Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3708343 A
Publication typeGrant
Publication date2 Jan 1973
Filing date18 Jan 1971
Priority date18 Jan 1971
Also published asDE2201732A1
Publication numberUS 3708343 A, US 3708343A, US-A-3708343, US3708343 A, US3708343A
InventorsG Walsh
Original AssigneeTimex Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Primary cell case
US 3708343 A
Abstract
A primary cell of the button type having a case comprising a bottom can including a top open end, a top cap having a descending flange and a skirt at the end thereof and an annular grommet. The skirt portion of the top cap is adhered to the grommet with an adhesive, such as an epoxy resin, and the open end of the bottom cap is swaged against the grommet to complete the seal. An auxiliary cap having downwardly extending end portions is mounted over the top cap.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1191 Walsh Jan. 2, 1973 1541 PRIMARY CELL CASE 3,418,172 12/1968 Fletcher ..l36/l 11 Inventor: Gerrard Walsh, Durham y, 3,340,099 9/1967 Sherfey ..136/l33 Primary ExaminerDonald L. Walton [73] Assignee: Timex Corporation, Waterbury, A n y-Richard Joel Conn. [22] Filed: Jan. 18, 1971 [57] 11 ABSTRACT A primary ce of the button type having a case com- [211 App! 107388 prising a bottom can including a top open end, a top cap having a descending flange and a skirt at the end 52 US. Cl ..136/l33, 136/169 thereof and an annular grommet The Skirt Portion of 51 1111.0. ..H0lm 1/02 the top cap is adhered to the grommet with adhe- [58] Field 61 Search ..136/133 166 169 111 Such as ePXY resin and end bottom cap is swaged against the grommet to [56] References Cited complete the seal. An auxiliary cap having downwardly extending end portions is mounted over UNITED STATES PATENTS the p p- 2,536,696 l/195l Ruben 4.136/111 5 Claims, 3 Drawing Figures PATENTEDJAN 2:915 3. 708,343

FIG. 2

. INVENTOR. F I 3 GFRRARD W415 PRIMARY CELL CASE BACKGROUND OF THE INVENTION The present invention relates to primary cells and more particularly to a construction for the sealing of button type cells:

The small primary energy cells used, for example, in watches and hearing aids, are generally called button cells because of their shape and small size. For example, one type of such cell is a round cell having a height of 0.21 inch and a diameter of 0.45 inch. These cells are generally alkaline primary cells. A typical cell of this type uses a zinc amalgam anode, a mercuric oxide cathode, and an alkaline electrolyte such as potassium hydroxide.

The potassium hydroxide is a strongly corrosive liquid which has a tendency to creep, that is, it will climb up the sides of an enclosing vessel. The alkaline electrolyte, and the gases produced in the cell, have presented serious problems in the sealing of cells. The alkaline electrolyte, if it should leak from the cell, may not only ruin the cell itself but also cause damage to the possibly delicate and expensive device in which the cell is used. Similarly, the gases which might escape from the cell may be corrosive to the device. This problem of leakage of the cell is particularly serious in the case of wrist watches. The wrist watch uses many parts which would be adversely affected by the corrosion occasioned by the leakage of an energy cell within the watch case.

There have been various solutions proposed for the problem of sealing small button type battery cells. For example, it has been proposed that a valve system be incorporated in the energy cell to permit the escape of gas or that an absorbent material be placed in the path of possible leakage to absorb and liquid which may pass the seal. Such devices have not proven entirely satisfactory in the sealing of cells and have subtracted from the amount of active material which may be incorporated in the cell. If a seal were found which would be truly effective in sealing the energy cell against gas and alkaline leakage and which would not add appreciably to the size of the cell, then it would be possible to use a higher weight of electrolyte in the cell, or possibly greater quantities of anode or cathode material, thereby achieving a greater cell capacity for the same size of cell.

It is the objective of the present invention to provide a button type primary energy cell which is effectively and completely sealed against leakage.

It is further objective of the present invention to provide such an energy cell in which the sealing does not substantially subtract from the quantity of active material which may be incorporated within the cell.

It is a further objective of the present invention to provide a sealing construction in such a cell which may be manufactured at relatively low cost.

SUMMARY OF THE INVENTION In accordance with the present invention, an energy cell of the button type is provided. The cell includes a first can-like portion which is open at one end. A top cap is also provided, the top cap being substantially convex. A cathode is positioned within the bottom can member and an anode material and an electrolyte are positioned within the cap. A plurality of suitable separators are positioned between the anode and cathode prior to assembly of the energy cell.

The seal utilizes a flexible grommet. The grommet has a descending portion which fits within the bottom can member. A shoulder on the inside of the grommet supports a skirt portion of the top cap. Prior to sealing of the battery, an adhesive is placed on the skirt of the top cap and the grommet and the top cap are adhered together. Each sub-assembly, consisting of the top cap and the grommet, is individually tested for leakproofness prior to assembly of the cell. The top extending side wall of the button case is then swaged over to compress the grommet. A plastic auxiliary top cap is later assembled over to top cap and bonded thereto. The added cap provides further protection against cell leakage and reinforces the cell seal.

Other objectives of the present invention will be apparent from the following detailed description taken in conjunction with the accompanying drawings.

DESCRIPTION OF THE DRAWINGS FIG. 1 is a side cross-sectional view of the battery of the present invention after assembly;

FIG. 2 is a side cross-sectional view of the anode assembly portion of that battery prior to assembly; and

FIG. 3 is a side cross-sectional view of the cathode assembly portion of the battery of FIG. 1 prior to assembly.

DETAILED DESCRIPTION As shown is FIG. 1, the battery 9 of the present invention includes a top cap 10 which is formed from a conductive material, for example, of a duplex stainless steel-phosphor bronze material. The top cap provides one terminal of the cell, the other terminal being provided by the bottom can 11. An annular grommet 12 is positioned between top cap 10 and bottom can 11 and electrically insulates the two terminals of the cell. The top cap 10 contains the anode material 13, which may, for example, be a zinc amalgam which is compressed within the top cap. Prior to final assembly of the energy cell, a suitable alkaline electrolyte, such as potassium hydroxide or sodium hydroxide is added to the zinc amalgam anode.

The bottom can 11 contains a depolarizing cathode material 15 such as a mixture of mercuric oxide with a small percentage of graphite. One or more barrier plates 31, for example, of suitable plastic microporous membrane material, and plastic separators 14 are positioned between the anode and the cathode.

As shown in FIG. 2, which is at the sub-assembly stage with the top cap 10 adhered to the grommet 12, the top cap 10 includes, as an integral portion, a descending flange portion 18 forming at its end a skirt 19. An adhesive 20 is placed on the skirt 19 and the top cap 10 positioned against grommet 12. A suitable adhesive 20 is a mixute of epoxy and polysulfide. The skirt portion 19 is held against the grommet for an hour under pressure, for example, of 20 grams. Each assembly is, after 24 hours, individually tested for its leakproofness with a pressure of 20 lbs. per square inch for 10 seconds.

If the assembly has proven to be leakproof, it is inverted and the zinc amalgam anode material is compressed within the top cap 10. The electrolyte is then grommet itself which is under compression. The third added and the top cap 10 is joined, for example, in a swaged to compress the grommet between the canfixture, with the bottom can 11. At that moment in the like member and the cap to seal the cell and said assembly operation, the grommet is still as shown in cell further including an auxiliary top cap having a FIG. 2, with the flange portion 17 of the grommet still central aperture and downwardly extending end standing erect. 5 portions, said auxiliary top cap being bonded to The final assembly consists of swaging over the free the cap and the upper free wall portion of the canstandirig wall 2 of the bottom can 1 1 to form a tight seal like member to provide a further seal. against the grommet. The swage pressure may be about 2. An energy cell in accordance with claim 1 1.75 tons. The grommet is held under pressure after the wherein: swaging operation is completed by the swaged-over the adhesive joining the skirt portion to the shoulder wall portion 21. of the grommet is an epoxy resin.

In effect, there are three separate seals for the cell, 6 energy m accordance with claim all of which effectively prevent gas and liquid leakage. wherem: The first seal is the adhesive between the skirt 18 and the cap Includes a central Pmmdmg Porno, an

the shoulder of the grommet 16. The second seal is the termediate Should?! porfkm f a peflpheml downwardly extending skirt, said protruding portion being designed to extend through the aperture in the auxiliary top for contact purposes, and, the means separating the anode material from the cathode material comprises a first plurality of separators plates positioned within grommet opening and a second plurality of separators positioned within the can and separating the base of the grom- 'met and the first plurality of separators from the seal is the auxiliary cap 22 which is assembled over the top cap 10 and joined to the bottom can 11 as well.

As mentioned above, an auxiliary cap 22 of a plastic material is later assembled over the top cap 10 to lengthen the leakage path and to serve as an additional seal. The auxiliary cap 22 includes a central aperture 24 extending therethrough and downwardly extending end portions 23 of a predetermined shaped configuration which are bonded to the bottom can 11. The cap 25 cathode material 22 is pretreated, for example, in a solution of sulphuric 5 energy can m accordance m 1 w erem:

acid and potassium dichromate and a coating of epoxy resin is applied to both the auxiliary cap 22 and the cell cap 10. The auxiliary cap 22 is then pressed onto the top cap 10 and bottom can and allowed to cure at ambient temperature.

It is to be understood that the above-described arrangements are merely illustrative examples of the application of the principles of the invention. Numerous other arrangements may be readily devised by those skilled in the art which will embody the principles of the invention and fall within the spirit.

I claim:

l. A button type of energy cell comprising a case containing active anode and cathode materials, said case comprising:

a can-like member having an opening to receive the cathode material,

a cap to receive the anode material having a skirt portion which is positioned within the opening of the can-like member,

a flexible sealing annular grommet having in crosssection a flange portion forming a shoulder and an opening extending therethrough,

an adhesive adhering the skirt portion to the shoulder of the grommet, and,

means for separating the anode material from the cathode material,

wherein the free wall of the can-like member is g the anode material comprises a zinc amalgam having a alkaline electrolyte added thereto and,

the cathode material comprises a mixture of mercuric oxide and graphite.

5. The method of sealing an energy cell, the cell comprising a case containing active anode and cathode materials, said case comprising a can-like member hav- 3 5 ing a bottom and a cylindrical side wall, and a top opening, a cap having a skirt portion which is positioned within the opening, a flexible sealing annular grommet, said method comprising the steps of:

a. adhering the skirt of the cap to the grommet,

b. testing the adhesion of the skirt to the grommet for leakproofness,

c. assembling the active material within the cap and the can-like member,

d. positioning the grommet within the opening of the can-like member and separator means between the active material in the cap and the can-like member,

e. swaging the free wall of the can-like member over the grommet to place the grommet under compression, and

f. bonding an auxiliary top cap over the cap and upper portion of the can-like member to provide an additional seal.

UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3 703 4-5 Dated January 2 c 1973 Inventor(s) GERRARD WALSH It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shownbelow:

On the cover sheet [75] "Durham County, N.C.

should read County Durham, England Signed and sealed this 1st day of May 1973.

(SEAL) Attest:

EDWARD M.FLETCHER,JR. ROBERT GOTTSCHALK Attesting Officer I Commissioner of Patents FORM PO-105O (10-59) USCOMM-DC 603764 69 w u.s. sovsmmzm' PRINTING OFFICE: I969 o-ass-aa4.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2536696 *28 Nov 19452 Jan 1951Ruben SamuelPrimary cell
US3340099 *15 Jan 19655 Sep 1967Joseph M SherfeyBonded elastomeric seal for electrochemical cells
US3418172 *29 Jun 196524 Dec 1968Electric Storage Battery CoMethod of manufacturing a small, button-type alkaline cell having a loose, powdered zinc anode
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3904438 *8 Apr 19749 Sep 1975Mallory Batteries LtdClosure for electrochemical cells
US3935026 *14 Apr 197527 Jan 1976Timex CorporationSilver oxide and sulfur or silver sulfide
US3939007 *16 Jan 197417 Feb 1976British Railways BoardSodium sulphur cells
US4060671 *19 Mar 197629 Nov 1977Medtronic, Inc.Battery seal for encapsulatable cell
US4256815 *21 Jan 198017 Mar 1981Union Carbide CorporationSeals for electrochemical cells
US4725515 *7 May 198716 Feb 1988Eveready Battery CompanyOpen top, radial flange, u-shaped gasket extending over flange; leak resistant
US5432027 *2 Mar 199411 Jul 1995Micron Communications, Inc.Button-type battery having bendable construction, and angled button-type battery
US5486431 *2 Mar 199423 Jan 1996Micron Communications, Inc.Method of producing button-type batteries and spring-biased concave button-type battery
US5494495 *11 Oct 199427 Feb 1996Micron Communications, Inc.Method of forming button-type batteries
US5547781 *2 Mar 199420 Aug 1996Micron Communications, Inc.Button-type battery with improved separator and gasket construction
US5580674 *11 Oct 19953 Dec 1996Micron Communication, Inc.Method of producing button-type batteries and spring-biased concave button-type battery
US5603157 *2 Mar 199418 Feb 1997Micron Communications, Inc.Methods of producing button-type batteries and a plurality of battery terminal housing members
US5642562 *6 Jun 19961 Jul 1997Micron Communications, Inc.Method of forming button-type battery lithium electrodes with housing member
US5652070 *18 Jan 199629 Jul 1997Micron Communications, Inc.Thin profile battery
US5654110 *24 Jun 19965 Aug 1997Micron Communications, Inc.Thin profile batteries and methods of forming the same
US5663014 *4 Jun 19962 Sep 1997Micron Communications, Inc.Thin profile battery with improved separator and gasket construction
US5665489 *22 Nov 19959 Sep 1997Micron Communications, Inc.Thin profile batteries with solid electrolyte
US5724720 *23 Oct 199610 Mar 1998Micron Communications, Inc.Methods of forming lithium electrodes
US5730761 *24 Oct 199624 Mar 1998Micron Communications, Inc.Methods of producing thin profile batteries and a plurality of battery terminal housing members
US5789104 *12 Sep 19974 Aug 1998Micron Communications, Inc.Button-type battery with improved separator and gasket construction
US5800865 *12 Sep 19971 Sep 1998Micron Communications, Inc.Thin profile battery with improved separator and gasket construction
US5800943 *20 Jun 19971 Sep 1998Micron Communications, Inc.Fluid tight seal
US5800944 *12 Sep 19971 Sep 1998Micron Communications, Inc.Thin profile battery with improved separator and gasket construction
US5807644 *26 Feb 199715 Sep 1998Micron Communications, Inc.Thin profile battery
US5843596 *11 Oct 19961 Dec 1998Micron Communications, Inc.Methods of forming button type batteries and to button type battery insulating and sealing gaskets
US5849044 *2 Jul 199615 Dec 1998Micron Communications, Inc.Method of forming thin profile batteries
US5851244 *3 Jul 199722 Dec 1998Micron Communications, Inc.methods of forming thin profile batteries and methods of providing sealing gaskets between battery terminal housing members
US5866277 *3 Jun 19972 Feb 1999Micron Communications, Inc.Button type battery with improved separator and gasket construction
US5893207 *10 Jul 199713 Apr 1999Micron Communications, Inc.Method of forming a thin-profile battery
US5919274 *15 Jun 19986 Jul 1999Micron Communications, Inc.Method of forming a thin profile battery
US5952121 *9 Jun 199814 Sep 1999Micron Communications, Inc.Button-type battery with improved separator and gasket construction
US6027829 *4 Mar 199822 Feb 2000Micron Technology, Inc.Insulative sealing gaskets and a thin profile battery
US648905419 Apr 20013 Dec 2002Zinc Matrix Power, Inc.Battery case with edge seal
US20120244409 *7 May 201227 Sep 2012Victoria Link LimitedBattery safety systems, methods and compositions
DE102010033679A16 Aug 20109 Feb 2012Peter BarthElectrical energy storage device for e.g. clock, has rechargeable storage medium provided in housing, where antenna for wireless energy receiving unit is provided in housing and formed as induction coil
Classifications
U.S. Classification429/144, 429/185, 429/162
International ClassificationH01M2/02, H01M2/04
Cooperative ClassificationH01M2/0222, Y02E60/12, H01M2/04
European ClassificationH01M2/02B7B, H01M2/04
Legal Events
DateCodeEventDescription
9 Dec 1983AS02Assignment of assignor's interest
Owner name: RAYOVAC CORPORATION, 101 EAST WASHINGTON AVE., MAD
Effective date: 19831115
Owner name: TIMEX CORPORATION
9 Dec 1983ASAssignment
Owner name: RAYOVAC CORPORATION, 101 EAST WASHINGTON AVE., MAD
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:TIMEX CORPORATION;REEL/FRAME:004198/0270
Effective date: 19831115
28 Sep 1983ASAssignment
Owner name: CHASE MANHATTAN BANK, N.A., THE
Free format text: SECURITY INTEREST;ASSIGNORS:TIMEX CORPORATION, A DE CORP.;TIMEX COMPUTERS LTD., A DE CORP.;TIMEX CLOCK COMPANY, A DE CORP.;AND OTHERS;REEL/FRAME:004181/0596
Effective date: 19830331