Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3717294 A
Publication typeGrant
Publication date20 Feb 1973
Filing date14 Dec 1970
Priority date14 Dec 1970
Also published asCA998308A1
Publication numberUS 3717294 A, US 3717294A, US-A-3717294, US3717294 A, US3717294A
InventorsGreen D
Original AssigneeSurgical Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Cartridge and powering instrument for stapling skin and fascia
US 3717294 A
Abstract
A disposable staple cartridge housing a plurality of staples on a flexible belt and adapted to inject and form the staples, singly, into the disunited skin or fascia of a patient. Downwardly projecting flanges on a staple pusher act directly on the forwardmost staple positioned between a pair of adjacent teeth in the flexible belt and move the staple, the belt and its contents, with each stroke of the pusher. The forwardmost staple, when acted upon by the pusher, advances, rides out of the plane of the flexible belt and into the plane of the pusher and is ejected and bent around an anvil assembly. On the return stroke of the pusher, the downwardly projecting flanges flex out of the plane of the next successive staple, moving over that staple, and then take a position in readiness for the following stapling operation. The cartridge is provided with means for preventing the retraction of the staple housing belt during the rearward stroke of the pusher. In a second embodiment of the disposable cartridge, a plurality of staples are advanced as described above, but the number of disposable elements are reduced. With this embodiment, an inventive adaptor serves to associate the cartridge with a powering instrument. Also disclosed is a novel and simplified gas activated powering unit which develops a rectilinear thrust for advancing and forming staples.
Images(7)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1 Green 1 Feb. 24), 1973 lnventor:

Assignee:

David T. Green, Norwalk, Conn.

United States Surgical Corporation,

Baltimore, Md.

Filed:

Dec. 14, 1970 Appl. No.: 97,995

[52] US. Cl ..227/19, 227/136 [51] Int. Cl ..B25c 5/00 [58] Field of Search ..227/l9, 83,108, 112, 113, 227/119, 120, 136, 138, 139

[56] References Cited UNITED STATES PATENTS 2,765,468 10/1956 Cootes et a1 ..227/l12 X 3,009,156 11/1961 Lerner ..227/l36 X 3,009,618 11/1961 Lerner ..227/136 X 3,099,837 8/1963 Heilman et a1. ..-...227/112 X 3,156,376 11/1964 Lasting ..227/113 X Primary ExaminerGranville Y. Custer, Jr. Att0meyFleit, Gipple & Jacobson [57] ABSTRACT A disposable staple cartridge housing a plurality of staples on a flexible belt and adapted to inject and form the staples, singly, into the disunited skin or fascia of a patient. Downwardly projecting flanges on a staple pusher act directly on the forwardmost staple positioned between a pair of adjacent teeth in the flexible belt and move the staple, the belt and its contents, with each stroke of the pusher. The forwardmost staple, when acted upon by the pusher, advances, rides out of the plane of the flexible belt and into the plane of the pusher and is ejected and bent around an anvil assembly. On the return stroke of the pusher, the downwardly projecting flanges flex out of the plane of the next successive staple, moving over that staple, and then take a position in readiness for the following stapling operation. The cartridge is provided with means for preventing the retraction of the staple housing belt during the rearward stroke of the pusher. In a second embodiment of the disposable cartridge, a plurality of staples are advanced as described above, but the number of disposable elements are reduced. With this embodiment, an inventive adaptor serves to associate the cartridge with a powering instrument. Also disclosed is a novel and simplified gas activated powering unit which develops a rectilinear thrust for advancing and forming staples.

33 Claims, 17 Drawing Figures PATENTEnrmzoma v sum '2 [IF 7 PATENTEB FEBZ 01975 sum 3 0r 7 R WE R 6 T m v A wm ATTORNEYS PATENTED me man SHEEI 4 0F 7 INVENTOR DAVID T: GREEN J ATTORNEYS PATENTED FEB201973 SHEET 5 OF 7 Odd-m SHEET 6 BF 7 mad-m CARTRIDGE AND POWERING INSTRUMENT FOR STAPLING SKIN AND FASCIA BACKGROUND OF THE INVENTION The basic principle of ejecting and forming surgical 5 staples in the disunited skin or fascia of a patient is disclosed in U.S. Pat. No. 3,543,851 issued Feb. 22, 1972 and assigned to the present assignee. In this patent and in U.S. Pat. No. 3,662,939 issued May 16, 1972, also assigned to the present assignee, the staples housed in their respective cartridges are driven by helical screws which are, in turn, rotated by a complex gearbox arrangement integral with the powering instrument.

More recently, in the development of the skin and fascia stapler, as evidenced in U.S. Pat. No. 3,618,842 I issued Nov. 9, 1971 and U.S. Pat. No. 3,638,847 issued Feb. 1, 1972, each assigned to the present assignee, cartridges have been designed which eliminate the requirement for the complex gearing once needed in the powering of the instrument. In these issued patents, the output shaft of the powering instrument need only have rectilinear thrust capabilities. The staples are advanced by means designedinto the cartridges themselves. In the first of these patents, the advancing pusher, integral with the cartridge, rotates a pair of staple-driving screws by means of cams formed in the rear portions of the screws. In the second of these patents, the staples are driven forward by the interaction of pairs of opposing ratchet teeth integral with the cartridge.

As with the known cartridges, gas powering units have been the subject matter of several patent applications in the past few years. Gas powering units have been described in the first of the issued patents noted 3 5 above and in several of the subsequent patents also noted above. Further, a gas powering unit is described in U.S. Pat. No. 3,613,507 issued Oct. 19, 1971 entitled POWER PACK UNIT, also assigned to the present assignee. These units, while having proven themselves in actual usage tend to be somewhat more complex than is necessary. And, while the hydraulic actions of these units have been adequate for the intended purposes, there are areas wherein improvement is possible.

While the art of ejecting and forming staples in the skin or fascia of a patent has come a long way since its inception, both instruments and cartridges still texid to be somewhat complex in manufacture and in operation. Accordingly, the costs associated with known cartridges and instruments tend to be high.

It is toward the provision of a cartridge and a powering instrument which are simplified both in design and in manufacture, and hence are reduced in cost, that the present invention is directed.

SUMMARY OF THE lNVENTlON tridge for providing the rectilinear thrust capabilities necessary to actuate the cartridges.

1n the first embodiment of the inventive cartridge, a flexible toothed belt is moveably housed in a main body. Staples are guided and are advanced by association with spaced teeth of the flexible belt. The cartridge is equipped with an anvil integral with the main body and a pusher which serves the functions of advancing the staples and singly ejecting and forming same. On the forward face of the pusher element, are a pair of downwardly projecting flanges extending into the plane of the staples. With each forward stroke of the pusher, the flanges engage the forwardmost staple and advance same along a guide track in the cartridge. With the initial movement of the forwardmost staple, the flexible belt is advanced in the cartridge, thereby advancing each staple associated with the belt. With the advanced movement of the pusher, the forwardmost staple engages a ramp assembly and rides out of the plane of the flexible belt and into the plane of the pusher. The continued forward motion of the pusher ejects the forward staple from the cartridge and forms same about the anvil assembly.

On the return stroke of the pusher, with the flexible belt restrained against rearward movement, the downwardly projecting flanges ride over the next successive staple and then drop into the plane of that staple, thereby readying the cartridge for another staple ejecting operation.

With the inventive cartridge, the surgeon is always apprised of the fullness of the cartridge. The number of staples remaining in the cartridge may easily be ascertained by inspecting the clear plastic bottom thereof. As the flexible belt moves into the region of the cartridge bottom, with each staple ejection, the line of the belt passes a set of numbers. The alignment of the belt end with a number is indicative of the remaining staples.

In the second embodiment of the inventive cartridge, the staples are housed in and guided by a flexible belt and are ejected and formed much in the same manner as described above. However, the second embodiment of the cartridge is much smaller than the first, is less costly to produce, and hence results in a savings when one remembers that the cartridge is disposable. The second embodiment of the cartridge takes the form of a main body in which is positioned a moveable flexible belt loaded with staples. A small pusher element, the forward face of which is constructed as described above, is slidably mounted in the main body.

The second embodiment of the inventive cartridge is designed to mate with an adaptor unit which connects the cartridge to the powering instrument. The adaptor takes the form of an elongated body in which is slidably mounted an arm for connecting the drive shaft of the instrument to the pusher of the cartridge, and on which is provided an anvil assembly. It should be apparent, therefore that the adaptor mates with the second embodiment of the cartridge in such a manner that the cartridge has each of the elements and functions possessed by the first embodiment of the cartridge. The difference, however, is that with the second embodiment of the cartridge, only a small pusher unit, rather than the elongated unit of the first embodiment, is disposable. Further, there is no disposable anvil assembly in the second embodiment.

The inventive instrument takes the form of a substantially cylindrical body housing a trigger unit, a gas supply chamber, a power pack unit and an output shaft. The instrument is designed to mate either with the first embodiment of the inventive cartridge or with the adaptor unit.

The power pack unit, or the portion of the inventive instrument which converts gas pressure into rectilinear motion, is similar, in many respects, to the power pack of U.S. Pat. Application Ser. No. 32,550, noted above. Gas pressure originates in a standard CO, tank and is maintained in the tank until the instrument is triggered. At that time, a spring biased gas seal is unseated, thereby allowing gas to flow into a first pressure chamber. Then the gas flows into a large pressure chamber and ultimately drives a piston integral with the output shaft of the instrument. Once the piston is driven, the gas seal is reseated by the action of the biasing spring, and the power pack unit is readied for the next driving operation.

Basically, the inventive powering unit differs from each of the units known to the prior art in that the prior art units require pressure differentials to reseat the gas seal. As a consequence of this, when the pressure in the CO tank changes from one firing to the next, so too does the required pressure for closing the gas seal. Therefore, the known gas powering units, while reliable, fail to operate with a constant set of parameters and hence may operate with slight variations between one firing and the next. In contradistinction to this, the inventive gas powering unit depends upon the constant forces developed by springs to reseat the gas seal. I-Ience, while pressure changes affect the operation of the unit to some extent, there is significantly less operational variance exhibited by the inventive unit than is exhibited by each of the units known to the prior art.

Accordingly, it is one object of the present invention to provide a novel and simplified cartridge for housing a plurality of staples and having the capability of ejecting and forming staples singly in the disunited skin or fascia of a patient.

It is a further object of the present invention to provide a novel staple housing cartridge whose pusher element advances a plurality of staples and ejects and forms such staples singly, requiring only rectilinear motion from a power source.

Yet a further object of the invention is to provide a novel staple carrying cartridge housing a plurality of staples within the teeth of a flexible belt.

Still a further object of the present invention is to provide a staple carrying cartridge housing a plurality of staples along a flexible belt and equipped with a pusher element for advancing each of the staples and the belt and for simultaneously ejecting from said cartridge the forwardmost staple.

Yet another object of the present invention is to provide a compact, inexpensive and disposable cartridge for carrying a plurality of staples and for associating with a powering instrument, the cartridge and instrument serving, together, to join the disunited skin of the patient by means of surgical staples.

A further object of the present invention is to provide a novel and disposable cartridge housing a plurality of staples and designed to associate with an adaptor having anvil means and pusher means, and serving to connect the cartridge to a powering instrument.

Another object of the present invention is to provide a novel staple housing cartridge having simplified means for displaying the number of staples remaining in such cartridge.

A further object of the present invention is to provide a staple housing cartridge having a pusher element whose forward face is stepped in such a manner as to minimize the forces required for forming a surgical staple.

Still a further object of the present invention is to provide a novel adaptor to connect a disposable staple housing cartridge to a powering instrument. 4

Yet another object of the present invention is to provide a novel and simplified instrument for developing a rectilinear thrust for ejecting staples from an associated cartridge.

A further object of the present invention is to provide a novel gas powered instrument having a simplified power pack assembly.

A further object of the present invention is to provide a novel gas powered instrument having a novel hammer-type trigger assembly.

These and other objects of the present invention, as well as many of the attendant advantages thereof, will become more readily apparent when reference is made to the following description taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side view of the inventive gaspowered surgical instrument showing its association with a cartridge;

FIG. 2 is a cross-section through the body of a staple carrying cartridge constructed in accordance with the first embodiment of the present invention;

FIG. 3 is a bottom view of the cartridge illustrated in FIG. 2;

FIG. 4 is an enlarged top view of the forward portion of the cartridge illustrated in FIG. 2;

FIG. 5 is a cross-section similar to FIG. 2, illustrating the manner in which the staples change planes of travel during the staple driving operation;

FIG. 6 is a view similar to FIG. '5 showing the cartridge at a later time during the staple driving operation;

FIG. 7 is a view similar to FIG. 5 showing the car tridge during the return stroke of the pusher;

FIG. 8 is a view similar to FIG. 7, but showing an alternate arrangement for preventing retracting of the flexible belt;

FIG. 9 is an enlarged perspective of the forward end of the novel pusher; I

FIG. 10 is a front view, partially in section, illustrating the cartridge shown in FIG. 2;

FIG. 11 is a schematic showing an early stage of staple formation in the skin of a patient;

FIG. 12 is a view similar to FIG. 11, but showing a later stage of staple formation;

FIG. 13 is a cross-section through the inventive power pack unit;

FIG. 14 is a side view, partially in section, illustrating the inventive adaptor unit and the second embodiment of the inventive cartridge unit;

FIG. 15 is a partial cross-section illustrating the interaction between the adaptor and the second embodiment of the cartridge;

FIG. 16 is a top view of the nose of the inventive adaptor, with its cover removed; and

FIG. 17 is a front view of the second embodiment of the cartridge.

DETAILED DESCRIPTION OF THE DRAWINGS With reference now to the figures, and particularly with reference to FIGS. 1 through 10, the first embodiment of the inventive cartridge will be described. The cartridge is shown generally at and, in FIG. 1, is shown mounted on a C0 powering instrument 12. The cartridge 10 comprises, basically, a main body 14 having a pair of side walls 16 and 18, a front wall 20, and a rear wall 22. A solid projection 24, which may connect the side walls 16 and 18, is centrally positioned in the main body 14. A metallic cover 26 encloses the main body at the top thereof and a transparent plate 28 encloses the main body at its bottom. An anvil 44 is made integral with the forwardmost region of the cover 26.

A flexible belt or guide track 30, as of Lexan, polypropylene, or similar material, is fit in the main body 14 and is adapted to slide between the central projection 24 and the cover 26, and to slide between the projection 24 and the bottom plate 28. The flexible belt 30 is substantially planar in configuration but also has a plurality of teeth 32 on one side thereof, between which teeth 32 are defined a plurality of staple carrying grooves or contact surfaces 34. For reasons which will be explained below, every third groove 34 is continuous at the central region 35 of the belt 30, extending entirely through the body of the belt. A staple 36 is housed in and is guided by every third groove 34 of the flexible belt 30. It can be seen that the staples are housed in other than the continuous grooves of the belt 30. A substantially planar and flexible staple pusher 38 is positioned intermediate the flexible belt 30 and the cover 26, and is adapted for linear motion along the length of the cartridge 10. As best seen in FIGS. 2, 4, 9 and 10, while the major portion of the pusher 38 lies above the plane of the staples 36, a pair of downwardly projecting flanges 40, at the forward outermost regions of the pusher 38, are adapted to project into the plane of the staples. The downwardly projecting flanges 40 of the pusher 38 are oriented outside the transverse limits of the flexible belt 30, but associate with the staples 36 through the means of the cross-pieces thereof.

The forward face of the pusher 38 is stepped. The deepest step defines a base 42, of a width equal to the width of the anvil 44 plus slightly more than twice the diameter of a staple 36. The steps defined in the pusher define what may be termed moment points 46, 48 and 50, which serve, as will be explained below, to assist in singly bending the staples 36 around the anvil 44.

The inventive cartridge 10 is'provided with means for preventing the movement of the flexible belt 30 in a direction opposite to that indicated by arrow 52 (FIG. 2). These means take the following form. A body of material is removed from the central region of the projection 24. The material is removed, however, so as to define a thin flexible arm 54 having a projection 56, extending, when relaxed, into the plane of the flexible belt 30. The upper surface of the projection 56 is tapered at 58 so that when the flexible belt 30 moves in the direction of arrow 52, the arm 54 is cammed out of the plane of the belt by the full grooves 54.

As noted previously, the bottom plate 28 is formed from a transparent material. Therefore, as can be seen with reference to FIG. 3, the lower portion of the flexible belt 30 is visible through the transparent plate 28. The plate 28 is provided with a set of indicia which is indicative of the number of staples remaining in the cartridge 10. As the staples are expelled from the cartridge, the belt 30 moves in the direction of arrow 59, with the lead end of the belt aligning with a number on the bottom plate 28. In this manner, the surgeon is always apprised of the need for replacing an exhausted cartridge.

With reference now to FIGS. 4, 5 and 10, the staple guiding mechanism of the inventive cartridge will be described. Over a major portion of the length of the body 10, the arms of the staples 36 are guided along ledges 59 defined in the respective side walls 16 and 18. Near the front face 20 of the cartridge 10, the staples are acted upon by two sets of ramps 60 and 62, respectively. The ramps 60 are spaced apart so as to act on the cross-pieces of the staples 36, while the ramps 62 are spaced apart so as to act on the legs of the staples. The sets of ramps 60 and 62 are longitudinally spaced apart so that when a staple 36 is advanced in the direction of arrow 64 (FIG. 4), it simultaneously engages the sets of ramps 60 and 62 so that the crosspiece and the arms of the staple change planes in unison.

With continuing reference to FIGS. 1 through 10, the operation of the inventive cartridge will now be described. As seen best in FIG. 2, the drive element 66 of the powering instrument 12 extends through a groove 68 in the rear of the pusher 38. As will be explained below, each triggering of the instrument 12 advances the drive element 66 toward the front of the cartridge 10. Therefore, the cover 26 is slotted at 70. And, as in each of the related copending patent applications described above, the movement of the pusher 38 is positively controlled by the drive element 66 of the powering instrument 12.

The cartridge 10 is shipped with the elements in the relative positions illustrated in FIG. 2. When in the operating arena, the pre-sterilized disposable cartridge 10 is removed from its sealed package and is inserted on the instrument 12. As seen best in FIG. 1, the rear of the cartridge cover 26 is provided with at least one upstanding tab 27 adapted to associate with a corresponding at least one notch (not shown) in the body of the instrument 12. The cartridge 10 is advanced toward the powering instrument 12 as shown in solid lines in FIG. 1 and is then moved into the position indicated in phantom. Finally, the U-shaped bracket 74 is moved into the position shown in phantom and the screw 76 is tightened so as to bear on the bottom plate 28 of the cartridge 10. The drive element 66 of the instrument 12 now unites with the slot 68 in the pusher 38 and the cartridge 10 is held fixed with respect to the instrument 12.

When the instrument 12 is tired, the driving element 66 moves forward relative to the cartridge 10. So, too, therefore, does the pusher 38. When the pusher 38 moves toward the forward face of the cartridge 10, the downwardly extending flanges 40 come into contact with the cross-piece of the forwardmost staple 36. With continued forward movement of the pusher 38, the forwardmost staple 36 is urged forwardly. And, as the forward staple 36 is maintained in its groove 34 (held by the respective outer regions of the sides of the cover 26), the flexible belt 30 is caused to move in the direction of arrow 52. Therefore, each of the staples 36 is advanced in the body of the cartridge 10.

Continued forward movement of the pusher 38, in the direction of arrow 64, brings the cross-piece of the forwardmost staple 36 into engagement with the set of ramps 60 and brings the legs of the staple 36 into engagement with the set of ramps 62. Then, with still further movement of the pusher 38, the forwardmost staple 36 moves in the direction of arrows 78 (FIG. up the sets of ramps 60 and 62, and shifts from the plane of the flexible belt 30 into the plane of the pusher 38. As the staple 36 rises from the plane of the belt into the plane of the pusher, the cross-piece of the staple slides along the respective forward faces of the downwardly extending flanges 40.

During the time when the forwardmost staple rides within the confines of its guiding groove 34, the flexible belt 30 moves in the direction of arrow 52; this movement continues until the staple rises out of its groove and into the plane of the pusher. Further movement of the pusher 38 in the direction of arrow 64 results in the expulsion of the forwardmost staple 36 from the cartridge 10 and the formation of that staple around the anvil 44.

When the pusher 38 is at the forwardmost portion of its stroke, each of the staples 36 has been advanced in the body of the cartridge 10 substantially one complete staple length. And, when the pusher is in .this position, the upstanding flange 56 on the flexible arm 54 is in the plane of the flexible belt 30, entering such plane through one of the continuous grooves 34.

After a staple 36 has been formed around the anvil 44, as shown in FIG. 6, the drive element 66 and its integral pusher 38 reverse their respective directions of travel. The pusher 38 begins to retract and continues to do so, unimpeded in any way, until the sloping walls 80 of the downwardly projecting flanges 40 come into contact with the forwardmost staple 36 then remaining in the body of the cartridge 10. As the pusher 38 moves in the direction of arrow 82 (FIG. 7), the downwardly projecting flanges 40 are cammed, by the forwardmost staple, out of the plane of the staples 36 and ride over such forwardmost staple. To allow for this out-of-plane flexing of the pusher 38, the cover 26 is provided with a central raised region 84. Ultimately, the pusher 38 takes the position shown in phantom in FIG. 7, with the flanges 40 lying behind and in the plane of the forwardmost staple 36. This is precisely the position illustrated in FIG. 2, and hence the cartridge is then ready for the next firing operation.

During, the movement of the pusher 38, in the direction of arrow 82, and when the sloping or cam surfaces 80 of the flanges 40 are in contact with the crosspiece of the forwardmost staple 36, forces are generated which tend to reverse the movement of the flexible belt 30 and hence the movement of each of the staples associated therewith. Such reversed movement is, of course, undesirable and hence precautions are taken to eliminate the same. It is for this reason that the flexible arm 54, with its upwardly extending projection 56, is fit in the cartridge 10.

As best seen in FIGS. 6 and 7, the projection 56 associates with a continuous groove 34 in the belt 30 when the pusher 38 is in its forwardmost position. In this manner, all reverse forces generated in the belt 30 when the pusher 38 is cammed over the forward staple 36, are dissipated without actual reverse movement taking place in the belt or staples. See FIG. 7. However, the arm 54 with its projection 56 in no way retards the forward movement of the belt and staples. When the pusher 38 drives the belt 30 so as to advance the staples 36, the rear face of the associated continuous groove cams the projection 56 out of the plane of the belt through the action of the sloping wall 58 of such groove. See FIG. 5.

In FIG. 8, an alternate manner of preventing the retraction of the belt 30 and its staples 36 is illustrated. Contrary to the embodiment of the cartridge illustrated in FIGS. 1 through 7, where every third groove 34 is continuous, the FIG. 8 embodiment has no continuous grooves tending to weaken the belt 30. The belt grooves extend only to the base of the belt. In this embodiment, unwanted retraction of the belt 30 and its staples 36 is prevented by the provision of a small spring 86 secured to the bottom plate 28 by a pin 88. When the belt 30 is driven so as to advance the staples 36, the rear faces of the grooves 34 cam the spring 86 out of the plane of the belt. However, when the belt 30 attempts to reverse its direction of travel, during the retraction of the pusher 38, the forward face of the groove 34 in which the spring 86 is biased contacts the spring 86 and prevents movement of the belt.

With reference now to FIGS. 11 and 12, the bending of the staples 36 about the anvil 44 will briefly be described. The staple 36, when in the position illustrated in solid lines in FIG. 11, has just left the domain of the main body 14 of the cartridge 10. The alignment illustrated in this figure is maintained, however, due to the rapid movement of the pusher 38 in the direction of arrow 64 and the association of the arms of the staple 36 with the skin of the patient. Movement of the pusher 38 in the direction of arrow 64 from that position illustrated in solid lines causes the staple 36 to bend as shown in phantom in FIG. 11. This bending occurs as a result of the interaction between the anvil .44 and the pusher 38 acting through moment points 46 of the stepped region thereof.

Further movement of the pusher 38 in the direction of arrow 64, shown in phantom in FIG. 12, causes further bending of the staple 36. This further bending is a result of forces exerted on the staple 36 by the anvil 44 and the moment points 48 of the stepped region of the pusher 38. Still further movement of the pusher 38 causes the staple to take the shape illustrated in solid lines in FIG. 12, the final bending of the staple being the result of forces generated'by the anvil 44 and the moment points 50.

The forward face of the pusher 38 is stepped for the following reasons. The initial bending of the staple 36 is the most difficult stage of the bending operation. There are substantial inertial forces which must'be overcome before the staple begins to bend; and to facilitate the bending of the staple, a long moment arm is employed. After the staple has begun to bend, the inertial forces are in favor of bending, and hence a shorter movement arm is employed. In this manner, when it is most difficult to bend the staple, the bending forces are greatest; when it is easiest to bend the staple, the bending forces are reduced. Therefore, a relatively constant input force may be used to bend the staple even though the necessary bending forces change during the bending operation.

With reference now to FIG. 13, the novel power pack forming a part of the present invention will be described. The power pack is shown generally at 100 and comprises the following elements. In the specific embodiment disclosed, the main body takes the form of a four-piece unit, comprising circular cylindrical elements 102, 104, 106 and 108, respectively. Unit 102 serves basically to house a C bottle 110. A piercing pin 112 with a bore 114 passing therethrough is sealed, by Oring 116, in the rear wall of the cylindrical unit 104,=mating with the bottle 110 in the unit 102. A bore 118, extending from the forward face of the unit 104 into the region of the piercing pin 112, is provided in the cylindrical unit 104. Forward of the bore 118 in the cylindrical unit 104 is a piston housing 120 serving to slidably mount a cylindrical piston 122. An O-ring 124 seals the piston 122 against the piston housing 120.

Fixedly imbedded in the rear wall of the piston 122 is a flexible sealing element 126, such as of Celcon. The function of the element 126 is to seat against the wall of the cylindrical unit 104 in which the bore 118 is provided, thereby preventing the CO, gas from entering the region of the piston housing 120. A bore 127 passes through the body of the piston 122 and leads from the piston housing 120 to the rear wall of the piston 122. A coil spring 128 biases the piston 122 so as to seat the element 126 against the bore 118 in the cylindrical unit 104.

A cylindrical stop 130 is fixedly mounted in the unit 106 and serves as an abutment for the end of the coil spring 128 remote from the piston 122. A bore 132 passes through the center of the stop 130, while a bore 134 is defined in an extension thereof located intermediate the cylindrical units 106 and 108, respectively.

The rearward nose of the cylindrical stop 130 is of a lesser diameter than is the inner diameter of the cylindrical unit 106 adjacent such nose. A second piston 136 is slidably mounted between the nose of the cylindrical stop 130 and the inner wall of the cylindrical unit 106. The forward face of the piston 136 extends into a ring-like projection 138. Between the projection 138 and the inner wall of the cylindrical unit 106 is an 0- ring 140; and between the projection 138 and the nose of the cylindrical stop 130 is an Oring 142. A coil spring 144 acts between the piston 136 and the cylindrical unit 104, thereby biasing the piston 136 away from the piston 122. At rest, the projection 138 of the piston 136 rests against a rear wall of the cylindrical stop 130.

The internal wall of the cylindrical unit 108 defines a cylinder 146. A main piston 148 slides in the 146 and is sealed against the wall thereof by an O-ring 150. A rodlike extension 152 is integral both with the main piston 148 and with the drive element 66 (FIG. 2). A coil spring 154 biases the main piston 148 against the forward wall of the cylindrical stop 130.

In addition to the elements described above, the cylindrical unit 104 houses a triggering unit shown generally at 156. The unit 156 comprises a trigger 158 having an oblong bore 160, which trigger is mounted on a pin 162 integral with the cylindrical unit 104. A spring 164 surrounds the pin 162 and biases the trigger 158 in a clockwise direction as shown in FIG. 13 with the lower region of the oblong bore in contact with the pin 162. integral with the trigger 158 is a tongue 166 extending into the body of the unit 104.

A hammer 168 is slidably mounted in the bore 170 defined in the cylindrical unit 104. The forward face of the hammer 168 is adapted, when at rest, to contact an upstanding flange 171 on the piston 122. A groove 174, having a sloping wall 176 and a flat wall 178, is defined between the forward region of the hammer 168 and the rear region thereof, and associateswith the tongue 166 of the trigger 158. A bore extends into the rear of the hammer 168 and accommodates a coil spring 172, biasing the hammer 168 toward the flange 171 on the piston 122. The spring 172 is held in place by means of a plug 174 threaded into the body of the cylindrical unit 104. As noted previously, the spring 164 serves to maintain the base of the oblong bore 160 in contact with the spring 166. This is made possible by contouring the surface of the trigger 158 so that it comfortably associates with the upper surface of the hammer 168. A fulcrum is thus defined between the points (or surfaces) of contact between the lower surface of the trigger and the upper surface of the hammer.

The operation of the novel power pack unit is as follows. When the trigger 158 is depressed by the surgeon, the bias of the spring 164 is overcome and the trigger is pivoted in a counterclockwise direction. With the downwardly directed force acting on the trigger 158, the top of the oblong groove 160 is urged into contact with the pin 162. With pivoting of the trigger 158 in the counterclockwise direction, the tongue 166 abuts the wall 178 of the hammer 168 and causes movement of the hammer 168 in opposition to the bias of its spring 172. Such movement continues until the bottom surface of the trigger 158 comes into contact with a pin 182 rigidly secured to the cylindrical unit 104. Then, with continued force being exerted on the trigger 158, the oblong groove 160 moves with respect to the fixed pin 162 until the base of the groove 160 again nears the surface of the pin 162. Before actual contact is made,

however, the tongue 166 exists the groove 174, thereby releasing the hammer 168. v

When the hammer 168 is released by the trigger 158, it moves under the bias of its spring 172 and impacts the upstanding flange 171 of the piston 122, causes movement of the piston against the bias of-its coil spring 128, and thereby unseats the element 126 from the adjacent wall of the cylindrical unit 104. Immediately after the element 126 is unseated, the piston 122 is acted upon by C0 gas escaping through the bore 118 and into the piston housing 120. 'Thecombined inertial forces of the moving piston 122 and the forces exerted by the pressurized CO gas cause the piston 122 to seat against a flexible sealing element 184 integral with the nose of the cylindrical stop 130. With the pressurized CO, gas free to escape from the bottle 110 into the piston housing 120, and with the piston 122 seated against the cylindrical stop 130, pressurized gas passes through the piston 122, via bore 127, through cylindrical stop 130, via bore 132, and enters a small volume chamber defined between the large area rear face of the main piston 148 and the front face of the cylindrical stop 130. Acting on the large area surface, the pressurized gas exerts a substantial thrust against the main piston 148 causing the main piston to rapidly travel in the direction of arrow 188. As noted previously, such action activates the staple carrying cartridge.

With the main piston 148 executing a staple driving stroke, a substantial pressure is generated in the cylinder or piston chamber 146. In response to such pressure, gas is caused to exit the cylinder 146, through the port 134, and enter the region of the slidable piston 136. Such gas pressure causes movement of the piston 136 against the bias of its spring 144. a

It will be remembered that during the forward stroke of the main piston 148, the piston 122 seats against element 184. The upstanding flange 171 contacts or comes in close proximity to the forwardmost face of the piston 136. Therefore, movement of the piston 136 to the right (FIG. 13) causes engagement between the forwardmost face of such piston and the upstanding flange 171 of piston 122. As a consequence of this, piston 122 moves to the right, reseats itself against the adjacent wall of the cylindrical unit 104, and prevents further escape of the C0 gas into the piston housing 120, biased by its coil spring 128.

With the port 118 sealed against the passage of CO, gas, the main piston 148 is free to return to its rest position, biased by its spring .154. At the same time, the pressure is relieved on the left side of the piston 136 via passage 134 and such piston moves to the left in response to the bias of its coil spring 144. In this manner, each of the elements of the power pack are returned to their rest positions illustrated in FIG. 13

The main advantage of the inventive power pack is that once the piston 122 is reseated, sealing the port 118, the constant force coil spring 128 maintains such seating. In contradistinction to this, prior art power packs maintain the seating mainly by gas pressure. And, because the gas pressure varies somewhat with the number of cycles developed by the CO, bottle, the reseating mechanism of the prior art power packs tend to be somewhat unpredictable in nature. However, with the positive and constant force reseating mechanism of the present invention, positive and predictable reseating results.

With reference now to FIGS. 14 through 17, the second embodiment of the.inventive cartridge, and the inventive adaptor, will be described. The inventive cartridge is shown generally at 200 and the inventive adaptor at 202.

The cartridge 200 comprises, basically, a main body 204 having a central projection 206 (FIG. 15) similar to that shown at 24 in FIG. 2. A flexible belt elongated linkage or guide track 208 rides within a fixed guide member 210 defined between the central projection 206 and the body 204 of the cartridge 200. As with the first embodiment of the present invention, the belt is toothed on one side thereof, and every third tooth houses and guides a staple. A pusher 212 is contained between the top surface of the body 204 and the flexible belt 208. The forward face of the pusher 212 is provided with a pair of downwardly projecting flanges 214 identical to those described with reference to the first embodiment of the present invention. A small opening 216 is provided in the rear of the pusher 212 and is adapted, as will be explained below, to mate with a downwardly projecting flange 218 integral with a pusher extension 220 in the adaptor 202. As seen in FIGS. 14 and 17, the forward face of the cartridge 200 is open, with the flexible belt 208 exiting the cartridge at the upper region thereof, looping around and reentering the cartridge in the lower region of the guide member 210.

The cartridge 200 described above is adapted to house on the order of 30 to 40 staples. It can be seen that as the flexible belt 208 substantially forms a closed circuit around the guide member 210, such a substantial staple handling capacity results. If, on the other hand, it is desired that only 6 to 12 staples be housed, the body of the cartridge 200 may be made smaller, as indicated by the dash-dot line 222 in FIG. 14. With this arrangement, the staples would be linearly housed within the body of the cartridge.

The adaptor 202 comprises, basically, a main body 224, a cover plate 226 rigidly mounted on the main body 224, a nose 228, a cartridge lock 230, and a pusher extension 220. The rear region of the cover 226 is provided with at least one upstanding tab 232 to secure the adaptor 202 to the powering instrument 12 (as in FIG. 1). An anvil 234 is integral with the cover plate 226 and is provided at the forwardmost end thereof.

As seen in FIGS. 14 and 15, the nose 228 of the adaptor 202 is constructed so as to mate with the forward face of the cartridge 200. The cartridge 200 is associated with the adaptor 202 as follows. First, the forward face of the cartridge 200 is advanced toward the nose 228 of the adaptor 202 in the direction of arrow 236. Then, once the forward regionsof the cartridge and adaptor are in contact, the rear of the cartridge 200 is moved in the direction of arrow 236 until the cartridge lock 230 snaps into a detent 238 in the body of the cartridge 200. Then, the cartridge is ready to be fired.

It should be noted that the disposable cartridge 200 is far more simple than is the disposable cartridge 10 described above. The pusher 212 is substantially smaller than is the pusher 38. There is. no elongated metal cover to associate with the cartridge 200, nor is the cartridge 200 provided with air integral anvil. Further, and as shown in FIG. 16, the sets of ramps 240 and 242 are integral with the adaptor 202 rather than with the disposable cartridge 200. These sets of ramps serve the same function as do the sets of ramps 60 and 62 of FIG. 4. Again, therefore, the design of the cartridge 200 is simplified. In all other respects, the operation of the inventive cartridge 200 is identical with that of the inventive cartridge 10.

Above, several embodiments of the present inven tion have been described. It should be appreciated,

however, that these embodiments are described for purposes of illustration only and that numerous alterations and modifications may be practiced by those skilled in the art without departing from the spirit and scope of the invention. Accordingly, it is the intent that the invention not be limited by the above but be limited only as defined in the appended claims.

What is claimed is:

l. A staple-ejecting cartridge adapted to be sterilized, packaged and mounted on a skin-stapling instrument, the cartridge comprising; an elongated main body adapted to house a plurality of surgical staples,

'the main body having a rearward end for associating with the skin-stapling instrument and a forward end for the expulsion and formation of the staples; a guide track mounted for movement along the length of said main body for housing and guiding said staples; a plurality of contact surfaces spaced along said guide track, each for engaging a single staple and advancing same toward the forward end of said main body in response to forward movement of said guide track; a substantially planar pusher element having a major axis parallel to the major axis of said elongated main body and being positioned adjacent said guide track; at least one downwardly projecting driving surface integral with said pusher element and adapted to selectively extend adjacent to said guide track, said at least one driving surface being positioned so as to align with the crosspieces of said staples; means in operative relationship with said main body and with said guide track for singly moving said staples away from said guide track and into the plane of said pusher element in response to the forward movement of said pusher element; cam means in operative relationship with said pusher element for changing the relative positions between said at least one driving surface and said guide track during rearward movement of said pusher element so that said guide track is free from the effects of said at least one driving surface; and an anvil integral with the forward end of said elongated main body.

2. The staple-ejecting cartridge recited in claim 1, wherein the forward face of said at least one downwardly projecting driving surface is substantially perpendicular to the forward direction of movement of said guide track; and wherein said cam means is integral with said pusher element.

3. The staple-ejecting cartridge defined in claim 2, wherein each cam means takes the form of a linear surface extending downwardly and forwardly from said pusher element.

4. The staple-ejecting cartridge recited in claim 1, wherein there are two downwardly projecting driving surfaces; and wherein these surfaces are spaced apart a distance greater than the width of said guide track but less than the length of the cross-pieces of the staples.

5. The staple-ejecting cartridge recited in claim 4, wherein said pusher element and said driving surfaces are formed out of a single unitary material.

6. The staple-ejecting cartridge recited in claim 1, wherein the forward region of said pusher element is flexible; wherein said cam means is integral with the forward region of said pusher element; wherein during the rearward movement of said pusher element, the cam means contacts the cross-piece of one staple and cams said at least one downwardly projecting driving surface over said staple; and wherein said at least one downwardly projecting driving surface returns to a position adjacent to said guide track after being cammed over said staple.

7. The staple-ejecting cartridge recited in claim 6, and further comprising: means in operative relationship with said guide track for preventing the rearward movement of said guide track during rearward movement of said pusher element.

8. The staple-ejecting cartridge recited in claim 7, wherein said guide track takes the form of a flexible toothed belt; wherein the staples are housed in and are guided by the notches defined between adjacent teeth; wherein a series of spaced notches are provided in the belt on the side thereof remote from said staples; wherein said means for preventing the rearward movement of said guide track takes the form of a flexible projection extending, when relaxed, into one of said spaced notches; and wherein said projection has a track abuttment face substantially perpendicular to the track and a sloping camming face remote from said abuttment face.

9. The staple-ejecting cartridge recited in claim 7, wherein said guide track takes the form of a flexible toothed belt; and wherein said means for preventing the rearward movement of said guide track takes the form of a resilient member mounted integral with said body, adapted to engage the teeth of said belt, thereby preventing the rearward movement of said belt, and adapted to be cammed out .of the plane of said teeth during the advancement of said belt.

10. The staple-ejecting cartridge recited in claim 1, wherein said guide track, when fully loaded, with staples, extends substantially the entire length of the elongated main body on the side thereof adjacent said pusher element; wherein said fully loaded guide track extends in'the forward end of said main body from the side thereof adjacent the pusher element to the side remote therefrom; and wherein said fully loaded guide track extends a portion of the distance from the forward end of the main body to the rearward end thereof on the side of the main body remote from said pusher element.

11. The staple-ejecting cartridge recited in claim 10, wherein the side of the cartridge main body remote from said pusher element is transparent; wherein said transparent side is provided with a set of indicia; and wherein the alignment of the end of said guide track with said indicia is indicative of the number of staples remaining in said cartridge.

12. The staple-ejecting cartridge recited in claim 1,

wherein the forward face of said pusher element is stepped outwardly and forwardly so as to maximize the effect of the pusher element in bending the staples around said anvil.

13. A cartridge adaptor for supporting a surgical stapie-ejecting cartridge having a pusher element, and designed to be mounted on a skin-stapling instrument, the cartridge adaptor comprising: an elongated main body; mounting means at the rearward end of said elongated main body for removably attaching the main body to the skin-stapling instrument; an elongated substantially planar linkage slidably mounted in said main body for associating the skin-stapling instrument with the pusher element of the staple-ejecting cartridge; anvil means integral with said elongated main body at its forward end; and means in operative relationship with said cartridge for removably securing the surgical staple-ejecting cartridge to the cartridge adaptor in the region of said anvil.

14. The cartridge adaptor as recited in claim 13, and further comprising: a nose piece attached to said main body near the anvil thereof defining a portion of said means for securing the staple-ejecting cartridge; and a locking element attached to said main body near the rearward end thereof defining the remaining portion of the means for securing the staple-ejecting cartridge.

15. The cartridge adaptor as recited in claim 14, and further comprising: means integral with said nose piece for singly guiding the staples in said staple-ejecting cartridge out of the plane of said linkage and into another planar position adjacent to said anvil.

16. The cartridge adaptor recited in claim 15, wherein said means for guiding staples comprises a first set of ramps adapted to engage the cross-pieces of said staples; and a second set of ramps adapted to engage the legs of said staples; said first and said second set of ramps being spaced apart a predetermined distance so that the staple being transported from the plane of said linkage remains parallel to said linkage plane.

17. The cartridge adaptor recited in claim 14, wherein the mounting means defined in said nose piece is in the form of a recess adapted to accept the nose of said staple-ejecting cartridge; and wherein the engagement element comprises a projection adapted to engage a corresponding detent in said staple-ejecting cartridge.

18. The cartridge adaptor recited in claim 13, wherein said elongated linkage is provided, at its rearward end, with an opening for engaging the drive shaft of the skin-stapling instrument; wherein said elongated linkage is provided, at its forward end, with a projection for engaging a corresponding opening in the pusher element of the staple-ejecting cartridge; wherein said cartridge adaptor further includes a cover member and a mounting block between which is mounted said elongated linkage; and wherein said cover is slotted in order to allow for the reciprocation of the drive shaft of the skin-stapling instrument while engaging said elongated linkage.

19. A staple-ejecting cartridge adapted to be sterilized, packaged and mounted on a skin-stapling instrument, the cartridge comprising: a main body adapted to house a plurality of surgical staples and having. a forward end, a rearward end, a bottom, and an adaptor engaging surface; a guide track mounted for movement in said main body for housing and guiding said staples; a plurality of contact surfaces spaced along said guide track, each for engaging a single staple and advancing same toward the forward end of said main body in response to forward movement of said guide track; a substantially planar pusher element having a major axis parallel to said adaptor engaging surface, and positioned between said adaptor engaging surface and said guide track; at least one downwardly projecting driving surface integral with said pusher element and adapted to extend, when said pusher element is relaxed, adjacent to said guide track, said at least one driving surface being positioned so as to align with the crosspieces of said staples; cam means in operative relationship with said pusher element for changing the relative positions between said at least one downwardly projecting driving surface and said guide track during rearward movement of said pusher element so that said guide track is free from the effects of said at least one driving surface; and said main body defining a first opening near the junction between the forward end of the cartridge and the adaptor engaging surface for the expulsion of the staples from the main body in response to forward movement of the guide track.

20. The staple-ejecting cartridge recited in claim 19, wherein the forward face of said at least one downwardly projecting driving surface is substantially perpendicular to the plane of said guide track; and wherein said cam means is integral with said pusher element.

21. The staple-ejecting cartridge defined in claim 20, wherein each cam means takes the form of a linear sur face extending downwardly and forwardly from said pusher element.

22. The staple-ejecting cartridge recited in claim 19, wherein there are two downwardly projecting driving surfaces; and wherein these surfaces are spaced apart a distance greater than the width of said guide track but less than the length of the cross-pieces of the staples.

23. The staple-ejecting cartridge recited in claim 22, wherein said pusher element and said driving surfaces are formed out of a single unitary material.

24. The staple-ejecting cartridge recited in claim 19, wherein the forward region of said pusher element is flexible; wherein said cam means is integral with the forward region of said pusher element; wherein during the rearward movement of said pusher element, the cam means contacts the cross-piece of one staple and cams said at least one downwardly projecting driving surface over said staple; and wherein said at least one downwardly projecting driving surface returns to the plane of the guide track after being cammed over said staple.

25. The staple-ejecting cartridge recited in claim 19, wherein the forward face of said pusher element is stepped outwardly and forwardly so as to maximize the effect of the pusher element in bending the staples around said anvil.

26. The staple-ejecting cartridge recited in claim 19, and further comprising: a staple guide path defined in said main body, one end of said guide path communicating with said first opening in the main body, and the other end of said guide path communicating with a second opening adjacent said first opening, said guide path substantially following the outline of said main body; and wherein said guide track and said staples are moveably housed in said guide path.

27. The staple-ejecting cartridge recited in claim 26,

wherein all changes in direction of said guide path are smoothly developed. I

28. The staple-ejecting cartridge recited in claim 19, and further comprising: a staple guide path defined within said main body, substantially following the outline of said main body; and wherein said guide track and said staples are moveably housed in said guide path.

29. The staple-ejecting cartridge recited in claim 28, wherein all changes in direction of said guide path are smoothly developed.

30. The staple-ejecting cartridge recited in claim 19, for mounting on a cartridge adaptor, said cartridge further comprising: means on said cartridge for mounting said cartridge on said cartridge adaptor.

31. The staple-ejecting cartridge recited in claim 30, wherein said cartridge is designed and adapted to be mounted on the cartridge adaptor with the body of the adaptor positioned adjacent said adaptor engaging surface; and wherein said pusher element of said cartridge is adapted to engage and be controlled by a linkage element in said cartridge adaptor.

and further comprising: a detent in the rearward end of said main body for mating with a projection integral with said cartridge adaptor; and wherein said tonguelike projection and said detent interact with said cartridge adaptor to removeably and integrally mount said staple-ejecting cartridge on said cartridge adaptor.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2765468 *9 Sep 19539 Oct 1956Aircraft Marine Prod IncFeeding mechanism for automatic terminal applying machine
US3009156 *18 May 195621 Nov 1961Inv S Man CorpIndustrial tacker
US3009618 *27 Jan 195621 Nov 1961Inv S Man CorpStaple element cartridge
US3099837 *17 Sep 19596 Aug 1963Internat Staple And Machine CoPneumatic driver
US3156376 *8 Feb 196310 Nov 1964Walter LastingSemi-automatic fastening device dispenser
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3915367 *10 Aug 197328 Oct 1975Duo Fast CorpFastener strip and strip feeding apparatus
US4127227 *8 Oct 197628 Nov 1978United States Surgical CorporationWide fascia staple cartridge
US4196836 *14 Feb 19788 Apr 1980Senco Products Inc.Surgical stapling instrument
US4204623 *17 Jul 197827 May 1980United States Surgical CorporationManually powered surgical stapling instrument
US4228895 *2 Apr 197921 Oct 1980American Cyanamid CompanyMagazine tape containing a plurality of hemostatic clips
US4331277 *23 May 198025 May 1982United States Surgical CorporationSelf-contained gas powered surgical stapler
US4349028 *3 Oct 198014 Sep 1982United States Surgical CorporationSurgical stapling apparatus having self-contained pneumatic system for completing manually initiated motion sequence
US4367837 *25 Apr 198011 Jan 1983Manino Anthony PTape magazine feed apparatus for head driven fasteners
US4407286 *13 May 19824 Oct 1983United States Surgical CorporationSurgical staples
US4422567 *17 Nov 198127 Dec 1983Haynes Taylor HMedical suturing device
US4500025 *18 Jul 198319 Feb 1985Minnesota Mining And Manufacturing CompanyBone stapler
US4540110 *28 Jun 198310 Sep 1985Minnesota Mining And Manufacturing CompanyBone stapler
US4938408 *9 Jan 19893 Jul 1990Ethicon, Inc.Surgical stapler safety and sequencing mechanisms
US4951861 *9 Jan 198928 Aug 1990Ethicon, Inc.Surgical stapler pressure regulator
US4964559 *9 Jan 198923 Oct 1990Ethicon, Inc.Pneumatic surgical stapler connectors
US5018657 *9 Jan 198928 May 1991Ethicon, Inc.Pneumatically actuated surgical stapler head
US5236435 *22 Jul 199117 Aug 1993Sewell Jr FrankLaparoscopic surgical staple system
US5312023 *1 Mar 199317 May 1994United States Surgical CorporationSelf contained gas powered surgical apparatus
US5326013 *23 Sep 19925 Jul 1994United States Surgical CorporationSelf contained gas powered surgical apparatus
US5364001 *1 Oct 199315 Nov 1994United States Surgical CorporationSelf contained gas powered surgical apparatus
US5397046 *22 Mar 199314 Mar 1995United States Surgical CorporationLockout mechanism for surgical apparatus
US5431322 *2 Nov 199311 Jul 1995United States Surgical CorporationSelf contained gas powered surgical apparatus
US5443197 *16 Jun 199322 Aug 1995United States Surgical CorporationLocking mechanism for a skin stapler cartridge
US5456400 *22 Apr 199310 Oct 1995United States Surgical CorporationApparatus and clip for fastening body tissue
US5456401 *21 Apr 199410 Oct 1995United States Surgical CorporationSurgical apparatus having articulation mechanism
US5472132 *6 Dec 19945 Dec 1995United States Surgical CorporationLockout mechanism for surgical apparatus
US5478003 *8 Oct 199326 Dec 1995United States Surgical CorporationSurgical apparatus
US5482197 *17 May 19949 Jan 1996United States Surgical CorporationArticulating surgical cartridge assembly
US5487499 *8 Oct 199330 Jan 1996United States Surgical CorporationSurgical apparatus for applying surgical fasteners including a counter
US5584425 *2 Aug 199517 Dec 1996United States Surgical CorporationLockout mechanism for surgical apparatus
US5636780 *1 Mar 199610 Jun 1997United States Surgical CorporationSelf contained gas powered surgical apparatus
US5645209 *17 Nov 19958 Jul 1997United States Surgical CorporationSelf contained gas powered surgical apparatus
US5647526 *15 Nov 199515 Jul 1997United States Surgical CorporationSelf contained gas powered surgical apparatus
US5709334 *25 Jan 199620 Jan 1998United States Surgical CorporationSurgical apparatus for applying surgical fasteners
US5711472 *16 May 199427 Jan 1998United States Surgical CorporationSelf contained gas powered surgical apparatus
US5758665 *14 Nov 19962 Jun 1998Suval; William D.Method for treating varicose veins
US5792168 *14 Nov 199611 Aug 1998Suval; William D.Apparatus for treating varicose veins
US5862972 *1 Dec 199526 Jan 1999United States Surgical CorporationGas powered apparatus for applying surgical fasteners to body tissue
US5918791 *28 Aug 19976 Jul 1999United States Surgical CorporationSurgical apparatus for applying surgical fasteners
US6250532 *19 Jan 200026 Jun 2001United States Surgical CorporationSurgical stapling apparatus
US631861621 Oct 199920 Nov 2001United States SurgicalSurgical fastener applier
US6655571 *12 Mar 20012 Dec 2003Kotec's Co., Ltd.Fastening element attaching device
US705950926 Aug 200213 Jun 2006Phillip Clay BrownSurgical stapling device
US707785620 Jan 200418 Jul 2006Power Medical Interventions, Inc.Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities
US711464220 Jan 20043 Oct 2006Power Medical Interventions, Inc.Expanding parallel jaw device for use with an electromechanical driver device
US72967247 Mar 200520 Nov 2007United States Surgical CorporationSurgical stapling apparatus
US74311892 Aug 20067 Oct 2008Ethicon Endo-Surgery, Inc.Pneumatically powered surgical cutting and fastening instrument with mechanical linkage coupling end effector and trigger motion
US743471711 Jan 200714 Oct 2008Ethicon Endo-Surgery, Inc.Apparatus for closing a curved anvil of a surgical stapling device
US743820929 Jun 200721 Oct 2008Ethicon Endo-Surgery, Inc.Surgical stapling instruments having a releasable staple-forming pocket
US74416842 Aug 200628 Oct 2008Ethicon Endo-Surgery, Inc.Pneumatically powered surgical cutting and fastening instrument with audible and visual feedback features
US74485252 Aug 200611 Nov 2008Ethicon Endo-Surgery, Inc.Pneumatically powered surgical cutting and fastening instrument with manually operated retraction apparatus
US746484631 Jan 200616 Dec 2008Ethicon Endo-Surgery, Inc.Surgical instrument having a removable battery
US746484831 Aug 200716 Dec 2008United States Surgical CorporationSurgical stapling apparatus
US746484931 Jan 200616 Dec 2008Ethicon Endo-Surgery, Inc.Electro-mechanical surgical instrument with closure system and anvil alignment components
US746774029 Sep 200623 Dec 2008Ethicon Endo-Surgery, Inc.Surgical stapling instruments having flexible channel and anvil features for adjustable staple heights
US747281529 Sep 20066 Jan 2009Ethicon Endo-Surgery, Inc.Surgical stapling instruments with collapsible features for controlling staple height
US748512410 Dec 20013 Feb 2009Ethicon Endo-Surgery, Inc.Surgical instrument having a fastener delivery mechanism
US749074928 Mar 200717 Feb 2009Ethicon Endo-Surgery, Inc.Surgical stapling and cutting instrument with manually retractable firing member
US750097928 Feb 200710 Mar 2009Ethicon Endo-Surgery, Inc.Surgical stapling device with multiple stacked actuator wedge cams for driving staple drivers
US750679129 Sep 200624 Mar 2009Ethicon Endo-Surgery, Inc.Surgical stapling instrument with mechanical mechanism for limiting maximum tissue compression
US75376022 Oct 200626 May 2009Power Medical Interventions, Inc.Expanding parallel jaw device for use with an electromechanical driver device
US754373127 Jun 20089 Jun 2009United States Surgical CorporationSurgical stapling apparatus
US754956422 Jun 200723 Jun 2009Ethicon Endo-Surgery, Inc.Surgical stapling instrument with an articulating end effector
US756860331 Jan 20064 Aug 2009Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with articulatable end effector
US757514423 Mar 200618 Aug 2009Ethicon Endo-Surgery, Inc.Surgical fastener and cutter with single cable actuator
US758817518 Jun 200715 Sep 2009Ethicon Endo-Surgery, Inc.Surgical stapling and cutting instrument with improved firing system
US758817618 Jun 200715 Sep 2009Ethicon Endo-Surgery, Inc.Surgical cutting instrument with improved closure system
US759722922 Jun 20076 Oct 2009Ethicon Endo-Surgery, Inc.End effector closure system for a surgical stapling instrument
US760415022 Jun 200720 Oct 2009Ethicon Endo-Surgery, Inc.Surgical stapling instrument with an anti-back up mechanism
US760415129 Jun 200720 Oct 2009Ethicon Endo-Surgery, Inc.Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US76075574 Nov 200527 Oct 2009Ethicon Endo-Surgery, Inc.Surgical stapling instruments structured for pump-assisted delivery of medical agents
US764484831 Jan 200612 Jan 2010Ethicon Endo-Surgery, Inc.Electronic lockouts and surgical instrument including same
US765831110 Jan 20089 Feb 2010Ethicon Endo-Surgery, Inc.Surgical stapling instrument with a geared return mechanism
US766564729 Sep 200623 Feb 2010Ethicon Endo-Surgery, Inc.Surgical cutting and stapling device with closure apparatus for limiting maximum tissue compression force
US766974631 Aug 20052 Mar 2010Ethicon Endo-Surgery, Inc.Staple cartridges for forming staples having differing formed staple heights
US766974729 Jun 20072 Mar 2010Ethicon Endo-Surgery, Inc.Washer for use with a surgical stapling instrument
US767378128 Feb 20079 Mar 2010Ethicon Endo-Surgery, Inc.Surgical stapling device with staple driver that supports multiple wire diameter staples
US767378229 Jun 20079 Mar 2010Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a releasable buttress material
US76737834 Nov 20059 Mar 2010Ethicon Endo-Surgery, Inc.Surgical stapling instruments structured for delivery of medical agents
US769548530 Nov 200113 Apr 2010Power Medical Interventions, LlcSurgical device
US772193110 Jan 200725 May 2010Ethicon Endo-Surgery, Inc.Prevention of cartridge reuse in a surgical instrument
US772193430 May 200725 May 2010Ethicon Endo-Surgery, Inc.Articulatable drive shaft arrangements for surgical cutting and fastening instruments
US772193610 Jan 200725 May 2010Ethicon Endo-Surgery, Inc.Interlock and surgical instrument including same
US773107218 Jun 20078 Jun 2010Ethicon Endo-Surgery, Inc.Surgical stapling and cutting instrument with improved anvil opening features
US773570329 Jun 200715 Jun 2010Ethicon Endo-Surgery, Inc.Re-loadable surgical stapling instrument
US773897110 Jan 200715 Jun 2010Ethicon Endo-Surgery, Inc.Post-sterilization programming of surgical instruments
US77401592 Aug 200622 Jun 2010Ethicon Endo-Surgery, Inc.Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US774396011 Jun 200329 Jun 2010Power Medical Interventions, LlcSurgical device
US775324522 Jun 200713 Jul 2010Ethicon Endo-Surgery, Inc.Surgical stapling instruments
US775390431 Jan 200613 Jul 2010Ethicon Endo-Surgery, Inc.Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US775861317 Jul 200620 Jul 2010Power Medical Interventions, LlcElectromechanical driver and remote surgical instrument attachment having computer assisted control capabilities
US776620913 Feb 20083 Aug 2010Ethicon Endo-Surgery, Inc.Surgical stapling instrument with improved firing trigger arrangement
US776621031 Jan 20063 Aug 2010Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with user feedback system
US777077531 Jan 200610 Aug 2010Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with adaptive user feedback
US779381214 Feb 200814 Sep 2010Ethicon Endo-Surgery, Inc.Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US779447529 Sep 200614 Sep 2010Ethicon Endo-Surgery, Inc.Surgical staples having compressible or crushable members for securing tissue therein and stapling instruments for deploying the same
US779838614 Feb 200821 Sep 2010Ethicon Endo-Surgery, Inc.Surgical instrument articulation joint cover
US78031514 Dec 200228 Sep 2010Power Medical Interventions, LlcSystem and method for calibrating a surgical instrument
US781069214 Feb 200812 Oct 2010Ethicon Endo-Surgery, Inc.Disposable loading unit with firing indicator
US781069330 May 200712 Oct 2010Ethicon Endo-Surgery, Inc.Surgical stapling and cutting instrument with articulatable end effector
US781929614 Feb 200826 Oct 2010Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with retractable firing systems
US781929714 Feb 200826 Oct 2010Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with reprocessible handle assembly
US781929814 Feb 200826 Oct 2010Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with control features operable with one hand
US783261219 Sep 200816 Nov 2010Ethicon Endo-Surgery, Inc.Lockout arrangement for a surgical stapler
US784553731 Jan 20067 Dec 2010Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US784553826 May 20097 Dec 2010Power Medical Interventions, LlcExpanding parallel jaw device for use with an electromechanical driver device
US785718514 Feb 200828 Dec 2010Ethicon Endo-Surgery, Inc.Disposable loading unit for surgical stapling apparatus
US785718619 Sep 200828 Dec 2010Ethicon Endo-Surgery, Inc.Surgical stapler having an intermediate closing position
US786190614 Feb 20084 Jan 2011Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with articulatable components
US786190712 Nov 20084 Jan 2011Tyco Healthcare Group LpSurgical stapling apparatus
US786652714 Feb 200811 Jan 2011Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with interlockable firing system
US789153312 Nov 200822 Feb 2011Tyco Healthcare Group LpSurgical stapling apparatus
US790080510 Jan 20078 Mar 2011Ethicon Endo-Surgery, Inc.Surgical instrument with enhanced battery performance
US790538119 Sep 200815 Mar 2011Ethicon Endo-Surgery, Inc.Surgical stapling instrument with cutting member arrangement
US790589323 Oct 200715 Mar 2011Ethicon Endo-Surgery, Inc.Method for delivering a plurality of fasteners
US791389114 Feb 200829 Mar 2011Ethicon Endo-Surgery, Inc.Disposable loading unit with user feedback features and surgical instrument for use therewith
US791823022 Sep 20085 Apr 2011Tyco Healthcare Group LpSurgical device having a rotatable jaw portion
US793463028 Feb 20083 May 2011Ethicon Endo-Surgery, Inc.Staple cartridges for forming staples having differing formed staple heights
US795107115 Mar 200231 May 2011Tyco Healthcare Group LpMoisture-detecting shaft for use with an electro-mechanical surgical device
US795468210 Jan 20077 Jun 2011Ethicon Endo-Surgery, Inc.Surgical instrument with elements to communicate between control unit and end effector
US7954683 *14 Dec 20077 Jun 2011Cardica, Inc.Feeder belt with integrated surgical staples
US795468410 Jan 20087 Jun 2011Ehticon Endo-Surgery, Inc.Surgical stapling instrument with a firing member return mechanism
US795468619 Sep 20087 Jun 2011Ethicon Endo-Surgery, Inc.Surgical stapler with apparatus for adjusting staple height
US795905115 Feb 200814 Jun 2011Ethicon Endo-Surgery, Inc.Closure systems for a surgical cutting and stapling instrument
US796343226 May 201021 Jun 2011Cardica, Inc.Driverless surgical stapler
US796343322 Sep 200821 Jun 2011Tyco Healthcare Group LpSurgical device having multiple drivers
US796679929 Jun 200728 Jun 2011Ethicon Endo-Surgery, Inc.Method of manufacturing staples
US798044315 Feb 200819 Jul 2011Ethicon Endo-Surgery, Inc.End effectors for a surgical cutting and stapling instrument
US7988026 *6 Sep 20072 Aug 2011Cardica, Inc.Endocutter with staple feed
US799275815 Feb 20119 Aug 2011Tyco Healthcare Group LpSurgical device having a rotatable jaw portion
US80168558 Mar 200213 Sep 2011Tyco Healthcare Group LpSurgical device
US801685819 Jul 201013 Sep 2011Tyco Healthcare Group IpElectromechanical driver and remote surgical instrument attachment having computer assisted control capabilities
US802074315 Oct 200820 Sep 2011Ethicon Endo-Surgery, Inc.Powered articulatable surgical cutting and fastening instrument with flexible drive member
US802137330 Mar 201020 Sep 2011Tyco Healthcare Group LpSurgical device
US802519923 Feb 200427 Sep 2011Tyco Healthcare Group LpSurgical cutting and stapling device
US805678614 May 201015 Nov 2011Tyco Healthcare Group LpSurgical device
US805678728 Mar 200715 Nov 2011Ethicon Endo-Surgery, Inc.Surgical stapling and cutting instrument with travel-indicating retraction member
US80567916 Dec 201015 Nov 2011Tyco Healthcare Group LpExpanding parallel jaw device for use with an electromechanical driver device
US806616723 Mar 200929 Nov 2011Ethicon Endo-Surgery, Inc.Circular surgical stapling instrument with anvil locking system
US80700369 Mar 20096 Dec 2011Cardica, IncTrue multi-fire surgical stapler configured to fire staples of different sizes
US81134109 Feb 201114 Feb 2012Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with control features
US81182083 Oct 201121 Feb 2012Tyco Healthcare Group LpExpanding parallel jaw device for use with an electromechanical driver device
US814176219 Nov 200927 Mar 2012Ethicon Endo-Surgery, Inc.Surgical stapler comprising a staple pocket
US815714531 May 200717 Apr 2012Ethicon Endo-Surgery, Inc.Pneumatically powered surgical cutting and fastening instrument with electrical feedback
US81571534 Feb 201117 Apr 2012Ethicon Endo-Surgery, Inc.Surgical instrument with force-feedback capabilities
US816197723 Sep 200824 Apr 2012Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US816718518 Nov 20101 May 2012Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US81721244 Feb 20118 May 2012Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US818655531 Jan 200629 May 2012Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with mechanical closure system
US818655918 Jan 201229 May 2012Tyco Healthcare Group LpExpanding parallel jaw device for use with an electromechanical driver device
US818656016 Oct 200929 May 2012Ethicon Endo-Surgery, Inc.Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US819679513 Aug 201012 Jun 2012Ethicon Endo-Surgery, Inc.Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US81967963 Feb 201112 Jun 2012Ethicon Endo-Surgery, Inc.Shaft based rotary drive system for surgical instruments
US82057813 Jun 201126 Jun 2012Ethicon Endo-Surgery, Inc.Surgical stapler with apparatus for adjusting staple height
US821553129 Jan 201010 Jul 2012Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a medical substance dispenser
US822069029 Sep 200617 Jul 2012Ethicon Endo-Surgery, Inc.Connected surgical staples and stapling instruments for deploying the same
US823601023 Mar 20067 Aug 2012Ethicon Endo-Surgery, Inc.Surgical fastener and cutter with mimicking end effector
US826730030 Dec 200918 Sep 2012Ethicon Endo-Surgery, Inc.Dampening device for endoscopic surgical stapler
US827255125 Apr 201125 Sep 2012Cardica, Inc.Method of utilizing a driverless surgical stapler
US827255420 Apr 201125 Sep 2012Tyco Healthcare Group LpSurgical device having multiple drivers
US82921552 Jun 201123 Oct 2012Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with tactile position feedback
US830804022 Apr 201013 Nov 2012Ethicon Endo-Surgery, Inc.Surgical stapling instrument with an articulatable end effector
US831707028 Feb 200727 Nov 2012Ethicon Endo-Surgery, Inc.Surgical stapling devices that produce formed staples having different lengths
US832245527 Jun 20064 Dec 2012Ethicon Endo-Surgery, Inc.Manually driven surgical cutting and fastening instrument
US83225892 Jul 20104 Dec 2012Ethicon Endo-Surgery, Inc.Surgical stapling instruments
US83333133 Jun 201118 Dec 2012Ethicon Endo-Surgery, Inc.Surgical stapling instrument with a firing member return mechanism
US834237919 Apr 20111 Jan 2013Covidien LpSurgical device having multiple drivers
US834812919 Nov 20098 Jan 2013Ethicon Endo-Surgery, Inc.Surgical stapler having a closure mechanism
US834813129 Sep 20068 Jan 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with mechanical indicator to show levels of tissue compression
US83534371 Feb 201015 Jan 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with a geared return mechanism
US835343819 Nov 200915 Jan 2013Ethicon Endo-Surgery, Inc.Circular stapler introducer with rigid cap assembly configured for easy removal
US835343919 Nov 200915 Jan 2013Ethicon Endo-Surgery, Inc.Circular stapler introducer with radially-openable distal end portion
US835344017 Jun 201115 Jan 2013Covidien LpSurgical device having a rotatable jaw portion
US83602969 Sep 201029 Jan 2013Ethicon Endo-Surgery, Inc.Surgical stapling head assembly with firing lockout for a surgical stapler
US836029729 Sep 200629 Jan 2013Ethicon Endo-Surgery, Inc.Surgical cutting and stapling instrument with self adjusting anvil
US836597629 Sep 20065 Feb 2013Ethicon Endo-Surgery, Inc.Surgical staples having dissolvable, bioabsorbable or biofragmentable portions and stapling instruments for deploying the same
US837149115 Feb 200812 Feb 2013Ethicon Endo-Surgery, Inc.Surgical end effector having buttress retention features
US839351430 Sep 201012 Mar 2013Ethicon Endo-Surgery, Inc.Selectively orientable implantable fastener cartridge
US83979715 Feb 200919 Mar 2013Ethicon Endo-Surgery, Inc.Sterilizable surgical instrument
US840395631 Oct 200826 Mar 2013Cardica, Inc.Multiple-use surgical stapler
US840843922 Apr 20102 Apr 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with an articulatable end effector
US841457719 Nov 20099 Apr 2013Ethicon Endo-Surgery, Inc.Surgical instruments and components for use in sterile environments
US841890826 Oct 201116 Apr 2013Covidien LpStaple feeding and forming apparatus
US84247404 Nov 201023 Apr 2013Ethicon Endo-Surgery, Inc.Surgical instrument having a directional switching mechanism
US843924529 Jul 201114 May 2013Cardica, Inc.True multi-fire endocutter
US843924620 Jul 201014 May 2013Cardica, Inc.Surgical stapler with cartridge-adjustable clamp gap
US844403629 Jul 201021 May 2013Ethicon Endo-Surgery, Inc.Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US845390729 Jul 20104 Jun 2013Ethicon Endo-Surgery, Inc.Motor driven surgical fastener device with cutting member reversing mechanism
US845390812 Aug 20104 Jun 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with improved firing trigger arrangement
US845391429 May 20124 Jun 2013Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting instrument with electric actuator directional control assembly
US845952010 Jan 200711 Jun 2013Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US845952326 Apr 201211 Jun 2013Covidien LpExpanding parallel jaw device for use with an electromechanical driver device
US845952514 Feb 200811 Jun 2013Ethicon Endo-Sugery, Inc.Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US846492328 Jan 201018 Jun 2013Ethicon Endo-Surgery, Inc.Surgical stapling devices for forming staples with different formed heights
US847467730 Sep 20102 Jul 2013Ethicon Endo-Surgery, Inc.Fastener system comprising a retention matrix and a cover
US84799699 Feb 20129 Jul 2013Ethicon Endo-Surgery, Inc.Drive interface for operably coupling a manipulatable surgical tool to a robot
US848541229 Sep 200616 Jul 2013Ethicon Endo-Surgery, Inc.Surgical staples having attached drivers and stapling instruments for deploying the same
US84854135 Feb 200916 Jul 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument comprising an articulation joint
US849999312 Jun 20126 Aug 2013Ethicon Endo-Surgery, Inc.Surgical staple cartridge
US851235911 Aug 201120 Aug 2013Covidien LpSurgical device
US85172395 Feb 200927 Aug 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument comprising a magnetic element driver
US851724314 Feb 201127 Aug 2013Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US85172449 Jul 201227 Aug 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a medical substance dispenser
US851807425 Aug 201127 Aug 2013Covidien LpSurgical device
US852960030 Sep 201010 Sep 2013Ethicon Endo-Surgery, Inc.Fastener system comprising a retention matrix
US85345281 Mar 201117 Sep 2013Ethicon Endo-Surgery, Inc.Surgical instrument having a multiple rate directional switching mechanism
US854012811 Jan 200724 Sep 2013Ethicon Endo-Surgery, Inc.Surgical stapling device with a curved end effector
US854012926 Jul 201024 Sep 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with improved firing trigger arrangement
US85401308 Feb 201124 Sep 2013Ethicon Endo-Surgery, Inc.Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US854013317 Mar 201024 Sep 2013Ethicon Endo-Surgery, Inc.Staple cartridge
US85407333 Oct 201124 Sep 2013Covidien LpSurgical method and device having a first jaw and a second jaw in opposed correspondence for clamping, cutting, and stapling tissue
US856187028 Feb 201122 Oct 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument
US856765628 Mar 201129 Oct 2013Ethicon Endo-Surgery, Inc.Staple cartridges for forming staples having differing formed staple heights
US85734619 Feb 20125 Nov 2013Ethicon Endo-Surgery, Inc.Surgical stapling instruments with cam-driven staple deployment arrangements
US85734659 Feb 20125 Nov 2013Ethicon Endo-Surgery, Inc.Robotically-controlled surgical end effector system with rotary actuated closure systems
US858491914 Feb 200819 Nov 2013Ethicon Endo-Sugery, Inc.Surgical stapling apparatus with load-sensitive firing mechanism
US859076229 Jun 200726 Nov 2013Ethicon Endo-Surgery, Inc.Staple cartridge cavity configurations
US86022871 Jun 201210 Dec 2013Ethicon Endo-Surgery, Inc.Motor driven surgical cutting instrument
US86022889 Feb 201210 Dec 2013Ethicon Endo-Surgery. Inc.Robotically-controlled motorized surgical end effector system with rotary actuated closure systems having variable actuation speeds
US860804510 Oct 200817 Dec 2013Ethicon Endo-Sugery, Inc.Powered surgical cutting and stapling apparatus with manually retractable firing system
US86080467 Jan 201017 Dec 2013Ethicon Endo-Surgery, Inc.Test device for a surgical tool
US86164319 Feb 201231 Dec 2013Ethicon Endo-Surgery, Inc.Shiftable drive interface for robotically-controlled surgical tool
US862227414 Feb 20087 Jan 2014Ethicon Endo-Surgery, Inc.Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US862227519 Nov 20097 Jan 2014Ethicon Endo-Surgery, Inc.Circular stapler introducer with rigid distal end portion
US862846725 Apr 201114 Jan 2014Covidien LpMoisture-detecting shaft for use with an electro-mechanical surgical device
US863198717 May 201021 Jan 2014Ethicon Endo-Surgery, Inc.Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US863199025 Apr 201121 Jan 2014Cardica, Inc.Staple trap for surgical stapler
US863199221 Oct 200921 Jan 2014Cardica, Inc.Feeder belt with padded staples for true multi-fire surgical stapler
US86325353 Jun 201021 Jan 2014Ethicon Endo-Surgery, Inc.Interlock and surgical instrument including same
US86361873 Feb 201128 Jan 2014Ethicon Endo-Surgery, Inc.Surgical stapling systems that produce formed staples having different lengths
US863618919 Apr 201128 Jan 2014Cardica, Inc.Active wedge for surgical stapler
US863673614 Feb 200828 Jan 2014Ethicon Endo-Surgery, Inc.Motorized surgical cutting and fastening instrument
US865212010 Jan 200718 Feb 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and sensor transponders
US865717414 Feb 200825 Feb 2014Ethicon Endo-Surgery, Inc.Motorized surgical cutting and fastening instrument having handle based power source
US86571789 Jan 201325 Feb 2014Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
DE3148619C2 *17 Apr 198119 Sep 1985United States Surgical Corp., Norwalk, Conn., UsTitle not available
DE3334858A1 *27 Sep 198329 Mar 1984Senco ProductsChirurgisches klammerinstrument
EP0130784A2 *27 Jun 19849 Jan 1985Minnesota Mining And Manufacturing CompanyBone stapler
EP0872213A222 Jul 199421 Oct 1998United States Surgical CorporationApparatus with anvil for applying surgical fasteners
EP1238634A222 Jul 199411 Sep 2002United States Surgical CorporationSelf contained gas powered surgical apparatus
EP2182861A2 *5 Sep 200812 May 2010Cardica, Inc.Endocutter with staple feed
EP2586379A1 *26 Sep 20121 May 2013Covidien LPStaple feeding and forming apparatus
WO1980000230A1 *17 Jul 197921 Feb 1980United States Surgical CorpManually powered surgical stapling instrument
Classifications
U.S. Classification227/19, 227/136
International ClassificationA61B17/068, A61B17/00
Cooperative ClassificationA61B17/0684, A61B2017/00544
European ClassificationA61B17/068B2