US3652222A - Bilirubin assay - Google Patents

Bilirubin assay Download PDF

Info

Publication number
US3652222A
US3652222A US814161A US81416169A US3652222A US 3652222 A US3652222 A US 3652222A US 814161 A US814161 A US 814161A US 81416169 A US81416169 A US 81416169A US 3652222 A US3652222 A US 3652222A
Authority
US
United States
Prior art keywords
bilirubin
hydroxylamine
assay
azobilirubin
set forth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US814161A
Inventor
Jerry W Denney
Larry W Denney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
American Monitor Corp
Original Assignee
American Monitor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Monitor Corp filed Critical American Monitor Corp
Priority to US814161A priority Critical patent/US3652222A/en
Priority to JP45028536A priority patent/JPS515600B1/ja
Priority to FR7012549A priority patent/FR2043035A5/en
Priority to GB1643170A priority patent/GB1312712A/en
Priority to DE2016555A priority patent/DE2016555C3/en
Application granted granted Critical
Publication of US3652222A publication Critical patent/US3652222A/en
Assigned to MERCHANTS NATIONAL BANK & TRUST COMPANY OF INDIANAPOLIS, reassignment MERCHANTS NATIONAL BANK & TRUST COMPANY OF INDIANAPOLIS, SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). NOV. 3,1982 Assignors: AMERICAN MONITOR CORPORATION,
Assigned to SECURITY PACIFIC BUSINESS CREDIT INC. reassignment SECURITY PACIFIC BUSINESS CREDIT INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AMERICAN MONITOR CORPORATION AN IN CORP.
Assigned to MERCHANTS NATIONAL BANK & TRUST COMPANY reassignment MERCHANTS NATIONAL BANK & TRUST COMPANY RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MERCHANTS NATIONAL BANK & TRUST COMPANY OF INDIANAPOLIS
Assigned to FOOTHILL CAPITAL CORPORATION, A CORP. OF CA reassignment FOOTHILL CAPITAL CORPORATION, A CORP. OF CA SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SECURITY PACIFIC BUSINESS CREDIT, INC.
Assigned to NEUBERGER AND BERMAN (LENDER), 522 FIFTH AVENUE, NEW YORK NEW YORK 10036 A NEW YORK LIMITED PARTNERSHIP reassignment NEUBERGER AND BERMAN (LENDER), 522 FIFTH AVENUE, NEW YORK NEW YORK 10036 A NEW YORK LIMITED PARTNERSHIP SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AMERICAN MONITOR CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/903Diazo reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/145555Hetero-N
    • Y10T436/146666Bile pigment

Abstract

The use of an acid solution of hydroxylamine in the analytical determination of the quantity of direct-reacting and indirectreacting bilirubin present in blood serum or body fluids, to block reaction of bilirubin after a certain stage of the assay and to prevent interference of substances contained in erythrocytes in the assay and to stabilize the azobilirubin color formed in the reaction, and also the use of a form of hydroxylamine in place of the unstable ascorbic acids used in certain assay procedures.

Description

United States Patent Denney et al.
[151 3,652,222 [451 Mar. 28, 1972 BILIRUBIN ASSAY Jerry W. Denney; Larry W. Denney, both of Indianapolis, Ind.
American Monitor Corporation, lndianapolis lnd.
Filed: Apr. 7, I969 Appl. No.: 814,161
Inventors:
Assignee:
U.S. Cl ..23/230 B, 252/408 Int.Cl ..G0ln 21/24, GOln 31/22, GOln 33/16 Field of Search ..23/230, 310, 253; 252/408 References Cited UNITED STATES PATENTS Ferro et al. ..23/230 5/1970 Green ..23/230 OTHER PUBLlCATlONS Quigley, J. J., Analytical Chemistry, Vol. 24, pp. 1859-[860 (1952) Welcher, F. J. ed., Standard Methods of Chemical Analysis, Vol. ll, Part A-.PP. 1081-1082(1963) Primary lz'xaminer-Morris O. Wolk Assistant Examiner-Elliott A. Katz Attorney-Robert A. Spray [57] ABSTRACT ylamine in place of the unstable ascorbic acids used in certain assay procedures.
9 Claims, No Drawings BILIRUBIN ASSAY l. lntroductory Comments as to the Significance, Nature, and Other Factors as to Bilirubin Present in Blood Serum:
Bilirubin is an orange-colored or yellowish substance or pigment found and present in blood serum, which is formed from the hemoglobin of red blood cells and which is formed as a result of the breakdown of red blood cells normally or as a result of some bodily condition.
physiologically it is believed the bilirubin is excreted by the hepatic or liver cells into the bile. Under normal conditions of the body, the metabolism of bilirubin is a normal process; and thus a small amount of bilirubin is usually present in blood serum.
Bilirubin occurs in the blood in two forms, first in the free form or unconjugated and secondly as bilirubin glucuronide or conjugated bilirubin. Unconjugated bilirubin is formed as a decomposition product of erythrocytes and is conjugated and excreted into the bile by the liver.
The specific determination of the two types of bilirubin yields diagnostic information which can be used to differentiate various types of disease states, particularly those relating to jaundice. For instance, since bilirubin is formed as a result of red cell destruction or hemolysis, elevated levels of unconjugated bilirubin are seen in hemolytic states. One of the most common of these is hemolytic disease of the newborn due to Rh incompatability. Bilirubin assay is used as an aid in diagnosing this disease but more importantly is used to follow the course of the disease, since at a bilirubin level of nearly 20 mg./ l ml. of serum permanent brain damage can result. To prevent this an exchange blood transfusion is performed. However, since there is some danger to the infants life due to the exchange blood transfusion and since brain damage is possible, it is particularly necessary that the physician have an accurate and reliable bilirubin assay upon which to base his decision.
The amount of each type of bilirubin is also used to differentiate various types of liver disease. in those liver diseases in which the liver cells are damaged the cells are unable to conjugate bilirubin, an unconjugated bilirubin accumulates in the blood. In those liver diseases characterized by obstructive processes (such as stones, tumors and other space-occupying lesions) the liver is unable to excrete bilirubin, and a larger proportion of conjugated bilirubin appears in the blood.
Conjugated bilirubin is measured as direct reacting bilirubin, and unconjugated bilirubin is quantitated by measuring total bilirubin then subtracting direct reacting bilirubin. Thus an accurate direct reaction assay is necessary both for quantitation of unconjugated and conjugated bilirubin.
As an example of the importance which has long been placed on accurate measurement of direct bilirubin Duci, Nosslin and Gambino, have independently found that one third of abnormal bilirubin problems are missed if the direct reaction is not performed. Moreover, of course it is not possible to differentiate the type of disease even when the abnormal total bilirubin level is detected, unless the overall assay yields a distinction between the direct-reacting as contrasted to indirect-reacting bilirubin.
Bilirubin assay is also performed on amniotic fluid which surrounds the fetus in the uterus and is used as an indication of the degree of erythroblastosis in the fetus. When the assay indicates severe disease, the infant is delivered prematurely and the disease process is stopped by exchange transfusion. Of course there is risk to the child's life by virtue of being prematurely born, and accurate bilirubin assay is necessary for the physician to make this decision. Amniotic fluid is a particularly demanding specimen for this assay since it may contain large amounts of hemolytic products other than bilirubin which may potentially interfere with the bilirubin assay.
ll. Assaying for Bilirubin: and Disadvantages of Process Using Ascorbic Acid as A Reagent The earliest method of quantitating bilirubin involved observing its yellow color in comparison to yellow standard solutions, by visual means. This method, although somewhat useful at higher levels, is only semiquantitative, and thus cannot yield the desired accuracy which is needed. Furthermore, the visual observation is rendered less accurate by the fact that there are a number of yellow pigments in serum, such as carotene, the color of which the eye cannot separate from the bilirubin pigment; and since this pigment level varies between 40 and percent of the yellow pigment in normal serum, the estimate by this means is extremely crude and unreliable. Moreover, differentiation cannot be made between conjugated and unconjugated bilirubin by this means.
Spectrophotometric means can be used to measure the yellow pigment, but since bilirubin itself can absorb at various wave lengths depending upon other constituents in serum such measurements are complicated without special equipment.
As long ago as 1883 Ehrlich introduced the diazo reaction for bilirubin. In this reaction azosulfanilic acid is used to form azobilirubin. Ehrlich showed that azobilirubin behaves as an indicator, appearing blue at strongly acid and alkaline pH and red near neutrality.
Van den Bergh and Muller, other early workers in the field, demonstrated in 1916 that two types of bilirubin could be distinguished in serum, a direct reaction which occurs in about 1 minute in the absence of alcohol and an indirect reaction requiring the addition of alcohol. The former is now known to measure primarily conjugated bilirubin and the latter both conjugated and unconjugated bilirubin.
The use of alcohol to cause the reaction of the unconjugated bilirubin is complicated by the fact that alcohol precipitates protein; and bilirubin may be coprecipitated with the protein, thus being subsequently unavailable for the bilirubin measurement in the supernatant liquid, thus causing a negative error in the observation. Adler as early as 1922, reported that many substances promote diazo coupling of unconjugated bilirubin and that many of these are water soluble. In 1937 Malloy and Evelyn introduced a procedure using methanol in a final concentration of 50 percent which eliminated protein precipitation; and although there were many disadvantages such as those due to spectral shifts, turbidity, and slow reaction, the fact that the procedure could be used with a standard in chloroform (as opposed to a difficultto-prepare standard in serum) caused its widespread acceptance, and it is used in many if not most of the clinical laboratories today.
Jendrassik and Grof in 1938 devised a method in which the red azobilirubin color was formed as in the methods recited above, then alkali was added transforming the red azobilirubin into the blue form. The blue color is desirable because there are fewer interfering pigments in this region. However, in spite of that desirability, this procedure requires a standard in protein, which was not then commercially available and which was difficult to prepare in the laboratory.
Moreover, since unconjugated bilirubin will react even in the absence of a promoter such as alcohol when in alkaline conditions, the conversion to alkaline condition complicates the measurement of conjugated bilirubin. For this reason, ascorbic acid has been added to the mixture, before alkalinization, to prevent reaction of unconjugated bilirubin in the direct procedure.
With the development, several years ago, of commercially available bilirubin standards in serum, the reason for the wide use of the Malloy-Evelyn method since about 1945 (that is, the usability with a bilirubin standard in chloroform which could be prepared in the laboratory) is eliminated. With and Fog long ago recognized the superiority of the .lendrassik Grof method over others in the literature. Watson commented on the lack of recognition given the favorable reports of With and Fog, and suggested that a good method, that is, the method of Jendrassik and Grof, was not being utilized. The only disadvantage he suggested as to Jendrassik Grof was a slight sensitivity to hemoglobin. Moreover, Gambino in the widely circulated Manual on Bilirubin Assay published by v the American Society of Clinical Pathologists, strongly recommended the Jendrassik Grof method over other methods including that of Malloy and Evelyn, and points out that the hemoglobin interference of Jendrassik Grof is less than that of Malloy-Evelyn.
In spite of all these recommendations, the Jendrassik Grof procedure has not become the most frequently used method in the clinical laboratory. The reason for this is that the procedure requires ascorbic acid which is unstable and cannot be used for even as long as one working day. Accordingly, ascorbic acid, if prepared for longer than its short stability life, lends to unreliability of the test; for after becoming unstable, it does not properly or consistently block the reaction of unconjugated bilirubin when performing the direct bilirubin procedure, nor properly or consistently minimize the interference of hemoglobin. It may perhaps be used by mistake,
whether carelessly or inadvertently or negligently, even after becoming unstable; and the operator would wrongly interpret the observation. Perhaps the physician would not know his conclusions were erroneous also. In fact while control specimens are used for most procedures in the clinical laboratory, there is no control serum known for direct reacting bilirubin. At best, the use of ascorbic acid requires the extra expense of the repetitive small-batch preparation methods inherently required because of its exceedingly short stability life; and it has the inherent disadvantage and expense of scrapping the unused portion of the batch after just a short period of time.
While the major types of bilirubin assey methods have been discussed for illustrative purposes, there are a number of what might be referred to as minor variations of these methods, differing mainly in the type compound used to promote the reaction of unconjugated bilirubin with an azo compound and also in the type azo compound used. After Adler reported in 1922 that many substances promote diazo coupling of unconjugated bilirubin, a variety of substances were used, such as urea, caffeine, sodium benzoate and others.
[I]. The Present invention it has been found that an assay process involving the addition of an acidic hydroxylamine solution stabilizes the azobilirubin color after its formation, eliminates interference of hemolysis, and prevents reaction of unconjugated bilirubin after addition of alkali. The disadvantageous ascorbic acid is wholly eliminated, and all its disadvantages are avoided.
While an hydroxylamine compound in just equimolar concentration as ascorbic acid when substituted for the ascorbic acid used in bilirubin assay does not achieve the effect of inhibiting completely the reaction of unconjugated bilirubin after the addition of alkali in the procedure, it has been found that greatly increased hydroxylamine concentration, that is, an hydroxylamine concentration of several times that of the generally used 0.24 molar ascorbic acid, does achieve the desired effect.
Moreover, while both ascorbic acid and hydroxylamine are reducing agents under some conditions, they are considerably different compounds, ascorbic acid being an organic com-. pound while hydroxylamine is an inorganic salt. Moreover, other reducing agents are either without effect or only partially effective, or, even if effective in inhibiting the reaction of unconjugated bilirubin, have other undesirable properties such as developing an interfering color which might be mistakenly quantitated as bilirubin.
The overall combination of several properties is achieved by the use of hydroxylamine compounds as herein set forth. That is, the properties of being compatible with acid conditions in the first stage of the direct reaction, being effective in the strongly alkaline pH of the second stage of the reaction, not forming colored complexes with azo compounds or upon exposure to air during the test, being stable upon storage in solution. and being inexpensive to purchase, are unique to hydroxylnmine compounds in solution when stored under acid conditions in a concentration of at least 1.3 molar when used in the same proportions as would be the amount of ascorbic acid in the Jendrassik-Grof procedure.
Although hydroxylamine may be advantageously used in bilirubin assays in conjunction with other promoters and in conjunction with other azo compounds, the present inventive concepts are set forth illustratively in what might be referred to as a Jendrassik type method.
IILA. Reagents Hydroxylamine Reagent: The hydroxylamine compound used is hydroxylamine hydrochloride in a 1.6 molar concentration.
Caffeine Reagent: 20 gm. caffeine, 30 gm. sodium benzoate, and 50 gm. sodium acetate are dissolved in 400 ml. of distilled water at 50 to 60 C.
Sulfanilic Acid Reagent: l5 ml. of concentrated HCl and 5 gm. sulfanilic acid are added to 500 ml. distilled water, and a quantity of distilled water sufficient to make 1 liter is added.
Sodium Nitrite: gm. sodium nitrite is dissolved in 1 liter 'of distilled water.
Fehling ll Reagent: 100 gm. sodium hydroxide and 350 IILB. ASSAY PROCEDURES:
It will be assumed that the user will have marked two tubes, one marked direct and the other marked total.)
a. Macro Procedure 1. Add 2.4 ml. 0.05 HCl to tube marked direct.
2. Add 2.4 ml. Caffeine Reagent to tube marked total.
3. Add, and mix with the contents of each tube, 0.3 ml.
serum or plasma.
4. Add, and mix with the contents of each tube, 0.2 ml.
Diazo Reagent. Allow to stand 2 min.
5. Add, and mix with the contents of each tube, 0.1 ml.
Hydroxylamine Hydrochloride Reagent.
6. Add, and mix with the contents of each tube, 1.5 ml. Fehling II Reagent. Read each tube against a water blank at 600 mu.
b. Micro Procedure (This procedure is designed for spectrophotometers having a minimum readout volume of no more than 2 ml., such asthe Coleman Jr. using a 12 X 75 mm. cuvette.)
1. Add 1.1 ml. Caffeine Reagent to total tube.
2. For a measurement of a direct reacting. bilirubin, add
1.1 ml. of0.05'N HCl to direct tube.
3. To each tube add 0.05 ml. (50 microliters) plasma or serum.
4. Add, and mix with the contents of each tube, 0.1
Diazo Reagent. Allow to stand 2 minutes.
5. Add, and mix with the contents of each tube, 0.1 ml.
Hydroxylamine Hydrochloride Reagent.
6. Add, and mix with the contents of each tube, 0.7 ml. Fehling II Reagent. Read against water blank at 600 mu.
An assay according to the novel concepts of the present invention thus provides multiple advantages: (a) blocking the reaction of bilirubin after a certain stage of the assay so that it is possible to distinguish the measurements of conjugated and unconjugated bilirubin; (b) prevent interference of substances contained in erythrocytes in the assay, thus, for example, suppressing the interference of hemolysis of the assay; and (c) stabilizing the azobilirubin color formed in the reaction, making less critical the time of the observation. These are all accomplished without the instability of the ascorbic acid formerly used to achieve those goals. The ascorbic acid is so unstable that it was.not widely adopted for use in any of the bilirubin assays except the Jendrassik-Grof procedure, in which it was used in spite of its instability because the Jendrassik-Grof procedure was not workable at all in measuring conjugated bilirubin without some means of blocking the continned reaction of conjugated bilirubin in the alkaline step.
Accordingly, it will thus be seen from the foregoing description of the invention according to the embodiments of the invention herein set forth, that the present invention provides a new and useful assay yielding quantitative determination of both total and conjugated bilirubin in serum, plasma, amniotic fluid, or other biological material to be tested, and provides a method and reagents therefor, all having desired advantages and characteristics, and accomplishing the objects of the invention including the objects and advantages hereinbefore pointed out and others which are inherent in the invention.
It will be understood that modifications and variations of the general and specific concepts of the overall assay may be effected without departing from the novel concepts of this invention; accordingly, the invention is not to be considered limited to the specific form or embodiments set forth herein for the purpose of disclosing and illustrating the inventive concepts discovered and herein applied.
1. Duci, H. and Watson, C. J., J. Lab. Clin. Med. 30: 293
2. Nosslin, B., Scand. J. Clin. Lab. Invest. 12: Supp. 49,
14 Gambino, S.R., Manual on Bilirubin Assay (American Society ofClinical Pathologists, 1963) 4. Adler, A. and L. Strauss, 1(lin. Woshschr. 2: 2285 (1922) 5. Adler, A. and L. Strauss, Z. Ges. Exp. Med. 44: 43
6. Malloy, l-l.T. and l(.A. Evelyn, J. Biol. Chem. 119: 481
7. .lendrassik, L. and P. Grof;Biochem. 2.297: 8 (1938) 8. With, T.K., Acta Physiologica/Scandinavica, 10: 181-192 9. With,T.K.; Lancet6l8, (1962) 10. Fog. 1.; Scand. J. Clin. & Lab. lnvest. 10: 241-256 11. Watson, D., Clin. Chem. 7: 603-625, (1961) 12. Gambino, S.R., n. 3, supra.
13. Adler, n. 4, supra.
What is claimed is:
1. In a method for colorimetric or spectrophotometric bilirubin assay, in which the color of the azobilirubin formed from the coupling reaction of an azo reagent with bilirubin is measured, the improvement comprising adding an acid solution of hydroxylamine to the reactant solution after the azobilirubin has formed therein.
2. The method as set forth in claim 1, in which the acid solution of hydroxylamine is prepared by adding hydroxylamine hydrochloride to water.
3. The method as set forth in claim 1, in which the bilirubin assay is an alkaline azobilirubin procedure.
4. The method as set forth in claim 1, wherein the hydroxylamine is added to the reactant solution in place of ascorbic acid.
5. The method as set forth in claim 1, in which the acid hydroxylamine solution is prepared by dissolving an acid hydroxylamine salt in water.
6. In a method for colorimetric or spectrophotometric bilirubin assay, in which the'color of azobilirubin formed from the coupling reaction of an azo reagent with bilirubin is measured, the improvement comprising using hydroxylamine in the reactant solution after the azobilirubin has formed therein, the hydroxylamine having been maintained stable prior to such use by being acidic.
7. The method as set forth in claim 6, in which the bilirubin assay is an alkaline azobilirubin procedure.
8. The method as set forth in claim 6, wherein the hydroxylamine is used in place of ascorbic acid.
9. In a method of bilirubin assay involving the measurement of the blue color of azobilirubin formed by the reaction of bilirubin and an azo reagent, the improvement comprising using hydroxylamine in a concentration which gives the same final concentration of hydroxylamine as when a solution which is 13 molar or greater of the hydroxylamine is substituted for ascorbic acid in aJendrassik-Grof procedure.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent 3,652,222 a d March 28, 1972 r Inventor(s) Jerry Denney 611 8.1
It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 1, line 40, "an" should read and Column 3, line 56, "compounds" should read substances lines 56 and 57, compound" should read substance line 57, "salt" should read substance Column 5, line 24, the reference numeral '14 should read 3 t Column 6, line 36, the molarity number "13" should read 1.3
Signed and sealed this 20th day of February 1973 s EAL) Attest:
EDWARD M.FLETCHER,JR. ROBERT GOTTSCHALK Attesting Officer Commissioner of Patents FORM PO-1 USCOMM-DC 6O376-P69 U.S. GOVERNMENT PRINTING OFFICE: 1959 O3G6-334,

Claims (8)

  1. 2. The method as set forth in claim 1, in which the acid solution of hydroxylamine is prepared by adding hydroxylamine hydrochloride to water.
  2. 3. The method as set forth in claim 1, in which the bilirubin assay is an alkaline azobilirubin procedure.
  3. 4. The method as set forth in claim 1, wherein the hydroxylamine is added to the reactant solution in place of ascorbic acid.
  4. 5. The method as set forth in claim 1, in which the acid hydroxylamine solution is prepared by dissolving an acid hydroxylamine salt in water.
  5. 6. In a method for colorimetric or spectrophotometric bilirubin assay, in which the color of azobilirubin formed from the coupling reaction of an azo reagent with bilirubin is measured, the improvement comprising using hydroxylamine in the reactant solution after the azobilirubin has formed therein, the hydroxylamine having been maintained stable prior to such use by being acidic.
  6. 7. The method as set forth in claim 6, in which the bilirubin assay is an alkaline azobilirubin procedure.
  7. 8. The method as set forth in claim 6, wherein the hydroxylamine is used in place of ascorbic acid.
  8. 9. In a method of bilirubin assay involving the measurement of the blue color of azobilirubin formed by the reaction of bilirubin and an azo reagent, the improvement comprising using hydroxylamine in a concentration which gives the same final concentration of hydroxylamine as when a solution which is 13 molar or greater of the hydroxylamine is substituted for ascorbic acid in a Jendrassik-Grof procedure.
US814161A 1969-04-07 1969-04-07 Bilirubin assay Expired - Lifetime US3652222A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US814161A US3652222A (en) 1969-04-07 1969-04-07 Bilirubin assay
JP45028536A JPS515600B1 (en) 1969-04-07 1970-04-03
GB1643170A GB1312712A (en) 1969-04-07 1970-04-07 Method of determining bilirubin
DE2016555A DE2016555C3 (en) 1969-04-07 1970-04-07 Method for the colorimetric or photometric determination of bilirubin
FR7012549A FR2043035A5 (en) 1969-04-07 1970-04-07 PROCEDURE FOR THE TEST AND TEST OF BILIRUBIN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US814161A US3652222A (en) 1969-04-07 1969-04-07 Bilirubin assay

Publications (1)

Publication Number Publication Date
US3652222A true US3652222A (en) 1972-03-28

Family

ID=25214328

Family Applications (1)

Application Number Title Priority Date Filing Date
US814161A Expired - Lifetime US3652222A (en) 1969-04-07 1969-04-07 Bilirubin assay

Country Status (5)

Country Link
US (1) US3652222A (en)
JP (1) JPS515600B1 (en)
DE (1) DE2016555C3 (en)
FR (1) FR2043035A5 (en)
GB (1) GB1312712A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850576A (en) * 1972-06-19 1974-11-26 Boehringer Mannheim Gmbh Diagnostic composition for the detection of urobilinogen
US3853476A (en) * 1972-08-17 1974-12-10 Boehringer Mannheim Gmbh Diagnostic agent for the detection of bilirubin
US3853466A (en) * 1971-06-19 1974-12-10 Boehringer Mannheim Gmbh Diagnostic composition for the detection of urobilinogens
US3880588A (en) * 1972-08-17 1975-04-29 Boehringer Mannheim Gmbh Diagnostic agent for detecting bilirubin
US4030885A (en) * 1975-09-11 1977-06-21 Sigma Chemical Company Bilirubin determination
US4078892A (en) * 1975-06-30 1978-03-14 Becton, Dickinson And Company Novel means and method for diagnostic quantitation of serum or plasma bilirubin
US4115064A (en) * 1977-02-07 1978-09-19 Pierce Chemical Company Method for bilirubin determination
US4260579A (en) * 1979-05-10 1981-04-07 Miles Laboratories, Inc. Device and method for simulating bilirubin in urine
US4336157A (en) * 1980-06-27 1982-06-22 Baxter Travenol Laboratories, Inc. Process for reclaiming biliverdin-containing fluids
WO1995000843A1 (en) * 1993-06-18 1995-01-05 Synermed, Inc. Assay for total bilirubin
US5599661A (en) * 1993-12-28 1997-02-04 Unitika, Ltd. Reagent for measuring direct bilirubin
US5804405A (en) * 1996-11-27 1998-09-08 Research Corporation Technologies, Inc. Bilirubin detection
WO1999004258A1 (en) * 1997-07-17 1999-01-28 Synermed International Inc. Assay for total and direct bilirubin
US5958781A (en) * 1994-07-14 1999-09-28 Abbott Laboratories Methods and reagents for cyanide-free determination of hemoglobin and leukocytes in whole blood
US20050266579A1 (en) * 2004-06-01 2005-12-01 Xihai Mu Assay system with in situ formation of diazo reagent

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2301687A1 (en) * 1973-01-13 1974-07-18 Boehringer Sohn Ingelheim METHOD FOR DETERMINING TOTAL BILIRUBIN IN BODY FLUIDS
FR2280082A1 (en) * 1974-07-25 1976-02-20 Reveilleau R Hydrazine-stabilized bilirubin colorimetric assay - by coupling of free or conjugated bilirubin with diazonium salts
JP7153019B2 (en) * 2016-12-14 2022-10-13 エフ.ホフマン-ラ ロシュ アーゲー Determination of interfering substances in samples

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3348920A (en) * 1964-02-25 1967-10-24 Dade Reagents Inc Reagent and method for the quantitative determination of bilirubin
US3511607A (en) * 1967-10-06 1970-05-12 Smithkline Corp Laboratory reagent for assay of total bilirubin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3348920A (en) * 1964-02-25 1967-10-24 Dade Reagents Inc Reagent and method for the quantitative determination of bilirubin
US3511607A (en) * 1967-10-06 1970-05-12 Smithkline Corp Laboratory reagent for assay of total bilirubin

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Quigley, J. J., Analytical Chemistry, Vol. 24, pp. 1859 1860 (1952) *
Welcher, F. J. ed., Standard Methods of Chemical Analysis, Vol. II, Part A., pp. 1081 1082 (1963) *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3853466A (en) * 1971-06-19 1974-12-10 Boehringer Mannheim Gmbh Diagnostic composition for the detection of urobilinogens
US3850576A (en) * 1972-06-19 1974-11-26 Boehringer Mannheim Gmbh Diagnostic composition for the detection of urobilinogen
US3853476A (en) * 1972-08-17 1974-12-10 Boehringer Mannheim Gmbh Diagnostic agent for the detection of bilirubin
US3880588A (en) * 1972-08-17 1975-04-29 Boehringer Mannheim Gmbh Diagnostic agent for detecting bilirubin
US4078892A (en) * 1975-06-30 1978-03-14 Becton, Dickinson And Company Novel means and method for diagnostic quantitation of serum or plasma bilirubin
US4030885A (en) * 1975-09-11 1977-06-21 Sigma Chemical Company Bilirubin determination
US4115064A (en) * 1977-02-07 1978-09-19 Pierce Chemical Company Method for bilirubin determination
US4260579A (en) * 1979-05-10 1981-04-07 Miles Laboratories, Inc. Device and method for simulating bilirubin in urine
US4336157A (en) * 1980-06-27 1982-06-22 Baxter Travenol Laboratories, Inc. Process for reclaiming biliverdin-containing fluids
WO1995000843A1 (en) * 1993-06-18 1995-01-05 Synermed, Inc. Assay for total bilirubin
US5599661A (en) * 1993-12-28 1997-02-04 Unitika, Ltd. Reagent for measuring direct bilirubin
US5958781A (en) * 1994-07-14 1999-09-28 Abbott Laboratories Methods and reagents for cyanide-free determination of hemoglobin and leukocytes in whole blood
US6740527B1 (en) * 1994-07-14 2004-05-25 Abbott Laboratories Methods and reagents for cyanide-free determination of hemoglobin and leukocytes in whole blood
US5804405A (en) * 1996-11-27 1998-09-08 Research Corporation Technologies, Inc. Bilirubin detection
WO1999004258A1 (en) * 1997-07-17 1999-01-28 Synermed International Inc. Assay for total and direct bilirubin
US6326208B1 (en) 1997-07-17 2001-12-04 Synermed International Inc. Assay for total and direct bilirubin
US20050266579A1 (en) * 2004-06-01 2005-12-01 Xihai Mu Assay system with in situ formation of diazo reagent

Also Published As

Publication number Publication date
DE2016555C3 (en) 1979-10-04
GB1312712A (en) 1973-04-04
DE2016555A1 (en) 1970-11-05
FR2043035A5 (en) 1971-02-12
DE2016555B2 (en) 1979-02-01
JPS515600B1 (en) 1976-02-20

Similar Documents

Publication Publication Date Title
US3652222A (en) Bilirubin assay
Lathe et al. Factors affecting the rate of coupling of bilirubin and conjugated bilirubin in the van den Bergh reaction
Watanabe et al. Urinary protein as measured with a pyrogallol red-molybdate complex, manually and in a Hitachi 726 automated analyzer.
US3485587A (en) Protein indicator
Dangerfield et al. Estimation of bilirubin in serum
US4078892A (en) Novel means and method for diagnostic quantitation of serum or plasma bilirubin
US4485176A (en) Turbidimetric method for measuring protein in urine and cerebrospinal fluid
Kutter et al. Chemical detection of leukocytes in urine by means of a new multiple test strip
Jung et al. Colorimetry of serum cholesterol with use of ferric acetate/uranyl acetate and ferrous sulfate/sulfuric acid reagents
JPH0644000B2 (en) Method for analyzing calcium and reagent for analysis thereof
US4224034A (en) Assay of iron and iron binding protein reagents and methods
CN104714040A (en) Method for determining glucose oxidase in serum by adopting double reagents
Meites et al. Studies on the use of the van den Bergh reagent for determination of serum bilirubin
US3689633A (en) Preparation of test sample for immunological assay of pregnancy of mares
KR101034993B1 (en) Agent for detecting malondialdehyde, method of making the same, and test kit for use thereof
US4119401A (en) Total bilirubin assay
CA1102226A (en) Urea assay and reagents therefor
JPS6142823B2 (en)
US3528777A (en) Process and compositions for determination of uric acid in blood serum
US4529708A (en) Assay for the determination of creatinine
CN106596981B (en) A kind of kit for measuring coagulation function
US2897058A (en) Albumin detecting method and means
US3792044A (en) Method for determining glucose with o-toluidine reagent containing an arsenic compound
Badham et al. Critical assessment of phospholipid measurement in amniotic fluid
Moorehead et al. An automated micromethod for determination of serum glucose, with an improved o-toluidine reagent

Legal Events

Date Code Title Description
AS Assignment

Owner name: MERCHANTS NATIONAL BANK & TRUST COMPANY OF INDIANA

Free format text: SECURITY INTEREST;ASSIGNOR:AMERICAN MONITOR CORPORATION,;REEL/FRAME:004101/0767

Effective date: 19821103

AS Assignment

Owner name: SECURITY PACIFIC BUSINESS CREDIT INC. 230 WEST MON

Free format text: SECURITY INTEREST;ASSIGNOR:AMERICAN MONITOR CORPORATION AN IN CORP.;REEL/FRAME:004070/0799

Effective date: 19821103

PA Patent available for licence or sale
AS Assignment

Owner name: MERCHANTS NATIONAL BANK & TRUST COMPANY, INDIANAPO

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:MERCHANTS NATIONAL BANK & TRUST COMPANY OF INDIANAPOLIS;REEL/FRAME:004339/0926

Effective date: 19841127

Owner name: MERCHANTS NATIONAL BANK & TRUST COMPANY,INDIANA

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:MERCHANTS NATIONAL BANK & TRUST COMPANY OF INDIANAPOLIS;REEL/FRAME:004339/0926

Effective date: 19841127

AS Assignment

Owner name: FOOTHILL CAPITAL CORPORATION, A CORP. OF CA, ILLIN

Free format text: SECURITY INTEREST;ASSIGNOR:SECURITY PACIFIC BUSINESS CREDIT, INC.;REEL/FRAME:004493/0285

Effective date: 19841130

AS Assignment

Owner name: NEUBERGER AND BERMAN (LENDER), 522 FIFTH AVENUE, N

Free format text: SECURITY INTEREST;ASSIGNOR:AMERICAN MONITOR CORPORATION;REEL/FRAME:004610/0276

Effective date: 19860630