US3660268A - Recovery of oil from tar sands using high water content oil-external micellar dispersions - Google Patents

Recovery of oil from tar sands using high water content oil-external micellar dispersions Download PDF

Info

Publication number
US3660268A
US3660268A US888900A US3660268DA US3660268A US 3660268 A US3660268 A US 3660268A US 888900 A US888900 A US 888900A US 3660268D A US3660268D A US 3660268DA US 3660268 A US3660268 A US 3660268A
Authority
US
United States
Prior art keywords
oil
tar sands
micellar dispersion
micellar
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US888900A
Inventor
Joe T Kelly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marathon Oil Co
Original Assignee
Marathon Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marathon Oil Co filed Critical Marathon Oil Co
Application granted granted Critical
Publication of US3660268A publication Critical patent/US3660268A/en
Assigned to MARATHON OIL COMPANY, AN OH CORP reassignment MARATHON OIL COMPANY, AN OH CORP ASSIGNS THE ENTIRE INTEREST Assignors: MARATHON PETROLEUM COMPANY
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/04Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by extraction
    • C10G1/047Hot water or cold water extraction processes

Definitions

  • This invention relates to the recovery of hydrocarbon from mined tar sands by contacting the sands with an oil-external micellar dispersion (contains 55-90% water) to solubilize the hydrocarbon from the tar sands, thereafter separating the micellar dispersion containing the solubilized hydrocarbon from the tar sands and then recovering the solubilized hydrocarbon from the micellar dispersion.
  • the micellar dispersion contains hydrocarbon, surfactant and aqueous medium, and optionally cosurfactant and/or electrolyte.
  • the mined tar sands are preferably comminuted before being contacted with the micellar dispersion.
  • Tar sands also known as oil sands and bituminous sands, are sands which contain a very viscous oil.
  • the viscosity is substantially higher than the viscosity of conventional crude oil obtained from sandstone. Due to this high viscosity, inter alia, the techniques used in the recovery of the lower viscosity crude oil from sandstones are not adaptable to the recovery of oil from tar sands.
  • US. 1,497,607 teaches the recovery of oil from comminuted tar sands 'by contacting the sands with steam.
  • the steam aids in separating the oil from the tar sands.
  • the lower specific gravity of the oil results in the oil forming on top of a water layer while the sand settles to the bottom.
  • micellar dispersion oil from tar sands can be recovered by contacting the tar sands with an oilexternal micellar dispersion containing about 55-90% water.
  • the micellar dispersion solubilizes at least a portionof the oil from the tar sands. Thereafter, the micellar dispersion containing the solubilized oil is separated from the sands and the oil recovered from the dispersion.
  • the tar sands are preferably comminuted and optionally can be heated before coming in contact with the micellar dispersion. Also, the micellar dispersion is preferably at a temperature about about 100 F.-l50 F.
  • the micellar dispersion containing the solubilized oil can be diluted with a low viscosity hydrocarbon, e.g. kerosene, gasoline, etc. to facilitate movement of the micellar dispersion, e.g. downstream, where the oil is separated from the micellar dispersion.
  • a low viscosity hydrocarbon e.g. kerosene, gasoline, etc.
  • the spent tar sands are separated from the micellar dispersion with the aid of gravity forces, centrifugal forces, heat, etc.
  • micellar dispersion useful with this invention is oil-external and contains about 55 to about aqueous medium.
  • the micellar dispersion contains hydrocarbon, surfactant, and optionally cosurfactant and/or electrolyte. Examples of volume amounts include about 4% to about 40% hydrocarbon, about 55% to about 90% aqueous medium, at least about 4% surfactant, about 0.01% to about 20% cosurfactant, and about 0.001% to about 5% by Weight of electrolyte.
  • the micellar dispersion can contain other additives such as corrosion inhibiting agents, sequestering agents, etc.
  • useful hydrocarbons include crude oil, partially refined fractions of crude oil and refined fractions of crude oil. Specific examples include side cuts from crude oil columns, crude column overheads, straight-run gasoline, liquefied petroleum gases, etc. Also, synthesized hydrocarbons are useful.
  • the aqueous medium can be soft water, brackish water, or brine Water.
  • the water is one that is compatible with the particular tar sands and where the water contains ions, these ions are preferably compatible with the ions within the tar sands.
  • Surfactans useful with the micellar dispersions include nonionic, cationic, and anionic surfactants. Specific examples include those surfactants taught in US. 3,254,714 to Gogarty et al. Also useful are surfactants such as Duponol WAQE (a 30% active sodium lauryl sulfate marketed by Du Pont Chemical Corporation, Wilmington, Del.), Energetic W- (a polyoxyethylene alkylphenol marketed by Armour Chemical Co., Chicago, 111.), Triton X-100 (an alkylphenoxy polyethoxy ethanol, marketed by Rohm & Haas, Philadelphia, Pa.), Arquad 12-50 (a 50% active dodecyl trimethyl ammonium chloride marketed by Al'- mour Chemical Co., Chicago, Ill.), and like materials.
  • Duponol WAQE a 30% active sodium lauryl sulfate marketed by Du Pont Chemical Corporation, Wilmington, Del.
  • Energetic W- a polyoxyethylene alkyl
  • the surfactant is a petroleum sulfonate, also known as alkylaryl naphthenic sulfonate.
  • the sulfonate can contain a monovalent cation and can have an average equivalent weight within the range of about 350 to about 520 and more preferably about 400 to about 470.
  • the surfactant can be a combination of low, medium, and high average equivalent Weight surfactants or sulfonates or mixture of any two or more surfactants.
  • the cosurfactant (also defined as cosolubilizer and semi-polar organic compound) can have limited water solubility as well as infinite water solubility.
  • preferred cosurfactants include alcohols, amino compounds, esters, aldehydes, ketones, and like materials containing from one up to about 20 or more carbon atoms and more preferably about 3 to about 16 carbon atoms.
  • holic liquors such as fusel oil, and like materials.
  • primary, secondary, and tertiary alcohols are useful.
  • the cosurfactant is present in concentrations of about 0.01 to about 5.0% by volume. Mixtures of two or more different cosurfactants are also useful.
  • Electrolytes useful with the micellar dispersion include inorganic bases, inorganic acids, inorganic salts, organic bases, organic acids, and organic salts which are strongly or weakly ionized.
  • the electrolyte is inorganic base, inorganic acid or inorganic salt, and more preferably is inorganic base.
  • Specific examples of preferred electrolytes include sodium hydroxide, sodium chloride, sodium sulfate, hydrochloric acid, sulfuric acid, sodium nitrate, and like materials. Other specific examples include those taught in US Pat. No. 3,330,343 to Tosch et al.
  • the electrolyte is preferably an inorganic base such as sodium hydroxide, e.g., a pH up to about 14 can be obtained using sodium hydroxide. Also, it is preferred that the electrolyte be compatible with the other components within the micellar dispersion as well as the ions within the tar sands.
  • the pH of the water within the micellar dispersion be from about 7 to about 14.
  • the pH is above about 10 and most preferably about 12.
  • higher pHs facilitate solubilization of the oil.
  • the tar sands are preferably comminuted before being contacted with the micellar dispersion. Such will facilitate contacting the tar sands with the micellar dispersion and solubilizing the oil from the tar sands. However, if the tar sand is not comminuted, it will merely take longer to effect sufiicient solubilization of the oil.
  • the tar sand can be heated to facilitate solubilization of the oil from the tar sands. Temperatures in excess of 100 F. and preferably in excess of 150 F. are useful.
  • Volume amounts of from about 0.05 to about 30 volumes of the micellar dispersion per volume of tar sand are useful in the contacting step. More preferably about 0.1- volumes of micellar dispersion per volume of tar sand is useful.
  • the particular volume ratio of micellar dispersion to volume of tar sand will depend on the economics, i.e. the rate of return, and the degree of extraction of the oil from the tar sands, etc.
  • Agitation may be beneficial in the contacting step, i.e. where the micellar dispersion contacts the tar sands.
  • the contacting can be effected in a vessel which can optionally be pressurized, and heat can be applied to the vessel. It is preferred that the tar sands and dispersion be efiiciently mixed so that efficient solubilization of the oil out of the tar sands can be effected. Agitation by motorized stirrers, vibration, etc. are useful.
  • micellar dispersion containing solubilized oil is separated from the spent tar sands. It may be advantageous to decrease the viscosity of the micellar dispersion containing the solubilized oil before separation, e.g. if the viscosity is within the range of 50050,000 cp. at ambient temperature, it may be desirable to add a diluent to reduce the viscosity to 30-1000 cp. Any diluent that will effectively reduce the viscosity of the micellar dispersion and is compatible with the dispersion is useful, examples of diluents include kerosene, gasoline, lower molecular weight hydrocarbons, etc.
  • Separation of the spent tar sands from the micellar dispersion containing the solubilized oil can be by classification, gravity separation, centrifugal separation, and other means known in the art. Also, part of the spent tar sands containing residual but feasible quantities of oil can be recycled back to the process for contacting with micellar dispersion to effect solubilization of this retained oil. Recycling certain streams of the process, effecting mixing and heating of certain streams within the process, etc. are useful and obvious to those skilled in the art.
  • the micellar dispersion can be heated to a temperature in excess of 100 F. and preferably in excess of 150 F. to facilitate solubilization of the oil out of the tar sands.
  • the micellar dispersion should be designed to maintain its thermostability throughout the heating cycle and at the temperature of usage. For example, if the micellar dispersion is to be used at a temperature in excess of 150 F. the molecular weight of the surfactant and/or cosurfactant, the molar ratio of the surfactant to the hydrocarbon can be increased, the electrolyte content within the micellar dispersion can be increased, etc. to impart thermostability to the micellar dispersion at higher temperatures.
  • micellar dispersion containing the solubilized oil is further processed to recover the oil from the micellar solution.
  • the temperature of the resulting mixure can be lowered to obtain phase separation; in this case the oil from the tar sands will be in the top phase. Where the latter occurs, the top phase can be decanted from the mixture to obtain the oil from the tar sands.
  • the bottom phase being mostly water soluble components and some oil soluble components, can be recycled back to the contacting stage and, before entering the contacting stage, it can be adjusted with the necessary and desired components to obtain a micellar dispersion having the desired thermostability range at the temperature used in the contacting step.
  • a process for recovering oil from tar sands comprising contacting the tar sand with sufficient oil-external micellar dispersion, the dispersion containing about 55 to about water, to solubilize at least a portion of the oil within the tar sands, separating the sands from the micellar dispersion containing the solubilized oil, and recovering the oil from the micellar dispersion.
  • micellar dispersion is at a temperature in excess of about F.
  • micellar dispersion contains about 55 to about 90% aqueous medium, at least about 4% surfactant, and about 4% to about 40% hydrocarbon, the percents based on volume.
  • micellar dispersion contains about 0.01% to about 20% by volume of cosurfactant, or about 0.001% to about 5% by weight of electrolyte, or about 0.01% to about 20% by volume of cosurfactant and about 0.001% to about 5% by weight of electrolyte.
  • micellar dispersion contains a petroleum sulfonate having an average equivalent weight within the range of about 350 to about 520.
  • a process for recovering hydrocarbon from mined tar sands comprising contacting the tar sands with sufficient amounts of an oil-external micellar dispersion comprised of at least about 4% by volume of a petroleum sulfonate, 55 to about 90% by volume aqueous medium, and about 4% to about 40% by volume hydrocarbon, to solubilize at least a portion of the hydrocarbon within the tar sands, separating the tar sands from the micellar dispersion containing the solubilized hydrocarbon, and then recovering the solubilized hydrocarbon from the micellar dispersion.
  • an oil-external micellar dispersion comprised of at least about 4% by volume of a petroleum sulfonate, 55 to about 90% by volume aqueous medium, and about 4% to about 40% by volume hydrocarbon
  • micellar dispersion conta'itis about 0.01 to about 20% by volume of cosurfactant 'and about 0.001% to about 5% by weight of electrolyte.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

OIL FROM TAR SANDS IS EXTRACTED BY CONTACTING THE TAR SANDS WITH AN OIL-EXTERNAL MICELLAR DISPERSION (CONTAINS 55-90% WATER), THEREAFTER THE SANDS ARE SEPARATED FROM THE MICELLAR SOLUTION CONTAINING SOLUBILIZED OIL, AND THEN THE OIL IS RECOVERED FROM THE MICELLAR DISPERSION. THE MICELLAR DISPERSION CAN BE AT A TEMPERATURE IN EXCESS OF 100*F. AND THE PH OF THE WATER WITHIN THE DISPERSION CAN BE ABOUT 7-14. VOLUME AMOUNTS OF 0.5-30 VOLUMES OF MICELLAR DISPERSION PER VOLUME OF TAR SAND ARE USEFUL WITH THE PROCESS.

Description

United States Patent Office 3,660,268 Patented May 2, 1972 3,660,268 RECOVERY OF OIL FROM TAR SANDS USING HIGH WATER CONTENT OIL-EXTERNAL MICELLAR DISPERSIONS Joe T. Kelly, deceased, late of Littleton, Colo., by La Verne S. Kelly, executrix, and Fred H. Poettmann, Littleton, C010,, assignors to Marathon Oil Company, Findlay, Ohio No Drawing. Filed Dec. 29, 1969, Ser. No. 888,900
Int. Cl. C10g 1/04 US. Cl. 208-11 13 Claims ABSTRACT OF THE DISCLOSURE Oil from tar sands is extracted by contacting the tar sands with an oil-external micellar dispersion (contains 55-90% water), thereafter the sands are separated from the micellar solution containing solubilized oil, and then the oil is recovered from the micellar dispersion. The micellar dispersion can be at a temperature in excess of 100 F. and the pH of the water within the dispersion can be about 7-14. Volume amounts of -30 volumes of micellar dispersion per volume of tar sand are useful with the process.
BACKGROUND OF THE INVENTION Field of the invention This invention relates to the recovery of hydrocarbon from mined tar sands by contacting the sands with an oil-external micellar dispersion (contains 55-90% water) to solubilize the hydrocarbon from the tar sands, thereafter separating the micellar dispersion containing the solubilized hydrocarbon from the tar sands and then recovering the solubilized hydrocarbon from the micellar dispersion. The micellar dispersion contains hydrocarbon, surfactant and aqueous medium, and optionally cosurfactant and/or electrolyte. The mined tar sands are preferably comminuted before being contacted with the micellar dispersion.
Description of the prior art Tar sands, also known as oil sands and bituminous sands, are sands which contain a very viscous oil. The viscosity is substantially higher than the viscosity of conventional crude oil obtained from sandstone. Due to this high viscosity, inter alia, the techniques used in the recovery of the lower viscosity crude oil from sandstones are not adaptable to the recovery of oil from tar sands.
US. 2,882,973 to Doscher et al. teaches the recovery of oil from tar sands by contacting the tar sands in situ with an aqueous solution having a pH of about 12 and containing a non-ionic surfactant.
US. 1,497,607 teaches the recovery of oil from comminuted tar sands 'by contacting the sands with steam. The steam aids in separating the oil from the tar sands. The lower specific gravity of the oil results in the oil forming on top of a water layer while the sand settles to the bottom.
US. 3,050,289 to Gerner teaches the use of superheated steam to strip oil from tar sands. Gerner first directs a high pressure jet stream of solvent, e.g. naphtha, kerosene, or gas oil, at a tar sand deposit in a pit to leach the tar sands, thereafter the solvent plus tar sand mixture is conveyed to a kiln wherein superheated steam (up to 700 F.) is countercurrently passed over the tar sands to strip out the solvent and the oil.
SUMMARY OF THE INVENTION Applicants have discovered that oil from tar sands can be recovered by contacting the tar sands with an oilexternal micellar dispersion containing about 55-90% water. The micellar dispersion solubilizes at least a portionof the oil from the tar sands. Thereafter, the micellar dispersion containing the solubilized oil is separated from the sands and the oil recovered from the dispersion. The tar sands are preferably comminuted and optionally can be heated before coming in contact with the micellar dispersion. Also, the micellar dispersion is preferably at a temperature about about 100 F.-l50 F. After the contacting step, the micellar dispersion containing the solubilized oil can be diluted with a low viscosity hydrocarbon, e.g. kerosene, gasoline, etc. to facilitate movement of the micellar dispersion, e.g. downstream, where the oil is separated from the micellar dispersion. The spent tar sands are separated from the micellar dispersion with the aid of gravity forces, centrifugal forces, heat, etc.
DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION The micellar dispersion useful with this invention is oil-external and contains about 55 to about aqueous medium. Also, the micellar dispersion contains hydrocarbon, surfactant, and optionally cosurfactant and/or electrolyte. Examples of volume amounts include about 4% to about 40% hydrocarbon, about 55% to about 90% aqueous medium, at least about 4% surfactant, about 0.01% to about 20% cosurfactant, and about 0.001% to about 5% by Weight of electrolyte. The micellar dispersion can contain other additives such as corrosion inhibiting agents, sequestering agents, etc.
Examples of useful hydrocarbons include crude oil, partially refined fractions of crude oil and refined fractions of crude oil. Specific examples include side cuts from crude oil columns, crude column overheads, straight-run gasoline, liquefied petroleum gases, etc. Also, synthesized hydrocarbons are useful.
The aqueous medium can be soft water, brackish water, or brine Water. Preferably, the water is one that is compatible with the particular tar sands and where the water contains ions, these ions are preferably compatible with the ions within the tar sands.
Surfactans useful with the micellar dispersions include nonionic, cationic, and anionic surfactants. Specific examples include those surfactants taught in US. 3,254,714 to Gogarty et al. Also useful are surfactants such as Duponol WAQE (a 30% active sodium lauryl sulfate marketed by Du Pont Chemical Corporation, Wilmington, Del.), Energetic W- (a polyoxyethylene alkylphenol marketed by Armour Chemical Co., Chicago, 111.), Triton X-100 (an alkylphenoxy polyethoxy ethanol, marketed by Rohm & Haas, Philadelphia, Pa.), Arquad 12-50 (a 50% active dodecyl trimethyl ammonium chloride marketed by Al'- mour Chemical Co., Chicago, Ill.), and like materials. Preferably the surfactant is a petroleum sulfonate, also known as alkylaryl naphthenic sulfonate. The sulfonate can contain a monovalent cation and can have an average equivalent weight within the range of about 350 to about 520 and more preferably about 400 to about 470. The surfactant can be a combination of low, medium, and high average equivalent Weight surfactants or sulfonates or mixture of any two or more surfactants.
The cosurfactant (also defined as cosolubilizer and semi-polar organic compound) can have limited water solubility as well as infinite water solubility. Examples of preferred cosurfactants include alcohols, amino compounds, esters, aldehydes, ketones, and like materials containing from one up to about 20 or more carbon atoms and more preferably about 3 to about 16 carbon atoms.
holic liquors such as fusel oil, and like materials. In general, primary, secondary, and tertiary alcohols are useful. Preferably the cosurfactant is present in concentrations of about 0.01 to about 5.0% by volume. Mixtures of two or more different cosurfactants are also useful.
Electrolytes useful with the micellar dispersion include inorganic bases, inorganic acids, inorganic salts, organic bases, organic acids, and organic salts which are strongly or weakly ionized. Preferably, the electrolyte is inorganic base, inorganic acid or inorganic salt, and more preferably is inorganic base. Specific examples of preferred electrolytes include sodium hydroxide, sodium chloride, sodium sulfate, hydrochloric acid, sulfuric acid, sodium nitrate, and like materials. Other specific examples include those taught in US Pat. No. 3,330,343 to Tosch et al. Where a high pH of the water within the oil-external micellar dispersion is desired, the electrolyte is preferably an inorganic base such as sodium hydroxide, e.g., a pH up to about 14 can be obtained using sodium hydroxide. Also, it is preferred that the electrolyte be compatible with the other components within the micellar dispersion as well as the ions within the tar sands.
It is desired that the pH of the water within the micellar dispersion be from about 7 to about 14. Preferably, the pH is above about 10 and most preferably about 12. Generally, higher pHs facilitate solubilization of the oil.
The tar sands are preferably comminuted before being contacted with the micellar dispersion. Such will facilitate contacting the tar sands with the micellar dispersion and solubilizing the oil from the tar sands. However, if the tar sand is not comminuted, it will merely take longer to effect sufiicient solubilization of the oil. In addition, the tar sand can be heated to facilitate solubilization of the oil from the tar sands. Temperatures in excess of 100 F. and preferably in excess of 150 F. are useful.
Volume amounts of from about 0.05 to about 30 volumes of the micellar dispersion per volume of tar sand are useful in the contacting step. More preferably about 0.1- volumes of micellar dispersion per volume of tar sand is useful. The particular volume ratio of micellar dispersion to volume of tar sand will depend on the economics, i.e. the rate of return, and the degree of extraction of the oil from the tar sands, etc.
Agitation may be beneficial in the contacting step, i.e. where the micellar dispersion contacts the tar sands. The contacting can be effected in a vessel which can optionally be pressurized, and heat can be applied to the vessel. It is preferred that the tar sands and dispersion be efiiciently mixed so that efficient solubilization of the oil out of the tar sands can be effected. Agitation by motorized stirrers, vibration, etc. are useful.
The resulting mixture of micellar dispersion containing solubilized oil is separated from the spent tar sands. It may be advantageous to decrease the viscosity of the micellar dispersion containing the solubilized oil before separation, e.g. if the viscosity is within the range of 50050,000 cp. at ambient temperature, it may be desirable to add a diluent to reduce the viscosity to 30-1000 cp. Any diluent that will effectively reduce the viscosity of the micellar dispersion and is compatible with the dispersion is useful, examples of diluents include kerosene, gasoline, lower molecular weight hydrocarbons, etc.
Separation of the spent tar sands from the micellar dispersion containing the solubilized oil can be by classification, gravity separation, centrifugal separation, and other means known in the art. Also, part of the spent tar sands containing residual but feasible quantities of oil can be recycled back to the process for contacting with micellar dispersion to effect solubilization of this retained oil. Recycling certain streams of the process, effecting mixing and heating of certain streams within the process, etc. are useful and obvious to those skilled in the art.
As mentioned earlier, the micellar dispersion can be heated to a temperature in excess of 100 F. and preferably in excess of 150 F. to facilitate solubilization of the oil out of the tar sands. When such is desirable, the micellar dispersion should be designed to maintain its thermostability throughout the heating cycle and at the temperature of usage. For example, if the micellar dispersion is to be used at a temperature in excess of 150 F. the molecular weight of the surfactant and/or cosurfactant, the molar ratio of the surfactant to the hydrocarbon can be increased, the electrolyte content within the micellar dispersion can be increased, etc. to impart thermostability to the micellar dispersion at higher temperatures. Examples of methods to increase the thermostability range of micellar dispersions to higher temperatures are taught in US. Pats. Nos. 3,493,048 to Jones, 3,493,047 to Davis et al., 3,495,660 to Davis et al., 3,500,912 to Davis et al. and 3,508,611 to Davis et al.
The micellar dispersion containing the solubilized oil is further processed to recover the oil from the micellar solution. In certain cases, especially where the micellar dispersion has been designed to have a high temperature thermostability but does not have thermostability at lower temperatures, the temperature of the resulting mixure can be lowered to obtain phase separation; in this case the oil from the tar sands will be in the top phase. Where the latter occurs, the top phase can be decanted from the mixture to obtain the oil from the tar sands. The bottom phase, being mostly water soluble components and some oil soluble components, can be recycled back to the contacting stage and, before entering the contacting stage, it can be adjusted with the necessary and desired components to obtain a micellar dispersion having the desired thermostability range at the temperature used in the contacting step.
Examples of useful oil-external micellar dispersions useful with this invention can be found in US. Pat. No. 3,497,006 to Jones et al.
It is not intended that the specifics taught herein limit the invention. Rather, all equivalents known or obvious to those skilled in the art are intended to be incorporated within the scope of the invention as defined within the specification and appended claims. Unless otherwise specified, all percents are based on volume.
What is claimed is:
1. A process for recovering oil from tar sands comprising contacting the tar sand with sufficient oil-external micellar dispersion, the dispersion containing about 55 to about water, to solubilize at least a portion of the oil within the tar sands, separating the sands from the micellar dispersion containing the solubilized oil, and recovering the oil from the micellar dispersion.
2. The process of claim 1 wherein the micellar dispersion is at a temperature in excess of about F.
3. The process of claim 1 wherein from about 0.05 to about 30 volumes of the micellar dispersion per volume of the tar sands are used to contact the tar sand.
4. The process of claim 1 wherein from about 0.1 to about 15 volumes of the micellar dispersion per volume of tar sand are used to contact the tar sand.
5. The process of claim 1 wherein the water within the micellar dispersion is at a pH of about 7 to about 14.
6. The process of claim 1 wherein the water within the micellar dispersion is at a pH of about 12.
7. The process of claim 1 wherein the micellar dispersion contains about 55 to about 90% aqueous medium, at least about 4% surfactant, and about 4% to about 40% hydrocarbon, the percents based on volume.
8. The process of claim 7 wherein the micellar dispersion contains about 0.01% to about 20% by volume of cosurfactant, or about 0.001% to about 5% by weight of electrolyte, or about 0.01% to about 20% by volume of cosurfactant and about 0.001% to about 5% by weight of electrolyte.
9. The proces of claim 1 wherein sufficient hydrocarbon diluent is mixed with the micellar dispersion containing the solubilized oil to reduce the viscosity to about 30 to about 1000 cp. at ambient temperature.
10. The process of claim 1 wherein the micellar dispersion contains a petroleum sulfonate having an average equivalent weight within the range of about 350 to about 520.
11. A process for recovering hydrocarbon from mined tar sands comprising contacting the tar sands with sufficient amounts of an oil-external micellar dispersion comprised of at least about 4% by volume of a petroleum sulfonate, 55 to about 90% by volume aqueous medium, and about 4% to about 40% by volume hydrocarbon, to solubilize at least a portion of the hydrocarbon within the tar sands, separating the tar sands from the micellar dispersion containing the solubilized hydrocarbon, and then recovering the solubilized hydrocarbon from the micellar dispersion.
12. The process of claim 11 wherein the petroleum 6 sulfonate has an average equivalent weight within the range of about 350 to about 520.
13. The pro' cess of claim 11 wherein the micellar dispersion conta'itis about 0.01 to about 20% by volume of cosurfactant 'and about 0.001% to about 5% by weight of electrolyte.
References Cited UNITED STATES PATENTS 2,921,010 1/ 1960 sherborne "208-11 3,542,666 11/1970 Simpson .a 20811 2,911,349 11/1959 Coulson 20811 3,331,765 7/1967 Canevari et a1 208-l1 3,392,105 7/1968 Poettmann et a1 208-11 15 CURTIS R. DAVIS, Primary Examiner
US888900A 1969-12-29 1969-12-29 Recovery of oil from tar sands using high water content oil-external micellar dispersions Expired - Lifetime US3660268A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US88890069A 1969-12-29 1969-12-29

Publications (1)

Publication Number Publication Date
US3660268A true US3660268A (en) 1972-05-02

Family

ID=25394136

Family Applications (1)

Application Number Title Priority Date Filing Date
US888900A Expired - Lifetime US3660268A (en) 1969-12-29 1969-12-29 Recovery of oil from tar sands using high water content oil-external micellar dispersions

Country Status (2)

Country Link
US (1) US3660268A (en)
CA (1) CA929876A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3951778A (en) * 1972-12-20 1976-04-20 Caw Industries, Inc. Method of separating bitumin from bituminous sands and preparing organic acids
US4017377A (en) * 1974-04-19 1977-04-12 Fairbanks Jr John B Process and fluid media for treatment of tar sands to recover oil
US4338185A (en) * 1981-01-02 1982-07-06 Noelle Calvin D Recovery of oil from oil sands
US4361476A (en) * 1981-02-23 1982-11-30 Garb-Oil Corporation Of America Process and apparatus for recovery of oil from tar sands
US4448667A (en) * 1981-03-04 1984-05-15 Dravo Corporation Process for solvent extraction of bitumen from oil sand
US4461696A (en) * 1983-04-25 1984-07-24 Exxon Research And Engineering Co. Shale-oil recovery process
US4678558A (en) * 1984-07-04 1987-07-07 Institut Francais Du Petrole Method usable in particular for washing and desorbing solid products containing hydrocarbons
US6372123B1 (en) 2000-06-26 2002-04-16 Colt Engineering Corporation Method of removing water and contaminants from crude oil containing same
US6536523B1 (en) 1997-01-14 2003-03-25 Aqua Pure Ventures Inc. Water treatment process for thermal heavy oil recovery
US20040050755A1 (en) * 2002-06-25 2004-03-18 Page Pat Surfactant for bitumen separation
AU778064B2 (en) * 2000-05-03 2004-11-11 Aqua-Pure Ventures Inc. Water treatment process for thermal heavy oil recovery
US20070023362A1 (en) * 2005-07-22 2007-02-01 Coriba Technologies, L.L.C. Composition and process for the removal and recovery of hydrocarbons from substrates
US20080111096A1 (en) * 2006-11-10 2008-05-15 Veltri Fred J Composition for extracting crude oil from tar sands
US20080110804A1 (en) * 2006-11-10 2008-05-15 Veltri Fred J Slurry transfer line
US20080110805A1 (en) * 2006-11-10 2008-05-15 Veltri Fred J Continuous flow separation and aqueous solution treatment for recovery of crude oil from tar sands
US20080110803A1 (en) * 2006-11-10 2008-05-15 Veltri Fred J Settling vessel for extracting crude oil from tar sands
US20080121566A1 (en) * 2006-11-24 2008-05-29 Tarsands Recovery Ltd. Surfactant for bitumen separation
US20100193403A1 (en) * 2006-10-06 2010-08-05 Vary Petrochem, Llc Processes for bitumen separation
US20110062382A1 (en) * 2006-10-06 2011-03-17 Vary Petrochem, Llc. Separating compositions
US20110062369A1 (en) * 2006-10-06 2011-03-17 Vary Petrochem, Llc. Separating compositions
RU2574731C1 (en) * 2015-02-24 2016-02-10 Валерий Владимирович Минаков Hydrocarbon production method from hydrocarbon-containing ground
WO2016137359A1 (en) * 2015-02-24 2016-09-01 Валерий Владимирович МИНАКОВ Method for extracting hydrocarbons from soil containing same

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3951778A (en) * 1972-12-20 1976-04-20 Caw Industries, Inc. Method of separating bitumin from bituminous sands and preparing organic acids
US4017377A (en) * 1974-04-19 1977-04-12 Fairbanks Jr John B Process and fluid media for treatment of tar sands to recover oil
US4338185A (en) * 1981-01-02 1982-07-06 Noelle Calvin D Recovery of oil from oil sands
US4361476A (en) * 1981-02-23 1982-11-30 Garb-Oil Corporation Of America Process and apparatus for recovery of oil from tar sands
US4448667A (en) * 1981-03-04 1984-05-15 Dravo Corporation Process for solvent extraction of bitumen from oil sand
US4461696A (en) * 1983-04-25 1984-07-24 Exxon Research And Engineering Co. Shale-oil recovery process
US4678558A (en) * 1984-07-04 1987-07-07 Institut Francais Du Petrole Method usable in particular for washing and desorbing solid products containing hydrocarbons
US6536523B1 (en) 1997-01-14 2003-03-25 Aqua Pure Ventures Inc. Water treatment process for thermal heavy oil recovery
US20030127400A1 (en) * 1997-01-14 2003-07-10 Steve Kresnyak Water treatment process for thermal heavy oil recovery
US6984292B2 (en) 1997-01-14 2006-01-10 Encana Corporation Water treatment process for thermal heavy oil recovery
AU778064B2 (en) * 2000-05-03 2004-11-11 Aqua-Pure Ventures Inc. Water treatment process for thermal heavy oil recovery
US6372123B1 (en) 2000-06-26 2002-04-16 Colt Engineering Corporation Method of removing water and contaminants from crude oil containing same
US20040050755A1 (en) * 2002-06-25 2004-03-18 Page Pat Surfactant for bitumen separation
US7090768B2 (en) 2002-06-25 2006-08-15 Page Pat Surfactant for bitumen separation
US7678201B2 (en) * 2005-07-22 2010-03-16 Coriba Technologies, L.L.C. Composition and process for the removal and recovery of hydrocarbons from substrates
US20070023362A1 (en) * 2005-07-22 2007-02-01 Coriba Technologies, L.L.C. Composition and process for the removal and recovery of hydrocarbons from substrates
US20110062369A1 (en) * 2006-10-06 2011-03-17 Vary Petrochem, Llc. Separating compositions
US8147681B2 (en) 2006-10-06 2012-04-03 Vary Petrochem, Llc Separating compositions
US8414764B2 (en) 2006-10-06 2013-04-09 Vary Petrochem Llc Separating compositions
US8372272B2 (en) 2006-10-06 2013-02-12 Vary Petrochem Llc Separating compositions
US8147680B2 (en) 2006-10-06 2012-04-03 Vary Petrochem, Llc Separating compositions
US8062512B2 (en) 2006-10-06 2011-11-22 Vary Petrochem, Llc Processes for bitumen separation
US20100193403A1 (en) * 2006-10-06 2010-08-05 Vary Petrochem, Llc Processes for bitumen separation
US20110062382A1 (en) * 2006-10-06 2011-03-17 Vary Petrochem, Llc. Separating compositions
US20080111096A1 (en) * 2006-11-10 2008-05-15 Veltri Fred J Composition for extracting crude oil from tar sands
US7694829B2 (en) 2006-11-10 2010-04-13 Veltri Fred J Settling vessel for extracting crude oil from tar sands
US20080110805A1 (en) * 2006-11-10 2008-05-15 Veltri Fred J Continuous flow separation and aqueous solution treatment for recovery of crude oil from tar sands
US20080110804A1 (en) * 2006-11-10 2008-05-15 Veltri Fred J Slurry transfer line
US20080110803A1 (en) * 2006-11-10 2008-05-15 Veltri Fred J Settling vessel for extracting crude oil from tar sands
US20080121566A1 (en) * 2006-11-24 2008-05-29 Tarsands Recovery Ltd. Surfactant for bitumen separation
RU2574731C1 (en) * 2015-02-24 2016-02-10 Валерий Владимирович Минаков Hydrocarbon production method from hydrocarbon-containing ground
WO2016137359A1 (en) * 2015-02-24 2016-09-01 Валерий Владимирович МИНАКОВ Method for extracting hydrocarbons from soil containing same

Also Published As

Publication number Publication date
CA929876A (en) 1973-07-10

Similar Documents

Publication Publication Date Title
US3660268A (en) Recovery of oil from tar sands using high water content oil-external micellar dispersions
US3644194A (en) Recovery of oil from tar sands using water-external micellar dispersions
US3506070A (en) Use of water-external micellar dispersions in oil recovery
US3508611A (en) Molecular weight of hydrocarbon influencing the thermostability of a micellar dispersion
US4008769A (en) Oil recovery by microemulsion injection
US3929190A (en) Secondary oil recovery by waterflooding with extracted petroleum acids
US3406754A (en) Petroleum production utilizing miscibletype and thickened slugs
US3497006A (en) High water content oil-external micellar dispersions
US3254718A (en) Acidizing subterranean formations
US2882973A (en) Recovery of oil from tar sands
US3506071A (en) Use of water-external micellar dispersions in oil recovery
CA1141253A (en) Demulsification of emulsions produced from surfactant recovery operations and recovery of surfactants therefrom
US3373808A (en) Oil recovery process
EA004090B1 (en) Mineral acid enhanced thermal treatment for viscosity reduction of oils (ecb-0002)
US4343323A (en) Pipeline transportation of heavy crude oil
US3509037A (en) Tar sand separation process using solvent,hot water and correlated conditions
US3802508A (en) In situ recovery of oil from tar sands using water-external micellar dispersions
US4174263A (en) Recovery of bitumen from tar sands
US3599715A (en) Use of surfactant foam for recovery of petroleum
US4814094A (en) Oil recovery method utilizing highly oxyalklated phenolic resins
US3500912A (en) Molecular weight of surfactant influencing the thermostability of micellar dispersions
US3648771A (en) In situ recovery of oil from tar sands using oil-external micellar dispersions
US3467188A (en) Oil recovery process utilizing miniature slug of oil-external micellar dispersion
US5152886A (en) Method for improving heavy crude oils by reducing the asphaltene content of crude oils and oil-containing tar sands
US3324944A (en) Miscible oil recovery process

Legal Events

Date Code Title Description
AS Assignment

Owner name: MARATHON OIL COMPANY, AN OH CORP

Free format text: ASSIGNS THE ENTIRE INTEREST IN ALL PATENTS AS OF JULY 10,1982 EXCEPT PATENT NOS. 3,783,944 AND 4,260,291. ASSIGNOR ASSIGNS A FIFTY PERCENT INTEREST IN SAID TWO PATENTS AS OF JULY 10,1982;ASSIGNOR:MARATHON PETROLEUM COMPANY;REEL/FRAME:004172/0421

Effective date: 19830420