US3680183A - Machines for making metal fibril compacts - Google Patents

Machines for making metal fibril compacts Download PDF

Info

Publication number
US3680183A
US3680183A US125801A US3680183DA US3680183A US 3680183 A US3680183 A US 3680183A US 125801 A US125801 A US 125801A US 3680183D A US3680183D A US 3680183DA US 3680183 A US3680183 A US 3680183A
Authority
US
United States
Prior art keywords
fibrils
mat
compacts
metal
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US125801A
Inventor
Bertil J Sundberg
Andreas Luksch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pall Filtration and Separations Group Inc
Original Assignee
Brunswick Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brunswick Corp filed Critical Brunswick Corp
Application granted granted Critical
Publication of US3680183A publication Critical patent/US3680183A/en
Assigned to MEMTEC NORTH AMERICA CORP., 250 LEXINGTON AVENUE, BUFFALO GROVE, ILLINOIS 60089, A DE CORP. reassignment MEMTEC NORTH AMERICA CORP., 250 LEXINGTON AVENUE, BUFFALO GROVE, ILLINOIS 60089, A DE CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: BRUNSWICK CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P17/00Metal-working operations, not covered by a single other subclass or another group in this subclass
    • B23P17/04Metal-working operations, not covered by a single other subclass or another group in this subclass characterised by the nature of the material involved or the kind of product independently of its shape
    • B23P17/06Making steel wool or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/111Making filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/13Supported filter elements
    • B01D29/15Supported filter elements arranged for inward flow filtration
    • B01D29/21Supported filter elements arranged for inward flow filtration with corrugated, folded or wound sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/002Manufacture of articles essentially made from metallic fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/14Shredding metal or metal wool article making
    • Y10T29/147Metal wool bundling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/496Multiperforated metal article making
    • Y10T29/49604Filter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49801Shaping fiber or fibered material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

Method and Product: Compacts composed of fibrils of tough, recalcitrant metals such as stainless steel; the density of the compacts being about 30 to 85 percent of the density of the metal of which the ''''fibrils'''' are composed. The fibrils range in transverse dimension from about 0.0005 to 0.005 inch, have an area less than that of a 0.002 inch circle, are of uniform length, and are made by shearing off narrow width pieces from the end of a rolled strip of parent metal. Individual fibrils have the two flat rolled faces of the parent strip and two sheared faces the width of one of the sheared faces being wider than the other as a result of shearing, so that the cross section of the fibril ranges from roughly triangular to squashed four-sided configuration with the two rolled faces converging toward the narrower of the sheared faces. Compacts are made by separating the fibrils and air lifting them against a traveling screen through which loose extraneous burrs, chips and slivers are substantially removed, thereby leaving a mat of fibrils substantially free from degraded particles which might otherwise contaminate the mat and migrate through it. The mat has excellent green strength and is compressed through several stages preferably with intermediate annealing until the densities are obtained. Compacts of varying densities throughout the thickness of the compact may be prepared. The compacts composed of the compressed mat (or layers of mat) may be supported on exterior surfaces by woven or reticulated metal support members. Extremely recalcitrant metals such as hard-to-work Type 347 Stainless Steel Alloy and similar difficulty machinable metals may be utilized for making the original fibrils. The finished compacts are useful for sophisticated filtering and the like applications and for transpiration cooled surfaces.

Description

United States Sundberg et a1.
atet
[451 Aug. 1, 1972 [54] MACHINES FOR MAKING METAL FIBRIL COMPACTS [72] Inventors: Berti] J. Sundberg, Minneapolis, Minn.; Andreas Luksch, deceased, late of Minneapolis, Minn. by David R. Johnson, executor [73] Assignee: Brunswick Corporation [22] Filed: March 18, 1971 [21] Appl. No.: 125,801
Related US. Application Data [62] Division of Ser. No. 391,708, Aug. 24, 1964,
Pat. No. 3,505,038.
[52] US. Cl. ..29/4.5, 29/163.5 F, 29/419, 75/DIG. l [51] Int. Cl. ..B23p 17/06 [58] Field of Search.....29/l B, 4.5 A, 4.5 B, 163.5 F, 29/419; 75/DIG. l
Primary Examiner-Andrew R. Juhasz Assistant Examiner-Z. R. Bilinsky Attorney-Donald S. Olexa [5 7] ABSTRACT Method and Product: Compacts composed of fibrils of tough, recalcitrant metals such as stainless steel; the density of the compacts being about 30 to 85 percent of the density of the metal of which the fibrils are composed. The fibrils range in transverse dimension from about 0.0005 to 0.005 inch, have an area less than that of a 0.002 inch circle, are of uniform length, and are made by shearing off narrow width pieces from the end of a rolled strip of parent metal. Individual fibrils have the two flat rolled faces of the parent strip and two sheared faces the width of one of the sheared faces being wider than the other as a result of shearing, so that the cross section of the fibril ranges from roughly triangular to squashed four-sided configuration with the two rolled faces converging toward the narrower of the sheared faces. Compacts are made by separating the fibrils and air lifting them against a traveling screen through which loose extraneous burrs, chips and slivers are substantially removed, thereby leaving a mat of fibrils substantially free from degraded particles which might otherwise contaminate the mat and migrate through it. The mat has excellent green strength and is compressed through several stages preferably with intermediate annealing until the densities are obtained. Compacts of varying densities throughout the thickness of the compact may be prepared. The compacts composed of the compressed mat (or layers of mat) may be supported on exterior surfaces by woven or reticulated metal support members. Extremely recalcitrant metals such as hard-to-work Type 347 Stainless Steel Alloy 6 Claims, 30 Drawing Figures m 2 BEST AVAILABLE COPY 3,880,183 sum 41% M 1 I 'INVEN oR F E E 44 041 514: 4M5
PATENTEDAUQ H972 2; AVAILABLE coPY 3,680,183
suw 05UF13 INVENTORS 40025.99: Cams-cw BER r/ez I Sawaaszs 11v VENTORS imbksas ykscw Saver/4 J1 Samwaaw T 1 K .2 im? PATENYEIJAUE 1 I972 PATTEDRUG 11972 a AVAILABLE COPY 3 5 0 SHEET 13 [1F 13 Fl 5. E 5
INVENTORS 255 Aways/9s (u/(seal L T B52774 J'Suuoask MACHINES FOR MAKING METAL FIBRI'L COMPACTS This application is a divisional application of our copending application Ser. No. 391,708 filed Aug. 24, 1964, and now US. Pat. No. 3,505,038.
SUMMARY OF THE INVENTION The present invention relates to metal fibril compacts and to methods and machines for making such compacts.
The metal fibril compacts of the present invention are formed from novel metal fibrils which, if desired, may be made from metals having the highest available factors of mechanical strength and toughness and temperature and corrosion resistance. The compacts of the present invention may thus have, in turn, factors of mechanical strength and toughness and temperature and corrosion resistance far exceeding any fibrousmetal devices previously available.
It is an object of the invention to provide such fibrous-metal devices and the methods and machines for making them.
The invention provides fibril compacts having the qualities of improved mechanical strength, toughness, a wide range of pore sizes, controlled uniformity of pore size, graded pore size (when desired) a wide range of densities, very high temperature and corrosion resistance, improved freedom from degenerate particles and hence from particle migration, freedom from deterioration, and what is very important, lowered costs. It is an object of the invention to provide fibrous metal devices having the aforesaid advantages and to provide methods and machines for making them.
The present invention provides novel methods and machines for fabricating mats from a bulk quantity of novel loose metal fibrils wherein, in such methods, and the starting material, which is already substantially free from slivers, chips, burrs and the like degenerate small particles, is maintained clean as by re-cleaning and is then further processed in such a manner for mat formation that un-attached slivers, chips, and the like degenerate material will not be formed to any great extent during mat formation or if formed, will be substantially removed. The result is that small and unwanted particles are for practical purposes eliminated from the mat and from the final fibrous compact made therefrom, and uses of the complete compacts for sophisticated duties will not be impaired.
It is an object of the invention to provide the aforesaid methods and machines.
One of the features of the invention is the formation of a web or mat of metal fibrils having good green strength such that it may be handled without deterioration during processing for maintaining uniform density throughout the mat during processing and in the ultimate finished product.
The green strength of the compact is of much importance in producing commercially useful items inasmuch as the originally formed mat must remain homogeneous at least during the early stages of formation in order that the finished product shall reliably provide a uniform (or controlled) density and pore size. The importance of green strength will be appreciated when it is realized that the webs (or mats of the invention, when first made, may have a density in the range of about 1 or 2 percent and in the finished product may have a densityfrom 15 to 20 percent up to percent or even more.
It is an object of the invention to provide methods for making low density metal fibril mats under close conditions of control and handling having the aforesaid characteristics and to provide such mats.
It is another object of the invention to provide improved tubular and flat-formed fibrous metal compacts useful as filters, transpiration devices, fuel burners, structural members, and the like, and to provide methods and machines for making them.
Other objects of the invention are to provide improved disposable filters for oils,gases and the like, filter bodies having graded pore size and density of the filter elements, filters having diverse filter media, filters having combined woven wire and fibrous metal structures, filters of multi-layer fibrous-metal configuration, filters having extreme mechanical strength filters composed wholly of metal and disposable metal filters and to provide methods and machines for making such devices.
Other and further objects are those inherent in the invention herein illustrated, described and claimed and will be apparent as the description proceeds.
To the accomplishment of the foregoing and related ends, this invention then comprises the features hereinafter fully described and particularly pointed out in the claims, the following description setting forth in detail certain illustrative embodiments of the invention, these being indicative, however, of but a few of the various ways in which the principles of the invention may be employed.
The invention is illustrated by the drawings wherein the same numerals refer to the same parts and in which:
FIG. 1 is a photograph enlarged 12 times showing the metal fibrils used as the starting material for making the compacts of the present invention;
FIG. 2 is a photograph enlarged 80 times showing several of the fibrils used as the starting material for making metal fibril compacts of the present invention and showing the details of the edge configuration of these fibrils. In this photograph a drawn wire of known dimension is shown for purposes of comparison;
FIG. 3 is a photograph enlarged twelve times show ing the fibrils used as the starting material for making the metal fibril compacts of the present invention. In this photograph the fibrils are shown in a loose pile. This photograph illustrates the various twisting and turning of the fibrils, the intertwining thereof, and the many varieties of intersections and type of contact between the fibrils;
FIG. 4 is a part schematic longitudinal sectional view of one form of a machine used for carrying out the process for forming the fibrils illustrated in FIGS. 1, 2 and 3 into a loose mat of substantially uniform density and configuration as a first stage of making a metal fibril compact according to the present invention;
FIGS. 5, 6 and 7 are very much enlarged fragmentary perspective views, partly in section illustrating various types of contacts which develop between the fibrils when they are compacted into mat formation. FIG. 5 shows an edge-to-edge (point) contact; FIG. 6 shows an edge-to-face (line) contact and FIG. 7 shows a faceto-face (area) contact;
FIG. 8 is an actual size photograph of a short piece of a length of a loosely formed mat composed of fibrils of the kind shown in FIGS. 1-3 after the fibrils have been processed by the machine shown schematically in FIG.
FIG. 9 is an actual size photograph showing a short piece of a length of the mat of FIG. 8 after it has been initially compressed by rolling it to improve its green strength, and showing the details of fibril orientation and intersections as this greater density;
FIG. 10 is an actual size photograph of a short piece of a length of the mat of FIG. 9 after it has been annealed in an annealing furnace and trimmed to width;
FIG. 1 1 shows two views at A and B. View A is a plan view and view B is a side (edge) view of a strip of metal foil from which the fibrils of FIGS. 1-3 have been made. In view B, the thickness of the strip is greatly enlarged;
FIG. 12 is a side elevational view of the mat of FIG.
FIG. 13 is a side elevational view of the mat of FIG.
FIG. 14 is a side elevational view of the mat of FIG. 10;
The three views, FIGS. l2, l3 and 14 show for comparison the thickness of the fibril mat when just formed, (FIGS. 8 and 12) initial compression (FIGS. 9
and 13) and after annealing (FIGS. 10 and 14).
FIG. 14A is a schematic side view illustrating a way for initially compressing the mat shown in FIG. 14 by rolling it to increase its density;
FIG. 15 is a perspective view of the mat of FIG. 14 showing it attached to a preformed inner filter screen and illustrating the first step of formation of the mat of 7 FIG. 14 into a tubular filter for fluids and the like;
FIG. 16 is a front elevational view of a machine of the invention utilized for spirally winding the component of FIG. 15 into a tubular form on the preformed inner filter screen;
FIG. 17 is a side elevational view of the device of FIG. 16;
FIG. 18 is a fragmentary enlarged vertical sectional view taken along the line and in the direction of arrows 1818 of FIG. 16 illustrating an early stage of the spiral winding process by which the component of FIG. 15 is formed into tubular configuration;
FIG. 19 corresponds to FIG. 18 and shows the final stages of the same spiral winding process;
FIG. 20 is a fragmentary much enlarged portion of the vertical sectional view of FIG. 18 and illustrates the arcs of contact between the pressure rollers and the mat (of FIGS. 14 and 15) during an early stage of the spiral winding of the component of FIG. 15 as it is wound into a tubular configuration;
FIG. 21 corresponds to FIG. 20 and shows the increased areas of contact between the mat and the pressure rollers during the final stages of winding of the mat (of FIGS. 14 and 15) into a tubular configuration;
FIG. 22 is a front elevational view of a machine which may optionally be utilized in a subsequent step a method of the invention for inserting the spirally wound-up mat inner screen component into an outer mechanical support screen;
FIG. 23 is a sectional view taken as on the line and in the direction of arrows 2323 in FIG. 22;
FIG. 24 is similar to FIG. 23 and is a fragmentary enlarged vertical sectional view of the device of FIG. 22 taken at substantially right angles to the view of FIG. 23, illustrating the machine with the wound-up inner screen and mat assembly positioned within an outer mechanical support screen;
FIG. 25 is a horizontal sectional view taken as on the line and in the direction of arrows 25--25 in FIG. 24;
FIG. 26 is a schematic representation of various process steps of a method of the invention for formation of tubular filters and flat filters;
FIG. 27 is a longitudinal sectional view of the completed tubular configuration filter comprising an inner perforated member, a metal fibril compact filter media, and outer mechanical support perforated member and with finishing end caps in place on the filter;
FIG. 28 is a schematic representation of the steps of another method of the invention for compacting a mat, such as that shown in FIG. 14 into a dense fibrous metal component which can, for example, be used as in transpiration cooling device or for other uses, and
FIG. 29 is a schematic representation of another method of the invention, illustrating the single step compression of a low density fibril supply, such shown at the left in FIG. 26, for forming a'high density finished component.
Throughout the drawings corresponding numerals refer to the same parts or elements.
Referring now to the drawings the discussion will deal first with the unique fibril metal starting materials which, according to this invention, are used for the construction of fibrous metal compacts of many descriptions. The fibril metal starting materials and the machines and methods for their production are the subject of an application of Bertil J. Sundberg Ser. No. 391,707, filed Aug. 24, 1964, now US. Pat. No. 3,504,516, executed Aug. 21, 1964 and entitled METAL PRODUCT AND METHOD AND MACHINE FOR MAKING SAME, to which reference is made for a full delineation of the fibril metal starting materials used herein. For completeness however, such unique starting materials are described herein, as follows:
FIBRIL METAL STARTING MATERIAL The basic component of the fibril metal compacts forming the product of this invention is, of course, the fibrils themselves. FIG. 1 is a photograph magnified 12 times showing representative metal fibrils used in the preferred embodiment of the invention. From FIG. 1 it can be seen that these fibrils are elongated in respect to their cross sectional dimensions; they have a slight twist throughout their length. The light and dark spots on the fibrils show this twist. It can also be seen that the fibrils are uniform in length and are of substantially uniform cross section.
Although for the purposes of photography the individual fibrils 49 shown in FIGS 1, 2 and 3 were held between glass slips and thereby physically maintained in a corrunon focal plane, the fibrils 49 when released will have a springiness and due to their slight bends, they will, when randomly oriented in a bulk supply, display a good but not excessive amount of loft. That is to say, a pile of the fibrils will stand resiliently, without packing and with little development of parallelism between adjacent fibrils. Individually, the fibrils are resilient, they have some but not excessive, bends.
The fibrils shown in FIGS. 1, 2 and 3 are made from Type 347 stainless steel, and are illustrative of the extremely tough and recalcitrant fibril starting materials which may be utilized pursuant this invention. By the terms tough and recalcitrant is meant materials which cannot readily be machined with ordinary cutting tools. Before the aforementioned invention of Bertil J. Sundberg, it was never possible to make at any economical cost, a metal wool of, for example Type 347 stainless steel. There just was no economical way to make wool" from Type 347 stainless steel. 7
We do not mean toimply that Type 347 stainless steel is the only tough material that may be utilized pursuant this invention. There are many other tough metals and alloys and the selection will therefore depend upon the characteristics desired, i.e. density, corrosion resistance, heat resistance, heat and electrical conductivity, abrasion resistance, etc.
The present invention is also applicable when, a fibril starting material is used which has the configuration and other characteristics of that herein described for the tough, recalcitrant metal fibril materials but is composed of more easily machinable metals (i.e. ordinary steel and its alloys, non-ferrous metals), but in such event, some of the cost advantages as compared to other available methods will be lost. However, many advantages of the invention such as freedom from substantial amounts of detached burrs, slivers, chips and degradation particles good loft, uniformity in respect to port size and distribution (and hence uniformity of density of the finished products) pore shape, convenience of manufacture, etc. are still retained.
In some instances homogeneous mixtures constituting the fibril starting material may be used. Examples of these include but are not limited to fibril mixtures of ferrous and non-ferrous materials, or fibrils made from coated metals or bi-metals, homogeneous mixtures of metallic and non-metallic fibrils.
Pursuant the aforesaid application of Bertil J. Sundberg, the original material is rolled to a very thin strip and is cut into strips, then the fibrils are severed as very thin strips of rolled strip by a succession of short shear like tool blows of extremely short time-duration but of immense energy, one fibril being severed from across the end of the strip for each such shear-like tool blow. The fibrils so made are of uniform length and of hairlike dimensions. They have faces corresponding to the rolled faces of the strip and fractured faces. The fibrils are of small cross-section, usually much less than the cross-section of a 0.002 inch wire. As made, they are slightly to moderately bent along their length and they have a slight to moderate twist. They have a tensil strength which, as nearly as can be determined, approximates that of the parent material. A bulk supply of such fibrils is substantially free from detached burrs, chips, slivers and degraded particles, but will (when viewed under the microscope) exhibit some roughness and an occasional attached burr and exhibits roughness on the fractured faces of the fibril and along the edges of such face. The cross-sectional shape of the fibrils of one batch may include some which are like a squashed rectangle having two opposed angularly disposed nearly straight boundaries (apparently corresponding to the rolled faces of the strip from which the fibril was severed), said faces being connected by an inwardly roughly curved minor length boundary and an outwardly curved major length boundary (apparently corresponding to the fractured faces of severance). In some instances the minor length inwardly curved boundary will nearly disappear, in which event the cross-section' approaches a triangular shape. Reference is made to the aforesaid application of Bertil J. Sundberg for additional microphotographs and description of the fibril starting material.
FIG. 2 is a photograph of the fibrils enlarged eighty times. It can here be seen that the fibrils 49 have two smooth faces and two sheared or severed faces. The smooth faces apparently correspond to the opposite rolled faces of the foil strip from which the fibrils are cut and the severed faces apparently are those resulting when the fibrils are severed from the ends of the strip. In the photograph of FIG. 2 the curl and twist of the individual fibrils is clearly evident and the above described physical characteristics of the fibrils can be seen. Note that the severed faces appear rather irregular and rough on the faces and along the edges. The rough edges on the fibrils are believed to act analogously to the scaly surface of natural wool fibers and are believed to be responsible for the favorably high green strength of compacts made from the fibrils. Also, these surface and edge irregularities are believed to assist in trapping dirt and other small particles when a densified compact is used as a filter.
These same surface and edge irregularities are believed to improve the bond between the fibrils when they are compressed into compacts, and to assist in making firm attachment when the compressed compacts are brazed or sintered. The increase in surface area due to the surface and edge irregularities are also useful in extending any phenomena requiring a solidfluid interface, as where a compact composed of such fibril is used as or for holding a catalytic element in chemical reactions.
For size comparison FIG. 2 includes a 0.001 inch round wire. This is shown at 30 in FIG. 2.
FIG. 2 also illustrates some of the types of contacts which occur between fibrils when they are in contact with each other. At 31 there appears to be a substantially flat face-to-face contact while at 32 there appears to be an edge-to-edge contact. It will be noted that the fibrils are substantially free from slivers, burrs, chips and detached particles of degradation.
When the fibrils are placed into a loose pile and pressed between glass slips, as shown in FIG. 3, they will intertwine, cross, and interconnect in the widest variety of ways. When released from pressure the mass will always be three-dimensional inasmuch as the fibrils have good loft, they are springy (prior to annealing) and are irregularly oriented and project in every direction. The random orientation of the fibrils is clearly evident in this photograph, FIG. 3.
For most purposes, and as an example of smaller size fibrils used in this invention the fibrils may be very fine, nearly hair-like. For example they may have a cross section wherein one transverse measurement through the section is 0.00l5 inch and another measurement through the cross section may be, say 0.0009 inch or even less, for example down to 0.0005 inch. The length of such fibrils might be three-fourths inch. The cross sectional dimensions of the fibrils can, of course, be increased as can the length. Usually the largest cross sectional transverse dimensions will be under 0.005 inch on down to say 0.0009 inch and even lower, say 0.0005 inch. The length will usually be about 0.5 inch to about 1.5 inch, but longer or shorter lengths can be used. Fibrils of such dimensional parameters give good results in this invention.
METHODS IN GENERAL A supply of fibril starting material of the aforesaid kinds and characteristics, having been obtained, it is then processed through a plurality of steps which are carried out with appropriate machines, several of which are used. The invention provides several methods and a variety of machines. Difierent machines may be used and some may not be needed, depending upon the particular final product desired.
In general the methods of this invention comprise compacting the fibril starting material, which in bulk may have a density of 1 percent or less of the solid material of which the fibrils are compsed,-until the density is increased to that desired in the final article, which may be as low as for example 5 to 8 percent up to as high as, for example, 75-90 percent. The compaction is accomplished in a non-liquid environment, preferably but not necessarily in several steps and preferably but not necessarily with one or more intermediate annealings. There are many advantages inherent when'the working environment is non-liquid, not the least of which is low cost and freedom from involvement of the fibril material with anything foreign to the ultimately desired finished article. By using successive steps in compacting the fibrils it is possible to introduce layering as a parameter and this helps to avoid channeling and permits variable density objectives to be easily obtained; hence multiple step compaction is preferred. By using intermediate steps of annealing (between successive compactions) the material, even though of the toughest metals, can usually be brought to high, even extreme, densities and intermediate annealing is preferred.
it is a feature of the invention that the bulk fibril starting material, being initially clean and substantially free from detached burrs, slivers, chips and degraded particles, is maintained clean during the vulnerable phases of subsequent processing. This is accomplished by introducing separated fibrils into an upwardly moving stream of high velocity clean air by which they are transported by the air stream and into contact with a preferably downwardly facing reticulated web, against which they build up and form a mat which is a low density composite of high-velocity impinged, interlaced, randomly disposed fibrils. The mat, even though of the very lowest density at this stage (around 1 percent density as compared to an equal volume of the material of which the fibrils are composed) will have a strength sufficient to retain its integrity and it will cling to the underside of the web of its formation meanwhile being substantially cleaned of any unattached particles of degradation (burrs, chips, slivers, etc.) or maintained clean by the through-passage of the high velocity airstream used in its formation. The fibrils can of course be combed out to disintegrate the mat and, preferably this is done once more and the mat reformed by upward or downward high velocity airstream.
In either way, using a one stage or a two stage matformation will provide a usable very low density fibrilcomposed homogeneous mat substantially free from separate particles of degradation, having sufiicient strength (i.e. green strength") for subsequent handling and of uniform density throughout. Two stages of mat-formation are preferred.
Then, depending upon the ultimate article being produced the mat may, in appropriate sized pieces be laid in layers and compressed or it may be rolled up as a cylinder and compressed, either with or without one or more steps of intermediate annealing. Also, the compressive pressures may be increased for successive layers, or in successive stages. The mat may be compressed against a woven screen of the same or another material (as the fibril material) and compressed.
In a final stage the composite is subjected to temperature sufficient to weld the fibrils where they are in contact, (or at least increase the bond between them) or, if a brazing ingredient fibril has been included, to braze them together. Where the final compaction is against a woven screen, attachment will be attained between the compacted fibrils and the screen, due to the final heating at elevated temperature.
METHOD OF FORMING MATS OF FIBERS One illustrative embodiment of a machine for forming mats from the fibril starting material, is illustrated schematically in FIG. 4. FIG. 4 is actually a schematic representation of a machine made by Curalator Corporation, East Rochester New York, their Model No. 18-88. Since FIG. 4 is schematic it should be considered only as illustrative of the kind of machines used in carrying out a process of the invention. The particular elements can be varied to meet the varying circumstances. The machine includes an outer housing-frame generally designated which forms a hopper and serves as a frame for various components of the machine and supplies the mechanical structure. Housing 50 has a hopper portion 51 with a large hopper loading opening 52 at one end thereof.
The hopper 51 has a bottom movable conveyor belt 53 mounted on suitable end rollers 54,54. One roller can be driven through any suitable adjustable speed drive, in the direction indicated by arrow 55 to move the bulk supply 62 of metal fibrils slowly toward the rear part of the hopper so that the pile of fibrils will engage the upwardly moving front run of conveyor 56. The conveyor 56 is mounted on a pair of spaced apart vertically spaced rollers 57,57 which are rotatably mounted on the frame 50 and driven through suitable adjustable speed drive mechanism (not shown). The conveyor 56 which has outwardly extending needlelike teeth 61, and as the front run 60 move upwardly, the teeth 61 disengage fibrils from the adjacent face of the pile 62 of fibrils, and transport the fibrils upwardly as indicated by arrow 63.
At the upper end of the upright or vertical conveyor 56 the fibrils carried by teeth 61 are engaged by teeth 64 on an upper horizontal conveyor assembly generally designated 65. The teeth are mounted on a belt 66 which is mounted on suitable rollers 70,70 which in turn are driven by an adjustable speed mechanism (not illustrated). The rollers 70 are rotated in the direction of arrow 71 so that the teeth 64 move oppositely to the direction of travel of teeth 61 on conveyor 57. Thus teeth 64 comb down and level out the flow of fibrils as they are transported upwardly by conveyor 57 and in so doing help to maintain a uniform flow of fibrils illustrated at 72, as the fibrils are carried over the top of the upright conveyor 56.
In the center section of the machine, illustrated generally at 75, the housing 50 is formed into an elongated tunnel-like throat of decreasing cross-section toward the right of FIG. 4. In this throat are placed a pair of spaced-apart rollers 76,76 which are rotatably mounted. The rollers serve to mount a reticular endless belt 77 which is mounted so as to run on the rollers. The belt 77 is driven so that its lower pass moves to the right as shown by arrow 73 when the rollers 76,76 are rotated in a conventional manner by suitable adjustable speed power mechanism (not shown).
As shown in FIG. 4, the wall 80 of the center section 75 of the machine has a large rectangular rear air-outlet 81 cut therethrough. The port 81 opens into the interior of the center section 75 and between the upper and lower runs of belt 77. A suitable duct 82 is connected to the port 81 and also to the intake side 83 of a suction blower 84 which is driven through a suitable motor 85.
The suction blower 84 is of a high capacity and evacuates air from the tubular center section 75 of the machine. Most of the air will enter through opening 52 of hopper 50 and then pass around through inlet end 86 into section 75.
It can be seen that the opposite (right) end of the center section 75 is substantially blocked off from entrance of air by a nest of rollers at 91, and by the right end roller 76 and belt 75. Sealing strips 87,87 extend down from the top of center section 75 and almost to those portions of belt 77 where the belt passes over rollers 76,76. By these expedients the opportunity for air to bypass the path of flow through the lower run of belt 77 is decreased. 9
Air will therefore flow into hopper 50, thence through opening 86. At opening 86 the flow is via arrow A1 down through the space between the back (right in FIG. 4) side of upper roller 57 and the adjacent roller 76, as shown by arrow A4, and in so doing the air flow assists in dislodging from needles 61 on conveyor 57 the flow of fibrils that have thereby been separated from bulk supply 62. The airflow A2-A4 is strong, and turning upwardly and to the right (FIG. 4) carries the hair-like fibrils along with it and as the airflow passes through the lower run of belt 77, as at ar' rows A3 and A4, the fibrils are intercepted by the netlike belt, while the air passes through the belt, and into opening 81 at arrow A5 thence via arrows A6 and A7 through blower 84 and are then exhausted at A8. Unattached degradation particle (burrs, chips, slivers, dirt, extraneous material) if any, are carried along with the air and are hence removed from the fibril mat, which is meanwhile built up on belt 77 and held there by the airflow.
The lower pass of belt 77, moving to the right, arrow 73, carries the fibril mat to a place 95 where a plurality of small rollers indicated generally at 91 very gently compact the mat and support the mat until it engages a stripping roller 92 which is powered to rotate in direction as indicated by arrow 93.
The roller 92 engages that side of the mat which has been towards belt 77 and gently guides the mat under roller 92 and along-floor to and under feed roller 94.
The mat of fibrils will thus be impelled by the rollers 92 and 94 out over the end of floor 90 where it emerges. The rollers 92 and 94 are rotated under power by suitable means (not shown) in a substantially cylindrical chamber 95 which houses a high speed breaker roller 96. Roller 96 is what is called a lickerin roll. The lickerin roll 96 is rotated in the direction indicated by arrow 97 as at extremely high speeds by a suitable drive (not shown). The outer peripheral surface of the lickerin roll 96 is provided with a plurality of forwardly directed sickle-like sharp pointed teeth 100. These teeth, moving rapidly across the approaching end of the mat, tear the metal fibrils loose, separating them loose from the mat and thus loosened fibrils are projected as individual fibrils onto a venturi chute 101 leading from the chamber 95. Below and slightly to the left of the lickerin roll 96, as shown in FIG. 4, there is provided a roller 107B which is rotated in the direction of the arrow shown thereon (clockwise). This roller closes against the adjacent lip 107A of the air duct 107 and the proximate upper edge 101A of the lower wall 101B of venturi duct 101. The upper portionof the roller 107B (which is the portion clockwise from lip 107A to edge 101B) acts as a closure from the lip to the edge and it is between such surface of roller 107B and the proximate surface of the lickerin roll that the very high velocity air flow and the dislodged fibril will flow.
The venturi chute 101 is expanded in direction away from the lickerin roll. At the bottom end of chute 101 there is rotatably mounted a condenser roll 103 which is made of a reticulated metal or woven wire cloth, and is driven by an adjustable speed drive in a clockwise direction as shown by arrow 103A. The condenser roll 103 is rotatably mounted in a housing and the center of the condenser roll is evacuated with a vacuum blower 104, drawing through the surface of roll 103 operating through a conduit or duct which communicates with a stationary duct 105A in the interior of the condenser roll. The roll 103 is mounted so that it rotates with respect to the interior duct 105 and air is drawn through the chute 101 and through the condenser roll 103. The vacuum blower 104 pulls the air through internal duct 105A thence through duct 105, blower 104 and the air is then either discharged or, after being filtered, it may be recirculated to duct 107 which conveys the air up to the space between lip 107A and the underside of floor 90. Thence an extremely high velocity of air is projected at arrow A9 towards and against the lickerin roll 96 and the flow of individual fibrils lossened thereby. The flow impels the separated hair-like metal fibrils downwardly through the duct 101 and against the exposed outer arcuate portion of reticulated roller 103 where the fibrils are intercepted and a mat built on the reticular surface of roll 103. The fibrils are disposed at random and in every conceivable orientation and due to their high velocity impact, are more tightly formed as a mat than on belt 77. The air passes through roller 103 and duct 105A to be recirculated or can be discharged and fresher drawn in.
This air flow carries the individual metal fibrils downwardly with a high velocity against the surface of the condenser roll and the impingement of the fibrils accordingly builds up a mat surface of fibrils wh interlaced and has good green strength.
The individual metal fibrils, which are thus intercepted by and retained on the outside of the condenser roll 103, are formed into a fluffy homogeneous mat 110. The mat 110 is removed from the condenser roll as the condenser roll rotates. It should be noted that the condenser roll 103 is mounted on a suitable shaft and driven from suitable adjustable speed power means (not shown). A stripper roll 112 which rotates clockwise as shown by the arrow thereon, is provided for lifting the so formed mat 110 from the condenser roll 103 for delivering it to the loading end of the conveyor belt assembly 113 which is provided for moving the mat away from the machine. Conveyor belt assembly 113 can be any standard conveyor belt mounted on a pair of rollers 114,114 and is driven by any suitable adjustable speed drive, not shown so as to carry the mat away at the same speed as it is formed.
Since the individual metal fibrils are separated by the lickerin roll and carried at high velocity in an air stream and projected against the condenser roll the resultant orientation of the fibrils is completely random and the fibrils in the mat 110 thus generated are completely randomly oriented, intertwined and interlocked. The fibrils are not physically attached together but the edge and surface roughness of the fibrils, when so formed into a mat cause the fibrils to resist separation, and the mat, even though having a density of only 1 to 1.5 percent of the density of the metal of which the fibrils are composed, has exceptional green strength. The mat is light, lofty and of uniform density throughout.
The airflow passing through the mat as it is formed is at high velocity and any particles of degradation, i.e. burrs, chips, slivers extraneous dirt, etc., which are not actually attached to a fibril, will be drawn through the net-like surface of condenser roll 103 and hence removed from the mat. Hence the fibrils are actually vacuum cleaned twice, by the airflow A4 through the mat formed on belt 77 in the center section 75 again by the airflow at A12 through the mat as it is being formed on condenser roll 103. To insure cleanliness it is best, in most factory locations to filter incoming air supplied to the system, as at lO7FN.
CHARACTER OF THE F IBRIL MAT FORMED The mat which is formed by the process of this invention, as on the machine shown in FIG. 4, is an even strip of uniform thickness composed of fibrils uniformly distributed. The fibrils are laid and intersect each other in every conceivable direction. Three common modes of intersection are shown in FIGS. 5, 6 and 7 (as well as FIGS. 2 and 3). In these figures, the fibrils 49 which are made as previously described are shown as having a substantially edge-to-edge (or point-type) contact at 116 in FIG. 5; a substantially surface-to-edge (linetype) contact at 117 in FIG. 6 and a substantially faceto-face (area-type) contact as at l 18 in FIG. 7.
The edge-to-edge and edge-to-face contacts, particularly where roughness occurs provides excellent adherence between the contacting fibrils. The fibrils cling together and resist separation. This is believed to be due, at least partially, to the roughness which causes the fibrils to hold together in much the same way as wool fibers hold together. Whatever may be the reasons, the resultant mat has sufficient green strength so that it is capable of being handled in various stages of subsequent processing without disturbing the random orientation of the individual fibrils or disturbing the condition of uniform density of the mat from section to section in the mat.
The mat 110 coming from the machine (FIG. 4) has uniform density in all directions of about 1 percent to about 1% percent.
During the subsequent compression and annealing of the mat the condition of uniformity of density (which is also to say, the uniformity of distribution and size of the voids) will not change. Even though the mat may be enormously reduced in volume and its density increased the condition of uniformity of density and uniformity of distribution and size of the voids, will not change. This uniformity property of the products of the invention is a valued feature of the invention. Just why it occurs is not fully understood but it is believed to be due to a condition of uniformity of the starting material (length, cross-section, degree of bend, degree of twist, springiness, loft) plus the exceeding almost hair-like fineness of the fibril starting material, plus uniformity in the gentle handling of the tiny fibrils in laying up the mat. In any event, the mat 1 10, even though of very low density, is of great uniformity, and absent subsequent rough handling, will preserve its uniformity (and all attributes flowing therefrom) when it is later on reduced to smaller and smaller thickness.
FIG. 8 is a full size photograph of the top of a portion of a mat 110 made according to a process of the invention and on the machine illustrated in FIG. 4. It can be seen that the individual metal fibrils 49 are oriented in every direction, curled together, and make every conceivable type of contact with each other. The mat is very porous, and has, in fact, a density of approximately 1 percent to 2 percent. For the purposes of this specification, density is defined as the weight of a unit volume of the mat (or compact) divided by the weight of the same volume of a solid metal of the same material as that used to make the fibers. Thus, where a given mass or volume of the mat or compact is said to be 2 percent density, it means that this volume of mat weighs 2 percent as much as an equal volume of the solid metal from which the fibrils are made. Porosity" is [00 minus the density. Thus, a mat having a density of 2 percent has a porosity" of percent minus 2 percent) i.e. 98 percent.
Therefore, it can be seen that the mat coming from the machine is of low density, hence extremely porous; it is fluffy, and would easily tend to separate except for its excellent green strength which is believed to be due to the curling and twisting together of fibrils and the interlocking and intertwining of these fibrils so that the moderately rough edges of contacting fibrils will catch each other and engage to give to the mat the attribute of increased green strength.
A side view of the mat shown in FIG. 8 is illustrated in FIG. 12. The mat has a good vertical height and the metal fibrils are uniformly disbursed and extend in all directions, transversely, longitudinally and vertically, and it is springy.

Claims (6)

1. The machine combination comprising means for generating an elongated felt strip of substantially uniform width of hair-like metal fibrils, furnace means for heating said felt strip in an inert atmosphere to a temperature of about 2000*F for annealing the metal fibrils constituting the felt strip, means for cutting said felt strip into pieces of predetermined width and length, means for superimposing layers of said annealed felt strip so as to build a multiple layer object, means for pressing said multiple layer annealed object to force the fibrils of the layers into random contact with each other and to consolidate said object, and furnace means for heating the thus pressed object to a temperature sufficient to weld the contacting fibrils together where they contact each other.
2. The machine combination of claim 1 further characterized in that said means for superimposing layers comprises means for rolling an elongated piece of said felt strip into a cylindrical object.
3. The machine combination of claim 1 further characterized in that means is provided for rolling the felt strip to reduce its thickness and increase its density prior to annealing in an inert atmosphere.
4. The machine combination of claim 1 further characterized in that means is provided for rolling the felt strip to reduce its thickness and increase its density after passing said strip through said annealing furnace means.
5. The machine combination set forth in claim 1 including conveyor means for moving the felt strip continuously through the machines of the combination to said means for cutting the felt strip.
6. The combination of claim 1 further including means for securing the multiple layer object formed of fibrils to a metal reinforcement performed prior to the furnace means for heating to a welding temperature.
US125801A 1971-03-18 1971-03-18 Machines for making metal fibril compacts Expired - Lifetime US3680183A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12580171A 1971-03-18 1971-03-18

Publications (1)

Publication Number Publication Date
US3680183A true US3680183A (en) 1972-08-01

Family

ID=22421482

Family Applications (1)

Application Number Title Priority Date Filing Date
US125801A Expired - Lifetime US3680183A (en) 1971-03-18 1971-03-18 Machines for making metal fibril compacts

Country Status (1)

Country Link
US (1) US3680183A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2325595A1 (en) * 1975-09-29 1977-04-22 Incom Int Inc APPARATUS AND METHOD FOR MANUFACTURING A TUBULAR FILTER ELEMENT
US4091146A (en) * 1975-10-01 1978-05-23 General Electric Company Flexible, low porosity airfoil skin
US4114794A (en) * 1977-01-10 1978-09-19 Brunswick Corporation Method of autogenously bonding filter assemblies
FR2792394A1 (en) * 1999-04-16 2000-10-20 Gaz De France Gdf Service Nati Method for producing flame support for gas burner comprises container with metallic alloy in fusion touching mobile wheel to form fiber drying in air, and welding of fibers under high voltage
US6298538B1 (en) * 1996-02-23 2001-10-09 Global Material Technologies, Inc. Nonwoven metal fabric and method of making same
US6478092B2 (en) 2000-09-11 2002-11-12 Baker Hughes Incorporated Well completion method and apparatus
WO2002023009A3 (en) * 2000-09-11 2003-03-06 Baker Hughes Inc Multi layer screen for downhole use.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2133939A (en) * 1937-05-24 1938-10-18 John G Maroney Compress for steel shavings
US2352443A (en) * 1938-06-30 1944-06-27 Mautsch Robert Process and installation for the manufacture of shaped metal products
US2683500A (en) * 1951-04-17 1954-07-13 Metal Textile Corp Filter unit and method of producing same
US3127668A (en) * 1955-03-03 1964-04-07 Iit Res Inst High strength-variable porosity sintered metal fiber articles and method of making the same
US3432295A (en) * 1966-12-08 1969-03-11 Hittman Associates Inc Method for making oriented fiber or whisker composites
US3437457A (en) * 1965-04-13 1969-04-08 Huyck Corp Reinforced metal fiber composites
US3504422A (en) * 1968-01-19 1970-04-07 Bell Aerospace Corp Method of making a depth-type filter media

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2133939A (en) * 1937-05-24 1938-10-18 John G Maroney Compress for steel shavings
US2352443A (en) * 1938-06-30 1944-06-27 Mautsch Robert Process and installation for the manufacture of shaped metal products
US2683500A (en) * 1951-04-17 1954-07-13 Metal Textile Corp Filter unit and method of producing same
US3127668A (en) * 1955-03-03 1964-04-07 Iit Res Inst High strength-variable porosity sintered metal fiber articles and method of making the same
US3437457A (en) * 1965-04-13 1969-04-08 Huyck Corp Reinforced metal fiber composites
US3432295A (en) * 1966-12-08 1969-03-11 Hittman Associates Inc Method for making oriented fiber or whisker composites
US3504422A (en) * 1968-01-19 1970-04-07 Bell Aerospace Corp Method of making a depth-type filter media

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2325595A1 (en) * 1975-09-29 1977-04-22 Incom Int Inc APPARATUS AND METHOD FOR MANUFACTURING A TUBULAR FILTER ELEMENT
US4091146A (en) * 1975-10-01 1978-05-23 General Electric Company Flexible, low porosity airfoil skin
US4114794A (en) * 1977-01-10 1978-09-19 Brunswick Corporation Method of autogenously bonding filter assemblies
US6298538B1 (en) * 1996-02-23 2001-10-09 Global Material Technologies, Inc. Nonwoven metal fabric and method of making same
US6583074B1 (en) * 1996-02-23 2003-06-24 Global Material Technologies Incorporated Nonwoven metal fabric
FR2792394A1 (en) * 1999-04-16 2000-10-20 Gaz De France Gdf Service Nati Method for producing flame support for gas burner comprises container with metallic alloy in fusion touching mobile wheel to form fiber drying in air, and welding of fibers under high voltage
WO2000063617A1 (en) * 1999-04-16 2000-10-26 Gaz De France (Gdf) Service National Method for producing a flame support
US6410878B1 (en) 1999-04-16 2002-06-25 Gaz De France (Gdf) Service National Method for producing a flame support
US6478092B2 (en) 2000-09-11 2002-11-12 Baker Hughes Incorporated Well completion method and apparatus
WO2002023009A3 (en) * 2000-09-11 2003-03-06 Baker Hughes Inc Multi layer screen for downhole use.
GB2374098B (en) * 2000-09-11 2005-03-30 Baker Hughes Inc Multi-layer screen and downhole completion method

Similar Documents

Publication Publication Date Title
US3505038A (en) Metal fibril compacts
EP0055112B1 (en) Felt-like layered composite of ptfe and glass paper
US5472467A (en) Self-supporting filter composite
US3705021A (en) Reinforced metal fibril mats and methods of making same
US5350620A (en) Filtration media comprising non-charged meltblown fibers and electrically charged staple fibers
US4042740A (en) Reinforced pillowed microfiber webs
US4663225A (en) Fiber reinforced composites and method for their manufacture
US8152889B2 (en) Filter with EPTFE and method of forming
DE69937730T2 (en) METAL FILTER
US3680183A (en) Machines for making metal fibril compacts
US6298538B1 (en) Nonwoven metal fabric and method of making same
US3759708A (en) Method of making fibril mats and reinforced metal fibril mats
EP0092819A2 (en) Filter medium and process for preparing same
US2829733A (en) Interstitial body suitable for use as a filter
JP2010515837A (en) Microfiber split film filter felt and manufacturing method thereof
JP4431042B2 (en) Layered filter structure containing short metal fibers
US2794238A (en) Fiber glass mat
US4457055A (en) Method for forming needled, non-woven fiber padding
US3632027A (en) Metal fibril compacts and methods and machines for making same
US3727292A (en) Method of fabricating a non-woven sheet from extruded metal filaments
DE19508335A1 (en) Heat and sound insulating mats mfr. for motor vehicle applications
US2794237A (en) Method of producing fiber glass mats
KR100455331B1 (en) Method for Manufacturing Metal Filter Using Metal Scrapped Materials
US5361466A (en) Method of forming a blanket of uniform thickness
CA2232752A1 (en) Self-supporting pleated filter composite

Legal Events

Date Code Title Description
AS Assignment

Owner name: MEMTEC NORTH AMERICA CORP., 250 LEXINGTON AVENUE,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BRUNSWICK CORPORATION;REEL/FRAME:004993/0645

Effective date: 19880527