Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3654919 A
Publication typeGrant
Publication date11 Apr 1972
Filing date25 Nov 1970
Priority date25 Nov 1970
Publication numberUS 3654919 A, US 3654919A, US-A-3654919, US3654919 A, US3654919A
InventorsWilliam Clifford Birtwell
Original AssigneeMedical Innovations Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Process and apparatus for synchronous assisting of blood circulation
US 3654919 A
Abstract
Apparatus useful in enhancing or assisting the circulation of blood, reducing the work of the heart and increasing the coronary blood flow, said apparatus comprising a rigid, incompressible system which provides an external pulsatile pressure environment on a portion of the body which is synchronous and phased with cardiac action. A rigid chamber or chambers with a liquid filled system of non-distensible, yet expandable, seals houses a portion of the body (e.g., the limbs) in such a way that the pressure exerted on the body can be varied above and below atmospheric pressure by adding or removing liquid from the system.
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

[15] 3,654,919 [451 Apr. 11, 1972 United States Patent Birtwell [54] PROCESS AND APPARATUS FOR SYNCHRONOUS ASSISTING OF BLOOD CIRCULATION [72] Inventor: William Clifford Birtwell, North Scituate,

[57] ABSTRACT Apparatus useful in enhancing or assisting the circulation of [73] Assignee: Medical Innovations, Inc., Newton, Mass.

. blood, reducing the work of the heart and increasing the coro- [221 1970 nary blood flow, said apparatus comprising a rigid, incom- 2 App] 92,50 pressible system which provides an external pulsatile pressure environment on a portion of the body which is synchronous and phased with cardiac action. A rigid chamber or chambers with a liquid filled system of non-distensible, yet expandable, seals houses a portion of the body (e.g., the limbs) in such a way that the pressure exerted on the body can be varied above and below atmospheric pressure by adding or removing liquid from the system.

....A61h 7/00 128/24 R, 24.1, 40, 64, 30, 128/302 13 Claims Dennis PATENTEDAPR 11 1912 SHEET 1 [IF 3 FROM CARDIAC PULSER SECTION) DOUBLE BELLOFRAM PIS'TW LEG HOUSINGS AND THIGH SEALS (VACUUM) ACCUMULATOR Fig. Z

PATENTEDAFR 11 I972 33. 654,919

sum 2 [IF 3 IENI'UR WILLIAM C I TWELL Fig 5. Fi 4. M Q

ATTORNEYS PATENTEDAPR 1 1 1912 SHEET 3 OF 3 u s my u RE mmM mm 6 m w c. v M

A'I'I'ORNIL'YS PROCESS AND APPARATUS FOR SYNCI-IRONOUS ASSISTING OF BLOOD CIRCULATION BACKGROUND OF THE INVENTION 1 Field of the Invention This invention relates to a novel apparatus for assisting blood flow through the circulatory system by synchronizing the pulsing of an external assist means with the heartbeat. The invention also relates to a novel process achieved by use of the apparatus.

2. Background of the Invention Methods for atraumatically assisting blood circulation of patients have been described in the art. In US. Pat. No. 3,303,841 to Dennis, a process is described whereby an external compressing of the lower, part of the body expresses a volume of blood larger than the volume of blood pumped in a single stroke of the heart. The blood so expressed is forced back into the aorta and greater arterial vessels and thereby allows a reduction in ventricular workload while maintaining a satisfactory perfusion of blood during ventricular diastole. This general type of process has been elaborated upon in an article entitled Synchronous Assisted Circulation by Birtwell et al. appearing in the The Canadian Medical Association Journal (Vol. 95, pages 652-664) on Sept. 24, 1966. In general, synchronous external pressure assist processes are distinguishable and advantageous over pre-existing counterpulsation processes because the latter kind of procedure involves the cannulation of a major artery, use of an extra-corporeal blood handling device, the use of stringently sterile techniques and the necessity of administering anti-coagulants to the patient. Moreover, the blood trauma or hemolysis produced by extracorporeal pumping devices limits permissible duration of the assist procedure and compromises the condition of the patient. These procedures are not only time-consuming but can present a real hazard to many patients and increase the risk factor in treating all patients.

Specific apparatus usable in a synchronous assist process is disclosed in US. Pat. No. 3,403,673 to MacLeod. In general, the apparatus consists of a leg-encasing arrangement with means for cycling the pressure on the legs within the casing. The invention described in US. Pat. No. 3,403,673 has a number of problems associated with its use. For example, the constrictive type seals thereof are believed to interfere with optimum blood circulation. Moreover, the inertia of the pressurizing system which includes elastic type expansible linings is believed to interfere with obtaining an optimum pressuretime profile on the legs.

The apparatus suggested in the prior art has a number of drawbacks in that it is cumbersome to use, i.e., the patient is inserted into and removed from the device with excessive effort; and it is excessively difficult to achieve the proper pressure-pulsation profile and impossible to achieve what the inventors believe is the more advantageous mode of operation, i.e. at an ambient pressure at or below atmospheric pressure.

It is important that such problems be solved economically but without using means which expose the patient to undue physical strain.

SUMMARY OF THE INVENTION Therefore, it is an object of the invention to provide a novel process for synchronously assisting blood circulation by external pressure variation on the limbs of a patient.

It is a further object of the invention to provide an improved apparatus useful in synchronously assisting blood circulation.

Another object of the invention is to provide improved apparatus capable of being controlled to maintain a lower mean or reference pressure than has heretofore been obtainable on that part of a patients body being subjected to external pressure variation.

Another object of the invention is to provide apparatus capable of maintaining a pulsed pressure at more nearly the pressure profile desired for a particular patient.

Still another object of the invention is to provide an apparatus into which the patient can be placed or from which the patient can be removed with relative ease and comfort.

A further object of the invention is to provide an apparatus which does not allow the external pressure variation to impart an undesirable movement to the patient being treated therewith.

Another object of the invention is to increase the output of the coronary vasculature.

Another object of the invention is to achieve the foregoing objects with a relatively compact apparatus.

Other objects of the invention will be obvious to those skilled in the art on reading this application.

The present invention is partly based on the discovery that the coronary vasculature can be made to produce a higher volume of blood flow when the pressure of blood flowing thereto is artifically modified. Ordinarily during the heartbeat, there is a muscular squeeze on the vasculature during cardiac systole which reduces its output somewhat. By use of the apparatus of the invention, it has been found that the capacity of a portion of the arterial system can be increased during systole and the vascular resistance and pressure exerted by the left ventricle can be lowered. During cardiac diastole, the capacity of the aforesaid portion of arterial system can be decreased, thus returning blood to the aorta and thereby increasing diastolic pressure and perfusion flow.

It is also believed that the collateral circulation" system (i.e. spare vessels which normally do not provide very significant blood flow but which ordinarily come into important operation when a damaged vascular system is attempting to repair itself) is caused to function during the diastole phase of the external pressure assist process of the invention.

The above objects have been substantially achieved by the construction of apparatus for assisting circulation by synchronous pulsation which apparatus is constructed of a receiving compartment for a portion of a patients body which compartment comprises therein active inflatable seal bags and passive seal bags through which pressure can be exerted, e.g. most conveniently on the patients limbs. The active seal bags contain a non-compressible liquid such as water and are in direct hydraulic communication with a piston means for increasing the water content and consequently the volume of the expansible bags. The liquid in the passive seal bags, which are pressurized by the pressure exerted by the expansion of the active bags, is fully enclosed. Means are provided for keeping air out of the limb-receiving compartment during operation of the device. In operation, negative pressure may be achieved immediately adjacent the limbs and then be overridden during that part of an operating cycle when expansion of the active seal bags causes them to bear against the passive seal bags and thereby transmit pressure completely around the legs.

As used above, inflatable is meant to define seal bags as being expandable when fluid is injected thereinto. It is not meant to suggest that the bags are constructed of elastic, i.e. rubber-like material. In fact, such distendable materials are not preferred because their distension would add to the inertia of the system and reduce the capability of the system to conform to desired cycle patterns.

It has been discovered that the ability to achieve a low-pressure condition in the limb-receiving compartment contributes to improved pressure cycle control and also to an improved mode of operation whereby the mean pressure on the leg may be maintained at a low level, preferably at or below atmospheric pressure. This mode of operation is highly desirable because it reduces the undesirable restriction of blood flow which can be experienced at the higher operating pressures required when previously known synchronous assist devices are utilized.

A particular advantage of the apparatus of the invention is the construction whereby leg-holding compartments are formed into a stationary compartment formed of a smaller casing segment and a larger casing segment. The smaller casing segment, advantageously not more than about 150 angular degrees and preferably not more than 120 angular degrees, carries the active inflatable hydraulic seal bags; the larger passive seal bags are attached to the larger casing segments which are pivotally mounted for quick and convenient enclosing of a patients legs once they have been rested on the expansible seal bags.

Another particularly advantageous feature of the invention is the fact that the continuous availability of vacuum to the system allows excellent control of the pressure cycle on the leg of the patient. The inertial problems with use of apparatus comprising a single pneumatic or hydraulic pressure control system are largely avoided.

It has been discovered that, to avoid excessive movement of the patient by the pressure-pulsing operation, the passive seal bags should have the opposing internal sides thereof tethered together. Such tethering substantially alleviates the tendency of the apparatus to propel the patient out of the device with each pressure pulse.

ILLUSTRATIVE EMBODIMENT OF THE INVENTION In this application and accompanying drawings, there is shown and described a preferred embodiment of the invention and there are suggested various alternatives and modifications thereof, but it is to be understood that these are not intended to be exhaustive and that other changes and modifications can be made within the scope of the invention. These suggestions herein are selected and included for purposes of illustration in order that others skilled in the art will more fully understand the invention and the principles thereof and will be able to modify it and embody it in a variety of forms, each as may be best suited in the condition of a particular case.

In the drawings FIG. I is a schematic diagram explanatory of the operation of the apparatus of the invention.

FIG. 2 is a view showing the placement of a patient in relationship to the apparatus of the invention.

FIG. 3 is a section of the liquid-containing seal bags and rigid enclosure therefor, the bags being in non-expanded position.

FIG. 4 is a view similar to that shown in FIG. 3 with the bags being in expanded position.

FIG. 5 is a perspective view of the passive seal bags used in the invention.

FIG. 6 is a section, in perspective, of the pressure-pulsing system of the apparatus of the invention.

FIG. 7 is a partly exploded view showing how the device of the invention fits onto and hydraulically communicates with the leg encasing members of the apparatus.

Referring to FIG. I, it is seen that a pulsed signal input is received along conduit 18 from a cardiac pulser section 20. This pulser section forms means to receive, screen and transmit signals from an electrocardiogram apparatus so that the apparatus of the invention will be properly synchronized with the heartbeat of a patient being treated.

The signal input is received by a solenoid valve control system 22 which controls the flow of hydraulic fluid through conduit 23 to either side of master control piston 24 through hydraulic sub-circuits 26 and 28 each of which comprises control valves 29 to adjust the rate at which fluid is applied to piston 24.

Hydraulic fluid flowing through sub-circuit 26 is applied to face 30 of piston 24 causing the piston to move to the left. Conversely, hydraulic fluid flowing through sub-circuit 26 is applied to face 32 of piston 24 causing the piston to move to the right. A rightward movement of the piston causes a double belIofram-type piston 34 to move rightward also. This movement of piston 34 causes liquid contained in liquid seal system 36 to be driven into the active, i.e. expandable, seal bags 38 by face 40 of piston 34. At the same time, the other face 42 of piston 34 moves to the right and tends to increase the availability of vacuum to the rigid legs housings which hold the seal bags 58.

system does not permit any substantial quantity of gas to be present therein.

In practice, it will be understood, the immediate environment of the leg will be at a sub-atmospheric pressure only until the repressurization of the legs is caused by the movement of piston face 40 to the right, the resultant movement of fluid into active leg seal bags 38 and the consequent expansion of these bags.

FIGS. 2,3,4 and 5 are illustrative of the arrangement whereby a pressure-expansible, i.e. active, seal bag 38 is held, together with a passive seal bag 52, within a rigid casing 54 consisting of a fixed smaller casing segment 56 and a pivotally mounted larger casing segment 58. As shown in FIGS. 2 and 7, smaller casing segments 56 are integrally mounted with the pressure control module 60.

Referring to FIG. 3, it is seen that active seal bags 38 are attached on smaller casing segments 56. After the leg 62 to be treated is rested on seal bag 38, the passive seal bag 52 is placed over the leg 62, larger casing segment 58 is pivoted inwardly to close over passive seal bag 52 and complete formation of the rigid casing 54.

At this point, as best seen in FIG. 3, there is no compression of the leg; indeed, the leg ordinarily expands somewhat.

In FIG. 4, it is seen that, when the pressure is increased by the injection of liquid into inflatable active seal bag 38, there is a sufficient distension of the inflatable bag to transmit hydraulic pressure through passive seal bag 62, and thereby effectively apply compression to substantially all surfaces of leg 62. When the liquid is withdrawn from seal bag 38, the environmental pressure of the leg again tends to drop below the ambient pressure.

Illustrated in FIG. 5 is a passive seal bag 52 filled with a noncompressible liquid. The bag is formed of a plurality of elongated channels 66 adapted to run roughly parallel with one another and the leg of the patient being treated. Each channel 66 has a small conduit 73 therein for use in filling the channel with a fluid, for example, water. The walls 68 and 70 of the channels 66 are tapered outwardly from the ankle end to the thigh end" thereof in order to accomodate the normally larger diameter of the upper leg.

It has been found that, although the face seal bags 52 are fastened to larger casing segments 58, there is still an excessive force exerted on the legs of the patient tending to force him towards the head of the bed or table on which he is positioned. This force is a consequence of the generally wedgeshaped configuration of legs from ankle to thigh and the resultant force vector bearing upwardly against the legs. In FIG. 5 is illustrated a seal bag comprising a plurality of Iongitudinal liquid-containing compartments 66.

Thus the walls 68 of sealing bags 58, which walls bear against the leg, tend to be restrained from movement relative to walls 70 which are attached to casing 54. This restraint is achieved by the tethering effect of sidewalls 72 between walls 68 and walls 70. The tethering action markedly reduces the pushing effect on the legs of the patient being treated.

Each compartment 66 has an independent liquid fill port 74 which is clamped OK after the compartment is filled.

FIGS. 6 and 7 illustrate a compact control module 60 which is normally mounted integrally with the above-described legenclosing members. In FIG. 6 it is seen that pressure control module 60 comprises a piston 74 which is analogous to the piston indicated at 34 in FIG. 1. Piston 74 is contained in a piston housing 76 and is operated by means of a hydraulically activated piston 78. Piston 78 is analogous to piston 24 of FIG.

Piston 74 is formed of a plastic foam core 79 which is protected on the vacuum system side 80 with a face plate 82 and protected on the pressure system side 84 with a face plate 86. Between each of face plates 82 and 86 and the foam core is an elastomeric seal member 88. These seal members 88 are generally circular in shape and extend between and are sealed by flanges 90 formed by piston housing member 76 and lower chassis member 92 (for the lower of the two seals) and formed by piston housing member 76 and the lower extension 94 of accumulator housing 96 (for the upper of the two seals).

Hydraulically activated piston 28 is supplied by drive fluid to each face thereof through hoses 98. Piston 28 is mounted within a vacuum accumulator tank 100 that is analogous to the accumulator 48 of FIG. 1. A check valve 102 is fastened in plate 104 which plate forms the bottom of tank 100 and also forms the top boundary of the cylinder 103 in which piston 74 reciprocates.

Check valve 102 provides means to avoid a backflow of gas into the accumulator tank 100 during the upward stroke of piston 74. A relief valve 106 is mounted in extension 94 of housing 96 to avoid an excessive vacuum build-up in accumulator tank 100.

Moreover, an exhaust port 108 is provided in this housing extension and provided with an exhaust valve, which valve is not shown in the drawings but is analogous to valve 46 of FIG. 1. The vacuum line to the leg seals is attached at port 110 in accumulator housing 96.

The pressure side 84 of piston 74 is bounded by face plate 86 and bottom plate assembly 112. Bottom plate assembly 112 consists of a bottom plate 115 and a dish-shaped plate 116 which effectively avoids flexing of assembly 112 during the reciprocating action of piston 74. A bleed valve 118 is provided for facilitating the removal of air from the liquid in the compression zone bounded by face plate 86 and bottom plate assembly 112.

in a particularly advantageous mode of the invention, low housing member 114 of bottom plate assembly 112 comprises an enclosed extension 120 which (as illustrated in FIG. 7 forms non-restricting conduit means 121 connecting active seal bags 38 to the pressure side 84 of piston 74. This arrangement provides excellent mechanical bracing of the various members of the apparatus and also minimizes any friction loss effects which would be caused by piping the pressurizing liquid through conventional conduits.

As is best seen in FIG. 2, the compact pressure control module 60 is advantageously placed in the V-section formed by the patients legs. The resultant unit is compact and easily handled by hospital personnel. Also seen in FIG. 2 are waist seal belt 123 and foot-covering seal members 125. Belt 123 and members 125 form means to seal the extremities of the leg casings but do so without constricting the portion of the body at which the seal is effected. The sealing pressure is not achieved by a tight or snug mechanical fit but is achieved by use of the above-described vacuum system and therefore is readily adaptable to fit most patients while limiting the sealing pressure to less than atmospheric pressure.

It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein described and all statements of the scope of the invention which might be said to fall therebetween.

What is claimed is:

1. Apparatus for use in external synchronous assisting of the circulation of blood in a patient, said apparatus comprising A. a rigid housing forming means to house a portion of a patients body;

B. hydraulic compression and decompression means to cycle the pressure on said portion of a patients body;

C. suction-producing means to provide a substantially gasfree environment for said compression and decompression means and D. means to synchronize the overriding of said sub-atmospheric pressure with the patients heartbeat.

2. Apparatus as defined in claim 1 wherein the hydraulic compression means comprises (A) expansible seal bags containing a volume of substantially non-compressible fluid which is in hydraulic communication with hydraulic means for increasing and decreasing the volume thereof and thereby expanding and contracting said expansible seal bags and (B) passive seal bags also containing a substantially non-compressible liquid and wherein the expansible seal bags are so arranged with respect to the passive seal bags that expansion of the former results in hydraulic pressure being exerted on the latter; said seal bags being enclosed in said rigid housing.

3. Apparatus as defined in claim 2 wherein the rigid housing is shaped for receiving a patients limb and is divided into a larger circumferential segment, the expansible seal bags being supported on the smaller segment and the passive seal bags being affixed to the larger segment.

4. Apparatus as defined in claim 3 wherein said smaller circumferential segments of said leg housings are integrally attached to a suction-producing and hydraulic compression means mounted in a V-section formed by said leg housings.

5. Apparatus as defined in claim 2 wherein said housing is shaped for receiving a patients limb and said passive seal bag comprises a plurality of tethering means running longitudinally therealong and connecting the walls of said passive seal which is affixed to said larger circumferential segments of said rigid casing.

6. Apparatus as defined in claim 3 wherein said smaller circumferential casing segments form an arc of up to about and said larger circumferential casing segments form an arc of more than about 240 and wherein the larger segments are pivotally mounted on said smaller segments.

7. Apparatus useful in providing a continuous suction and a fluctuating hydraulic pressure to a treating zone, said apparatus characterized by its compactness and freedom from excess mechanical action and comprising, in integral relation with one another A. a reciprocating piston mounted for movement in a housing between a suction zone and a hydraulic zone, said piston bearing seal means to maintain separation of one said zone from the other;

B. a vacuum accumulator chamber mounted adjacent to said housing and separated therefrom by a plate;

C. a check valve mounted in said plate for diminishing leakage of air from said suction zone to said accumulator chamber;

D. means for actuating said piston mounted in said vacuum accumulator chamber and E. said hydraulic zone being bounded by said piston on one side thereof and by a bottom plate assembly comprising a convex plate facing said hydraulic zone and a flat plate proximate the circumference thereof.

8. Apparatus as defined in claim 1 wherein said means for providing gas-free environment comprises a non-constrictive suction-activated seal means.

9. Apparatus as defined in claim 1 wherein said expansible seal bags are constructed of substantially inelastic material.

10. Apparatus as defined in claim 2 wherein said means for providing a gas-free environment comprise a non-constrictive, suction-activated seal means and wherein said expansible seal bags are constituted of a substantially inelastic material.

11. In a process for externally assisting the circulation of blood by a synchronously actuated assist to the pumping action of the heart, by application of pulsatile pressure to a portion of a patients body, the improvement consisting of applying said pulsatile pressure through a non-compressible liquid pre-positioned in inflatible but substantially non-elastic containers, while said containers envelope substantially all said patients legs, and continuously applying a vacuum to remove any compressible gases from the environment of said body portion and thereby providing that the internal pressure of the patients body and said pulsatile pressure are the only forces substantially effecting the blood circulation in said portion of said body.

pre-positioned in passive sealing bags mounted proximate said legs and a minor portion of said compressing liquid is in direct hydraulic contact with a piston means, thereby minimizing the quantity of liquid which must be moved by the piston means.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3303841 *18 Jun 196414 Feb 1967Dennis ClarenceProcess and apparatus for pressurizing lower extremities of a patient during ventricular diastole
US3403673 *14 Jul 19651 Oct 1968Frank F ReedMeans and method for stimulating arterial and venous blood flow
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3783859 *13 Oct 19728 Jan 1974Medical Innovations IncNovel external circulatory assist device
US3786802 *24 Oct 197222 Jan 1974Medical Innovations IncLeg unit inserts
US3795242 *24 Oct 19725 Mar 1974Medical Innovations IncApparatus for applying hydraulic pulsation
US3866604 *28 Sep 197318 Feb 1975Avco Everett Res Lab IncExternal cardiac assistance
US3993053 *5 Aug 197523 Nov 1976Murray GrossanPulsating massage system
US4388919 *17 Nov 198021 Jun 1983Intermedics Cardiassist CorporationRapid stabilization of external cardiac pulsation
US4597384 *29 Jun 19841 Jul 1986Gaymar Industries, Inc.Sequential compression sleeve
US4738249 *1 Mar 198519 Apr 1988The Procter & Gamble CompanyMethod and apparatus for augmenting blood circulation
US4753226 *25 Mar 198628 Jun 1988Biomedical Engineering Development Center of Sun Yat-Sen University of Medical ScienceCombination device for a computerized and enhanced type of external counterpulsation and extra-thoracic cardiac massage apparatus
US5000164 *26 Jun 198919 Mar 1991The United States Of America As Represented By The Secretary Of The NavyCirculation enhancing apparatus
US5762618 *13 Jun 19969 Jun 1998Kabushiki Kaisha Fuji IryokiChair-type air massage device
US5792082 *13 Jun 199611 Aug 1998Kabushiki Kaisha Fuji IryokiChair-type air massage device
US5810750 *24 May 199722 Sep 1998Buser; John PaulMethod for aligning a fractured bone
US5989204 *19 Mar 199723 Nov 1999Kinetic Concepts, Inc.Foot-mounted venous compression device
US633690724 Nov 19998 Jan 2002Matsushita Electric Works, Ltd.Massaging system
US6361512 *23 Feb 200026 Mar 2002Spencer L. MackayMassaging apparatus using inflatable bladders
US6450981 *18 Aug 199817 Sep 2002Paul ShabtyComputer-based control for a counterpulsation device using noncompressed air
US65726218 Nov 19993 Jun 2003Vasomedical, Inc.High efficiency external counterpulsation apparatus and method for controlling same
US6589194 *23 Jun 20008 Jul 2003C-Boot LtdSelf-powered compression devices and methods for promoting circulation and therapeutic compression
US658926710 Nov 20008 Jul 2003Vasomedical, Inc.High efficiency external counterpulsation apparatus and method for controlling same
US66201168 Dec 200016 Sep 2003Michael P. LewisExternal counterpulsation unit
US6736786 *18 Aug 199818 May 2004Cpc AmericaCounterpulsation device using noncompressed air
US692377612 Sep 20022 Aug 2005Cpc AmericaComputer-based control for a counterpulsation device using noncompressed air
US69625999 Nov 20018 Nov 2005Vasomedical, Inc.High efficiency external counterpulsation apparatus and method for controlling same
US70487023 Jul 200223 May 2006Vasomedical, Inc.External counterpulsation and method for minimizing end diastolic pressure
US707417730 Jun 200411 Jul 2006David Anthony PickettHigh-efficiency external counterpulsation apparatus and method for performing the same
US714764010 Dec 200312 Dec 2006Acumed LlcExternal fixator
US72442257 Oct 200317 Jul 2007Cardiomedics, Inc.Devices and methods for non-invasively improving blood circulation
US731447831 Jan 20051 Jan 2008Vasomedical, Inc.High efficiency external counterpulsation apparatus and method for controlling same
US75976599 Jun 20066 Oct 2009David Anthony PickettSuprapatellar external counterpulsation apparatus
US798106624 May 200619 Jul 2011Michael Paul LewisExternal pulsation treatment apparatus
US811403720 Jun 200714 Feb 2012Michael Paul LewisHydraulically actuated external pulsation treatment apparatus
US81423433 Sep 200927 Mar 2012David Anthony PickettSuprapatellar external counterpulsation apparatus
US85797928 Mar 201212 Nov 2013David Anthony PickettSuprapatellar external counterpulsation apparatus
USRE42958 *17 Jul 200922 Nov 2011Cardiomedics, Inc.Devices and methods for non-invasively improving blood circulation
DE19957471B4 *24 Nov 19996 Oct 2005Matsushita Electric Works, Ltd., KadomaMassagesystem
WO2001062201A2 *16 Feb 200130 Aug 2001Spencer L MackayMassaging apparatus using inflatable bladders
WO2003105746A111 Jun 200324 Dec 2003John C K HuiMethod for treating congestive heart failure using external counterpulsation
WO2003105747A111 Jun 200324 Dec 2003John C K HuiExternal counterpulsation system and method for minimizing end diastolic pressure
Classifications
U.S. Classification601/152, 601/151
International ClassificationA61H23/04
Cooperative ClassificationA61H9/0078
European ClassificationA61H9/00P6
Legal Events
DateCodeEventDescription
21 Mar 1988ASAssignment
Owner name: INTERMEDICS, INC.
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:MAY PARTNERSHIP, THE, BY: ROLLINS HOLDING COMPANY, INC.;REEL/FRAME:004874/0945
Effective date: 19870112
25 Aug 1986ASAssignment
Owner name: AMERICAN PACEMAKER CORPORATION A CORP OF MA
Owner name: AMERICAN PACEMAKER CORPORATION, A MASSACHUSETTS CO
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:B. A. LEASING CORPORATION;REEL/FRAME:004603/0607
Effective date: 19860813
Owner name: CALCITEK, INC., A TEXAS CORP.
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:B. A. LEASING CORPORATION;REEL/FRAME:004603/0607
Owner name: CALCITEK, INC., ALL TEXAS CORPS
Owner name: CARBO-MEDICS, INC.
Owner name: CARBOMEDICS, INC., A TEXAS CORP.
Owner name: INTERMEDICS CARDIASSIST, INC.
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:CHASE COMMERCIAL CORPORATION;REEL/FRAME:004605/0581
Effective date: 19860804
Owner name: INTERMEDICS CARDIASSIST, INC., A TEXAS CORP.
Owner name: INTERMEDICS INTRAOCULAR, INC.
Owner name: INTERMEDICS INTRAOCULAR, INC., A TEXAS CORP.
Owner name: INTERMEDICS, INC.
Owner name: INTERMEDICS, INC., A TEXAS CORP.
Owner name: NEUROMEDICS, INC.
Owner name: NEUROMEDICS, INC., A TEXAS CORP.
Owner name: SURGITRONICS CORPORATION
Owner name: SURGITRONICS CORPORATION, A TEXAS CORP.
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:B. A. LEASING CORPORATION;REEL/FRAME:004603/0607
Owner name: NEUROMEDICS, INC., A TEXAS CORP., STATELESS
Owner name: CALCITEK, INC., A TEXAS CORP., STATELESS
Owner name: INTERMEDICS INTRAOCULAR, INC., A TEXAS CORP., STAT
Owner name: CARBOMEDICS, INC., A TEXAS CORP., STATELESS
Owner name: SURGITRONICS CORPORATION, A TEXAS CORP., STATELESS
Owner name: INTERMEDICS CARDIASSIST, INC., A TEXAS CORP., STAT
Owner name: INTERMEDICS, INC., A TEXAS CORP., STATELESS
8 Jul 1986ASAssignment
Owner name: MAY PARTNERSHIP THE, 2170 PIEDMONT ROAD, N.E., ATL
Free format text: SECURITY INTEREST;ASSIGNORS:INTERMEDICS, INC.,;INTERMEDICS CARDIASSIST, INC.;SURGITRONICS CORPORATION;AND OTHERS;REEL/FRAME:004581/0501
Effective date: 19860703
Owner name: MAY PARTNERSHIP, THE,GEORGIA
9 Jun 1986ASAssignment
Owner name: INTERMEDICS, INC.
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:CITICORP MULTILEASE (SEF), INC.;REEL/FRAME:004576/0516
Effective date: 19860515
Owner name: INTERMEDICS, INC., INTERMEDICS CARDIASSIST, INC.,
Free format text: SECURED PARTY HEREBY RELEASE THE SECURITY INTEREST IN AGREEMENT RECORDED AUGUST 5, 1985. REEL 4434 FRAMES 728-782;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:004592/0394
Effective date: 19860502
Free format text: SAID PARTIES RECITES OBLIGATIONS RECITED IN SECURITY AGREEMENT RECORDED SEPTEMBER 17, 1984 REEL 4303 FRAMES 077-127 HAVE BEEN PAID IN FULL ALL;ASSIGNOR:CITIBANK, N.A., INDIVIDUALLY AND AS AGENT FOR BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIATION, THE CHASE MANHATTAN BANK, N.A., THE FIRST NATIONAL BANK OF CHICAGO, TRUST COMPANY BANK, FIRST FREEPORT NATIONAL BANK OF BRAZOSPORT BANK OF TEXAS;REEL/FRAME:004592/0424
5 Aug 1985ASAssignment
Owner name: B.A. LEASING CORPORATION
Free format text: SECURITY INTEREST;ASSIGNORS:INTERMEDICS, INC., A CORP. OF TEXAS;INTERMEDICS CARDIASSIST, INC.;INTERMEDICS INTRAOCULAR, INC., A CORP. OF TEXAS;AND OTHERS;REEL/FRAME:004449/0424
Owner name: CHASE COMMERCIAL CORPORATION
Free format text: SECURITY INTEREST;ASSIGNORS:INTERMEDICS, INC., A CORP. OF TEXAS;INTERMEDICS CARDIASSIST, INC., A CORP OF TX.;INTERMEDICS INTRAOCULAR, INC., A CORP. OF TEXAS;AND OTHERS;REEL/FRAME:004449/0501
Effective date: 19850703
Owner name: CITIBANK, N.A.
Free format text: SECURITY INTEREST;ASSIGNORS:INTERMEDICS, INC., A TX CORP;INTERMEDICS CARDIASSIST, INC., A TX CORP.;INTERMEDICS INTRAOCULAR, INC., A TX CORP.;AND OTHERS;REEL/FRAME:004434/0728
Owner name: CITICORP MILTILEASE (SEF), INC.
Free format text: SECURITY INTEREST;ASSIGNORS:INTERMEDICS, INC.;INTERMEDICS CARDIASSIST, INC.;INTERMEDICS INTRAOCULAR, INC., A CORP. OF TEXAS;AND OTHERS;REEL/FRAME:004452/0900
17 Sep 1984ASAssignment
Owner name: BANK OF AMERICA NATIONAL TRUST AND SAVINGS ASSOCIA
Owner name: BRAZOSPORT BANK OF TEXAS
Owner name: CHASE MANHATTAN BANK, N.A., THE
Free format text: SECURITY INTEREST;ASSIGNORS:INTERMEDICS, INC.;INTERMEDICS CARDIASSIST, INC.;INTERMEDICS INTRAOCULAR, INC.;AND OTHERS;REEL/FRAME:004303/0077
Effective date: 19840726
Owner name: CITIBANK, N.A., AS AGENT
Owner name: FIRST FREEPORT NATIONAL BANK
Owner name: FIRST NATIONAL BANK OF CHICAGO, THE
Owner name: TRUST COMPANY BANK
22 Jul 1982ASAssignment
Owner name: INTERMEDICS CARDIASSIST, INC., 240 TARPON INN VILL
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CARDIASSIST CORPORATION;REEL/FRAME:004015/0042
Effective date: 19820528
22 Jul 1982AS02Assignment of assignor's interest
Owner name: CARDIASSIST CORPORATION
Effective date: 19820528
Owner name: INTERMEDICS CARDIASSIST, INC., 240 TARPON INN VILL