Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3628829 A
Publication typeGrant
Publication date21 Dec 1971
Filing date8 Jul 1969
Priority date9 Mar 1966
Publication numberUS 3628829 A, US 3628829A, US-A-3628829, US3628829 A, US3628829A
InventorsHeilig Morton L
Original AssigneeHeilig Morton L
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Experience theater
US 3628829 A
Images(13)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [72] lnventor Morton 1.. Heilig -60 Riverside Drive, New York, N.Y. 10024 [21] Appl. No. 870,852 [22] Filed July 8, 1969 [45] Patented Dec. 21, 1971 Original application Mar. 9, 1966, Ser. No. 533,017, now Patent No. 3,469,837. Divided and this application July 8, 1969,

Ser. No. 870,852

[54] EXPERIENCE THEATER 6 Claims, 39 Drawing Figs.

[52] U.S. C1 297/217, 297/180 [51] Int. Cl A47e 1/12 [50] Field of Search 297/217, 180, 186, 184

[56] Relerences Cited UNITED STATES PATENTS 1,370,832 3/1921 Mollberg 297/ 180 1,615,615 1/1927 297/217 1,618,158 2/1927 297/217 1,719,940 7/1929 297/217 2,031,643 2/1936 297/217 (/10 fin) I04 1 M40 r Primary Examiner- Francis K. Zugel Attorney-Hopgood and Calimafde ABSTRACT: The combination of a viewing chair and sensestimulating means for use in motion picture or television theaters is provided comprising a seat with armrests and having a back which terminates into a hood over the chair, support means for the chair including means adapted to rock the chair in various directions, means for vibrating said chair, odor-producing means associated with said chair, odor-conducting conduits associated with said odor-producing means, means for moving air through the odor-producing means and the odor-conducting conduits towards the face of a spectator seated in said chair, air passageways associated with the chair having exit ports for directing air towards various portions of the spectators body, means for feeding air to the air passageways, exhaust means associated with the hood of the chair for removing said fed air and odors, and a loudspeaker associated with the hood of said chair.

pn mwg gmm, 3528.829

SHEET UlUF 13 INVENTOR. MUR ro/v L. HE/L 6 'ATTORNEYS- PATENTEU EH22] ml SHEET [20F 13 INVENTOR. MORTON L. HElL/G W 9 ATTORNEY$ PNENTEO mm mm 3628.829

SHEET 0 3 OF 13 INVENTOR. MOP TON L HE/L/G ATTORNEYS.

mmmm 3.628.829

. SHEET [1 0F 13 INVENTOR. MORTON L HE/L /6 mmmm 'slezsxazs SHEET CSUF13 INVENTO MORTON L. NEIL/6' PATENTEnniczmn 3628,8329

SHEET [60F 13 y,. 1 m 3 INVENTOR.

MORTON L. HE/L/G A 7' T ORA/EYE "1mm an SHEET USUF 13 INVENTOR. MORTON L. HEM/6 W k A TTORNFYJ.

mmmmm 3628.829

SHEET llUF13 U] 1 mvamoa.

F IG. 2 W

ATTORNEYS.

EXPERIENCE THEATER This is a division of application Ser. No. 533,017, filed Mar. 9, 1966 now Pat. No. 3,469,837.

This invention relates to the art of motion picture or television and the enjoyment thereof. More particularly, the invention relates to an improved form of motion picture or television entertainment in which the spectator is enabled, through substantially all of his senses, to experience realistically the full effect or illusion of being a part of or physically responding to the environment depicted by the motion picture. For the sake of brevity, the invention is referred to herein as the experience theater and is meant to include any form of animation whether produced by the passage of light through a moving motion picture film or produced electronically as, for example, by the technique commonly employed in television, magnetic tape recording, or even the relatively new techniques of hollography or laser beam projection.

Thus, insofar as the invention is concerned, the experience theater is a new and improved type of theater designed to completely involve a mass audience into a new and exciting world of experience.

All other existing theater systems, even the most advanced, such as Cinerama and Circarama, feed only parts of mans sensory apparatus with information. Thus, the spectator viewing a film or television program in these theaters is constantly reminded that he is not really in the world being depicted on the screen, but rather in a theater looking at an image of it on the screen.

By feeding almost all of mans sensory apparatus with information from the scenes or programs rather than the theater, the experience theater makes the spectator in the audience feel that he has been physically transported into and made part of the scene itself.

Accordingly, it is the object of the invention to provide an experience theater system which gives to an observer or spectator a desired realistic experience by utilizing sensing elements and conditions which enable the spectator to respond fully .to the illusion of being part of the created environment and thus receive the full dramatic impact portrayed by the scene.

Another object is to provide a new and improved viewing screen having a concave configuration adapted to full peripheral viewing, the screen being formed of a mosaic of reflective elements.

A still further object is to provide the combination of viewing chairs and associated sense-stimulating elements together with a concave viewing screen adapted for full peripheral viewing.

Still another object is to provide a viewing chair having associated sense-stimulating means including mechanical articulating means for applying controlled movement to the chair to promote awareness of body position conforming to body attitude portrayed by a particular motion picture scene.

These and other objects will more clearly appear when taken in conjunction with the following disclosure and the ac companying drawings, wherein:

FIGS. 1 and 2 are illustrative of one embodiment of a concave viewing screen provided by the invention;

FIGS. 3 and 4 depict another embodiment of a concave viewing screen which may be employed in carrying out the invention;

FIGS. 5 to 16 show concave viewing screens and surface portions utilizing mosaic elements employed in the construction of the screens; 7

FIG. 17 is illustrative of one means for arranging viewing chair in accordance with the carrying out of one embodiment of the invention;

FIGS. 18 to 21 relate to chair arrangements and manipulation;

FIGS. 22 and 23 show in detail two embodiments of a viewing chair provided by the invention;

FIG. 220 shows means for tilting the chair.

FIGS. 24 and 25 are illustrative of means which may be employed in producing aromas;

FIG. 26 depicts an air-distributing system employed in combination with the viewing chairs;

FIG. 27 shows another arrangement of chairs which may be employed in the invention;

FIG. 28 is illustrative of a pair of peripheral Polaroid 3D glasses for use in the experience theater;

FIGS. 29 to 34 are illustrative of various forms of seating arrangements which may be employed in the experience theater; and

FIGS. 35 and 36 are block diagrams coordinating signal producing stimuli on a film with sense-stimulating elements.

As one preferred embodiment of the experience theater the invention provides a projection screen of concave configuration of substantially hemispherical sweep which embraces substantially the entire normal field of vision of a spectator, in combination with a centrally located projection system, a plurality of loudspeakers spaced in predetermined positions on the convex side of the screen, a plurality of specially arranged viewing chairs, with the plane of support of the chairs steeply inclined to the ceiling of the theater such that the plane of support subtends the concave screen much as a cord subtends an arc of a circle, and sense-stimulating means associated with each of the chairs.

The sense-stimulating means are employed in a manner to stimulate the natural range of mans major senses, to wit: (1) vision which involves moving colored imagery which may be depicted in three dimensions and which may have a horizontal angle of 185 and a vertical angle of 150; (2) hearing involving dimensional sound that comes from all points around the head; smell based on aromas and taste; (4) tactile sensations of heat and/or cold with pressure; and (5) kinesthetic sensations involving awareness of body position.

The experience theater utilizes sense-stimulating means to feed sensory information to approximately percent of this system, in the following manner: (a) a hemispherical or marshmallow or obloidal-shaped screen to reflect moving, colored images with three-dimensional effect that fills I70 percent of the spectators horizontal vision and percent of his vertical vision; (b) the use of 5 to 30 speakers to provide directional sound from all points in the screen and one small speaker in each chair provides sound from behind the spectators head; (c) the feeding of aromas through the arm of each chair with immediate evacuation through the hooded space above the spectators head; these aromas can be changed instantly according to the needs of the film; (d) the application of tactile sensations by blowers that blow air of controlled and varying temperatures to the head and hands of the spectator and the use of a vibrating oscillator in each chair which conveys the appropriate vibrations (motorcycle, train, automobile, etc.) to the entire body of the spectator; (e) and the simulation of body attitude by tilting the spectators chair to various angles as might occur in a banking airplane or a speed boat.

The advantages of the invention are achieved by utilizing the foregoing effects or sensations in combination. If any of the above sensations are provided alone, the psychological effect is completely unnatural and therefore ineffective and unsatisfying. But when provided together in a properly programmed manner, the effect is completely natural, therefore very convincing and enjoyable.

For example, three-dimensional imagery is not satisfactory without substantially full use of peripheral vision, and aromas are unnatural unless objects are portrayed with a three-dimensional effect, etc. The natural and necessary unity of all these sensory stimuli is the key idea of the experience theater, but the invention goes much further in that it solves the many problems that immediately arise when the traditional means of supplying one sensation conflict with these necessary to provide another; and when its desired to provide these multiple stimuli to a mass audience rather than to one individual.

In this connection, the shape of the concave screen is very important, several embodiments of which are shown in FIGS. 1 to 4. In order to take full advantage of the peripheral field of vision made possible by the screen, the viewing chairs are supported on a plane P steeply inclined to an imaginery plane V extending vertically downward from the ceiling C. As will be noted, the plane of support of the chairs subtends the concave screen S. In effect, the audience is closed in by the screen itself, with the concave portion facing the audience, the plane of support of the chairs making, for example, an angle of about 65 with the floor of the theater.

The concave screen 8" shown in FIGS. I and 2 (FIG. 2 is a top view of FIG. 1), while substantially hemispherical has a somewhat marshmallow or obloidal shape. That is to say, the central portion 10 of the concave screen and the sides 10b are partly flattened. In the embodiment of FIGS. 3 and 4, the central and side concave portions 10a are more spherically shaped.

While it is appreciated that planetariums and some recent theater developments use a hemisphere above the audience with the audience on the ground floor looking up, this position is physically tiring so the spectator and psychologically unnatural, since the spectator is used to looking ahead at the world, while walking or driving; rarely up at it. In order for the spectator to look ahead, and yet to have a completely free horizontal visual field requires a special arrangement whereby the spectators sit substantially above one another.

Both the hemispherical and obloidal screens completely fill the spectators free visual field with imagery 170 horizontally and 120 vertically, the only limitations being those imposed by the other spectators, his own body, and the evacuation hood above his head.

The concave screen depicted by FIGS. 1 and 2 is advantageous in that it allows the entire audience to be further away from the central and most important part of the screen, thus providing better definition and more comfortable eye focusing. Additionally, it frees the key central part of the image from the serious spherical distortion that necessarily accompanies spherical screens. Thus, in the key central part of the picture where the screen is flattened, buildings, telephone poles and horizon lines are straight rather than curved.

Referring to FIG. I, steeply rising steps 111 are shown for supporting viewing chairs. A projection system 12 is located centrally and in front of concave portion 10 of the screen. Loudspeakers 13 are strategically placed and spaced about the back or convex portion of the screen. As shown in the drawing, the front or concave screen is made up of a plurality of facets or mosaic elements 14 (to be described in more detail later) shaped and disposed at a predetermined angle of reflection, such that rays of light directed to any of said faces from the projection system 12 by means of a wide angle lensc are caused to reflect back to the viewing audience without bounding from one section of the screen to the other. Thus, ray 150 (FIG. I) is shown reflected via ray 15b to the top of the viewing stand, while ray 16a is shown reflected to the bottom but away from the screen. The same is true of rays 17a, 17b and 18a, 18b, etc.

By using a screen of the foregoing type with substantially full peripheral vision, new and improved 3D effects can be achieved.

Peripheral imagery without 3D is not usually satisfactory because the spectators natural binocular vision can immediately sense that the films monocular image is lying flat on a deeply curved surface.

Equally unsatisfactory is 3D without peripheral imagery because the 3D images which appear to be floating in space seem unnaturally truncated by the edges of the conventionally rectangular screen. For example, a man whose head and shoulders are floating in the space before a viewer appears as if some giant sword has sliced off his trunk and legs at the point where it touches the edges of the frame.

Three-dimensional pictures may be obtained with the invention by projecting a leftand right-eyed image from two motion picture or television projectors 19 and 20 (FIG. 2) through polarized filters, each angled at 90 from each other.

The surface of the screen should advantageously be aluminized in order for the light reflected from it to maintain its polarization. But if the surface of either the hemispherical or obloidal screen are aluminized without special precautions serious problems may arise. First, hot spots may appear to the spectator wherever the angle of the incident is the same as the angle of the reflected light and, secondly, light will bounce from one surface to another, causing a serious washing out or graying of image contrast. Hence the surface of the aluminized screen should preferably be constructed of a mosaic of elements each disposed relatively to impinging rays such that the rays are evenly reflected back to the audience while none of the rays is reflected to the other screen surfaces. Examples of various mosaic elements which may be employed are shown in FIGS. 5 to 16.

The mosaic elements making up the concave screen may comprise aluminized metal, plastic or glass elements formed so that individual squares or hexagonal surfaces or faces are each individually aimed to reflect the rays coming from the projector to the audience. The mosaic element should be capable of being angled in different planes, for example, by being adjustably mounted on ball sockets as in FIG. 13. There, it will be noted that various methods of mounting the mosaic element are depicted. The supporting base of the screen 21 is shown to be perforated with holes 22 through which sound from mounted loudspeaker 23 passes. Attached to supporting base .21 are elements 24a to 2401, all of which illustrate various methods of locking the element. Thus, element 24a illustrates a ball-socket mounting using a rear screw 25; element 24b a side screw 26; element Me a front screw 27; and element 24d a biasing spring 28.

Another embodiment employing the same principle is to form plastic or glass elements having a front or rear coating of silver to form hundreds of tiny (one-half to one-sixteenth inch) convex mirrors 29 or semimirrors as in FIG. 12. Each of the mosaic surfaces may either be an actual mirror, or a metallized reflective surface having a matte finish which reflects a light with more diffusion than a true mirror, but less diffusion than reflection from a white surface (a white paper surface). Each mirror is set at a specific angle such as the plates described above, but in addition, each mirror has a particular vertical and horizontal curvature that reflects a specific light pattern which exactly covers the audience from that position (note FIGS. 6 and 7). Holes 30 for sound are provided at the comers. Thus, referring to FIGS. 6 and 7, the central mirrors reflect the widest patterns (60) while the side mirrors (6b, 6c) reflect narrower and narrower patterns. The advantage of this mirror system, squarish mirrors, FIGS. 60., lb, c, for the obloidal screen (FIG. 9) and round mirrors, FIGS. 70, b, c, for the spherical screen (FIG. 8) is: (l) maintenance of polarization; (2) minimizing of hot spots; (3) maximum utilization of available light energy.

Thousands of mirrors (or semimirrors) may be pressed into one plate as shown in FIGS. 10, ll, l2and 15. These mirrors can be either square or hexagonal (note FIGS. 14 and 16), and curved or flat (note FIGS. 12 and 15), depending on their position in the overall screen. At the juncture of the small convex mirror surfaces tiny holes 30 are provided to allow sound to pass through the screen as shown in FIGS. 10 and 12. The panels are numbered in the back for proper locating, and fitted with a female thread (31) and key slot 32 for quick mounting onto a rear support frame.

Another form of concave screen is that shown in FIGS. 8A and 8B which depict a spherical screen made up of alurninized surfaces in the form of concentrically located annular segments 29a, each angled to reflect the light back to the audience while none is reflected to other parts of the screen.

Two projectors 33a and 33b (FIG. 5) are mounted at the center of the plane of support of the viewing chairs. The projectors are adapted to be synchronized mechanically or electrically and equipped with wide angle -180 lenses and polarizing filters.

Either a separate 5 to 30 channel tape playback synchronized to the projection system or magnetic tracks on the film itself (see FIGS. 35 and 36) may feed 5 to 30 speakers located behind the screen and small speakers placed behind the head of each spectator (note FIGS. 22 and 23).

To keep the spectators vertical field free of obstruction, it has been found advantageous to place them one above the other. This can be directly one above the other in very small theaters (of three or four rows), but in larger theaters a completely vertical placement of the audience would result in a real physical danger from falling and a frightening psychological sense of insecurity for those on the upper levels.

These problems are solved by supporting the audience in a plane P, 65 from the horizontal (FIGS. 1 and 17). This offers safety as well as a greater sense of security. Referring to FIGS. 17, six levels 34 to 39 are provided for supporting chairs 34a to 3911. With regard to FIG. 17, safety can be further enhanced by having a transparent or glass or plastic sheet 40 extend at an angle of approximately 38 from the horizontal. The spectator can be held back by this and yet see through it. Safety may be provided, however, by the manner in which the spectator gets to and from his seat and by the safety features of the seat itself.

In the embodiment shown in FIG. 17, the spectators rise to the appropriate level by escalator or elevator and then approach their seats from the rear of the spectator plane P." The chairs are adapted to swivel at a point 41 just beneath the seat, so that the empty seat is facing away from the screen toward the approaching spectator. He sits in the chair then lowers the safety crossbar 42 shown in FIG. 19 which locks automatically. Only when this bar is down can the spectator pull finger loops 43 which via cable 44 cause pin 45 (note pull against biasing spring 46 out of hole 47 and allow the chair to spin around and face the theater. The pin then drops in to hole 48 setting the chairjn the forward looking position. Solenoid 49 is provided to prevent the safety bar from being reopened until the chair is spun back to the rear facing position.

Chairs 50 are spaced in couples (note FIG. 18) with a space of approximately 1 foot between each couple. This allows the spectator in a chair on either side of the space ,note 51) to spin in that direction and get his knees and feet through. The spectator rotates the chair by pushing with his feet against the base which does not turn. Thus, the spectators approach their chairs from the rear, lock the crossbar, spin around, watch the show, then spin back, raise the crossbar and get out with complete safety. This system is desirable for shows of 40 minutes or longer where spectators must be able to leave their chairs at will to go to the rest room.

In a less elaborate form of the experience theater shown in FIGS. 20, 21 and 27 which would be used for shows under 40 minutes, the spectators approach and leave their seats from the front much as in a normal theater, except that they do so during intermission when the lights are on. The safety is provided in the following manner:

All crossbars 52 (FIG. are electrically locked by a spring-biased solenoid 53 while the show is on. When the last scene of the film fades into darkness, hydraulic arms 54 (note FIGS. 20 and 27) located at each side of a bank of chairs that comprise each row (note FIG. 29) rises to a height of about 4 feet and 7% inches by means of telescoping members 54a, 54b and 54c which raise a bar 55 up to a height of about 3 feet 9 inches. The rising bar unravels a thick yet flexible plastic sheet 56 from a roll 57 (hidden by jack 54 but shown at other levels) thus creating a wall to protect the spectator. Once the plastic wall is up, the solenoid is actuated to free safety bar 52 (note FIG. 21), allowing each spectator to raise his safety bar. The spectators can then stand and exit single file in both directions, holding on to raised bar 55 (FIG. 27) for balance. When the theater is empty, new spectators enter from either side, sit in their seats, and lower their safety crossbars. Once the theater is full, all crossbars are locked by switch actuated means (not shown), and the lights go down. In the darkness, hydraulic arms 54 lower and the plastic wall is pulled back on roll 57 by means of a spring coiled mechanism (not shown) completely freeing the spectators field of view for the show which then starts. The wall behind each chair in FIG. 20, shows the grid 52a of an evacuation channel for removing previously supplied fragrances, a loudspeaker 52b, and a recess 52c for holding Polaroid glasses 52d and a germicidal lamp 52c.

The seats or chairs of the experience theater are important in carrying out one embodiment of the invention by providing many of the sensory stimuli.

Referring to FIGS. 22 and 23, a preferred embodiment of a viewing chair 60 is shown supported by a double-acting swivel along two axes 61, 62 disposed at right angles to each other. Arm 63 which may be gear or hydraulic driven, controls the front-back pitch in relationship to the scene of the screen. Arm 64 (not shown here) similarly controls sideways tilt (note FIG. 22A). Thus, the spectators watching scenes taken from a motorcycle or-airplane will pitch and tilt just as the vehicle does, thus strongly reinforcing the spectators feeling that he is physically on the vehicle. The rest of the chair floats on a bed of springs (or optionally, foam rubber). A vibrator or oscillator 66 is provided to vibrate the rest of the chair in the rhythm appropriate to the scene, such as the varying speeds and surges and bumps of a speedboat. These vibrations are communicated to every part that touches the chair, i.e. the feet, the legs, the buttocks, the arms and the back, just as would happen if the spectator were actually sitting in a speedboat. The oscillator is variable and controlled by either pitch or volume variations on one channel of the magnetic guide track on the film.

FIG. 22A shows one method of tilting the chair using a pair of reversible motors M-l, M-2, which are activated by a sensed signal (note FIG. 35). Thus, motor M1 causes gear G-l to rotate and in turn meshing gear G-2. Coaxially mounted with gear G-2 is an internally threaded worm gear W-l which rides on driven worm gear 63a, worm gear 63a being driven in either direction as shown by the arrows, which gear in turn actuates pivotally mounted arm 63 for tilting the chair back and forth about axis 6l (FIG. 22). Motor M-2 similarly actuates arm 64 via gears W-3 and W4, internal worm gear W-S and worm gear 64a.

Aroma systems without 3-D have been attempted in the past but they have always failed because of the psychological paradox of smelling a flat two-dimensional image. Odor implies a physical reality-a palpable presencethus, the object providing the aroma should preferably be three-dimensional, if a satisfactory natural impression is to be made on the spectator.

Aromas are provided in one of two ways, either from a central, electronically controlled fragrance system, FIG. 26 (note 67) through a fixed tube 68 and then flexible tube system 69. The aromas are carried into one or both arms of the chair and directed upward, towards the face through a small slotted hole 70. One of the serious problems with other attempts to add aromas to films has been the contamination of the theater air with one odor and the inability to clear the air of this aroma before the next one arrived.

The experience theater chair solves this problem by placing a hood 71 (FIGS. 22 and 23) over the spectators head, and by applying mild suction through hole 72 so that the fragrance laden air is immediately evacuated once it passes the face. This air is evacuated through flexible tube 73 then rigid tubing 74 system and expelled from the theater.

- Another way of providing aromas is to put individual aroma cartridges 75 (FIGS. 24 and 25) into the arm of each chair (FIG. 22). The cartridge may comprise a plastic box with, for example, 12 fragrance slots 76. An appropriate wire mesh containing solid aroma pellets 77 is placed in each chamber. The top cover 78 is put on and then the two holes 79 in the side of each chamber 80 are plugged by a side cover 81 with protruding plugs on the inside. A door 82 located on the spacious side of chair is opened, the side cover removed and the cartridge put in.

The system works in the following manner. Blower 83 is activated whenever-a fragrance is desired. This creates a negative air pressure. One channel on the films (84 in FIG. 35) magnetic track carries specific frequencies which are related to specific odors. Note channels C--1 (front tilt), C-2 (side tilt), C-3 (vibrations) and C-4 (aromas) in FIG. 35. Whenever the film calls for a given odor, the appropriate signal on channel C4 activates magnetic head 85 which through electronic filters and amplification (not shown) causes a signal to be sent to solenoids in all of the chairs corresponding to odor stimulation 88 in FIG. 35. The solenoid 89 (FIG. 24) raises bar 90 to a position where the two holes 79A (FIG. 24) in the bar (which normally act as closed gates) and allows air to pass through it.

Odorless air is sucked into the chamber now heavily saturated with fragrance through holes 911, 92 and sucked out again through hole 92A and then blown gently up toward the face through latticed hole 93. The whole system may be easily removed for servicing and repair.

Breezes of varying velocities to produce tactile sensations can also be provided in the experience theater in several ways. A central air system shown in FIG. 26 takes air in through a filter 94 from the outside, heats it or cools it in a temperature control chamber 95 depending on the scene (i.e. steel mill hot; water skiing-cool, etc.) and then applies pressure from one large blower 96 whose speed is controlled by either the varying pitch or volume of one channel on the magnetic soundtrack (note FIG. 35). This air is then led through a fixed 97 and flexible duct 98 to four points of all chairs (FIG. 23); the furthest point of each arm 99 blowing breezes back on to the hand, the central front part of hood 100 blowing breezes down on to the face and back over the hair and the rear of head and behind the head 1011 blowing forward. Each of these exits are open or closed by solenoids 99a, 100a and 101a controlled by the films magnetic track in such a way that breeze blows either from the front or the back or only on the head to produce the tactile sensation indicated generally by the numeral 102 (FIGS. 35 and 36).

Another way of supplying breezes to the same points of the body is to have very small electrically controlled blowers 103, 104 and 105 placed at these points in the chair shown in FIG. 22. In this case, a signal turning the motor on and off and governing the velocity of the motor eliminates the screen need for solenoid gates as in the first breeze system.

Each blower has its own air intake from the theater air and each one is also equipped with tiny heating and cooling units to vary the temperature of the air according to the scene.

A soft plastic sheet 106 (FIG. 22) with holes for the passing of sound and air is placed behind the head so the spectator can lean back if he desires. This is important for the seats in the lower rows which may be tilted slightly back to allow their occupants a more comfortable view of the screen. The leftand right-eyed images reach the appropriate eye of the spectator through the use of Polaroid glasses 107 (FIGS. 22, 23 and 28).

The glasses are contained in small container 108 shown in FIG. 23 on the roomy side of the chair, and attached by fine supply chain I09 to prevent their getting lost or stolen. The box contains a germicidal lamp 110 to disinfect the glasses. This lamp is adapted to light up during intermission.

The box is divided into two compartments (FIG. 19), one to hold the smaller glass for people who don't wear glasses 111 and the other 112 a larger glass which fits easily over all pairs of prescription glasses.

The design of the polarized glasses is important in achieving the full advantages of the preferred aspects of the invention (FIG. 28). One of the main reasons why 3D movies have not been too successful has been the flimsy uncomfortable nature of the very cheap paper glasses which have been used.

The glasses employed with the experience theater, while still relatively inexpensive, are strong quality glasses that are designed in such a way that within a few minutes the spectator completely forgets that he is wearing them.

This is accomplished first by having the polarized filters 113 so large and curved as to extend beyond the widest peripheral range of the eye in both the horizontal and vertical direction and also large enough to cover any glasses worn by the spectator. As will be noted in FIG. 28, the glasses are formed of two halves which meet centrally above the nose at 114, the two halves each curving about each side of the face above the cheek bones to provide a wide angle field of view, and each polarized at to the other.

To minimize pressure points on the face and head, the edges of the polarizers are carefully rounded and the nose support broad and carefully molded at 115. The side head clasps 116 are contoured to the head and broadened to a winglike structure in order to distribute the pressure. It is perforated by holes at 117 to allow the rear and front air breezes to penetrate, thus minimizing the head's awareness of the broad clasp.

The seat design of the simpler version of the experience theater shown in FIG. 27 accomplishes substantially the same effects as those described in FIGS. 18 to 23 except that the chair does not tilt. The major difference is that the concrete structure of the theater wall 118 itself assumes many of the functions built into the more elaborate chair.

The chair floats on strips of rubber 119 and may be caused to vibrate by means of vibrator I20. Aromas are fed through a central system 121 through a tube in the arm 122,. Instead of using a breeze blower to the hand, for economy rear and upper face blowers 123, 124 are built right into the concrete. A straight concrete overhang 125 replaces the elaborate chairs hood and traps the fragrances and evacuates them through a wall channel 126. The Polaroid glasses are held in a recess 127 in the cement to the rear and side of the head. It also contains a germicidal lamp 128 which is actuated during intermission.

The experience theater is the first theater which gives its audience a total illusion of being physically carried into a completely different environment. This is achieved by combining all the sense stimuli into one unified system. Thus, the experience theater provides the art with a new and substantially broadened medium of entertainment.

As will be apparent to those skilled in the art, the novel screen and theater provided by the invention may take on various embodiments, depending upon the seating capacity desired in the theater.

Referring to FIG. 31, a view is shown in elevation looking from the screen and facing viewing chairs designated generally by numeral 130, the periphery 131 representing the outline of the somewhat hemispherically shaped screen. The height of the theater as measured across the vertical mouth of the screen is about 44 feet and the width about 5 1 feet. Six rows of seats 1300 to f are shown, providing an aggregate seating total of 90 spectators. Projection cameras 132, 133 are shown located substantially centrally of the seats, said cameras being adapted for use in 3D movies using polarized light and polarized viewing lenses.

In the more elaborate theater of FIG. 32, similarly viewed as in FIG. 31, the height of the theater as measured across the mouth of hemispherical screen 134 would be about 64 feet. the width being substantially the same. Nine rows of seats are provided having a seating capacity of about I64 spectators. A pair of cameras 135, 136 are located centrally of the seats.

FIG. 33 depicts still another embodiment similar to FIG. 32 but having a height of 74 feet and seating an aggregate of about 228 spectators. Theaters having a squarish screen 137 as in FIG. 30 but designed with the substantially hemispherical shape (i.e. having a marshmallow or obloidal contour) can be designed to provide even a larger seating capacity. Thus, in FIG. 30, nine rows of seats are provided having a seating capacity of 224 spectators.

Since the seating arrangement of the experience theater is predicated on using a height greater than the horizontal extension of the theater, a practical way of increasing the seating capacity is to place two theaters back to back as shown in FIG.

' 9 34. The double theater is characterized by an overall enclosure 138 having two hemispherical ends 139 and 140, each enclosing a substantially hemispherical screen 139a and 140a, the convex side of each screen having strategically located loudspeakers 141 and 142. Steeply inclined seats 143, 144 are provided, respectively, in each of the theaters the seats being supported along plane supports 145, 146 as shown. The two theaters can either shown the same program simultaneously, or different ones simultaneously. Or they can show the same program at staggered times so the people anxious to see the show need only wait half the time before the next show begins. in the double theater shown, which may have a capacity of 460 spectators, an entertainment lobby 147 may be provided having means shown for keeping the spectators occupied while waiting for the next show.

By using the combination of the novel chair and novel screen, the sense-stimulating devices associated with each of the chairs can be programmed or coordinated with signal means in the form of magnetic tracings or channels as shown for film 84, 84A in the block diagram of FIGS. 35 and 36. Leftand righeeye films (84, 84A) are shown by way of example for the projection of 3-D movies. Channels C-l to C-8 on film 84 are related to various senses shown in the block diagram while channels C-9 to C-l6 relate to distribution of sounds to the various loudspeakers. Of course, where 3-D movies are not involved and only one film is employed, the film may be adapted to carry all of the necessary signal responses.

While magnetic channels are shown associated with each of the films, it will be appreciated by those skilled in the art that all of the magnetic signals could in the alternative be carried on a separate reel of magnetic tape synchronized with the two picture reels. Also, where the television principle of transmission is employed using videotapes, two videotapes may be er;- ployed for transmitting the leftand right-eyed images.

Although the present invention has been described in conjunction with preferred embodiments, it is to be understood that modifications and variations may be resorted to without departing from the spirit and scope of the invention as those skilled in the art will readily understand. Such modifications and variations are considered to be within the purview and scope of the invention and the appended claims.

lclaim:

. l. The combination of a viewing chair and sense-stimulating means for use in motion picture and television theaters which comprises, a seat with armrests and having a back which terminates into a hood over the chair, support means for said chair including means adapted to rock said chair in various directions, means for vibrating said chair, odor-producing means associated with said chair, odor-conductng conduits associated with said odor-producing means, means for moving air through said odor-producing means and said odor-conducting conduits towards the face of a spectator seated in said chair, air passageways associated with said chair having exit ports for directing air towards various portions of the spectators body, means for feeding air to the air passageways, exhaust means associated with the hood of said chair for removing said fed air and odors, and a loudspeaker associated with the hood of said chair.

2. The viewing chair of claim 1, wherein the support means includes pivot means adapted to rock the chair in the forwardly and transverse direction, including means for actuating said pivot, and wherein the chair has vibration responsive means associated with the bottom of said chair.

3. The viewing chair of claim 1, wherein said chair is provided with means to enable said chair to rotate partially about its vertical axis to enable access to said chair.

4. The viewing chair of claim 1, wherein said chair is provided with a latchable safety crossbar pivotally mounted across the handles thereof.

5. The viewing chair of claim 1, wherein a central air system is provided associated with the air passageways of said chair.

6. The viewing chair of claim 1, including means responsive to signal meansassociated with a projection film for coordinating a plurality of said sense-stimulating means associated with said chair.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1370832 *9 Jul 19208 Mar 1921Mollberg BrorChair with ventilating device for theaters, biographs, and the like
US1615615 *10 Mar 192425 Jan 1927Michael P CannonVibrating chair
US1618158 *16 Aug 192022 Feb 1927Abell Gerald LLight, color, and radiant ray bath cabinet
US1719940 *15 Aug 19239 Jul 1929John GFumigated iftjblirittjbe
US2031643 *24 Mar 193425 Feb 1936Albert A GranovskyCombination chair and lamp
US2420251 *8 May 19446 May 1947La Foriyes FrankHair drier with air recirculating means
US2587731 *19 Jun 19504 Mar 1952Frank J IrvingElectrically heated chair
US2852998 *5 Apr 195523 Sep 1958Serra Jose LlobetSystem for diffusion of air in show halls for ventilation and air conditioning purposes
US3112002 *1 Mar 196126 Nov 1963Lely Nv C Van DerTractors
US3131967 *28 Aug 19615 May 1964Emil J Paidar CompanyAir cooled barber chair
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3865430 *24 Apr 197311 Feb 1975Tanus AntonioTheater chair automatically movable by remote control
US3868107 *26 Feb 197325 Feb 1975Taketoshi IchidaSimulated viewing apparatus
US3897974 *19 Jul 19735 Aug 1975American Seating CoCantilevered seat for motorcoach vehicles or the like
US3923300 *29 Nov 19742 Dec 1975Tanus AntonioTheater chair automatically movable by remote control
US3933326 *1 May 197520 Jan 1976Schauffler Peter PInterpretation system
US4066256 *17 Nov 19753 Jan 1978Future General CorporationAmusement ride
US4072346 *14 May 19757 Feb 1978Ralf SchuelerSeating furniture
US4094256 *7 Jun 197613 Jun 1978Voko Franz Vogt & Co.Work table having lines embodied therein
US4470631 *3 Dec 198111 Sep 1984Powell Alfred JSeating structure
US4752065 *19 Dec 198521 Jun 1988Showscan Film CorporationMotion picture amusement ride
US4826245 *30 Dec 19872 May 1989Entratter Lynda GPrivacy chair and private viewing system
US5015933 *15 Nov 198914 May 1991Ridewerks, Ltd.Seat base motion controller
US5021954 *11 Jan 19884 Jun 1991The Walt Disney CompanySystem and method of providing passenger ingress and egress in an amusement ride
US5161104 *3 Jun 19913 Nov 1992The Walt Disney CompanyAmusement ride having pivotable ingress-egress bridges
US5277662 *20 Jul 199211 Jan 1994The Walt Disney CompanySystem and method of providing passenger ingress and egress in an amusement ride having pivotable bridges
US5301457 *22 Feb 199312 Apr 1994Seely James RChair with insect repellant air jets
US5348370 *4 Dec 199220 Sep 1994Fukuoka Kagaku Ltd.Apparatus for vibrating seats
US5409186 *5 Mar 199325 Apr 1995Eldec CorporationUnitary seat support with integrated electronics
US5496220 *2 Jun 19945 Mar 1996Brad EngstrandSystem for recording and playing back motion recorded on a medium
US5564985 *6 Jun 199515 Oct 1996Brad EngstrandSensory simulator and editor and a method of using the same
US5610674 *19 Jun 199511 Mar 1997Martin; David A.Precision fragrance dispenser apparatus
US5678889 *9 Apr 199621 Oct 1997Purcell, Jr.; Joseph WilliamMoveable theater seats
US5700052 *14 Nov 199523 Dec 1997Yamaha CorporationChair for an acoustically designed building
US5722897 *7 Jun 19963 Mar 1998Engstrand; BradSensory simulator and editor and a method of using the same
US5727186 *27 Jan 199510 Mar 1998The Boc Group PlcSimulation apparatus and gas dispensing device used in conjunction therewith
US5760873 *26 Apr 19942 Jun 1998Wittek; Goetz-UlrichProcess and device for the synchronous addition of odours to visual and/or acoustic stimulation
US5762268 *28 Apr 19979 Jun 1998The Boc Group PlcSimulation apparatus and gas dispensing device used in conjuction therewith
US5832320 *17 Sep 19973 Nov 1998Wittek; Goetz-UlrichProcess and device for diffusing perfumes that accurately correspond to events or scenes during cinematographic representations and the like
US5845434 *23 Oct 19958 Dec 1998Hayashi; MasahikoTheatre
US5853330 *22 Mar 199629 Dec 1998Engstrand; BradSensory simulator and editor
US5949522 *3 Jul 19977 Sep 1999Manne; Joseph S.Gas conducting system
US5964064 *25 Apr 199712 Oct 1999Universal City Studios, Inc.Theater with multiple screen three dimensional film projection system
US5980255 *16 Mar 19989 Nov 1999Cae Electronics Ltd.Seat for motion simulator and method of motion simulation
US6025902 *2 Jun 199815 Feb 2000Wittek; Goetz-UlrichProcess and device for the synchronous addition of odors to visual and/or acoustic stimulation
US6039653 *16 Nov 199821 Mar 2000Engstrand; BradApparatus, system and method for experiencing motion
US6042382 *20 Nov 199628 Mar 2000Halfhill; RobertSustained G-force centripetal acceleration apparatus and method
US6056362 *13 May 19992 May 2000Rpi Advanced Technology GroupChair assembly, in particular a chair assembly for use in virtual reality devices
US6139324 *4 Mar 199831 Oct 2000D-Box Audio Inc.Multi-sense home entertainment chair transducer system
US6152829 *13 May 199928 Nov 2000National Research Development Corp.Device and process for producing effects
US6169595 *7 Jun 19992 Jan 2001Joseph S. ManneMultimedia linked scent delivery system
US6224491 *27 Jun 19971 May 2001Kabushiki Kaisha Sega EnterprisesRide-type game machine
US6239857 *30 Dec 199929 May 2001Wittek Goetz-UlrichProcess and device for the synchronous addition of odors to visual and/or acoustic stimulation
US6273865 *12 Jul 199914 Aug 2001Naomi PerezMassage therapy chair
US6322250 *27 Jun 200027 Nov 2001Miriam M. PrattX-ray chair
US635495428 Dec 200012 Mar 2002Disney Enterprises, Inc.Amusement apparatus and method
US637116511 Oct 200016 Apr 2002Joseph S. ManneDynamic alloy wire valve for a multimedia linked scent delivery system
US6406004 *8 Jun 200018 Jun 2002Wella AktiengesellschaftMethod for imparting a certain odor impression to a person and apparatus for performing the method
US6585515 *22 Aug 20001 Jul 2003D-Box Technology Inc.Multi-sense home entertainment chair transducer system
US66297245 Jan 20017 Oct 2003Johnson Controls Technology CompanyVentilated seat
US66447361 Feb 200211 Nov 2003The Boeing CompanyPrivacy seat divider for transport vehicles
US670276725 Sep 20019 Mar 2004Nelson R. DouglasMultisensory stimulation system and method
US6733293 *25 Jan 200211 May 2004Provision Entertainment, Inc.Personal simulator
US678308420 Nov 200131 Aug 2004R. Douglas NelsonMethod and apparatus for olfactory stimulation
US67865415 Jan 20017 Sep 2004Johnson Controls Technology CompanyAir distribution system for ventilated seat
US680398712 Jun 199812 Oct 2004Joseph S. MannePortable scent delivery system
US685769717 Jun 200322 Feb 2005W.E.T. Automotive Systems AgAutomotive vehicle seating comfort system
US68930869 May 200317 May 2005W.E.T. Automotive Systems Ltd.Automotive vehicle seat insert
US70407105 Jan 20019 May 2006Johnson Controls Technology CompanyVentilated seat
US705209126 Jan 200530 May 2006W.E.T. Automotive Systems Ltd.Automotive vehicle seat insert
US708322710 Mar 20051 Aug 2006W.E.T. Automotive Systems, AgAutomotive vehicle seating comfort system
US710831927 Jul 200219 Sep 2006Johnson Controls GmbhAir conditioned cushion part for a vehicle seat
US713168921 Jul 20057 Nov 2006W.E.T. Automotive Systems, AgAutomotive vehicle seating comfort system
US7152842 *24 Jan 200026 Dec 2006Lockheed Martin CorporationUser coupled workspace shock isolation system
US719780117 Feb 20063 Apr 2007W.E.T. Automotive Systems Ltd.Automotive vehicle seat insert
US720144117 Dec 200310 Apr 2007W.E.T. Automotive Systems, AgAir conditioned seat and air conditioning apparatus for a ventilated seat
US721387628 Nov 20058 May 2007W.E.T. Automotive System AgVehicle seat and associated air conditioning apparatus
US722912926 Oct 200512 Jun 2007Johnson Controls Technology CompanyVentilated seat
US726137110 Dec 200228 Aug 2007Johnson Controls GmbhVentilation system for an upholstery part
US727400721 Sep 200425 Sep 2007W.E.T. Automotive Systems Ltd.Control system for operating automotive vehicle components
US733811712 Apr 20044 Mar 2008W.E.T. Automotive System, Ltd.Ventilated seat
US734781512 Feb 200325 Mar 2008Razz SerbanescuMethod and apparatus for converting sense-perceived thoughts and actions into physical sensory stimulation
US735691212 Apr 200415 Apr 2008W.E.T. Automotive Systems, Ltd.Method for ventilating a seat
US7367886 *16 Jan 20036 May 2008Wms Gaming Inc.Gaming system with surround sound
US737091115 Oct 200413 May 2008W.E.T. Automotive Systems, AgAutomotive vehicle seat insert
US738994329 Jun 200524 Jun 2008S.C. Johnson & Son, Inc.Electromechanical apparatus for dispensing volatile substances with single dispensing mechanism and cartridge for holding multiple receptacles
US7407385 *12 Apr 20055 Aug 2008T Dot Over Uma PavelSimulation unit
US742503415 Oct 200416 Sep 2008W.E.T. Automotive Systems AgAutomotive vehicle seat having a comfort system
US74618921 Dec 20049 Dec 2008W.E.T. Automotive Systems, A.C.Valve layer for a seat
US74678237 Apr 200423 Dec 2008Johnson Controls GmbhVehicle seat
US746984418 May 200530 Dec 2008S.C. Johnson & Son, Inc.Diffusion device and method of diffusing
US74759386 Apr 200713 Jan 2009W.E.T. Automotive Systems AgAir conditioned seat and air conditioning apparatus for a ventilated seat
US747886916 Aug 200620 Jan 2009W.E.T. Automotive Systems, AgAutomotive vehicle seat insert
US750693831 Aug 200624 Mar 2009W.E.T. Automotive Systems, A.G.Automotive vehicle seating comfort system
US757855231 Oct 200725 Aug 2009W.E.T. Automotive Systems AgAutomotive vehicle seat having a comfort system
US7581785 *12 Jan 20051 Sep 2009Daimler AgVehicle seat
US7585022 *7 Apr 20058 Sep 2009Recaro Aircraft Seating Gmbh & Co. KgVehicle seat system, especially for aircraft
US758828814 Apr 200815 Sep 2009W.E.T. Automotive Systems AgAutomotive vehicle seat insert
US761808918 Apr 200617 Nov 2009W.E.T. Automotive Systems AgAir conditioning system for a seat
US762207329 Jun 200624 Nov 2009S.C. Johnson & Son, Inc.Apparatus for and method of dispensing active materials
US763757317 Jan 200729 Dec 2009W.E.T. Automotive Systems AgAutomotive vehicle seating insert
US765107720 Mar 200626 Jan 2010Scentair Technologies, Inc.Releasing fragrances into the air
US7691002 *30 Nov 20076 Apr 2010Universal City Studios LllpAmusement ride vehicle with sensory stimulation effects
US773593215 Jan 200915 Jun 2010W.E.T. Automotive Systems AgAutomotive vehicle seat insert
US7766747 *14 Jul 20053 Aug 2010Wms Gaming Inc.Gaming machine with surround sound features
US778170421 Aug 200724 Aug 2010W.E.T. Automotive Systems AgControl system for operating automotive vehicle components
US7866747 *25 Feb 200911 Jan 2011Sigongmedia Co., Ltd.Theater seat providing multi-dimensional sense
US7883072 *8 Sep 20068 Feb 2011Sony CorporationShaking apparatus, shaking method, and audiovisual system
US79184986 Nov 20085 Apr 2011W.E.T. Automotive Systems AgValve layer for a seat
US797193116 Aug 20105 Jul 2011W.E.T. Automotive Systems AgAutomotive vehicle seat insert
US8113517 *29 Jul 200514 Feb 2012Wms Gaming Inc.Gaming machine chair
US816239129 Jun 201124 Apr 2012W.E.T. Automotive Systems AgAutomotive vehicle seat insert
US816736815 Feb 20101 May 2012W.E.T. Automotive System AgAir conditioning device for vehicle seats
US81726775 Nov 20078 May 2012Wms Gaming Inc.Wagering games using multi-level gaming structure
US822124612 Dec 200817 Jul 2012Efurn Holdings, LlcEntertainment chair
US822555525 Feb 201024 Jul 2012Falcon's Treehouse, L.L.C.Motion simulator theater with suspended seating
US823546230 Mar 20117 Aug 2012W.E.T. Automotive Systems, Ltd.Valve layer for a seat
US830989223 Aug 201013 Nov 2012W.E.T. Automotive System, LtdControl system for operating automotive vehicle components
US832075122 Oct 200827 Nov 2012S.C. Johnson & Son, Inc.Volatile material diffuser and method of preventing undesirable mixing of volatile materials
US836051728 Mar 201229 Jan 2013W.E.T. Automotive Systems, Ag.Automotive vehicle seat insert
US8474191 *23 Jul 20122 Jul 2013Falcon's Treehouse, L.L.C.Motion simulator theater with suspended seating
US854532024 Jun 20101 Oct 2013Wms Gaming Inc.Gaming machine with surround sound features
US860239619 May 201010 Dec 2013Scentair Technologies, Inc.Controlling airborne matter
US8663019 *12 Nov 20104 Mar 2014Wms Gaming Inc.Gaming machine chair and wagering game systems and machines with a gaming chair
US867893612 Nov 201025 Mar 2014Wms Gaming Inc.Gaming machine chair and wagering game systems and machines with a gaming chair
US874722511 Jan 201210 Jun 2014Wms Gaming Inc.Gaming machine chair
US877732021 Dec 200915 Jul 2014W.E.T. Automotive Systems AgVentilation system
US20110111839 *12 Nov 201012 May 2011Wms Gaming Inc.Gaming machine chair and wagering game systems and machines with a gaming chair
US20120315983 *13 Jun 201113 Dec 2012Sony Computer Entertainment America LlcAccount management of computer system
US20130100008 *19 Oct 201125 Apr 2013Stefan J. MartiHaptic Response Module
US20130160768 *14 Feb 201227 Jun 2013Airbus Operations (S.A.S)Oxygen supply system intended in particular for the flight crew of an aircraft
US20140084648 *25 Sep 201227 Mar 2014Michael Tai-Hao WenVehicle display system
USRE29271 *30 Jan 197621 Jun 1977American Seating CompanyCantilevered seat for motorcoach vehicles or the like
DE19600396A1 *8 Jan 199631 Jul 1997Bernhard WeberMovement simulator for row of cinema seats
EP0385166A2 *12 Feb 19905 Sep 1990Luz Industries Israel Ltd.Theater system
EP0420984A1 *18 Dec 198910 Apr 1991Teatr Polifonicheskoi DramyInformation videoinstallation
EP1437165A2 *26 Apr 199414 Jul 2004WITTEK, Götz-UlrichDevice for the synchronous addition of odours to visual and/or acoustical stimulation
EP2623172A1 *1 Feb 20137 Aug 2013CJ 4dplex Co., Ltd.Spraying apparatus and spraying method of water and air for providing a 4D effect
WO1987003816A1 *18 Dec 19862 Jul 1987Intamin IncMotion picture amusement ride
WO1998018048A1 *21 Oct 199630 Apr 1998David A MartinPrecision fragrance dispenser apparatus
WO1998022004A1 *18 Nov 199728 May 1998Haye Frans DeChair assembly, in particular a chair assembly for use in virtual reality devices
WO1999001793A1 *2 Jul 199814 Jan 1999Joseph ManneA scent delivery system
WO2006050677A1 *12 Nov 200418 May 2006Martin LainSimulation unit
WO2006065287A1 *19 Jul 200522 Jun 2006Universal City Studios LlpAmusement ride vehicle with sensory stimulation effects
Classifications
U.S. Classification297/217.4, 297/217.3, 52/8, 297/180.14, 472/59
International ClassificationA63J5/00, A47C3/02, A63F13/08, G09B9/10, A47C7/62, A63J1/00, A47C1/00, G09B9/16, G09B9/32, G09B9/22, G09B9/02, A47C1/12, A63J99/00, A63J25/00
Cooperative ClassificationA63J25/00, A47C1/12, A47C7/62, A63F2300/302, A63J2005/002, G09B9/165, G09B9/22, G09B9/10, A63J1/00, A63F2300/8082, A63J2005/008, G09B9/32, A63F13/08, A47C3/02, A63J2005/006
European ClassificationA63F13/08, A47C3/02, A63J1/00, A47C1/12, G09B9/32, G09B9/10, A47C7/62, G09B9/16B, G09B9/22, A63J25/00