Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3623064 A
Publication typeGrant
Publication date23 Nov 1971
Filing date11 Oct 1968
Priority date11 Oct 1968
Publication numberUS 3623064 A, US 3623064A, US-A-3623064, US3623064 A, US3623064A
InventorsKagan Sholly
Original AssigneeBell & Howell Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Paging receiver having cycling eccentric mass
US 3623064 A
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

United States atent [72] Inventor Sholly Kagan East Natick, Mass.

[21 Appl. No. 766,781

[22] Filed Oct. 11, 1968 [45] Patented Nov. 23, 1971 [73] Assignee Bell & Howell Company Chicago, Ill.

[54] PAGING RECEIVER HAVING CYCLING MASS 9 Claims, 7 Drawing Figs.

[52] U.S.C1 340/311, 340/399, 340/400, 340/407 [51] Int. Cl G08b 7/00 [50] Field of Search 340/311, 407, 399, 400

[56] References Cited UNITED STATES PATENTS 2,127,468 8/1938 Greibach 340/407 2,566,409 9/1951 Greene 340/407 2,582,277 1/1952 Powlison 340/407 X 2,827,621 3/1958 Reichertlm. 340/407 X 2,972,140 2/1961 Hirsch 340/407 2,191,516 2/1940 Caldwell 340/407 2,817,080 12/1957 Balduman 340/400 X 3,116,481 12/1963 Kalin et a1 340/400 X Primary ExaminerHarold 1. Pitts Anurney Alfred H. Rosen ABSTRACT: A personal paging device has a call signal receiver which generates when activated a train of regularly spaced electrical pulses controlling an electric vibrator. The vibrator comprises an electric motor which receives the pulse train and periodically accelerates a cyclicly mounted mass to produce, as a result of the reaction forces developed, tactually sensible reaction vibrations in the device. In a primary embodiment the mass is eccentrically mounted so as to additionally produce tactually sensible variations at frequencies which are distinguishable from the said reaction vibrations.

Iv I I. t I I l I I t I I I I I I I I I I I A RECEIVER CIRCUITS FILTERS DECODERS ALERTING SIGNAL GENERATOR PATENTEDuuv 23 I9?! 3.623 .064

sum 1 BF 2 25 DECODERS ALERTING SIGNAL GENERATOR SHOLLY KAGAN lnven/or y mwdwmp.

Af/ome PATENTEUuuv 23 197i SHEET 2 [IF 2 5 3 E j 35 35 35 8 g O 136 V V T2 32 TIME Q ANTENNA VIBRATOR ELECTRONICS BATTERY SHOLLY KAGAN hive/7X01".

Aflomey PAGING RECEIVER HAVING CYCLING ECCENTRIC MASS BACKGROUND OF THE INVENTION This invention relates to radio-operated alerting devices, and more particularly to paging receivers of the kind which can be carried on the person of a user. Customarily, such receivers are small enough to fit into a shirt pocket, or to be clipped to the belt holding up a person's trousers.

Paging receivers are now in use employing an audible alerting signal. This has disadvantages when the user wants to avoid alerting or disturbing other persons. Substitution or addition of a visual alerting signal (e.g. a flashing light) does not entirely solve the problem, for the attention of the user cannot always be assured, nor can the user be certain to avoid alerting other persons. The present invention solves the problem with a silent and invisible vibratory alerting device, which has unique advantages not afiorded by audible or visible alerting signals.

According to the present invention a rigid supporting structure, which contains or supports means (e.g. radio receiver) to receive a calling signal and means (e.g. decoder and alerting signal generator) to provide an alerting signal, has affixed to it normally inactive vibrator means for vibrating the structure at a frequency in the subaudible range (e.g. c.p.s. and employs the alerting signal to activate the vibrator means. When the vibrator means is activated the entire structure is set into forced .vibration at the subaudible frequency and if it is being carried on the person of a user only the user feels the vibration and, therefore, only the user is alerted to the calling signal.

A feature of the invention is that the alerting signal may be in the form of one or more pulses of energy, whereby to accelerate the vibrator means from an inactive state to an active state in a time interval which is short relative to the time required for the vibrator to return to the inactive state. A series of such pulses of energy, temporally spaced apart greater than the pulse duration, causes the alerting device to throb in an attention-commanding manner. If the device rests on the surface of a hard, flat body, such as a table or a desk, the device executes a walking motion across the surface while so throbbing, and simultaneously causes a corresponding throbbing noise by its vibration against the hard surface. Thus, when the device is not worn by its user, it can be employed to give a signal which is both audible and visible simply by placing it on a hard, flat surface. If placed in a confining saucer or ash tray, its vibration against the latter will cause a pronounced throbbing noise while it may or may not be free to move depending upon the nature of its confinement.

Several embodiments of the invention are described in this specification, illustrating a variety of preferred ways to practice the invention. The description, which follows, refers to the accompanying drawings, in which:

FIG. 1 shows two external views, A and B, of a paging receiver according to the invention; FIG. 1C shows an altemative location for the vibrator means;

FIG. 2 is a schematic illustration showing the location of parts in FIG. 1;

FIG. 3 is a set ofgraphs for explaining pulse operation ofthe invention;

FIGS. 4, 5 and 6 schematically illustrate three difierent forms of vibrator means; and

FIG. 7 schematically illustrates another arrangement of the parts in an alerting device according to the invention.

Referring now to FIGS. 1A and B and FIG. 2, the alerting device is a paging receiver, comprising a rigid supporting structure 10 (FIG. 2) which supports within its framework 11 the prior an electronic and electromechanical components 12 which perform the radio receiver, filter and decoder, and alerting signal generator functions. Since these are prior art components, they will not be described. Also supported in the structure 10 are a power source (i.e. battery) 13 and an antenna 14. The top part 15 of the structure 10 is also an outer part of the housing of the receiver, and contains a phone jack 16,

and a vibrator means 17. As is shown in FIG. 1A and B, a cover 18 fits slidably over the framework 11 to enclose the parts 12, 13 supported in it, and completes the outer housing of the receiver. A clip 19 hinged to the cover 18 is springurged as by a spring 21 to hold the receiver in a pocket or to a belt (not shown).

The vibrator means 17 may, as shown in FIG. 2 and FIG. 4, comprise an electric motor 22 having a rotatable shaft 23 with an eccentrically mounted mass 24 on it. A cover 17.1 covers the mass 24, as it is shown in FIGS. 1A and B and FIG. 2. A pair of wires 25 carry the alerting signal from the alerting signal generator in the parts 12 to the motor 22. The motor is normally at rest; that is, inactive; and it is activated, that is,

caused to spin the shaft 23, when the alerting signal is applied to it. When the motor is activated the mass 24 turns on the axis of the shaft 23 and, being eccentrically mounted on the shaft, causes the motor 22 to vibrate at a frequency determined by the speed of rotation. A low frequency, below audible, such as five cycles per second, is a preferred frequency of vibration. This can be felt quite readily. The motor 22 is rigidly engaged with the top part 15 of the structure 10; for example the top part may be of a plastics material and the motor 22 press-fitted into a bore 15.1 in the top part. The structure 10 is thereby forced into vibration at the same low frequency.

The same result can be achieved by affixing the vibrator means 17 to the outside of the supporting structure 10, as is shown in FIG. 1C. Here the vibrator means 17 is affixed to the top part 15, electrically connected to the alerting signal generator via the phone jack 16, and held in place by a locating and retaining collar 15.5 which is affixed to the top part 15 of the structure 10. The vibrator means 17 may thus be detachably attached to the structure 10.

The alerting signal may be a continuous electrical signal, DC or AC as desired, but advantages can be obtained ifit is in the form of a train of pulses, as illustrated in FIG. 3. In addition to conserving battery power, a train of pulses causes the vibrator means to produce a throbbing form of vibration which is attention-commanding and has other advantages. FIG. 3 is a set of three graphs on a time axis. Three alerting signal pulses 31 are shown in a train on the lower axis 32. Each pulse, when applied to the motor 22, causes it to accelerate its shaft 23 into rotation and, when the pulse terminates the shaft decelerates more slowly toward rest. Thus the rotational velocity increases rapidly and decreases slowly, as shown by curve 33 on the middle time axis 34. The acceleration is illustrated by curves 35 on the uppermost time axis 36. Each pulse 31 accelerates the vibrator means from an inactive state to an active state ina time interval T, which is short relative to the time T required for the vibrator means to return to the inactive state after the pulse has ceased. If the pulse duration is about T, and the time interval between pulses is about T then a characteristic throbbing vibration is produced. In addition to commanding attention by virtue of its unique character, this throbbing vibration causes the entire structure 10 to execute a walking like motion, due to the reaction forces developed on the supporting structure 10, when the paging receiver is resting on a hard flat surface. Thus, when the user removes the receiver from his or her person and sets it down on a hard flat surface, a paging signal will cause the receiver to produce a rattling noise in a series of pulses corresponding to the alerting signal pulses 31, and to move in a shuffling manner relative to the surface, the shuffles being stepwise at the frequency of the alerting-signal pulses. If the receiver is standing, that is upright on the surface in the attitude of FIG. 1, it may actually appear to shuffle along in a straight or nearly straight line; if it is resting on its side, it may shuffle in a curved path.

The frequency of the pulses 31 is not to be confused with the frequency of vibration of the vibrator means 17. Each pulse 31 contains at least several cycles of vibration of the vibrator means 17, as will be apparent when it is realized that the motor shaft is preferably brought to rotation at its intended full speed in the time duration T, of each pulse 31, and then allowed to coast toward rest in the succeeding time interval T Alternative forms of the vibrator means 17 are shown in FIGS. 5 and 6. In FIG. 5 a mass 41 of magnetic material such as iron is suspended between two springs 42, 43 which are in turn anchored to the structure 10, and a hollow-core solenoid coil 44 surrounds the mass 41, which at rest may be located nearer to one end of the coil than to the other. The alerting signal (not shown) is applied to the coil 44, which may for this purpose be connected via terminals 45 to the wires 25 carrying the alerting signal. An appropriate alerting signal will set the mass 41 into vibration which will be coupled via the springs 42, 43 to the structure 10. The springs may be chosen to effect a coupling between the mass 41 and the structure such that when a pulse-form alerting signal is used the mass 41 will continue to vibrate for a period of time (T larger than the time (T,) duration of the alerting-signal pulse. The alerting signal, whether continuous or in pulse form, may have a frequency corresponding to the resonance frequency of vibration of the mass 41 and its springs 42, 43, or it may be a DC pulse.

In FIG. 6 two coils 51 and 52 are located one on each side of a magnetic mass 53 which is mounted at one end of a spring 54, the other end of which is connected to the structure 10, An alerting signal may be connected to the coils 51, 52 to set the mass 53 into vibration and thereby cause the structure 10 to vibrate.

It will be apparent that the vibrator means shown in FIGS 4, 5 and 6 have in common the property that each comprises a solid mass (24, 41, 53, respectively) motor means (22, 44 and 51, 52, respectively) to drive said mass cyclically in a prescribed path, and means linking the mass to the structure 10. Other vibrator means having these properties can be employcd, if desired.

FIG. 7 represents an arrangement of an alerting device according to the invention in which the structure 61 can be in the shape of an elongated (e.g. tubular) body, which is convenient to carry in ones pocket, like a pencil or fountain pen. The structure 61 contains, along its axis, the battery, electronics and vibrator means, as the labels in FIG. 7 show, with the vibrator nearer one end of the elongated body than the other. The antenna 62 for receiving radiobroadcast calling signals, is affixed across one end of the structure 61, where it will be least apt to be covered by clothing material. With the vibrator at one end of an elongated body, a form of vibration which is transverse to the longitudinal axis of the elongated body can force the elongated body correspondingly into vibration transverse to its axis, which will be easily felt and visibly noticeable. If the vibrator means 17 shown in FIG. 4 is used with the shaft 23 parallel to the longitudinal axis of the elongated body, a nutating motion may be induced into the alerting device.

Referring again to FIG. 2, the vibrator means 17 need not be located near a corner or side of the structure 10. By rearranging the electronic parts, the vibrator means may be located at or near the geometric center of the structure thereby increasing the ability to cause an entire wide side of the alerting device to vibrate against the body of a user.

Iclaim:

I. A personal paging device comprising a supporting structure, sensing means carried by said structure and responsive to space-transmitted energy for providing an alerting signal comprising a train of regularly spaced electrical pulses, normally inactive vibrator means for vibrating said structure, said vibrator means including an eccentric mass supported for cyclic movement and electric motive means responsive to said alerting signal for driving said mass through a range of vibrational frequencies toward a steady-state frequency, each of said pulses in said alerting signal being of a length to endure for a period of time longer than a cycle of said signal at said steady state frequency of vibration.

2. A personal paging receiver intended to be carried on the clothing of a person, comprising a supporting structure for providing an alerting signal, a mass, means for constraining said mass to be movable cyclicly in a substantially linear path relative to said structure, electric motive means responsive to vibratory means within said casing and coupled thereto,

comprising:

a mass supported for cyclic movement, and

electric motive means responsive to an alerting signal developed by said sensing means for accelerating said mass periodically at said pulse frequency, the periodic acceleration of said mass by said motive means producing by reaction forces acting on said motive means tactually sensible vibration of said casing at a vibrational frequency which corresponds to said pulse frequency.

4. A device according to claim 3 wherein said electric motive means has rotor means including said mass which is ac celerated periodically at said pulse frequency.

5, A device according to claim 3 wherein said mass is accelerated from an initial velocity in a time interval which is short relative to the time required for said mass to decelerate to the initial velocity after a pulse in said alerting signal has ceased.

6. A personal paging receiver, comprising:

a casing;

sensing means disposed within said casing and being responsive to space-transmitted energy for developing an alerting signal in the form of a train of regularly spaced electrical pulses having a predetermined pulse frequency which is capable of being sensed tactually;

vibratory alerting means within said casing and coupled thereto, comprising:

a mass supported for cyclic movement,

electric motive means responsive to an alerting signal developed by said sensing means for periodically accelerating said mass at said pulse frequency, the periodic acceleration of said mass by said motive means producing by reaction forces acting on said motive means tactually sensible vibration of said casing at a vibrational frequency which corresponds to said pulse frequency, said mass being in a state of imbalance so that when it is accelerated it produces readily sensible vibrations in said casing in a range of frequencies de pending on its velocity, the frequencies in said range of frequencies being substantially above and tactually distinguishable from said vibrations at said pulse frequency.

7. A device according to claim 6 wherein said electric motive means is an electric motor having rotor means including said mass which is accelerated periodically at said pulse frequency.

8. A device according to claim 7 wherein said mass has an eccentric center of gravity to create said state of imbalance.

9. The apparatus defined by claim 2 wherein said electric motive means includes a solenoid coil for receiving said alerting signal, wherein said mass is composed of a ferromagnetic material and is disposed within said coil, and wherein said means for constraining said mass includes spring means interconnecting said mass and said supporting structure.

Date Nevem'be'r 23 1% Patent No. 3 623 064 Inventor(s) Shelly Kagan It is certified that error appears in the above-identified patent that said Letters Patent are hereby corrected as shown belew and Claim 2, line 2, after "supporting structure insert gne A 331 a day 01 Me 5272.

d and sealed this I a An

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2127468 *11 Nov 193316 Aug 1938Emil Henry GreibachBone conduction hearing device
US2191516 *24 May 193727 Feb 1940Kelch Heater CompanyTactual signal
US2566409 *21 Oct 19494 Sep 1951Safe Flight InstrumentVibratory aircraft alarm of the rotary eccentric weight type
US2582277 *12 Feb 194615 Jan 1952Powlison Neil CPerson alerting device
US2817080 *16 Jun 195517 Dec 1957Balduman Agapito PImpulse motored sounding ornaments
US2827621 *23 May 195518 Mar 1958Maxwell Jr William HAir speed alerting apparatus for aircraft
US2972140 *23 Sep 195814 Feb 1961Joseph HirschApparatus and method for communication through the sense of touch
US3116481 *27 Dec 196031 Dec 1963Bell Telephone Labor IncElectromagnetically operated polarized bell ringer
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3911416 *5 Aug 19747 Oct 1975Motorola IncSilent call pager
US4057794 *2 Apr 19758 Nov 1977National Research Development CorporationCalling aids
US4368459 *16 Dec 198011 Jan 1983Robert SaporaEducational apparatus and method for control of deaf individuals in a mixed teaching environment
US4421953 *7 Dec 198120 Dec 1983Northern Telecom LimitedTelephone tactile alert system
US4731603 *19 May 198615 Mar 1988Unisys CorporationTactile alarm system for gaining the attention of an individual
US4794392 *20 Feb 198727 Dec 1988Motorola, Inc.Vibrator alert device for a communication receiver
US4864276 *3 Jun 19885 Sep 1989Motorola, Inc.Very low-profile motor arrangement for radio pager silent alerting
US4918438 *28 May 198717 Apr 1990Nec CorporationPaging receiver having audible and vibrator annunciating means
US4931765 *9 Feb 19895 Jun 1990Motorola, Inc.Unitized housing for silent and tone pager alerting system
US5243659 *19 Feb 19927 Sep 1993John J. LazzeroniMotorcycle stereo audio system with vox intercom
US5293161 *8 Jun 19928 Mar 1994Motorola, Inc.Selective call receiver having a variable frequency vibrator
US5619181 *21 Nov 19948 Apr 1997Motorola, Inc.Vibratory alerting device with audible sound generator
US5898364 *6 Aug 199727 Apr 1999Nec CorporationElectronic equipment having vibration motor
US6057753 *1 Jul 19982 May 2000Projects Unlimited, Inc.Vibrational transducer
US62363065 May 199822 May 2001Lyndon L. LiebeltTactual annunciating device for notifying vehicle or machinery status or condition
US638930228 Apr 199914 May 2002Ericsson Inc.Methods and apparatus for causing wireless communication devices to vibrate via piezo-ceramic vibrators
US663616110 Jul 200121 Oct 2003Immersion CorporationIsometric haptic feedback interface
US663958118 Aug 199928 Oct 2003Immersion CorporationFlexure mechanism for interface device
US666140319 Jul 20009 Dec 2003Immersion CorporationMethod and apparatus for streaming force values to a force feedback device
US668072929 Sep 200020 Jan 2004Immersion CorporationIncreasing force transmissibility for tactile feedback interface devices
US668343731 Oct 200127 Jan 2004Immersion CorporationCurrent controlled motor amplifier system
US668690126 Jan 20013 Feb 2004Immersion CorporationEnhancing inertial tactile feedback in computer interface devices having increased mass
US66970432 Jun 200024 Feb 2004Immersion CorporationHaptic interface device and actuator assembly providing linear haptic sensations
US669704419 Dec 200024 Feb 2004Immersion CorporationHaptic feedback device with button forces
US669704822 Dec 200024 Feb 2004Immersion CorporationComputer interface apparatus including linkage having flex
US669708611 Dec 200024 Feb 2004Immersion CorporationDesigning force sensations for force feedback computer applications
US669774813 Oct 200024 Feb 2004Immersion CorporationDigitizing system and rotary table for determining 3-D geometry of an object
US670129627 Dec 19992 Mar 2004James F. KramerStrain-sensing goniometers, systems, and recognition algorithms
US670355010 Oct 20019 Mar 2004Immersion CorporationSound data output and manipulation using haptic feedback
US67040011 Nov 19999 Mar 2004Immersion CorporationForce feedback device including actuator with moving magnet
US670468327 Apr 19999 Mar 2004Immersion CorporationDirect velocity estimation for encoders using nonlinear period measurement
US670587122 Nov 199916 Mar 2004Immersion CorporationMethod and apparatus for providing an interface mechanism for a computer simulation
US670744318 Feb 200016 Mar 2004Immersion CorporationHaptic trackball device
US671757312 Jan 20016 Apr 2004Immersion CorporationLow-cost haptic mouse implementations
US674860430 May 200215 Jun 2004Finger Fitting Products, Inc.Glove massager
US681797316 Mar 200116 Nov 2004Immersion Medical, Inc.Apparatus for controlling force for manipulation of medical instruments
US685022226 Jun 20001 Feb 2005Immersion CorporationPassive force feedback for computer interface devices
US685981931 Jul 200022 Feb 2005Immersion CorporationForce feedback enabled over a computer network
US68666435 Dec 200015 Mar 2005Immersion CorporationDetermination of finger position
US690669710 Aug 200114 Jun 2005Immersion CorporationHaptic sensations for tactile feedback interface devices
US692478717 Apr 20012 Aug 2005Immersion CorporationInterface for controlling a graphical image
US692948127 Jan 199916 Aug 2005Immersion Medical, Inc.Interface device and method for interfacing instruments to medical procedure simulation systems
US693392024 Sep 200223 Aug 2005Immersion CorporationData filter for haptic feedback devices having low-bandwidth communication links
US693703327 Jun 200130 Aug 2005Immersion CorporationPosition sensor with resistive element
US694681229 Jun 199820 Sep 2005Immersion CorporationMethod and apparatus for providing force feedback using multiple grounded actuators
US69565582 Oct 200018 Oct 2005Immersion CorporationRotary force feedback wheels for remote control devices
US696537019 Nov 200215 Nov 2005Immersion CorporationHaptic feedback devices for simulating an orifice
US697916415 Nov 199927 Dec 2005Immersion CorporationForce feedback and texture simulating interface device
US698269630 Jun 20003 Jan 2006Immersion CorporationMoving magnet actuator for providing haptic feedback
US69875048 Jan 200217 Jan 2006Immersion CorporationInterface device for sensing position and orientation and outputting force to a user
US699574428 Sep 20017 Feb 2006Immersion CorporationDevice and assembly for providing linear tactile sensations
US70234239 May 20014 Apr 2006Immersion CorporationLaparoscopic simulation interface
US702462521 Feb 19974 Apr 2006Immersion CorporationMouse device with tactile feedback applied to housing
US702703223 Feb 200411 Apr 2006Immersion CorporationDesigning force sensations for force feedback computer applications
US703865719 Feb 20022 May 2006Immersion CorporationPower management for interface devices applying forces
US703986627 Apr 20002 May 2006Immersion CorporationMethod and apparatus for providing dynamic force sensations for force feedback computer applications
US705095529 Sep 200023 May 2006Immersion CorporationSystem, method and data structure for simulated interaction with graphical objects
US705477520 Feb 200430 May 2006Immersion CorporationDigitizing system and rotary table for determining 3-D geometry of an object
US705612315 Jul 20026 Jun 2006Immersion CorporationInterface apparatus with cable-driven force feedback and grounded actuators
US70614664 May 200013 Jun 2006Immersion CorporationForce feedback device including single-phase, fixed-coil actuators
US70614679 Oct 200113 Jun 2006Immersion CorporationForce feedback device with microprocessor receiving low level commands
US70705715 Aug 20024 Jul 2006Immersion CorporationGoniometer-based body-tracking device
US708485427 Sep 20011 Aug 2006Immersion CorporationActuator for providing tactile sensations and device for directional tactile sensations
US708488424 Jul 20011 Aug 2006Immersion CorporationGraphical object interactions
US709195025 Jun 200215 Aug 2006Immersion CorporationForce feedback device including non-rigid coupling
US710254120 Oct 20035 Sep 2006Immersion CorporationIsotonic-isometric haptic feedback interface
US710630516 Dec 200312 Sep 2006Immersion CorporationHaptic feedback using a keyboard device
US710631311 Dec 200012 Sep 2006Immersion CorporationForce feedback interface device with force functionality button
US711316612 Apr 200026 Sep 2006Immersion CorporationForce feedback devices using fluid braking
US713107313 Nov 200131 Oct 2006Immersion CorporationForce feedback applications based on cursor engagement with graphical targets
US71360451 Mar 200114 Nov 2006Immersion CorporationTactile mouse
US71488756 Aug 200212 Dec 2006Immersion CorporationHaptic feedback for touchpads and other touch controls
US715143219 Sep 200119 Dec 2006Immersion CorporationCircuit and method for a switch matrix and switch sensing
US71515275 Jun 200119 Dec 2006Immersion CorporationTactile feedback interface device including display screen
US715447029 Jul 200226 Dec 2006Immersion CorporationEnvelope modulator for haptic feedback devices
US715811222 Aug 20012 Jan 2007Immersion CorporationInteractions between simulated objects with force feedback
US716158022 Nov 20029 Jan 2007Immersion CorporationHaptic feedback using rotary harmonic moving mass
US71680429 Oct 200123 Jan 2007Immersion CorporationForce effects for object types in a graphical user interface
US718269128 Sep 200127 Feb 2007Immersion CorporationDirectional inertial tactile feedback using rotating masses
US719668824 May 200127 Mar 2007Immersion CorporationHaptic devices using electroactive polymers
US71997908 Jan 20013 Apr 2007Immersion CorporationProviding force feedback to a user of an interface device based on interactions of a user-controlled cursor in a graphical user interface
US72028514 May 200110 Apr 2007Immersion Medical Inc.Haptic interface for palpation simulation
US720598118 Mar 200417 Apr 2007Immersion CorporationMethod and apparatus for providing resistive haptic feedback using a vacuum source
US720867120 Feb 200424 Apr 2007Immersion CorporationSound data output and manipulation using haptic feedback
US72091179 Dec 200324 Apr 2007Immersion CorporationMethod and apparatus for streaming force values to a force feedback device
US720911820 Jan 200424 Apr 2007Immersion CorporationIncreasing force transmissibility for tactile feedback interface devices
US72153261 Oct 20038 May 2007Immersion CorporationPhysically realistic computer simulation of medical procedures
US721831017 Jul 200115 May 2007Immersion CorporationProviding enhanced haptic feedback effects
US723331527 Jul 200419 Jun 2007Immersion CorporationHaptic feedback devices and methods for simulating an orifice
US723347610 Aug 200119 Jun 2007Immersion CorporationActuator thermal protection in haptic feedback devices
US7234014 *14 Jan 200419 Jun 2007International Business Machines CorporationSeamless user interactions for portable storage devices
US723615719 Dec 200226 Jun 2007Immersion CorporationMethod for providing high bandwidth force feedback with improved actuator feel
US724995111 Mar 200431 Jul 2007Immersion CorporationMethod and apparatus for providing an interface mechanism for a computer simulation
US72538035 Jan 20017 Aug 2007Immersion CorporationForce feedback interface device with sensor
US72657505 Mar 20024 Sep 2007Immersion CorporationHaptic feedback stylus and other devices
US728009530 Apr 20039 Oct 2007Immersion CorporationHierarchical methods for generating force feedback effects
US728312016 Jan 200416 Oct 2007Immersion CorporationMethod and apparatus for providing haptic feedback having a position-based component and a predetermined time-based component
US72891067 May 200430 Oct 2007Immersion Medical, Inc.Methods and apparatus for palpation simulation
US73362601 Nov 200226 Feb 2008Immersion CorporationMethod and apparatus for providing tactile sensations
US733626620 Feb 200326 Feb 2008Immersion CorproationHaptic pads for use with user-interface devices
US73691154 Mar 20046 May 2008Immersion CorporationHaptic devices having multiple operational modes including at least one resonant mode
US74236315 Apr 20049 Sep 2008Immersion CorporationLow-cost haptic mouse implementations
US743291023 Feb 20047 Oct 2008Immersion CorporationHaptic interface device and actuator assembly providing linear haptic sensations
US744675229 Sep 20034 Nov 2008Immersion CorporationControlling haptic sensations for vibrotactile feedback interface devices
US745011017 Aug 200411 Nov 2008Immersion CorporationHaptic input devices
US747204717 Mar 200430 Dec 2008Immersion CorporationSystem and method for constraining a graphical hand from penetrating simulated graphical objects
US750503018 Mar 200417 Mar 2009Immersion Medical, Inc.Medical device and procedure simulation
US753545421 May 200319 May 2009Immersion CorporationMethod and apparatus for providing haptic feedback
US754823217 Aug 200416 Jun 2009Immersion CorporationHaptic interface for laptop computers and other portable devices
US755779430 Oct 20017 Jul 2009Immersion CorporationFiltering sensor data to reduce disturbances from force feedback
US756114123 Feb 200414 Jul 2009Immersion CorporationHaptic feedback device with button forces
US75611425 May 200414 Jul 2009Immersion CorporationVibrotactile haptic feedback devices
US760580023 Jan 200620 Oct 2009Immersion CorporationMethod and apparatus for controlling human-computer interface systems providing force feedback
US76231149 Oct 200124 Nov 2009Immersion CorporationHaptic feedback sensations based on audio output from computer devices
US763608010 Jul 200322 Dec 2009Immersion CorporationNetworked applications including haptic feedback
US765638827 Sep 20042 Feb 2010Immersion CorporationControlling vibrotactile sensations for haptic feedback devices
US767635631 Oct 20059 Mar 2010Immersion CorporationSystem, method and data structure for simulated interaction with graphical objects
US771039915 Mar 20044 May 2010Immersion CorporationHaptic trackball device
US772882010 Jul 20031 Jun 2010Immersion CorporationHaptic feedback for touchpads and other touch controls
US774203623 Jun 200422 Jun 2010Immersion CorporationSystem and method for controlling haptic devices having multiple operational modes
US77694178 Dec 20023 Aug 2010Immersion CorporationMethod and apparatus for providing haptic feedback to off-activating area
US78066969 Sep 20035 Oct 2010Immersion CorporationInterface device and method for interfacing instruments to medical procedure simulation systems
US780848829 Mar 20075 Oct 2010Immersion CorporationMethod and apparatus for providing tactile sensations
US78128207 Feb 200212 Oct 2010Immersion CorporationInterface device with tactile responsiveness
US781543615 Dec 200019 Oct 2010Immersion CorporationSurgical simulation interface device and method
US782149619 Feb 200426 Oct 2010Immersion CorporationComputer interface apparatus including linkage having flex
US78330189 Sep 200316 Nov 2010Immersion CorporationInterface device and method for interfacing instruments to medical procedure simulation systems
US79314709 Sep 200326 Apr 2011Immersion Medical, Inc.Interface device and method for interfacing instruments to medical procedure simulation systems
US7936251 *28 Dec 19983 May 2011Kyocera CorporationAlerting device and radio communication device having the alerting device
US79444338 Mar 200417 May 2011Immersion CorporationForce feedback device including actuator with moving magnet
US794443521 Sep 200617 May 2011Immersion CorporationHaptic feedback for touchpads and other touch controls
US797818315 Nov 200712 Jul 2011Immersion CorporationHaptic feedback for touchpads and other touch controls
US798272015 Nov 200719 Jul 2011Immersion CorporationHaptic feedback for touchpads and other touch controls
US800728225 Jul 200830 Aug 2011Immersion CorporationMedical simulation interface apparatus and method
US803118130 Oct 20074 Oct 2011Immersion CorporationHaptic feedback for touchpads and other touch controls
US804973415 Nov 20071 Nov 2011Immersion CorporationHaptic feedback for touchpads and other touch control
US805908813 Sep 200515 Nov 2011Immersion CorporationMethods and systems for providing haptic messaging to handheld communication devices
US805910430 Oct 200715 Nov 2011Immersion CorporationHaptic interface for touch screen embodiments
US805910514 Jan 200815 Nov 2011Immersion CorporationHaptic feedback for touchpads and other touch controls
US806389230 Oct 200722 Nov 2011Immersion CorporationHaptic interface for touch screen embodiments
US806389315 Nov 200722 Nov 2011Immersion CorporationHaptic feedback for touchpads and other touch controls
US807242215 Dec 20096 Dec 2011Immersion CorporationNetworked applications including haptic feedback
US807350125 May 20076 Dec 2011Immersion CorporationMethod and apparatus for providing haptic feedback to non-input locations
US812545320 Oct 200328 Feb 2012Immersion CorporationSystem and method for providing rotational haptic feedback
US815946130 Sep 201017 Apr 2012Immersion CorporationMethod and apparatus for providing tactile sensations
US816457326 Nov 200324 Apr 2012Immersion CorporationSystems and methods for adaptive interpretation of input from a touch-sensitive input device
US81694028 Jun 20091 May 2012Immersion CorporationVibrotactile haptic feedback devices
US81840947 Aug 200922 May 2012Immersion CorporationPhysically realistic computer simulation of medical procedures
US818898130 Oct 200729 May 2012Immersion CorporationHaptic interface for touch screen embodiments
US82127726 Oct 20083 Jul 2012Immersion CorporationHaptic interface device and actuator assembly providing linear haptic sensations
US83161668 Dec 200320 Nov 2012Immersion CorporationHaptic messaging in handheld communication devices
US836434229 Jul 200229 Jan 2013Immersion CorporationControl wheel with haptic feedback
US836864130 Oct 20075 Feb 2013Immersion CorporationTactile feedback man-machine interface device
US844143723 Nov 200914 May 2013Immersion CorporationHaptic feedback sensations based on audio output from computer devices
US844144421 Apr 200614 May 2013Immersion CorporationSystem and method for providing directional tactile sensations
US846211628 Apr 201011 Jun 2013Immersion CorporationHaptic trackball device
US848040615 Aug 20059 Jul 2013Immersion Medical, Inc.Interface device and method for interfacing instruments to medical procedure simulation systems
US850846916 Sep 199813 Aug 2013Immersion CorporationNetworked applications including haptic feedback
US852787314 Aug 20063 Sep 2013Immersion CorporationForce feedback system including multi-tasking graphical host environment and interface device
US85544088 Oct 20128 Oct 2013Immersion CorporationControl wheel with haptic feedback
US857617414 Mar 20085 Nov 2013Immersion CorporationHaptic devices having multiple operational modes including at least one resonant mode
US864882922 Dec 201111 Feb 2014Immersion CorporationSystem and method for providing rotational haptic feedback
US866074810 Sep 201325 Feb 2014Immersion CorporationControl wheel with haptic feedback
US868694119 Dec 20121 Apr 2014Immersion CorporationHaptic feedback sensations based on audio output from computer devices
US87495076 Apr 201210 Jun 2014Immersion CorporationSystems and methods for adaptive interpretation of input from a touch-sensitive input device
US877335631 Jan 20128 Jul 2014Immersion CorporationMethod and apparatus for providing tactile sensations
US878825330 Oct 200222 Jul 2014Immersion CorporationMethods and apparatus for providing haptic feedback in interacting with virtual pets
USRE3990621 Jun 20016 Nov 2007Immersion CorporationGyro-stabilized platforms for force-feedback applications
USRE403417 May 199927 May 2008Immersion CorporationController
USRE4080818 Jun 200430 Jun 2009Immersion CorporationLow-cost haptic mouse implementations
WO1991006932A1 *22 Oct 199016 May 1991Motorola IncSelective call receiver
WO1991020136A1 *6 May 199126 Dec 1991Motorola IncSelective call receiver having a variable frequency vibrator
WO2000065805A1 *5 Apr 20002 Nov 2000Ericsson IncMiniature piezo-ceramic vibrators for wireless communication devices and cellular telephones
Classifications
U.S. Classification340/7.6, 340/392.2, 340/396.1
International ClassificationG08B6/00
Cooperative ClassificationG08B6/00
European ClassificationG08B6/00