US3601252A - Burst pack - Google Patents

Burst pack Download PDF

Info

Publication number
US3601252A
US3601252A US846840A US3601252DA US3601252A US 3601252 A US3601252 A US 3601252A US 846840 A US846840 A US 846840A US 3601252D A US3601252D A US 3601252DA US 3601252 A US3601252 A US 3601252A
Authority
US
United States
Prior art keywords
container
seal
bond
molecular bond
molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US846840A
Inventor
Thomas B Sager
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kleer-Vu Industries Inc
Original Assignee
Kleer-Vu Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kleer-Vu Industries Inc filed Critical Kleer-Vu Industries Inc
Application granted granted Critical
Publication of US3601252A publication Critical patent/US3601252A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/52Details
    • B65D75/58Opening or contents-removing devices added or incorporated during package manufacture
    • B65D75/5816Opening or contents-removing devices added or incorporated during package manufacture for tearing a corner or other small portion next to the edge, e.g. a U-shaped portion
    • B65D75/5822Opening or contents-removing devices added or incorporated during package manufacture for tearing a corner or other small portion next to the edge, e.g. a U-shaped portion and defining, after tearing, a small dispensing spout, a small orifice or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/431Joining the articles to themselves
    • B29C66/4312Joining the articles to themselves for making flat seams in tubular or hollow articles, e.g. transversal seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/40Packages formed by enclosing successive articles, or increments of material, in webs, e.g. folded or tubular webs, or by subdividing tubes filled with liquid, semi-liquid, or plastic materials
    • B65D75/44Individual packages cut from webs or tubes
    • B65D75/48Individual packages cut from webs or tubes containing liquids, semiliquids, or pastes, e.g. cushion-shaped packages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/431Joining the articles to themselves
    • B29C66/4312Joining the articles to themselves for making flat seams in tubular or hollow articles, e.g. transversal seams
    • B29C66/43121Closing the ends of tubular or hollow single articles, e.g. closing the ends of bags
    • B29C66/43123Closing the ends of squeeze tubes, e.g. for toothpaste or cosmetics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S220/00Receptacles
    • Y10S220/31Sonic seal

Definitions

  • Patent ⁇ 72 Inventor Thomas B. Sager Plymcmth Valey, Pa.
  • This invention relates generally to containers for fluid and other materials and relates particularly to a container having a tubular portion which is sealed at one end in such a manner that the seal is adapted to rupture when a predetermined pressure is applied lengthwise of the seal so that the contents can be discharged.
  • the invention also relates to the method by which the container is filled and sealed.
  • the present invention is a burst pack and method of making the same in which the burst pack includes a container adapted to contain single or multiple portions of any desired material.
  • the burst pack container includes a generally cylindrical portion having a molecular bond or seal at the end which will rupture when a predetermined force is applied to opposite ends of the seal.
  • the method of making the device includes the steps of forming a molecular bond or seal in one end of a plastic tube or container by means of an ultrasonic horn and transducer or other kinetic energy under a predetermined pressure and for a predetermined length of time, severing the tube to a predetermined length, and filling the tube or container with any desired fluent or solid material and thereafter sealing the container so that when a predetermined pressure is applied to opposite ends of the molecular bond, such bond will rupture and pop open so that the contents of the container can be discharged.
  • Another object of the invention is to provide a method of manufacturing a container for fluent or other material having a tubular portion with a weakened seal at the end.
  • FIG. I is a flow diagram illustrating the steps involved in the process of manufacturing the present invention.
  • FIG. 2 is a perspective view of the article formed in accordance with the process of FIG. 1.
  • FIG. 3 is a side elevation of the structure of FIG. 2.
  • FIG. 4 is a side elevation of a1 modified form of the container.
  • FIG. 5 is a fragmentary side elevation of a further modified form of the container.
  • FIG. 6 is a perspective illustrating one of the containers being opened.
  • FIG. 7 is a section of a still further modified form of container.
  • a hopper 10 is provided in which a plurality of tubular members or sleeves 11 are received, and such tubular members are adapted to be dispensed one at a time from the hopper.
  • each tubular member is constructed of plastic or other flexible or semiflexible material which can be sealed by the application of heat including kinetic energy.
  • the tubular members may be made of any desired internal diameter, wall thickness and length in accordance with the material being packaged.
  • the tubular member 11 may be carried to an identification station 12 where suitable indicia may be applied to the tubular member to identify the contents which will be placed therein. It is noted that this step could be omitted, particularly where small containers are being formed, and instead the identifying indicia could be marked on a box or other carton in which the containers are to be stored and shipped.
  • the tubular members 11 are carried to a molecular bonding or sealing station having a source of kinetic energy such as an ultrasonic tool 13 and an anvil 14.
  • the tool 13 is connected to an ultrasonic transducer (not shown) so that when the tool and anvil are moved into close proximity to each other with the tubular member 11 therebetween the ultrasonic transducer is activated to transmit ultrasonic vibrations through the tool and cause the molecules of material to fuse or bond together and form an ultrasonic seal 15 across the middle of the member 11.
  • the tubular member 11 is separated into the independent containers 16 in any desired manner.
  • One method of separating the containers which lends itself to this type ofoperation is a base 17 having a sharp upper edge 18 over which the tubular member 11 is folded or bent with the ultrasonic seal 15 disposed in alignment withthe sharp edge 18 and with portions of such seal disposed on both sides ofthe edge.
  • a roller 19 is moved across the tubular member so that pressure is applied to such member to force the same downwardly against the sharp edge 18 to sever the tubular member into two separate containers, each of which has an ultrasonic seal at one end.
  • the containers 16 are placed in an upright position and are moved until they are located below the nozzle 20 ofa hopper 21 containing the material to be dispensed into the containers.
  • a valve (not shown) is opened to discharge a predetermined amount of material 22 through the nozzle 20 into the container.
  • the filled container then is moved to a permanent sealing station having a source of heat such as heated blades 23 and 24.
  • the blades 23 and 24 are moved into close proximity to each other with the end of the container 16 therebetween and apply a predetermined amount of heat and pressure to form a permanent seal 25 across the open end of the container and generally normal to the longitudinal axis thereof.
  • tubular members 11 could be supplied in longer lengths which could be sealed and separated into individual lengths or the tubular members could be formed in a continuous length in an extrusion machine and then sealed and separated into individual members.
  • the method illustrated for separating the containers is exemplary of a method which lends itself to this process, however, any conventional method of separating the tubular members into individual containers would be satisfactory.
  • an additional step between the filling of the container and the permanent sealing of the end could be provided in which the container is squeezed to extrude most of the air out of the container prior to the forming of the permanent seal.
  • the squeezing of the container before sealing creates a partial vacuum or negative pressure within the container to permit expansion of the contents when subjected to heat so that the ultrasonic seal will not be forced open accidentally during shipping and storing.
  • the container 16 is preferably in the shape of a tetrahedron with the molecular bond 15 at one end being substantially at right angles to the permanent seal 25 at the opposite end.
  • rolling or sliding of the container is substantially reduced as well as the enhancing of the identification of the end with the ultrasonic seal.
  • the ultrasonic seal 15 extends substantially across the container 16 and is generally normal to the longitudinal axis thereof. When the ultrasonic seal is ruptured, as will be described later, the end of the container will be generally round. In FIG.
  • the ultrasonic seal 15 is disposed at an angle to the longitudinal axis of the container so that when the seal is ruptured the end of the container will be generally oval and will provide a larger pouring area.
  • a larger container 26 is provided in which the end is partially sealed with a permanent seal 27 and is partially sealed with an ultrasonic seal 15 so that when pressure is applied to the end of the container 26 the ultrasonic seal will rupture and form a teardrop-shaped opening while the permanent seal 27 will remain sealed.
  • a plurality of individual containers 16 or 26 are formed by providing a molecular bond 15 in a tubular member 11 and thereafter severing the tubular member along the bond to provide a pair of containers 16, each of which has a seal at one end. Thereafter, a predetermined amount of liquid, granular or solid material is introduced into each of the containers and the open end of the container is sealed.
  • a predetermined pressure is applied by the thumb and finger the bond will rupture for its entire length and the end of the container will pop open.
  • a molecular seal 15 could be ap plied to both ends of the container 16 so that either end could be opened by the application of pressure.
  • a modified form of the invention is illustrated in which a relatively large container 30 is provided with a spout or neck 31.
  • the container 30 may be constructed of any desired material and in any configuration as well as being adapted to contain any desired material.
  • the spout or neck 31 is generally tubular in cross section and is constructed of heat scalable material as was the container 16 previously described. If the container 30 and neck 31 are made of different materials, they can be joined together in any desired manner as by fusion, adhesive, friction or the like. Since the rupturing of the molecular seal is not dependent upon internal pressure ofa relatively small container, the container 30 may be as large or as small as desired.
  • the neck 31 could be formed of heat-scalable material in substantially the same manner as the container 16 previously described except that material to be container is not discharged into the same and the permanent seal 25 is not formed. Instead, the material to be contained is received within the container 30 after which the neck 31 and container 30 are connected together in assembled relation.
  • the container 30 and neck 31 could be assembled prior to the introduction of material into the container and then the molecular bond 15 could be applied to the neck 31.
  • the container 30 could be supplied with a pair of necks 31 spaced apart from each other so that one neck would permit the ingress of air into the container while the other neck is discharging material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Package Closures (AREA)
  • Tubes (AREA)
  • Packages (AREA)

Abstract

A container having a tubular portion of heat-sealable material which is sealed at one end in such a manner that such seal will rupture when a predetermined pressure is applied to the opposite ends thereof.

Description

Patent {72] Inventor Thomas B. Sager Plymcmth Valey, Pa.
Ang. I, 1969 Aug. 24, 197! -Vn Industries, Inc. New York, N.Y.
[21 Appl. No. [22 1 Filed [45] Patented [73] Assignee [54] BURST PACK 5 Cs, 7 Drawing Figs.
[52] 11.8. C1 206/56 AA, 229/66, 220/D1G. 31, 215/] C, 150/5 [51] um. C1. [165d 77/12, 865d 77/38 w a! Search 229/66, 7
R, 17 11; 206/56 AA; 222/197, 541; 220/Dig. 31
[56] References Cited UNITED STATES PATENTS 2,430,995 1 1/1947 Roos 229/5.6 X 3,187,966 6/1965 Klygis 222/541 3,263,863 8/1966 Hoag 206/56 A 3,473,650 10/1969 Hoag 206/56 AA 3,510,054 5/1970 Sanni et a1. 229/7 X Primary Examiner-Donald F. Norton Attorney-Sherman Levy ABSTRACT: A container having a tubular portion of heatscalable material which is sealed at one end in such a manner that such seal will rupture when a predetermined pressure is applied to the opposite ends thereof.
PATENTED AUB24 I971 INVENTOR THOMAS B. SAGER ATTORNEY BURST PACK BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates generally to containers for fluid and other materials and relates particularly to a container having a tubular portion which is sealed at one end in such a manner that the seal is adapted to rupture when a predetermined pressure is applied lengthwise of the seal so that the contents can be discharged. The invention also relates to the method by which the container is filled and sealed.
2. Description of the Prior Art Heretofore many efforts have been made to provide a container adapted to contain fluent or other material and being sealed in a manner to rupture when pressure is applied. Some efforts have been made to provide containers for individual units of measure, however, most of these prior art devices have provided a tear strip or notch by which one end of the container was adapted to be torn or cut so that the contents could be discharged. The containers which were adapted to be torn have not been satisfactory due to varying tensile strength of the material, and the containers which have been adapted to be cut have not been satisfactory because a severing tool such as a knife or pair of scissors has not always been available. Also, some additional efforts have been made to produce a container having a weakened portion or weakened seal at one end which was adapted to rupture by internal pressure when the container was squeezed. These devices have not been satisfactory since the squeezing of the container to rupture the seal frequently discharged a substantial portion of the contents unintentionally and therefore these prior art devices have not been satisfactory from either the standpoint of use or manufacture.
SUMMARY OF THE INVENTION The present invention is a burst pack and method of making the same in which the burst pack includes a container adapted to contain single or multiple portions of any desired material. The burst pack container includes a generally cylindrical portion having a molecular bond or seal at the end which will rupture when a predetermined force is applied to opposite ends of the seal. The method of making the device includes the steps of forming a molecular bond or seal in one end of a plastic tube or container by means of an ultrasonic horn and transducer or other kinetic energy under a predetermined pressure and for a predetermined length of time, severing the tube to a predetermined length, and filling the tube or container with any desired fluent or solid material and thereafter sealing the container so that when a predetermined pressure is applied to opposite ends of the molecular bond, such bond will rupture and pop open so that the contents of the container can be discharged.
It is an object of the invention to provide a container adapted to contain fluent or other material and which includes a generally cylindrical portion with a molecular bond or ultrasonic seal at the end which will rupture or pop open when a predetermined pressure is applied to opposite ends of the ultrasonic seal.
Another object of the invention is to provide a method of manufacturing a container for fluent or other material having a tubular portion with a weakened seal at the end.
BRIEF DESCRIPTION OF THE DRAWING FIG. I is a flow diagram illustrating the steps involved in the process of manufacturing the present invention.
FIG. 2 is a perspective view of the article formed in accordance with the process of FIG. 1.
FIG. 3 is a side elevation of the structure of FIG. 2.
FIG. 4 is a side elevation of a1 modified form of the container.
FIG. 5 is a fragmentary side elevation of a further modified form of the container.
FIG. 6 is a perspective illustrating one of the containers being opened.
FIG. 7 is a section of a still further modified form of container.
DESCRIPTION OF THE PREFERRED EMBODIMENT With reference to FIG. 1 of the drawing, a hopper 10 is provided in which a plurality of tubular members or sleeves 11 are received, and such tubular members are adapted to be dispensed one at a time from the hopper. Preferably each tubular member is constructed of plastic or other flexible or semiflexible material which can be sealed by the application of heat including kinetic energy. The tubular members may be made of any desired internal diameter, wall thickness and length in accordance with the material being packaged.
From the hopper 10 the tubular member 11 may be carried to an identification station 12 where suitable indicia may be applied to the tubular member to identify the contents which will be placed therein. It is noted that this step could be omitted, particularly where small containers are being formed, and instead the identifying indicia could be marked on a box or other carton in which the containers are to be stored and shipped.
Thereafter, the tubular members 11 are carried to a molecular bonding or sealing station having a source of kinetic energy such as an ultrasonic tool 13 and an anvil 14. The tool 13 is connected to an ultrasonic transducer (not shown) so that when the tool and anvil are moved into close proximity to each other with the tubular member 11 therebetween the ultrasonic transducer is activated to transmit ultrasonic vibrations through the tool and cause the molecules of material to fuse or bond together and form an ultrasonic seal 15 across the middle of the member 11. After the molecular bond has been made the tubular member 11 is separated into the independent containers 16 in any desired manner.
One method of separating the containers which lends itself to this type ofoperation is a base 17 having a sharp upper edge 18 over which the tubular member 11 is folded or bent with the ultrasonic seal 15 disposed in alignment withthe sharp edge 18 and with portions of such seal disposed on both sides ofthe edge. A roller 19 is moved across the tubular member so that pressure is applied to such member to force the same downwardly against the sharp edge 18 to sever the tubular member into two separate containers, each of which has an ultrasonic seal at one end.
Thereafter, the containers 16 are placed in an upright position and are moved until they are located below the nozzle 20 ofa hopper 21 containing the material to be dispensed into the containers. When the containers are in position a valve (not shown) is opened to discharge a predetermined amount of material 22 through the nozzle 20 into the container.
The filled container then is moved to a permanent sealing station having a source of heat such as heated blades 23 and 24. The blades 23 and 24 are moved into close proximity to each other with the end of the container 16 therebetween and apply a predetermined amount of heat and pressure to form a permanent seal 25 across the open end of the container and generally normal to the longitudinal axis thereof.
While the method illustrated in FIG. 1 has been tried and found successful, it is contemplated that the tubular members 11 could be supplied in longer lengths which could be sealed and separated into individual lengths or the tubular members could be formed in a continuous length in an extrusion machine and then sealed and separated into individual members. Also, the method illustrated for separating the containers is exemplary of a method which lends itself to this process, however, any conventional method of separating the tubular members into individual containers would be satisfactory.
It is contemplated that an additional step between the filling of the container and the permanent sealing of the end could be provided in which the container is squeezed to extrude most of the air out of the container prior to the forming of the permanent seal. The squeezing of the container before sealing creates a partial vacuum or negative pressure within the container to permit expansion of the contents when subjected to heat so that the ultrasonic seal will not be forced open accidentally during shipping and storing.
With reference to FIGS. 2-6, the container 16 is preferably in the shape of a tetrahedron with the molecular bond 15 at one end being substantially at right angles to the permanent seal 25 at the opposite end. By forming the container in this manner rolling or sliding of the container is substantially reduced as well as the enhancing of the identification of the end with the ultrasonic seal. As illustrated in FIGS. 2 and 3, the ultrasonic seal 15 extends substantially across the container 16 and is generally normal to the longitudinal axis thereof. When the ultrasonic seal is ruptured, as will be described later, the end of the container will be generally round. In FIG. 4 the ultrasonic seal 15 is disposed at an angle to the longitudinal axis of the container so that when the seal is ruptured the end of the container will be generally oval and will provide a larger pouring area. As illustrated in FIG. 5, a larger container 26 is provided in which the end is partially sealed with a permanent seal 27 and is partially sealed with an ultrasonic seal 15 so that when pressure is applied to the end of the container 26 the ultrasonic seal will rupture and form a teardrop-shaped opening while the permanent seal 27 will remain sealed.
In the operation of the device illustrated in FIGS. l6, a plurality of individual containers 16 or 26 are formed by providing a molecular bond 15 in a tubular member 11 and thereafter severing the tubular member along the bond to provide a pair of containers 16, each of which has a seal at one end. Thereafter, a predetermined amount of liquid, granular or solid material is introduced into each of the containers and the open end of the container is sealed. When it is desired to open the container, such container is grasped in one hand ofa person with the thumb on one end of the molecular bond and with the forefinger on the opposite end. When a predetermined pressure is applied by the thumb and finger the bond will rupture for its entire length and the end of the container will pop open.
It is noted that, if desired, a molecular seal 15 could be ap plied to both ends of the container 16 so that either end could be opened by the application of pressure.
With reference to FIG. 7, a modified form of the invention is illustrated in which a relatively large container 30 is provided with a spout or neck 31. The container 30 may be constructed of any desired material and in any configuration as well as being adapted to contain any desired material. The spout or neck 31 is generally tubular in cross section and is constructed of heat scalable material as was the container 16 previously described. If the container 30 and neck 31 are made of different materials, they can be joined together in any desired manner as by fusion, adhesive, friction or the like. Since the rupturing of the molecular seal is not dependent upon internal pressure ofa relatively small container, the container 30 may be as large or as small as desired.
In the operation of this modification, it is contemplated that the neck 31 could be formed of heat-scalable material in substantially the same manner as the container 16 previously described except that material to be container is not discharged into the same and the permanent seal 25 is not formed. Instead, the material to be contained is received within the container 30 after which the neck 31 and container 30 are connected together in assembled relation.
Also it is contemplated that the container 30 and neck 31 could be assembled prior to the introduction of material into the container and then the molecular bond 15 could be applied to the neck 31.
If desired, the container 30 could be supplied with a pair of necks 31 spaced apart from each other so that one neck would permit the ingress of air into the container while the other neck is discharging material.
Many tests have been made to determine the feasibility of the burst Xack, and an example of a satisfactory structure is as follows: 5/16 ID plastic tube having a wall thickness of 0.010 plus or minus 0.002 was provided and the ultrasonic tool 13 and the anvil 14 were moved toward each other until they were 0.0015 inch apart with the plastic tube clamped therebetween. The ultrasonic transducer was energized for 0.15 second and the resulting seal was well within the prescribed limits for the burst pack. The results were repeated throughout the entire trial run even though the setting for the ultrasonic tool and anvil were intentionally changed and reset to test for repeatability.
In the present instance it was determined that the seal should burst ifa pressure of 7 pounds plus 5 pounds or minus 3 pounds were applied across the ends of the molecular bond. In making the tests, tubular members of different materials including polypropylene, polyvinyledene flouride, kel-F, Plaskos 2,200, Nylon 6 and seran were utilized. Of the materials tested polypropylene was the most successful. In a test run of 1,000 units using polypropylene tubing and filling the containers with water all units popped open when a pressure of 7 pounds plus 5 pounds or minus 3 pounds was applied to opposite ends of the bond.
While a preferred embodiment in accordance with the present invention has been illustrated and described, it is understood that various modifications may be resorted to without departing from the spirit and the scope of the appended claims.
1. A burst pack containing a quantity of material to be dispensed, and said burst pack being discardable after the material therein is dispensed and discharged, said burst pack embodying a container provided with a permanent seal at one end only, a molecular ultrasonic bond at the opposite end of the container from the permanent seal, said molecular bond providing a temporary seal, said molecular bond being weaker than the material of the container and being weaker than the permanent seal, said molecular bond at the end of the container being ruptured when a predetermined pressure is applied to the length of the molecular bond so that the material within the container will be discharged out through the ruptured end only after the bond has been ruptured and whereby when the container is squeezed the molecular bond will rupture to open the end of the container, the seals being liquidtight.
2. The structure as defined in claim 1, wherein the molecular bond includes a permanent portion as well as a ruptureable partial portion that is adapted to be broken.
3. The structure as defined in claim 1, wherein the material in the container is a liquid.
4. The structure as defined in claim 1, wherein the molecular bond is positioned substantially normal to the longitudinal axis of the container and substantially at a right angle to the permanent seal.
5. The structure as defined in claim 1, wherein the molecular bond is disposed angularly with respect to the longitudinal axis of the container.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,601,252 Dated August 24, 1971 lnventofls) Thomas B. Sager It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
On the cover sheet [73] "Kleer-Vu Industries, Inc. New York, N. Y." should read Ultrasonic Systems, Inc. Farmingdale, N. Y.
Signed and sealed this 30th day of May 1972.
(SEAL) Attest:
EDWARD M.FLETCHER,JR. ROBERT GOTTSCHALK Attesting Officer Commissioner of Patents

Claims (5)

1. A burst pack containing a quantity of material to be dispensed, and said burst pack being discardable after the material therein is dispensed and discharged, said burst pack embodying a container provided with a permanent seal at one end only, a molecular ultrasonic bond at the opposite end of the container from the permanent seal, said molecular bond providing a temporary seal, said molecular bond being weaker than the material of the container and being weaker than the permanent seal, said molecular bond at the end of the container being ruptured when a predetermined pressure is applied to the length of the molecular bond so that the material within the container will be discharged out through the ruptured end only after the bond has been ruptured and whereby when the container is squeezed the molecular bond will rupture to open the end of the container, the seals being liquidtight.
2. The structure as defined in claim 1, wherein the molecular bond includes a permanent portion as well as a ruptureable partial portion that is adapted to be broken.
3. The structure as defined in claim 1, wherein the material in the container is a liquid.
4. The structure as defined in claim 1, wherein the molecular bond is positioned substantially normal to the longitudinal axis of the container and substantially at a right angle to the permanent seal.
5. The structure as defined in claim 1, wherein the molecular bond is disposed angularly with respect to the longitudinal axis of the container.
US846840A 1969-08-01 1969-08-01 Burst pack Expired - Lifetime US3601252A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US84684069A 1969-08-01 1969-08-01

Publications (1)

Publication Number Publication Date
US3601252A true US3601252A (en) 1971-08-24

Family

ID=25299086

Family Applications (1)

Application Number Title Priority Date Filing Date
US846840A Expired - Lifetime US3601252A (en) 1969-08-01 1969-08-01 Burst pack

Country Status (1)

Country Link
US (1) US3601252A (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3913789A (en) * 1974-02-13 1975-10-21 United States Banknote Corp Fluid container of the flexible wall capsule type
US3957168A (en) * 1973-12-21 1976-05-18 Baxter Laboratories, Inc. Sealed thermoplastic bottle
US3980222A (en) * 1973-11-13 1976-09-14 The Procter & Gamble Company Longitudinally partitioned tubular body
US4027670A (en) * 1976-10-15 1977-06-07 Bronner Emanuel H Contraceptive device
FR2378517A1 (en) * 1976-10-15 1978-08-25 All One God Faith CONTRACEPTIVE DEVICE CONTAINING A GEL
EP0003390A1 (en) * 1978-01-04 1979-08-08 Tubestirs Ltd Stirring and dispensing device
US4227614A (en) * 1978-09-01 1980-10-14 John P. Glass Packages
FR2458477A1 (en) * 1979-06-08 1981-01-02 Panpack Ag PACKAGING FOR STORING AND DISPENSING SMALL DOSES OF FLUID PRODUCTS
US4364474A (en) * 1976-09-02 1982-12-21 John P. Glass Packages
EP0078761A2 (en) * 1981-10-29 1983-05-11 Crown Zellerbach Corporation Container having a pressure-rupturable seal for dispensing contents
US4537308A (en) * 1978-09-01 1985-08-27 John P. Glass Rupturable packages
US4696328A (en) * 1986-08-11 1987-09-29 Rhodes Jr Harold B Spillage prevention
US4844917A (en) * 1985-04-24 1989-07-04 Delorimiere Marion Cake frosting assembly
US4913263A (en) * 1988-10-31 1990-04-03 Spiers Dennis D Grease packet for fifth wheels
US4988016A (en) * 1989-01-30 1991-01-29 James P. Hawkins Self-sealing container
US5035348A (en) * 1989-09-01 1991-07-30 Institute Guilfoyle Container having a pressure-rupturable seal for dispensing contents
US5100028A (en) * 1989-09-01 1992-03-31 Institute Guilfoyle Pressure-rupturable container seal having a fluid flow directing shield
WO1993011054A1 (en) * 1991-12-02 1993-06-10 Dalgety Spillers Foods Limited Packages
US5241150A (en) * 1989-10-02 1993-08-31 Minnesota Mining And Manufacturing Company Microwave food package
US5548859A (en) * 1995-05-30 1996-08-27 Oberg; Lorri Method and apparatus for preventing soiled clothes from becoming permanently stained
US6708738B2 (en) 2000-12-14 2004-03-23 Carol Olsen Self funnelling drink additive product
US20050098193A1 (en) * 2003-11-10 2005-05-12 Garry Tsaur Hollow cylinder toothpick
US20080041736A1 (en) * 2004-09-17 2008-02-21 Flow Dry Technology Ltd Desiccant Bag With Orientation Indicator
WO2008134864A1 (en) * 2007-05-03 2008-11-13 Axiom Group Inc Multi-compartment food container
US20090242550A1 (en) * 2008-03-27 2009-10-01 Schneider Lee M Self-Venting Microwave Heating Package
US20100193515A1 (en) * 2007-07-09 2010-08-05 John Scott Goleby Container and a seal for a container
US7862841B1 (en) * 2006-07-05 2011-01-04 Michael D Boyd Multiple serving container
US20110006063A1 (en) * 2009-02-17 2011-01-13 Michael Dunn-Rankin Rupturable bubble for packaging
JP2011116394A (en) * 2009-12-01 2011-06-16 Hojo Seian Kk Food package
US8440275B2 (en) 2004-02-09 2013-05-14 Graphic Packaging International, Inc. Microwave cooking packages and methods of making thereof
US8563906B2 (en) 2002-02-08 2013-10-22 Graphic Packaging International, Inc. Insulating microwave interactive packaging
US9073689B2 (en) 2007-02-15 2015-07-07 Graphic Packaging International, Inc. Microwave energy interactive insulating structure
US20150353273A1 (en) * 2013-01-28 2015-12-10 Bemis Company, Inc. Rupturable Container Having Directional Burst Seal
WO2019123344A1 (en) 2017-12-20 2019-06-27 Notre Property Investments Limited Package opening and method therefor
JP2019182447A (en) * 2018-04-04 2019-10-24 凸版印刷株式会社 Easily openable packaging bag
US10604325B2 (en) 2016-06-03 2020-03-31 Graphic Packaging International, Llc Microwave packaging material
USD886283S1 (en) * 2019-03-23 2020-06-02 Lawrence Steven Kaye Disposable vial with twist off top
US20200270045A1 (en) * 2019-02-22 2020-08-27 Graham Richard Gooding Snap Container for Pre-Portioned Product and Related Methods
US10793813B2 (en) 2016-05-06 2020-10-06 Gpcp Ip Holdings Llc Dispersible packaging for toilet paper moistener product
WO2021062504A1 (en) 2019-10-01 2021-04-08 Gesualdo Jose Roberto Individual tubular packaging made of impermeable paper for packaging drinking/mineral water or other liquid substances for ice formation
US20230032484A1 (en) * 2021-02-10 2023-02-02 Dmytro Borysovych Kozhanov Single-serving disposable container (variants)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2430995A (en) * 1942-12-31 1947-11-18 Roos William Lawrence End-sealed thermoplastic container body
US3187966A (en) * 1963-07-09 1965-06-08 Continental Can Co Flexible container with snip-off and reseal features
US3263863A (en) * 1965-03-23 1966-08-02 Roderick W Hoag Container for granular material
US3473650A (en) * 1968-01-24 1969-10-21 Roderick William Hoag Tubular container for granular material
US3510054A (en) * 1968-07-23 1970-05-05 Dino Di Carlo Dispenser packet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2430995A (en) * 1942-12-31 1947-11-18 Roos William Lawrence End-sealed thermoplastic container body
US3187966A (en) * 1963-07-09 1965-06-08 Continental Can Co Flexible container with snip-off and reseal features
US3263863A (en) * 1965-03-23 1966-08-02 Roderick W Hoag Container for granular material
US3473650A (en) * 1968-01-24 1969-10-21 Roderick William Hoag Tubular container for granular material
US3510054A (en) * 1968-07-23 1970-05-05 Dino Di Carlo Dispenser packet

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3980222A (en) * 1973-11-13 1976-09-14 The Procter & Gamble Company Longitudinally partitioned tubular body
US3957168A (en) * 1973-12-21 1976-05-18 Baxter Laboratories, Inc. Sealed thermoplastic bottle
US3913789A (en) * 1974-02-13 1975-10-21 United States Banknote Corp Fluid container of the flexible wall capsule type
US4364474A (en) * 1976-09-02 1982-12-21 John P. Glass Packages
US4027670A (en) * 1976-10-15 1977-06-07 Bronner Emanuel H Contraceptive device
FR2378517A1 (en) * 1976-10-15 1978-08-25 All One God Faith CONTRACEPTIVE DEVICE CONTAINING A GEL
EP0003390A1 (en) * 1978-01-04 1979-08-08 Tubestirs Ltd Stirring and dispensing device
US4227614A (en) * 1978-09-01 1980-10-14 John P. Glass Packages
US4537308A (en) * 1978-09-01 1985-08-27 John P. Glass Rupturable packages
FR2458477A1 (en) * 1979-06-08 1981-01-02 Panpack Ag PACKAGING FOR STORING AND DISPENSING SMALL DOSES OF FLUID PRODUCTS
EP0078761A2 (en) * 1981-10-29 1983-05-11 Crown Zellerbach Corporation Container having a pressure-rupturable seal for dispensing contents
EP0078761A3 (en) * 1981-10-29 1984-01-18 Crown Zellerbach Corporation Container having a pressure-rupturable seal for dispensing contents
US4844917A (en) * 1985-04-24 1989-07-04 Delorimiere Marion Cake frosting assembly
US4696328A (en) * 1986-08-11 1987-09-29 Rhodes Jr Harold B Spillage prevention
US4913263A (en) * 1988-10-31 1990-04-03 Spiers Dennis D Grease packet for fifth wheels
US4988016A (en) * 1989-01-30 1991-01-29 James P. Hawkins Self-sealing container
US5035348A (en) * 1989-09-01 1991-07-30 Institute Guilfoyle Container having a pressure-rupturable seal for dispensing contents
US5100028A (en) * 1989-09-01 1992-03-31 Institute Guilfoyle Pressure-rupturable container seal having a fluid flow directing shield
US5241150A (en) * 1989-10-02 1993-08-31 Minnesota Mining And Manufacturing Company Microwave food package
EP0488495A1 (en) * 1990-11-30 1992-06-03 Institute Guilfoyle Improved fluid dispenser
WO1993011054A1 (en) * 1991-12-02 1993-06-10 Dalgety Spillers Foods Limited Packages
GB2276138A (en) * 1991-12-02 1994-09-21 Dalgety Spillers Foods Packages
GB2276138B (en) * 1991-12-02 1996-07-31 Dalgety Spillers Foods Packages
US5548859A (en) * 1995-05-30 1996-08-27 Oberg; Lorri Method and apparatus for preventing soiled clothes from becoming permanently stained
US6708738B2 (en) 2000-12-14 2004-03-23 Carol Olsen Self funnelling drink additive product
US8563906B2 (en) 2002-02-08 2013-10-22 Graphic Packaging International, Inc. Insulating microwave interactive packaging
US20050098193A1 (en) * 2003-11-10 2005-05-12 Garry Tsaur Hollow cylinder toothpick
US8828510B2 (en) 2004-02-09 2014-09-09 Graphic Packaging International, Inc. Microwave cooking packages and methods of making thereof
US8440275B2 (en) 2004-02-09 2013-05-14 Graphic Packaging International, Inc. Microwave cooking packages and methods of making thereof
US20080041736A1 (en) * 2004-09-17 2008-02-21 Flow Dry Technology Ltd Desiccant Bag With Orientation Indicator
US7862841B1 (en) * 2006-07-05 2011-01-04 Michael D Boyd Multiple serving container
US9073689B2 (en) 2007-02-15 2015-07-07 Graphic Packaging International, Inc. Microwave energy interactive insulating structure
WO2008134864A1 (en) * 2007-05-03 2008-11-13 Axiom Group Inc Multi-compartment food container
US20100193515A1 (en) * 2007-07-09 2010-08-05 John Scott Goleby Container and a seal for a container
US20090242550A1 (en) * 2008-03-27 2009-10-01 Schneider Lee M Self-Venting Microwave Heating Package
US20110006063A1 (en) * 2009-02-17 2011-01-13 Michael Dunn-Rankin Rupturable bubble for packaging
JP2011116394A (en) * 2009-12-01 2011-06-16 Hojo Seian Kk Food package
US20150353273A1 (en) * 2013-01-28 2015-12-10 Bemis Company, Inc. Rupturable Container Having Directional Burst Seal
US9821949B2 (en) * 2013-01-28 2017-11-21 Bernis Company, Inc. Rupturable container having directional burst seal
US10793813B2 (en) 2016-05-06 2020-10-06 Gpcp Ip Holdings Llc Dispersible packaging for toilet paper moistener product
US10604325B2 (en) 2016-06-03 2020-03-31 Graphic Packaging International, Llc Microwave packaging material
WO2019123344A1 (en) 2017-12-20 2019-06-27 Notre Property Investments Limited Package opening and method therefor
EP3728064A4 (en) * 2017-12-20 2021-10-20 Notre Property Investments Limited Package opening and method therefor
JP2019182447A (en) * 2018-04-04 2019-10-24 凸版印刷株式会社 Easily openable packaging bag
US20200270045A1 (en) * 2019-02-22 2020-08-27 Graham Richard Gooding Snap Container for Pre-Portioned Product and Related Methods
USD886283S1 (en) * 2019-03-23 2020-06-02 Lawrence Steven Kaye Disposable vial with twist off top
WO2021062504A1 (en) 2019-10-01 2021-04-08 Gesualdo Jose Roberto Individual tubular packaging made of impermeable paper for packaging drinking/mineral water or other liquid substances for ice formation
US20230032484A1 (en) * 2021-02-10 2023-02-02 Dmytro Borysovych Kozhanov Single-serving disposable container (variants)

Similar Documents

Publication Publication Date Title
US3601252A (en) Burst pack
US2648463A (en) Plastic container with rupturable sealed end
US4055032A (en) Process for forming sealed liquid filled bags
US3478871A (en) Burst package with fold seal
US3807626A (en) Gusseted pinch bottom breakaway pouch bag
US4872556A (en) Packaging device with burst-open seal
US4452378A (en) Gussetted bottom pouch
US3986640A (en) Package for a flowable product and material for making such package
US5100028A (en) Pressure-rupturable container seal having a fluid flow directing shield
US3128913A (en) Container spout having its outlet passage sealed by
US3667593A (en) Flowable dunnage apparatus and method of packaging with flowable and compliable inflated dunnage material
US2715493A (en) Chained enwrapments
US3809224A (en) Compartmented pouch
US20020012563A1 (en) Dispenser and process
US4364474A (en) Packages
US2771724A (en) Two-compartment container and method of making such container
US3806024A (en) Adhesive closure for plastic film bags
US20050155991A1 (en) Pressure activated self opening container and seal
US4227614A (en) Packages
US3506459A (en) Tamper-proof multiple compartment package
OA11933A (en) Tubelike dispenser package and integral outlet formed from a single sheet.
US3620774A (en) Plastics containers and packages
US4363205A (en) Packaging method
US3804134A (en) Collapsible funnel for dispensing liquids from puncturable containers
US2904240A (en) Easy opening air-tight container