
US10532848B2 (en) 2011-08-31 2020-01-14 Amcor Rigid Plastics Usa, Llc Lightweight container base
US10538357B2 (en) 2011-08-31 2020-01-21 Amcor Rigid Plastics Usa, Llc Lightweight container base
US10836552B2 (en) 2007-02-09 2020-11-17 Co2Pac Limited Method of handling a plastic container having a moveable base
USD947030S1 (en) * 2014-11-18 2022-03-29 Brandeis University Wine bottle
US11565867B2 (en) 2000-08-31 2023-01-31 C02Pac Limited Method of handling a plastic container having a moveable base
US11731823B2 (en) 2007-02-09 2023-08-22 Co2Pac Limited Method of handling a plastic container having a moveable base
US11897656B2 (en) 2007-02-09 2024-02-13 Co2Pac Limited Plastic container having a movable base

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128736Y2 (en) * 1978-07-10 1986-08-26
GB2034663B (en) * 1978-11-07 1983-09-01 Yoshino Kogyosho Co Ltd Synthetic resin thin-walled bottle
AU522123B2 (en) * 1979-01-10 1982-05-20 Yoshino Kogyosho Co., Ltd. Bottle blown with conical base
DE3000785C2 (en) * 1979-01-25 1986-10-23 Yoshino Kogyosho Co., Ltd., Tokio/Tokyo Thin-walled plastic bottle
US4525401A (en) * 1979-11-30 1985-06-25 The Continental Group, Inc. Plastic container with internal rib reinforced bottom
US4997692A (en) * 1982-01-29 1991-03-05 Yoshino Kogyosho Co., Ltd. Synthetic resin made thin-walled bottle
GB2189214B (en) * 1986-04-21 1988-11-23 Fibrenyle Ltd Blow-moulded containers
DE102017006510A1 (en) 2017-07-10 2018-09-06 Michael Baumann Plastic bottle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2541065A (en) * 1944-12-30 1951-02-13 Specialties Dev Corp High-pressure container
US3038627A (en) * 1960-05-31 1962-06-12 Specialties Dev Corp High-pressure container safety means
US3043461A (en) * 1961-05-26 1962-07-10 Purex Corp Flexible plastic bottles
US3403804A (en) * 1965-12-10 1968-10-01 L M P Lavorazione Materie Plas Blown bottle of flexible plastics
US3468443A (en) * 1967-10-06 1969-09-23 Apl Corp Base of plastic container for storing fluids under pressure
US3598270A (en) * 1969-04-14 1971-08-10 Continental Can Co Bottom end structure for plastic containers
US3643829A (en) * 1969-08-22 1972-02-22 Lever Brothers Ltd Pressure-resistant plastics bottle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2541065A (en) * 1944-12-30 1951-02-13 Specialties Dev Corp High-pressure container
US3038627A (en) * 1960-05-31 1962-06-12 Specialties Dev Corp High-pressure container safety means
US3043461A (en) * 1961-05-26 1962-07-10 Purex Corp Flexible plastic bottles
US3403804A (en) * 1965-12-10 1968-10-01 L M P Lavorazione Materie Plas Blown bottle of flexible plastics
US3468443A (en) * 1967-10-06 1969-09-23 Apl Corp Base of plastic container for storing fluids under pressure
US3598270A (en) * 1969-04-14 1971-08-10 Continental Can Co Bottom end structure for plastic containers
US3643829A (en) * 1969-08-22 1972-02-22 Lever Brothers Ltd Pressure-resistant plastics bottle

Cited By (193)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037752A (en) * 1975-11-13 1977-07-26 Coors Container Company Container with outwardly flexible bottom end wall having integral support means and method and apparatus for manufacturing thereof
FR2435396A1 (en) * 1978-09-08 1980-04-04 Yoshino Kogyosho Co Ltd PRESSURE RESISTANT PLASTIC BOTTLE
US4254882A (en) * 1978-09-08 1981-03-10 Yoshino Kogyosho Co., Ltd. Plastic pressure bottle
US4301933A (en) * 1979-01-10 1981-11-24 Yoshino Kogyosho Co., Ltd. Synthetic resin thin-walled bottle
US4352435A (en) * 1979-01-10 1982-10-05 Yoshino Kogyosho Co., Ltd. Synthetic resin made thin-walled bottle
US4355728A (en) * 1979-01-26 1982-10-26 Yoshino Kogyosho Co. Ltd. Synthetic resin thin-walled bottle
US4335821A (en) * 1979-07-03 1982-06-22 The Continental Group, Inc. Blow molded plastic material bottle bottom
US4249667A (en) * 1979-10-25 1981-02-10 The Continental Group, Inc. Plastic container with a generally hemispherical bottom wall having hollow legs projecting therefrom
US4294366A (en) * 1980-03-17 1981-10-13 Owens-Illinois, Inc. Free-standing plastic bottle
US4318489A (en) * 1980-07-31 1982-03-09 Pepsico, Inc. Plastic bottle
US4368825A (en) * 1980-11-28 1983-01-18 Standard Oil Company (Indiana) Self-standing bottle structure
US4520936A (en) * 1982-05-20 1985-06-04 Polybottle Blow moulded plastic containers
US4598831A (en) * 1983-10-31 1986-07-08 Nissei Asb Machine Co., Ltd. Heat-resistant synthetic resin bottle
US5222615A (en) * 1985-07-30 1993-06-29 Yoshino Kogyosho Co., Ltd. Container having support structure in its bottom section
US5072841A (en) * 1986-02-14 1991-12-17 Norderney Investments Limited Plastic containers
USRE36639E (en) * 1986-02-14 2000-04-04 North American Container, Inc. Plastic container
US4865206A (en) * 1988-06-17 1989-09-12 Hoover Universal, Inc. Blow molded one-piece bottle
US4867323A (en) * 1988-07-15 1989-09-19 Hoover Universal, Inc. Blow molded bottle with improved self supporting base
USRE35140E (en) * 1988-07-15 1996-01-09 Hoover Universal, Inc. Blow molded bottle with improved self supporting base
US4892205A (en) * 1988-07-15 1990-01-09 Hoover Universal, Inc. Concentric ribbed preform and bottle made from same
US4949861A (en) * 1988-11-14 1990-08-21 American National Can Company Rectangular plastic container with panel support
US5024339A (en) * 1989-02-27 1991-06-18 Mendle Limited Plastics bottle
US4978015A (en) * 1990-01-10 1990-12-18 North American Container, Inc. Plastic container for pressurized fluids
US5024340A (en) * 1990-07-23 1991-06-18 Sewell Plastics, Inc. Wide stance footed bottle
US6659299B2 (en) 1990-11-15 2003-12-09 Plastipak Packaging, Inc. Plastic blow molded freestanding container
US20050199578A1 (en) * 1990-11-15 2005-09-15 Plastipak Packaging, Inc. Plastic blow molded freestanding container
US5139162A (en) * 1990-11-15 1992-08-18 Plastipak Packaging, Inc. Plastic blow molded freestanding container
US5850931A (en) * 1990-11-15 1998-12-22 Plastipak Packaging, Inc. Plastic blow molded freestanding container
US5064080A (en) * 1990-11-15 1991-11-12 Plastipak Packaging, Inc. Plastic blow molded freestanding container
US5615790A (en) * 1990-11-15 1997-04-01 Plastipak Packaging, Inc. Plastic blow molded freestanding container
US5287978A (en) * 1990-11-15 1994-02-22 Plastipak Packaging, Inc. Plastic blow molded freestanding container
US6908002B2 (en) 1990-11-15 2005-06-21 Plastipak Packaging, Inc. Plastic blow molded freestanding container
US6260724B1 (en) 1990-11-15 2001-07-17 Plastipak Packaging, Inc. Plastic blow molded freestanding container
US7520400B2 (en) 1990-11-15 2009-04-21 Plastipak Packaging, Inc. Plastic blow molded freestanding container
US5685446A (en) * 1990-11-15 1997-11-11 Plastipak Packaging, Inc. Plastic blow molded freestanding container
US20040079721A1 (en) * 1990-11-15 2004-04-29 Plastipak Packaging, Inc. Plastic blow molded freestanding container
US20070158299A1 (en) * 1990-11-15 2007-07-12 Plastipak Packaging, Inc. Plastic blow molded freestanding container
US7198163B2 (en) 1990-11-15 2007-04-03 Plastipak Packaging, Inc. Plastic blow molded freestanding container
US5071015A (en) * 1990-12-11 1991-12-10 Hoover Universal, Inc. Blow molded PET container with ribbed base structure
US5433347A (en) * 1990-12-17 1995-07-18 The Coca-Cola Company Liquid container system
US5385269A (en) * 1990-12-17 1995-01-31 The Coca-Cola Company Liquid container system
US5381927A (en) * 1990-12-17 1995-01-17 The Coca-Cola Company Method of dispensing from a liquid container system
US5344045A (en) * 1990-12-17 1994-09-06 The Coca-Cola Company Liquid container system
US5242086A (en) * 1990-12-17 1993-09-07 The Coca-Cola Company Liquid container system
US5242085A (en) * 1990-12-17 1993-09-07 The Coca-Cola Company Liquid container system
US5133468A (en) * 1991-06-14 1992-07-28 Constar Plastics Inc. Footed hot-fill container
US5261543A (en) * 1991-07-30 1993-11-16 Sipa S.P.A. Plastic bottle for containing both under-pressure and non under-pressure liquids
US5469984A (en) * 1991-09-27 1995-11-28 The Procter & Gamble Company Container of thermoplastic material for containing liquids
WO1993006018A1 (en) * 1991-09-27 1993-04-01 The Procter & Gamble Company Container of thermoplastic material for containing liquids
US5427258A (en) * 1992-04-09 1995-06-27 Continental Pet Technologies, Inc. Freestanding container with improved combination of properties
US5320230A (en) * 1992-06-08 1994-06-14 Yuan Fang Limited Base configuration for biaxial stretched blow molded pet containers
US5452815A (en) * 1992-06-08 1995-09-26 Yuan Fang Limited Base configuration for biaxial stretched blow molded pet containers
AU688306B2 (en) * 1993-05-05 1998-03-12 Graham Packaging Pet Technologies Inc. Improved plastics bottle
US5507402A (en) * 1993-05-05 1996-04-16 Aci Operations Pty. Ltd. Plastic bottle with a self supporting base structure
US5549210A (en) * 1993-12-13 1996-08-27 Brunswick Container Corporation Wide stance footed bottle with radially non-uniform circumference footprint
US5529196A (en) * 1994-09-09 1996-06-25 Hoover Universal, Inc. Carbonated beverage container with footed base structure
US5664695A (en) * 1995-01-06 1997-09-09 Plastipak Packaging, Inc. Plastic blow molded freestanding container
USD380383S (en) * 1996-05-01 1997-07-01 Anheuser-Busch Incorporated Container bottom
US6179142B1 (en) 1998-04-13 2001-01-30 The Coca-Cola Company Wire-frame bottle and method of manufacturing same
US6085924A (en) * 1998-09-22 2000-07-11 Ball Corporation Plastic container for carbonated beverages
US20040173565A1 (en) * 1999-12-01 2004-09-09 Frank Semersky Pasteurizable wide-mouth container
US20070199915A1 (en) * 2000-08-31 2007-08-30 C02Pac Container structure for removal of vacuum pressure
US20070199916A1 (en) * 2000-08-31 2007-08-30 Co2Pac Semi-rigid collapsible container
US8584879B2 (en) 2000-08-31 2013-11-19 Co2Pac Limited Plastic container having a deep-set invertible base and related methods
US8127955B2 (en) 2000-08-31 2012-03-06 John Denner Container structure for removal of vacuum pressure
US11565866B2 (en) 2000-08-31 2023-01-31 C02Pac Limited Plastic container having a deep-set invertible base and related methods
US10246238B2 (en) 2000-08-31 2019-04-02 Co2Pac Limited Plastic container having a deep-set invertible base and related methods
US11565867B2 (en) 2000-08-31 2023-01-31 C02Pac Limited Method of handling a plastic container having a moveable base
US9145223B2 (en) 2000-08-31 2015-09-29 Co2 Pac Limited Container structure for removal of vacuum pressure
US20080047964A1 (en) * 2000-08-31 2008-02-28 C02Pac Plastic container having a deep-set invertible base and related methods
US9387971B2 (en) 2000-08-31 2016-07-12 C02Pac Limited Plastic container having a deep-set invertible base and related methods
US8839972B2 (en) 2001-04-19 2014-09-23 Graham Packaging Company, L.P. Multi-functional base for a plastic, wide-mouth, blow-molded container
US20090178996A1 (en) * 2001-04-19 2009-07-16 Graham Packaging Company, L.P. Multi-Functional Base for a Plastic, Wide-Mouth, Blow-Molded Container
US20110147392A1 (en) * 2001-04-19 2011-06-23 Greg Trude Multi-Functional Base for a Plastic, Wide-Mouth, Blow-Molded Container
US20040211746A1 (en) * 2001-04-19 2004-10-28 Graham Packaging Company, L.P. Multi-functional base for a plastic, wide-mouth, blow-molded container
US6612451B2 (en) 2001-04-19 2003-09-02 Graham Packaging Company, L.P. Multi-functional base for a plastic, wide-mouth, blow-molded container
US8381496B2 (en) 2001-04-19 2013-02-26 Graham Packaging Company Lp Method of hot-filling a plastic, wide-mouth, blow-molded container having a multi-functional base
US7980404B2 (en) 2001-04-19 2011-07-19 Graham Packaging Company, L.P. Multi-functional base for a plastic, wide-mouth, blow-molded container
US8529975B2 (en) 2001-04-19 2013-09-10 Graham Packaging Company, L.P. Multi-functional base for a plastic, wide-mouth, blow-molded container
US7543713B2 (en) 2001-04-19 2009-06-09 Graham Packaging Company L.P. Multi-functional base for a plastic, wide-mouth, blow-molded container
US9522749B2 (en) 2001-04-19 2016-12-20 Graham Packaging Company, L.P. Method of processing a plastic container including a multi-functional base
WO2002085755A1 (en) * 2001-04-19 2002-10-31 Graham Packaging Company, L.P. Multi-functional base for a plastic wide-mouth, blow-molded container
AU2002257159B2 (en) * 2001-04-19 2007-03-01 Graham Packaging Company, L.P. Multi-functional base for a plastic wide-mouth, blow-moulded container
US20030196926A1 (en) * 2001-04-19 2003-10-23 Tobias John W. Multi-functional base for a plastic, wide-mouth, blow-molded container
US20090090728A1 (en) * 2001-04-19 2009-04-09 Greg Trude Multi-Functional Base for a Plastic, Wide-Mouth, Blow-Molded Container
US20090091067A1 (en) * 2001-04-19 2009-04-09 Greg Trude Multi-Functional Base for a Plastic, Wide-Mouth, Blow-Molded Container
US6409374B1 (en) 2001-04-30 2002-06-25 Boyd I. Willat Beverage tasting vessel with aerating ridges and agitating ribs
US6644846B2 (en) 2001-04-30 2003-11-11 Boyd J. Willat Beverage tasting vessel with multiple rim portions
US6644539B2 (en) 2001-10-12 2003-11-11 Tetra Laval Holdings & Finance, Sa Package with bottom panel stand-offs
US9969517B2 (en) 2002-09-30 2018-05-15 Co2Pac Limited Systems and methods for handling plastic containers having a deep-set invertible base
US20060138074A1 (en) * 2002-09-30 2006-06-29 Melrose David M Container structure for removal of vacuum pressure
US10315796B2 (en) 2002-09-30 2019-06-11 Co2 Pac Limited Pressure reinforced deformable plastic container with hoop rings
US9211968B2 (en) 2002-09-30 2015-12-15 Co2 Pac Limited Container structure for removal of vacuum pressure
US8152010B2 (en) 2002-09-30 2012-04-10 Co2 Pac Limited Container structure for removal of vacuum pressure
US8381940B2 (en) 2002-09-30 2013-02-26 Co2 Pac Limited Pressure reinforced plastic container having a moveable pressure panel and related method of processing a plastic container
US9624018B2 (en) 2002-09-30 2017-04-18 Co2 Pac Limited Container structure for removal of vacuum pressure
US9802730B2 (en) 2002-09-30 2017-10-31 Co2 Pac Limited Methods of compensating for vacuum pressure changes within a plastic container
US8720163B2 (en) 2002-09-30 2014-05-13 Co2 Pac Limited System for processing a pressure reinforced plastic container
US20110210133A1 (en) * 2002-09-30 2011-09-01 David Melrose Pressure reinforced plastic container and related method of processing a plastic container
US11377286B2 (en) 2002-09-30 2022-07-05 Co2 Pac Limited Container structure for removal of vacuum pressure
US10273072B2 (en) 2002-09-30 2019-04-30 Co2 Pac Limited Container structure for removal of vacuum pressure
US10351325B2 (en) 2002-09-30 2019-07-16 Co2 Pac Limited Container structure for removal of vacuum pressure
US20060255005A1 (en) * 2002-09-30 2006-11-16 Co2 Pac Limited Pressure reinforced plastic container and related method of processing a plastic container
US9878816B2 (en) 2002-09-30 2018-01-30 Co2 Pac Ltd Systems for compensating for vacuum pressure changes within a plastic container
US10661939B2 (en) 2003-07-30 2020-05-26 Co2Pac Limited Pressure reinforced plastic container and related method of processing a plastic container
US20090126323A1 (en) * 2003-07-30 2009-05-21 Graham Packaging Company. L.P. Container Handling System
US7735304B2 (en) 2003-07-30 2010-06-15 Graham Packaging Co Container handling system
US10501225B2 (en) 2003-07-30 2019-12-10 Graham Packaging Company, L.P. Container handling system
US7726106B2 (en) 2003-07-30 2010-06-01 Graham Packaging Co Container handling system
US9090363B2 (en) 2003-07-30 2015-07-28 Graham Packaging Company, L.P. Container handling system
US8671653B2 (en) 2003-07-30 2014-03-18 Graham Packaging Company, L.P. Container handling system
US20070051073A1 (en) * 2003-07-30 2007-03-08 Graham Packaging Company, L.P. Container handling system
US10548422B2 (en) 2003-11-05 2020-02-04 Govino, Llc Wine glass
US8875935B2 (en) 2003-11-05 2014-11-04 Govino, Llc Wine glass
US7886924B2 (en) 2003-11-05 2011-02-15 By The Glass, Llc Wine glass
US9089233B2 (en) 2003-11-05 2015-07-28 Govino, Llc Wine glass
US20080047865A1 (en) * 2003-11-05 2008-02-28 By The Glass, Llc Wine glass
US7273147B2 (en) 2003-11-05 2007-09-25 Willat Ergonomic Technologies, Llc Wine glass
US8567635B2 (en) 2003-11-05 2013-10-29 By The Glass, Llc Wine glass
US20070144932A1 (en) * 2003-11-05 2007-06-28 Willat Wine glass
US20050092759A1 (en) * 2003-11-05 2005-05-05 Willat Boyd I. Wine glass
US8011166B2 (en) 2004-03-11 2011-09-06 Graham Packaging Company L.P. System for conveying odd-shaped containers
US20090218004A1 (en) * 2004-03-11 2009-09-03 Graham Packaging Company, L.P. Process and a Device for Conveying Odd-Shaped Containers
US7574846B2 (en) 2004-03-11 2009-08-18 Graham Packaging Company, L.P. Process and device for conveying odd-shaped containers
US20070181403A1 (en) * 2004-03-11 2007-08-09 Graham Packaging Company, Lp. Process and device for conveying odd-shaped containers
US20070119726A1 (en) * 2004-11-01 2007-05-31 Willat Wine glass
US8075833B2 (en) 2005-04-15 2011-12-13 Graham Packaging Company L.P. Method and apparatus for manufacturing blow molded containers
US20100181704A1 (en) * 2005-04-15 2010-07-22 Graham Packaging Company, L.P. Method and Apparatus for Manufacturing Blow Molded Containers
US8235704B2 (en) 2005-04-15 2012-08-07 Graham Packaging Company, L.P. Method and apparatus for manufacturing blow molded containers
US20060231985A1 (en) * 2005-04-15 2006-10-19 Graham Packaging Company, Lp Method and apparatus for manufacturing blow molded containers
US7461756B2 (en) * 2005-08-08 2008-12-09 Plastipak Packaging, Inc. Plastic container having a freestanding, self-supporting base
US20070045220A1 (en) * 2005-08-08 2007-03-01 Plastipak Packaging, Inc. Plastic container
US7900425B2 (en) 2005-10-14 2011-03-08 Graham Packaging Company, L.P. Method for handling a hot-filled container having a moveable portion to reduce a portion of a vacuum created therein
US9764873B2 (en) 2005-10-14 2017-09-19 Graham Packaging Company, L.P. Repositionable base structure for a container
US8726616B2 (en) 2005-10-14 2014-05-20 Graham Packaging Company, L.P. System and method for handling a container with a vacuum panel in the container body
US20070251465A1 (en) * 2006-03-13 2007-11-01 The Iams Company Pet container
US8794462B2 (en) 2006-03-15 2014-08-05 Graham Packaging Company, L.P. Container and method for blowmolding a base in a partial vacuum pressure reduction setup
US7799264B2 (en) 2006-03-15 2010-09-21 Graham Packaging Company, L.P. Container and method for blowmolding a base in a partial vacuum pressure reduction setup
US20100301524A1 (en) * 2006-04-07 2010-12-02 Gregory Trude System and Method for Forming a Container Having A Grip Region
US20100074983A1 (en) * 2006-04-07 2010-03-25 Graham Packaging Company, L.P. System and Method for Forming a Container Having a Grip Region
US20070235905A1 (en) * 2006-04-07 2007-10-11 Graham Packaging Company L.P. System and method for forming a container having a grip region
US8162655B2 (en) 2006-04-07 2012-04-24 Graham Packaging Company, L.P. System and method for forming a container having a grip region
US9707711B2 (en) 2006-04-07 2017-07-18 Graham Packaging Company, L.P. Container having outwardly blown, invertible deep-set grips
US20100301058A1 (en) * 2006-04-07 2010-12-02 Gregory Trude System and Method for Forming a Container Having a Grip Region
US10118331B2 (en) 2006-04-07 2018-11-06 Graham Packaging Company, L.P. System and method for forming a container having a grip region
US8323555B2 (en) 2006-04-07 2012-12-04 Graham Packaging Company L.P. System and method for forming a container having a grip region
US8747727B2 (en) 2006-04-07 2014-06-10 Graham Packaging Company L.P. Method of forming container
US8017065B2 (en) 2006-04-07 2011-09-13 Graham Packaging Company L.P. System and method for forming a container having a grip region
US11731823B2 (en) 2007-02-09 2023-08-22 Co2Pac Limited Method of handling a plastic container having a moveable base
US11897656B2 (en) 2007-02-09 2024-02-13 Co2Pac Limited Plastic container having a movable base
US10836552B2 (en) 2007-02-09 2020-11-17 Co2Pac Limited Method of handling a plastic container having a moveable base
US11377287B2 (en) 2007-02-09 2022-07-05 Co2Pac Limited Method of handling a plastic container having a moveable base
US20080308522A1 (en) * 2007-05-11 2008-12-18 Alcan Global Pharmaceutical Packaging Inc. Easy grip bottle
US20080302758A1 (en) * 2007-06-08 2008-12-11 Ravi Mody Container base
US7891513B2 (en) * 2007-06-08 2011-02-22 Amcor Limited Container base with feet
US9139328B2 (en) * 2008-03-25 2015-09-22 Toyo Seikan Kaisha, Ltd. Synthetic resin container
US20110011873A1 (en) * 2008-03-25 2011-01-20 Toyo Seikan Kaisha, Ltd Synthetic resin container
US20100018838A1 (en) * 2008-07-23 2010-01-28 Kelley Paul V System, Apparatus, and Method for Conveying a Plurality of Containers
US8627944B2 (en) 2008-07-23 2014-01-14 Graham Packaging Company L.P. System, apparatus, and method for conveying a plurality of containers
EP2163483A1 (en) * 2008-09-15 2010-03-17 Krones AG Plastic container
US20100072165A1 (en) * 2008-09-15 2010-03-25 Alexander Schau Plastic container
US8636944B2 (en) 2008-12-08 2014-01-28 Graham Packaging Company L.P. Method of making plastic container having a deep-inset base
US10035690B2 (en) 2009-01-06 2018-07-31 Graham Packaging Company, L.P. Deformable container with hoop rings
US20100170199A1 (en) * 2009-01-06 2010-07-08 Kelley Paul V Method and System for Handling Containers
US8171701B2 (en) 2009-01-06 2012-05-08 Graham Packaging Company, L.P. Method and system for handling containers
US7926243B2 (en) 2009-01-06 2011-04-19 Graham Packaging Company, L.P. Method and system for handling containers
US8429880B2 (en) 2009-01-06 2013-04-30 Graham Packaging Company L.P. System for filling, capping, cooling and handling containers
US8096098B2 (en) 2009-01-06 2012-01-17 Graham Packaging Company, L.P. Method and system for handling containers
WO2011088092A1 (en) * 2010-01-18 2011-07-21 Graham Packaging Company, L.P. Plastic aerosol container with footed base
US20110174827A1 (en) * 2010-01-18 2011-07-21 Graham Packaging Company, L.P. Plastic Aerosol Container With Footed Base
US8962114B2 (en) 2010-10-30 2015-02-24 Graham Packaging Company, L.P. Compression molded preform for forming invertible base hot-fill container, and systems and methods thereof
US10214407B2 (en) 2010-10-31 2019-02-26 Graham Packaging Company, L.P. Systems for cooling hot-filled containers
US9133006B2 (en) 2010-10-31 2015-09-15 Graham Packaging Company, L.P. Systems, methods, and apparatuses for cooling hot-filled containers
US10189596B2 (en) 2011-08-15 2019-01-29 Graham Packaging Company, L.P. Plastic containers having base configurations with up-stand walls having a plurality of rings, and systems, methods, and base molds thereof
US9150320B2 (en) 2011-08-15 2015-10-06 Graham Packaging Company, L.P. Plastic containers having base configurations with up-stand walls having a plurality of rings, and systems, methods, and base molds thereof
US9994378B2 (en) 2011-08-15 2018-06-12 Graham Packaging Company, L.P. Plastic containers, base configurations for plastic containers, and systems, methods, and base molds thereof
US11091289B2 (en) 2011-08-31 2021-08-17 Amcor Rigid Packaging Usa, Llc Lightweight container base
US20140360972A1 (en) * 2011-08-31 2014-12-11 Amcor Limited Lightweight container base
US20140197127A1 (en) * 2011-08-31 2014-07-17 Amcor Limited Lightweight container base
US9694930B2 (en) * 2011-08-31 2017-07-04 Amcor Limited Lightweight container base
US10392151B2 (en) 2011-08-31 2019-08-27 Amcor Rigid Plastics Usa, Llc Lightweight container base
US9617029B2 (en) * 2011-08-31 2017-04-11 Amcor Limited Lightweight container base
US10532848B2 (en) 2011-08-31 2020-01-14 Amcor Rigid Plastics Usa, Llc Lightweight container base
US10538357B2 (en) 2011-08-31 2020-01-21 Amcor Rigid Plastics Usa, Llc Lightweight container base
US8919587B2 (en) 2011-10-03 2014-12-30 Graham Packaging Company, L.P. Plastic container with angular vacuum panel and method of same
US9073660B2 (en) 2012-06-29 2015-07-07 Krones Ag Plastics material container with straight aperture areas
USD751909S1 (en) 2012-06-29 2016-03-22 Krones Ag Bottle neck
USD740124S1 (en) 2012-10-17 2015-10-06 Krones Ag Bottle
US9346212B2 (en) 2013-03-15 2016-05-24 Graham Packaging Company, L.P. Deep grip mechanism within blow mold hanger and related methods and bottles
US9993959B2 (en) 2013-03-15 2018-06-12 Graham Packaging Company, L.P. Deep grip mechanism for blow mold and related methods and bottles
US9022776B2 (en) 2013-03-15 2015-05-05 Graham Packaging Company, L.P. Deep grip mechanism within blow mold hanger and related methods and bottles
USD947030S1 (en) * 2014-11-18 2022-03-29 Brandeis University Wine bottle
WO2017035489A1 (en) * 2015-08-27 2017-03-02 Plastipak Packaging, Inc. Plastic container and base portion for plastic container

Also Published As

Publication number Publication date
CA949472A (en) 1974-06-18
DE2229312A1 (en) 1972-12-28
FR2141963A1 (en) 1973-01-26
AU4320572A (en) 1973-12-13
GB1360107A (en) 1974-07-17
AU460886B2 (en) 1975-04-21
IT956483B (en) 1973-10-10
BE784888A (en) 1972-12-14
FR2141963B1 (en) 1977-12-23

Similar Documents

Publication Publication Date Title
US3727783A (en) Noneverting bottom for thermoplastic bottles
US3722726A (en) Noneverting bottom for thermoplastic bottles
US3718229A (en) Noneverting bottom for thermoplastic bottles
US5072841A (en) Plastic containers
USRE36639E (en) Plastic container
AU720439B2 (en) A hot fill container
CA1157785A (en) Longitudinally extending thin-wall bottle formed from synthetic resin
US4231483A (en) Hollow article made of an oriented thermoplastic
US4525401A (en) Plastic container with internal rib reinforced bottom
EP2285699B1 (en) Hot-fill container
US4775564A (en) Collapsible-stable blown container
US8087525B2 (en) Multi-panel plastic container
EP1365961B1 (en) Blow molded slender grippable bottle having dome with flex panels
US4247012A (en) Bottom structure for plastic container for pressurized fluids
US4318489A (en) Plastic bottle
US9162807B2 (en) Pressure container with differential vacuum panels
CA1157787A (en) Self-supporting plastic container for liquids and method of making same
CA2872945C (en) Hot fill container having improved crush resistance
JPH0343342A (en) Pressure-proof selfstanding bottle
WO2011044094A1 (en) Plastic container having improved flexible panel
AU2009202484B2 (en) Multi-panel plastic container
AU2002240230A1 (en) Blow molded slender grippable bottle having dome with flex panels
MX2015006564A (en) Plastic container.
EP0029639B1 (en) Plastics container, method of forming same, a preform for use in forming the container and a mold unit for forming the preform
EP3183178B1 (en) Lightweight container base