US3606993A - Durable press cotton textile products produced conducting graft copolymerization process followed by cross-linking with dmdheu - Google Patents

Durable press cotton textile products produced conducting graft copolymerization process followed by cross-linking with dmdheu Download PDF

Info

Publication number
US3606993A
US3606993A US843237A US3606993DA US3606993A US 3606993 A US3606993 A US 3606993A US 843237 A US843237 A US 843237A US 3606993D A US3606993D A US 3606993DA US 3606993 A US3606993 A US 3606993A
Authority
US
United States
Prior art keywords
cross
fabric
cotton
linking
dmdheu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US843237A
Inventor
Jett C Arthur Jr
James A Harris
Trinidad Mares
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Agriculture USDA
Original Assignee
US Department of Agriculture USDA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Agriculture USDA filed Critical US Department of Agriculture USDA
Application granted granted Critical
Publication of US3606993A publication Critical patent/US3606993A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/18Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation
    • D06M14/20Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of natural origin
    • D06M14/22Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of natural origin of vegetal origin, e.g. cellulose or derivatives thereof

Definitions

  • This invention relates to a process for the preparation of durable-press cellulosic products. More particularly, this invention relates to a multistep process for the preparation of durable-press cellulosic products by a free radical initiated graft copolymerization process followed by a normal cross-linking process to yield products with high washwear ratings and high wrinkle recovery angles.
  • This invention relates to a multistep process for the preparation of durable press cotton textile products, wherein (l) the macromolecular properties of the cotton cellulose and the morphological structure of cotton are selectively and permanently changed by a free radical initiated graft copolymerization process and then (2) the modified cotton is cross-linked to yield all cotton textile products with higher wash-wear ratings and wrinkle recovery angles than unmodified cotton products which have only been cross-linked.
  • the method of this invention has as its objective the modification of both the chemical and physical structures of cotton fibers, mechanically organized into both fabrics suitable for trouser and/or shirting garments, so that the natural properties of cotton are conserved to a maximum extent while imparting durable press properties to the resulting all cotton textile products.
  • the instant invention defines a distinct improvement in selectively and permanently changing the morphological structure of the cotton fibers in the fabrics.
  • solvents for the vinyl monomer can be selected which do not cause dimensional changes in the cotton fibers, maintaining the natural shape of the fibers.
  • the grafted copolymer can be formed primarily in the outer layers of the fibers.
  • solvents for the vinyl monomers can be selected which cause dimensional changes in the fibers, that is, swelling and rounding of the cross section of the fibers.
  • the grafted copolymer can be formed in the outer layers of the fibers, uniformly within the fibers, or within the fibers while causing a layering effect.
  • the molecular relationships between the cellulose molecule and grafted copolymer are such that the chemical reactivity of cellulose toward crosslinking reagents remains high.
  • the moisture sorption and desorption properties of the resulting cotton product, based on the content of cellulose, is about the same as untreated cotton.
  • Cotton twill fabric was dried to less than 2 percent moisture in a vacuum oven at 50 C., sealed in a nitrogen atmosphere in a thin metal container, and irradiated to a dosage of l megarad by cobalt-6O gamma-radiation.
  • the radiation-activated fabric was immersed in a solution comprising acrylonitrile (15 parts by volume), dimethylsulfoxide (25 parts), and water 15 parts) at 25 C. in the absence of oxygen for 7 minutes to give 8 percent add-on of poly(acrylonitrile).
  • the graft copolymerized fabric was washed and dried in air and then treated with cross-linking agent, dimethylol dihydroxyethylene urea (DMDHEU) in the usual manner to give an add-on of 7-9 percent, dried in an air oven followed by pressing on a hot head steam press, and then cured in a forced draft oven at C. for 12 minutes.
  • the breaking strength of the grafted and cross-linked fabric was 65 pounds (raveled strip method), tearing strength 1300 grams (Elmendorf method), fiex abrasion resistance (American Society for Testing Materials method) 420 cycles, and flat abrasion 520 cycles. Values for cross-linked fabric was, respectively, 46 pounds, 1070 grams, 220 cycles, and 290 cycles.
  • EXAMPLE 2 The method of example 1, except that the radiation-activated fabric was immersed in the monomer solution for 25 minutes to give 19 percent add-on of poly(acrylonitrile).
  • the properties of the grafted and cross-linked fabric and of the cross-linked fabric were, respectively: breaking strength, 73 pounds and 46 pounds; tearing strength, l270 grams and l070 grams; flex abrasion resistance, 370 cycles and 220 cycles; fiat abrasion resistance, 590 cycles and 290 cycles.
  • EXAMPLE 3 The method of example 1, except that after grafting, crosslinking drying, and pressing, simulated trouser cuffs were made, pressed on a hot head steam press, and then cured in a forced draft oven at 160 C. for 12 minutes. After thirty washing and drying cycles in commercially available washers and dryers, the trouser cuffs were rated for appearance (American Association of Textile Chemists and Colorists Test Method No. 124) on a scale from 1 to 5, Cuffs, cross-linked only, had an appearance rating of 4.0; cuffs, grafted and cross-linked had an appearance rating of 4.5.
  • EXAMPLE 4 The method of example 1, except that 7 days after radiation activation of the twill fabric, it was immersed in a solution comprising methyl methacrylate (15 parts by volume), methanol (45 parts), and water (40 parts) at 25 C. in the absence of oxygen for 2.5 minutes to give l4 percent add-on of poly(methyl methacrylate).
  • the graft copolymerized fabric was washed and dried in air, treated with crosslinking agent DMDHEU in the usual manner to give an add-on of 7-9 percent, and then dried in an air oven, followed by pressing on a hot head steam press. Simulated trouser cuffs were made, pressed on a hot head steam press, and then cured in a forced draft oven at 160 C.
  • trouser cuffs cross-linked only had an appearance rating of 4.0; cuffs, grafted and cross-linked, had an appearance rating of 4.5.
  • add-ons of poly(methyl methacrylate) were 17 and 30 percent, respectively; after 30 washing and drying cycles trouser cuffs, grafted for these times and later cross-linked had appearance ratings of 4.5 and 4.6, respectively.
  • Example 5 absence of oxygen for 6 minutes to give 6 percent add-on of poly(butyl methacrylate).
  • the graft copolymerized fabric was washed and dried in air, treated with cross-linking agent DMDHEU in the usual manner to give an add-on of 7-9 percent, and then dried in an air oven, followed by pressing on a hot head steam press.
  • Simulated trouser cuffs were made, pressed on a hot head steam press, and then cured in a forced draft oven at 160 C. for 12 minutes. After 30 washing and drying cycles, trouser cuffs cross-linked only had an appearance rating of 4.0; cuffs, grafted and cross-linked had an appearance rating of 4.6.
  • EXAMPLE 6 The method of example I except that 7 days after radiation activation of the twill fabric, it was immersed in a solution comprising lauryl methacrylate (20 parts by volume) and methanol (80 parts) at C. in the absence of oxygen for minutes to give 4 percent add-on of poly(lauryl methacrylate).
  • the graft copolymerized fabric was washed and dried in air, treated with cross-linking agent DMDHEU in the usual EXAMPLE 7
  • the method of example 1 was followed, except that cotton printcloth fabric was used.
  • Conditioned wrinkle recovery angle, warp plus fill for printcloth fabric cross-linked only was 274 (360 being complete recovery); printcloth fabric grafted with poly(acrylonitrile) and then cross-linked gave at 9 percent grafted polymer add-on, 293; at l 1 percent, 296; at 18 percent, 304.
  • EXAMPLE 8 The method of example 4 was followed, except that cotton printcloth fabric was used. Conditioned wrinkle recovery angle for printcloth fabric crosslmked only was 274; printcloth fabric grafted with poly(methyl methacrylate) and then cross-linked gave at 13 percent grafted polymer add-on; at 20 percent, 31 1; at 27 percent, 307.
  • EXAMPLE 9 The method of example 5 was followed, except that cotton printcloth fabric was used. Conditioned wrinkle recovery angle for printcloth fabric cross-linked only was 274; printcloth fabric grafted with poly(butyl methacrylate) and then cross-linked at 4 percent grafted polymer add-on, 311; at 8 percent, 292; at 15 percent, 293.
  • a process for preparing durable press cellulosic products which process comprises:

Abstract

This invention relates to a process for the preparation of durable-press cellulosic products. More particularly, this invention relates to a multistep process for the preparation of durable-press cellulosic products by a free radical initiated graft copolymerization process followed by a normal cross-linking process to yield products with high wash-wear ratings and high wrinkle recovery angles.

Description

United States Patent Inventors Jett C. Arthur, Jr.;
James A. Harris; Trinidad Mares, all of Metairie, LI.
July 18, 1969 Sept. 21, 1971 The United States of America as represented by the Secretary of Agriculture Appl. No. Filed Patented Assignee DURABLE PRESS CO'I'ION TEXTILE PRODUCTS PRODUCED CONDUCTING GRAF'I' COPOLYMERI ZATION PROCESS FOLLOWED BY CROSS-LINKING WITH DMDHEU [56] References Cited UNlTED STATES PATENTS 3,254,939 6/1966 Munzel 8/ 1 16 OTHER REFERENCES Arthur et al., Textile Industries, Vol. 132, No. 9, pp. 77- 79, 81 (1968) Primary Examiner-George F. Lesmes Assistant Examiner-4. Cannon Attorneys-R. Hoffman and W. Bier ABSTRACT: This invention relates to a process for the preparation of durable-press cellulosic products. More particularly, this invention relates to a multistep process for the preparation of durable-press cellulosic products by a free radical initiated graft copolymerization process followed by a normal cross-linking process to yield products with high washwear ratings and high wrinkle recovery angles.
DURABLE PRESS COTTON TEXTILE PRODUCTS PRODUCED CONDUCTING GRAFT COPOLYMERIZATION PROCESS FOLLOWED BY CROSS-LINKING WITH DMDHEU A nonexclusive, irrevocable, royalty-free license in the inventicn herein described, throughout the world for all purposes of the United Ftates Government, with the power to grant sublicenses for such purposes, is hereby granted to the Government of the United States of America.
This invention relates to a multistep process for the preparation of durable press cotton textile products, wherein (l) the macromolecular properties of the cotton cellulose and the morphological structure of cotton are selectively and permanently changed by a free radical initiated graft copolymerization process and then (2) the modified cotton is cross-linked to yield all cotton textile products with higher wash-wear ratings and wrinkle recovery angles than unmodified cotton products which have only been cross-linked. The method of this invention has as its objective the modification of both the chemical and physical structures of cotton fibers, mechanically organized into both fabrics suitable for trouser and/or shirting garments, so that the natural properties of cotton are conserved to a maximum extent while imparting durable press properties to the resulting all cotton textile products.
The manufacture of durable press all cotton textile products has been severely limited due to the fact that when cotton is reacted with finishes which impart high wrinkle recovery angles to cotton products prohibitive decreases in natural properties of cotton textile products, such as decreases in abrasion resistance, tearing strength, and wash-wear performance ratings, are obtained. Generally, manufacturers have blended manmade fibers with cotton fibers prior to finishing to give textile products with good wrinkle recovery angles, abrasion resistance, tearing strength, and wash-wear performance ratings. Cotton is included in the blends, usually comprising less than 35 percent of the finished fabric because of its desirable natural properties, such as its moisture sorption and desorption properties, which add to the comfort of textile garments, and its chemical reactivity toward finishing agents, generally cross-linking agents, which impart increased wrinkle resistance to the products. The presence of manmade fibers probably assists in the retention of tearing strength and abrasion resistance by the products.
Developments in using free radical initiators for copolymerizing vinyl monomers with cellulose have offered the possibility of modifying the macromolecular properties of cellulose with minimum decrease in the chemical reactivity of the modified cellulose toward cross-linking reagents. One of the promising methods for free radical initiation of the copolymerization reaction ionizing vinyl monomers is the interaction of ionizing radiation with cotton to produce longlived free radical sites on the cellulose molecule. The number of free radical sites on the cellulose molecule can be controlled by the radiation dosage, that is, time of exposure of the cotton fabric to a given source of ionizing radiation. So that after macromolecular properties of the cellulose molecule and morphological properties of the cotton fibers are selectively altered, the chemical reactivity of the cellulose molecule is not greatly reduced toward cross-linking reagents. Therefore, (I) in one step, the cotton fabrics are exposed to ionizing radiation to give a desired number of free radical sites on the cellulose molecule; (2) in a second step, which may be immediately after or several days after exposure of the fabric to ionizing radiation, the activated cotton fabrics are immersed in a solution of vinyl monomer for a predetermined time to give the desired degree of copolymerization of the activated cellulose with the vinyl monomer to alter the macromolecular properties of the cellulose and to change selectively the morphological properties of the cotton fibers; and (3) in a third step, treatment of the cellulose-graft copolymer fabric with crosslinking reagents to give all-cotton durable press products, with improved wash-wear performance ratings and related properties.
The instant invention defines a distinct improvement in selectively and permanently changing the morphological structure of the cotton fibers in the fabrics. Using ionizing radiation to produce long-lived free radicals on the cellulose molecule, solvents for the vinyl monomer can be selected which do not cause dimensional changes in the cotton fibers, maintaining the natural shape of the fibers. In this case, the grafted copolymer can be formed primarily in the outer layers of the fibers. On the other hand, solvents for the vinyl monomers can be selected which cause dimensional changes in the fibers, that is, swelling and rounding of the cross section of the fibers. ln this case, depending on the vinyl monomer selected, the grafted copolymer can be formed in the outer layers of the fibers, uniformly within the fibers, or within the fibers while causing a layering effect. The molecular relationships between the cellulose molecule and grafted copolymer are such that the chemical reactivity of cellulose toward crosslinking reagents remains high. The moisture sorption and desorption properties of the resulting cotton product, based on the content of cellulose, is about the same as untreated cotton.
The following examples set forth the invention in more detail.
EXAMPLE 1 Cotton twill fabric was dried to less than 2 percent moisture in a vacuum oven at 50 C., sealed in a nitrogen atmosphere in a thin metal container, and irradiated to a dosage of l megarad by cobalt-6O gamma-radiation. Four days later the radiation-activated fabric was immersed in a solution comprising acrylonitrile (15 parts by volume), dimethylsulfoxide (25 parts), and water 15 parts) at 25 C. in the absence of oxygen for 7 minutes to give 8 percent add-on of poly(acrylonitrile). The graft copolymerized fabric was washed and dried in air and then treated with cross-linking agent, dimethylol dihydroxyethylene urea (DMDHEU) in the usual manner to give an add-on of 7-9 percent, dried in an air oven followed by pressing on a hot head steam press, and then cured in a forced draft oven at C. for 12 minutes. The breaking strength of the grafted and cross-linked fabric was 65 pounds (raveled strip method), tearing strength 1300 grams (Elmendorf method), fiex abrasion resistance (American Society for Testing Materials method) 420 cycles, and flat abrasion 520 cycles. Values for cross-linked fabric was, respectively, 46 pounds, 1070 grams, 220 cycles, and 290 cycles.
EXAMPLE 2 The method of example 1, except that the radiation-activated fabric was immersed in the monomer solution for 25 minutes to give 19 percent add-on of poly(acrylonitrile). The properties of the grafted and cross-linked fabric and of the cross-linked fabric were, respectively: breaking strength, 73 pounds and 46 pounds; tearing strength, l270 grams and l070 grams; flex abrasion resistance, 370 cycles and 220 cycles; fiat abrasion resistance, 590 cycles and 290 cycles.
EXAMPLE 3 The method of example 1, except that after grafting, crosslinking drying, and pressing, simulated trouser cuffs were made, pressed on a hot head steam press, and then cured in a forced draft oven at 160 C. for 12 minutes. After thirty washing and drying cycles in commercially available washers and dryers, the trouser cuffs were rated for appearance (American Association of Textile Chemists and Colorists Test Method No. 124) on a scale from 1 to 5, Cuffs, cross-linked only, had an appearance rating of 4.0; cuffs, grafted and cross-linked had an appearance rating of 4.5.
EXAMPLE 4 The method of example 1, except that 7 days after radiation activation of the twill fabric, it was immersed in a solution comprising methyl methacrylate (15 parts by volume), methanol (45 parts), and water (40 parts) at 25 C. in the absence of oxygen for 2.5 minutes to give l4 percent add-on of poly(methyl methacrylate). The graft copolymerized fabric was washed and dried in air, treated with crosslinking agent DMDHEU in the usual manner to give an add-on of 7-9 percent, and then dried in an air oven, followed by pressing on a hot head steam press. Simulated trouser cuffs were made, pressed on a hot head steam press, and then cured in a forced draft oven at 160 C. for 12 minutes. After thirty washing and drying cycles, trouser cuffs cross-linked only had an appearance rating of 4.0; cuffs, grafted and cross-linked, had an appearance rating of 4.5. When the grafting reaction times were 5 minutes and 9 minutes, add-ons of poly(methyl methacrylate) were 17 and 30 percent, respectively; after 30 washing and drying cycles trouser cuffs, grafted for these times and later cross-linked had appearance ratings of 4.5 and 4.6, respectively.
Example 5 absence of oxygen for 6 minutes to give 6 percent add-on of poly(butyl methacrylate). The graft copolymerized fabric was washed and dried in air, treated with cross-linking agent DMDHEU in the usual manner to give an add-on of 7-9 percent, and then dried in an air oven, followed by pressing on a hot head steam press. Simulated trouser cuffs were made, pressed on a hot head steam press, and then cured in a forced draft oven at 160 C. for 12 minutes. After 30 washing and drying cycles, trouser cuffs cross-linked only had an appearance rating of 4.0; cuffs, grafted and cross-linked had an appearance rating of 4.6. When the grafting reaction times were I 1 minutes and 16 minutes, add-ons of poly(butyl methacrylate) were l0 and percent, respectively; after thirty washing and drying cycles trouser cuffs, grafted for these times and later cross-linked had appearance ratings of 4.6 and 4.2, respectively.
EXAMPLE 6 The method of example I except that 7 days after radiation activation of the twill fabric, it was immersed in a solution comprising lauryl methacrylate (20 parts by volume) and methanol (80 parts) at C. in the absence of oxygen for minutes to give 4 percent add-on of poly(lauryl methacrylate). The graft copolymerized fabric was washed and dried in air, treated with cross-linking agent DMDHEU in the usual EXAMPLE 7 The method of example 1 was followed, except that cotton printcloth fabric was used. Conditioned wrinkle recovery angle, warp plus fill (Monsanto method) for printcloth fabric cross-linked only was 274 (360 being complete recovery); printcloth fabric grafted with poly(acrylonitrile) and then cross-linked gave at 9 percent grafted polymer add-on, 293; at l 1 percent, 296; at 18 percent, 304.
EXAMPLE 8 The method of example 4 was followed, except that cotton printcloth fabric was used. Conditioned wrinkle recovery angle for printcloth fabric crosslmked only was 274; printcloth fabric grafted with poly(methyl methacrylate) and then cross-linked gave at 13 percent grafted polymer add-on; at 20 percent, 31 1; at 27 percent, 307.
EXAMPLE 9 The method of example 5 was followed, except that cotton printcloth fabric was used. Conditioned wrinkle recovery angle for printcloth fabric cross-linked only was 274; printcloth fabric grafted with poly(butyl methacrylate) and then cross-linked at 4 percent grafted polymer add-on, 311; at 8 percent, 292; at 15 percent, 293.
We claim:
1. A process for preparing durable press cellulosic products which process comprises:
a. drying a cellulosic fabric to about a 2 percent moisture content,
b. irradiating the fabric to a dosage of about 1 megarad,
c. copolymerizing the radiation-activated fabric in the absence of oxygen with a vinyl monomer selected from a group consisting of acrylonitrile, methyl methacrylate, butyl methacrylate, and lauryl methacrylate,
d. washing the copolymerized fabric from (c) free of excess reagents and drying the washed fabric, and
e. cross-linking the dried fabric from (d) with dimethylol dihydroxy ethylene urea.
2. The product produced by the process of claim 1.

Claims (1)

  1. 2. The product produced by the process of claim 1.
US843237A 1969-07-18 1969-07-18 Durable press cotton textile products produced conducting graft copolymerization process followed by cross-linking with dmdheu Expired - Lifetime US3606993A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US84323769A 1969-07-18 1969-07-18

Publications (1)

Publication Number Publication Date
US3606993A true US3606993A (en) 1971-09-21

Family

ID=25289415

Family Applications (1)

Application Number Title Priority Date Filing Date
US843237A Expired - Lifetime US3606993A (en) 1969-07-18 1969-07-18 Durable press cotton textile products produced conducting graft copolymerization process followed by cross-linking with dmdheu

Country Status (1)

Country Link
US (1) US3606993A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3912449A (en) * 1973-01-31 1975-10-14 Trinidad Mares Process for preparing water repellent cotton textiles and the product
US3926549A (en) * 1973-10-10 1975-12-16 Us Agriculture Cellulose terpolymer textiles
US4401688A (en) * 1978-09-11 1983-08-30 Unisearch Limited (N.S.W.)Australia Imparting permanent press characteristics
US5614591A (en) * 1994-12-15 1997-03-25 The Virkler Company Process and composition for imparting durable press properties to textile fabrics
US5852066A (en) * 1994-09-26 1998-12-22 Financiere Elysees Balzac Regenerated cellulose based materials with improved resistance to bleach, and a process for their preparation
US6872424B2 (en) 1999-09-10 2005-03-29 Nano-Tex, Llc Durable finishes for textiles
US20130122215A1 (en) * 2009-06-23 2013-05-16 3M Innovative Properties Company Functionalized nonwoven article

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3254939A (en) * 1965-02-01 1966-06-07 Herberlein & Co Ag Process of modifying cellulosic materials with ionizing radiation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3254939A (en) * 1965-02-01 1966-06-07 Herberlein & Co Ag Process of modifying cellulosic materials with ionizing radiation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Arthur et al., Textile Industries, Vol. 132, No. 9, pp. 77 79, 81 (1968) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3912449A (en) * 1973-01-31 1975-10-14 Trinidad Mares Process for preparing water repellent cotton textiles and the product
US3926549A (en) * 1973-10-10 1975-12-16 Us Agriculture Cellulose terpolymer textiles
US4401688A (en) * 1978-09-11 1983-08-30 Unisearch Limited (N.S.W.)Australia Imparting permanent press characteristics
US5852066A (en) * 1994-09-26 1998-12-22 Financiere Elysees Balzac Regenerated cellulose based materials with improved resistance to bleach, and a process for their preparation
US5614591A (en) * 1994-12-15 1997-03-25 The Virkler Company Process and composition for imparting durable press properties to textile fabrics
US6872424B2 (en) 1999-09-10 2005-03-29 Nano-Tex, Llc Durable finishes for textiles
US20130122215A1 (en) * 2009-06-23 2013-05-16 3M Innovative Properties Company Functionalized nonwoven article
US9259689B2 (en) * 2009-06-23 2016-02-16 3M Innovative Properties Company Functionalized nonwoven article

Similar Documents

Publication Publication Date Title
US2999056A (en) Irradiation bonding of acidic compounds to shaped polymeric structures
US4090844A (en) Process of producing high performance durable-press cotton
US2536050A (en) Treatment of cellulosic textile materials and products thereof
US2606810A (en) Treatment of wool-containing textile materials and products thereof
Wakida et al. Free radicals in cellulose fibers treated with low temperature plasma
US3281263A (en) Method for modifying polymeric substances with high energy radiation
US3125405A (en) Method of crease-proofing cellulosic
US3606993A (en) Durable press cotton textile products produced conducting graft copolymerization process followed by cross-linking with dmdheu
US2998329A (en) Modification of cellulosic articles
US3962054A (en) Process for the treatment of cellulosic textile materials
US3514385A (en) Process for radiation grafting onto a partially swollen cellulosic substrate
US3899289A (en) Treatment of cotton with glycidyl methacrylate using ionizing radiation
US3285690A (en) Method of improving the dimensional stability and elastic recovery of allcotton stretchable fabrics and products thereof
Walsh et al. The Cross-Linking of Cotton With Vinyl Monomers Using Radiation and Chemical Catalysis1
US3137668A (en) Anti-static coating composition comprising styrene sulfonate-glycidyl methacrylate polymer and sodium bisulfite
US3598641A (en) Process for improving the oil release and anti-static properties of a textile and the resulting product
US4063885A (en) Single-treatment radiation process for imparting durable soil-release properties to cotton and cotton-polyester blend fabrics
US4401688A (en) Imparting permanent press characteristics
US3799738A (en) Flame retardant process for cellulosics
US2537064A (en) Treatment of organic textile materials and products thereof
US3837799A (en) Process for creaseproofing cellulosic fiber-containing fabric using formaldehyde vapor and a solid and a solid catalyst
US3926550A (en) Cotton-tung oil durable-press textiles with high flex abrasion resistance
US3794465A (en) Finishes for textile fabrics
US3989454A (en) Process for controlling the macromolecular reactivities of cotton and mercerized cotton
US3912449A (en) Process for preparing water repellent cotton textiles and the product