US3581831A - Rotary impact tool - Google Patents

Rotary impact tool Download PDF

Info

Publication number
US3581831A
US3581831A US834278A US3581831DA US3581831A US 3581831 A US3581831 A US 3581831A US 834278 A US834278 A US 834278A US 3581831D A US3581831D A US 3581831DA US 3581831 A US3581831 A US 3581831A
Authority
US
United States
Prior art keywords
rotor
hammer
anvil
recess
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US834278A
Inventor
Paul A Biek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dresser Industries Inc
Original Assignee
Dresser Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dresser Industries Inc filed Critical Dresser Industries Inc
Application granted granted Critical
Publication of US3581831A publication Critical patent/US3581831A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • B25B21/02Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket
    • B25B21/026Impact clutches

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Percussive Tools And Related Accessories (AREA)
  • Drilling And Boring (AREA)

Abstract

A rotary impact tool having a fluid-operated motor having a rotor with a tubular extension to which a hammer is slidably mounted, an anvil normally spaced axially from the hammer, drive means including clutch means for rotating the anvil with rotation of the rotor and a cam means to cam the hammer axially into engagement with the anvil and with both the cam and clutch means being substantially wholly positioned within the recess of the tubular extension of the rotor.

Description

United States Patent [72] Inventor Paul A. Biek Primary Examiner-Ernest R. Purser Houston, Tex. AttorneysRobert W. Mayer, Daniel Rubin, Raymond T. {2] Appl No. 834,278 Majesko, William E. Johnson. Jr, Roy L Van Winkle and [22] Filed June 18, 1969 Eddie E Scott [45] Patented June l, 1971 [73] Assignee Dresser Industries. Inc.
Houston, Tex.
[54] ROTARY IMPACT TOOL ll clalms4nrawlng Flgs' ABSTRACT: A rotary impact tool having a fluid-operated U-S- motor having a rotor a t b la extension t a [5 l] Int. Cl 325d /02 hammer is slidably mounted, an anvil normally spaced axially Field of Search from the hammer, drive means including clutch means for rotating the anvil with rotation of the rotor and a cam means Reerences cued to cam the hammer axially into engagement with the anvil and UNITED TA E AT with both the cam and clutch means being substantially wholly 3,156,334 1 1/1964 Hoza 173/93.6 positioned within the recess of the tubular extension of the re- 3,2l2,590 10/1965 Hoza et al l73/93.6 tor.
I I I I I I 63 t i x I J \J 66 72 Iv Y ROTARY IMPACT TOOL SUMMARY The present invention relates to an improved rotary impact tool.
An object of the present invention is to provide an improved rotary impact tool which has increased rigidity in its connections for imparting impact so that a minimum of energy stored in the rotating inertial mass is dissipated.
Another object of the present invention is to provide an improved impacttool having improved motor performance, improved output performance and a minimum overall length.
A further object is to provide an improved rotary impact tool having a rotor with adequate depth for blade movement in which the length of the tool is minimized.
Still another object is to provide an improved rotary impact tool having an improved efficiency.
A still further object is to provide an improved rotary impact tool which is free running even under axial loads.
BRIEF DESCRIPTION OF THE DRAWINGS These and other-objects and advantages of the present invention are hereinafter set forth and explained in detail in reference to the drawings wherein:
FIG. I is an elevation view of a rotary impact tool in which the improvements of the present invention have been included.
FIG. 2 is a longitudinal sectional view of the rotor, hammer and anvil of the improved tool of the present invention.
FIG. 3 is an exploded view of the drive connections from the rotor to the anvil.
FIG. 4 is an enlarged view of the bearing mounting of the rotor.
DESCRIPTION OF THE PREFERRED EMBODIMENT Rotary impact tools have in the past been used for a variety of applications such as tightening nuts. In order to have a wellbalanced tool it has been emphasized in the past that the length of the tool should be kept to a minimum.'Some condensations of the components of the tool have resulted in changing the output of the fluid-responsive rotor or the impact delivered by theoutput end ofthe tool. Since these tools all include a means for releasably connecting the rotor to the anvil and a cam for moving the hammer into impacting engagement with the anvil when the resistance to normal rotation of the anvil exceeds a certain preselected torque, the limitation of the length has resulted in a flexibility of connections to the hammer so that the full energy available for impact is not achieved because a portion of such energy is utilized in overcoming this flexibility. The improved rotary impact tool of the present invention provides an improved structure having a minimum length, an efficient driving means and a relatively rigid connection to the hammer so that the aforementioned flexibility losses are minimized.
The improved tool T of the present invention is illustrated in FIG. I as having a pistol grip secured to the housing 12 and atrigger 14 which controls the flow of fluid from a suitable source (not shown) into the connection 16 and to the rotor 18 (FIG. 2). A suitable exhaust vent (not shown) is provided to exhaust the fluid from the housing 12 after it has expanded against the rotor 18.
The rotor 18 is of the sliding vane type and is mounted for rotation between the front bearing plate 20 and the rear hearing plate 22 by suitable bearing means. The bearing means includes the ball bearing 24 and seal 26 positioned between the front end of the rotor 18 and the front bearing plate 20 and the ball bearing 28 and the roller thrust bearing 30 positioned between the rear end of the rotor 18 and the rear bearing plate 22. As best seen in FIG. 4, the ball bearing 28 is mounted on a portion of the rotor 18 which extends to the rear and the annular flange 32 of the plate 22. The snap ring 34 retains the ball bearing assembly on such extension and the thrust bearing 30 includes the rollers 36, the inner race 38 and the outer race 40. The retaining ring 42 engages in an annular groove within the flange 32 to hold the thrust bearing 30 in its desired position. The thickness of inner race 38 is used to determine the clearance between the rotor 18 and the inner face of the bearing plate 22. The washer 44 urges the ball bearing 28 against the snap ring 34 to prevent the rotor 18 from drifting axially to the left. Axial thrusts to the right are imposed on thrust bearing 30 and not on ball bearing 28. The thrust bearing 30 thus protects the ball bearing 28 from thrust loads so that the rotor is freely rotatable responsive to pressure fluid.
The rotor I8 has an annular extension 46 which is connected to the hammer 48 and also defines the recess 50. The hammer 48 is mounted for rotation with the rotor 18 by the splined connection 52 which allows the hammer 48 to move axially to the left as hereinafter described. The anvil 54 is mounted for rotation within the housing and extends outwardly from the front end of the housing with a configuration suitable for driving a working member such as a socket. Both the hammer 48 and the anvil 54 include jaws and such jaws are in spaced relationship to each other so that the hammer 48 and the anvil 54 are not directly connected in their normal position. The anvil 54 defines an axial recess 56 and a small offset bore 58 which is adapted to receive the pin 60.
A releasable driving means is provided between the rotor 18 and the anvil 54. Such driving means includes the shaft 62, the carrier 64 and the resilient clutch member 66. The forward end of shaft 62 defines a slot 68 so that when shaft 62 is positioned within the recess 56 the pin 60 engages in the slot 68 to provide a direct driving connection between the shaft 62 and the anvil 54. The other end of shaft 62 is connected to the carrier 64 by a splined connection as shown. The resilient clutch member 66 is provided with a taper on its rear surface to match the inner taper of the recess 50. Clutch member 66 also is hollow and mounted on an annular projection 70 of the carrier 64 and the forward end of clutch member 66 is provided with a taper matching the taper of the rear flange portion of carrier 64. Thus the clutch member when held tightly against the inner face of the recess 50 and the flange of carrier 64 provides a driving connection between the rotor 18 and the anvil 54. The spring 72 surrounds the shaft 62 and urges the washer 74 against the inner shoulder 76 on hammer 48 to the right and thereby urges hammer 48 away from engagement with anvil 54.
When the rotor 18 is rotating it will rotate the anvil 54 until the work being done by the anvil 54 offers sufflcient torque resistance to overcome the friction of the surface engagement of the clutch member 66 with the interior of the recess 50 and with the carrier 64. Whenever the rotor 18 continues to rotate because of the slippage of the clutch means, then the cam means of the present invention is actuated to cause the hammer 48 which always rotates with the rotor 18 to be cammed into impacting engagement with the anvil 54. The cam means includes the cam member 78 which is mounted on carrier 64 and includes a forward recess 80 and a rear cam surface 82. The pin 84 which is carried by the hammer 48 engages in the recess 80 and when the hammer 48 rotates while the anvil 54 is not rotating the pin 84 moves to a position to rotate the cam member 78 relative to the carrier 64. The roller 86 on the carrier rides on the cam surface 82 so that rotation of the cam member 78 moves the cam member 78 to the left or forward to move the hammer 48 into engagement with the anvil 54. After impact the spring 72 returns the hammer 48 out of engagement with the anvil 54 to ready it for another impacting engagement. The cam member 78 is released from engagement with the roller 86 when the anvil 54 is slightly rotated. With the hammer 48 returned, the rotor 18 and hammer 48 are free to accelerate for the next impact and the rotary impacting of the hammer 48 against the anvil 54 will continue in rapid succession until the supply of fluid to the rotor is discontinued.
By locating the clutch means and the cam means and a portion of the driving means within the recess 50 of the rotor extension 46, the length of the tool T has been minimized. The
splined connection 52 between the rotor 18 and the hammer 48 is of substantial length and at a large diameter to minimize the flexibility of the driving connection and thereby minimize the loss of energy when the hammer 48 impacts against the anvil S4.
The thrust on rotor 18 from the camming action acts toward the rear and is taken up by the thrust bearing assembly 30. The thickness of the thrust bearing assembly 30 is slightly greater than the dimension from the inner surface of the retainer ring 42 to the inner face of the bearing plate 22. This assures the proper rotor spacing from the bearing plate 22.
From the foregoing it can be seen that the improved impact tool of the present invention has a minimum of flexibility so that a maximum of the inertia of the rotating parts is delivered at impact. This is accomplished in a relatively short tool and the motor rotor has sufficient depth for the blades to provide improved tool performance.
What I claim is:
1. An impact tool, comprising:
a housing,
a rotor,
means for rotationally mounting said rotor within said housmeans for supplying a fluid into said housing to cause said rotor to rotate,
said rotor having an annular extension at one end thereof with a recess defined within said annular extension,
a hammer slidably mounted on said rotor extension for rotation with said rotor and slidable axially thereof,
an anvil rotationally mounted within said housing in a position axially spaced from said hammer whereby axial displacement of said hammer results in engagement of said anvil by said hammer, and
means releasably connecting said rotor to said anvil for driving said anvil,
said connecting means including a clutch means and a cam means positioned substantially wholly within said recess of said rotor extension,
said connecting means rotating said anvil with said rotor until said anvil resists turning and then said clutch means allows relative rotation between said hammer and said cam means so that said hammer is cammed axially by said cam means into engagement with said anvil to impart a rotary impact thereto.
2. An impact tool according to claim I wherein said connecting means includes a shaft carrier positioned within said recess,
a drive shaft being in driving engagement with said anvil at one end and extending through said hammer into engagement with said shaft carrier at its other end, and
said clutch means includes a clutch member positioned in said recess and engaging said carrier and the interior of said recess to form a releasable driving connection between said rotor and said carrier,
said cam means being adapted to engage said hammer to move it into engagement with said anvil when said rotor rotates independently of said anvil.
3. An impact tool according to claim 2 wherein said cam means includes a cam member having an axial bore therethrough, an indexing recess and a cam surface,
means for connecting said indexing recess to said hammer whereby rotation of said hammer with said anvil stationary rotates said cam member relative to said carrier, and
means coacting with said cam surface to move said hammer axially when said cam surface rotates relative to said carrier.
4. An impact tool according to claim 1 including means urging said hammer in a direction away from said anvil.
5. An impact tool according to claim I wherein said rotor mounting means includes ball bearing assemblies mounted at each end of said rotor for rotationally supporting said rotor within said housing, and
a thrust bearing assembly positioned between the housing and rotor to prevent movement of the rotor in the direction away from said hammer when said hammer is cammed into engagement with said anvil.
6. An impact tool according to claim 2 including a spring surrounding a portion of said shaft and engaging said hammer to urge said hammer in a direction away from said anvil.
7. A rotary impact tool comprising:
a housing,
a fluid-operated motor within said housing having a rotor,
means for conducting fluid to said motor to rotate said rotor,
a rotatable hammer having an axial recess, said rotor having a reduced end portion engaging within the recess in said hammer to connect said hammer and rotor for rotation together with said hammer being axially slidable on said reduced end portion of said rotor,
said rotor end portion defining a recess,
an anvil rotatably mounted in said housing, and driving means to rotate said anvil responsive to rotation of said rotor,
said driving means including clutch means for releasing the driving connection between said rotor and said anvil and cam means for moving said hammer into engagement with said anvil responsive to relative rotation of said rotor with respect to said anvil to thereby impart a rotary impact to said anvil,
said clutch means and said cam means being positioned sub stantially wholly within said rotor recess.
8. A rotary impact tool comprising a housing,
a motor including a rotor having a front end facing toward the front end of said housing and a rear end facing toward a rear end of said housing,
a hammer rotatably carried by and slidable on a front end portion of said rotor,
an anvil at the front end of said housing normally spaced axially from said hammer, and drive means for rotating said anvil responsive to rotation of said rotor,
said drive means terminating operatively connected to said motor at a location within the front end portion of said rotor and including cam means connected to move said hammer into engagement with said anvil to impart a rotary impact thereto.
9. A rotary impact tool according to claim 8 in which the front end of said rotor includes an annular extension having an internal recess in which said drive means terminates operatively connected to said motor.
10. A rotary impact tool according to claim 9 in which said annular rotor extension comprises the front end portion of said rotor on which said hammer is carried and slidable.
11. A rotary impact tool according to claim 10 including an axially extending splined interfit between said hammer and said annular rotor extension by which said hammer is carried and slidable on said extension.

Claims (11)

1. An impact tool, comprising: a housing, a rotor, means for rotationally mounting said rotor within said housing, means for supplying a fluid into said housing to cause said rotor to rotate, said rotor having an annular extension at one end thereof with a recess defined within said annular extension, a hammer slidably mounted on said rotor extension for rotation with said rotor and slidable axially thereof, an anvil rotationally mounted within said housing in a position axially spaced from said hammer whereby axial displacement of said hammer results in engagement of said anvil by said hammer, and means releasably connecting said rotor to said anvil for driving said anvil, said connecting means including a clutch means and a cam means positioned substantially wholly within said recess of said rotor extension, said connecting means rotating said anvil with said rotor until said anvil resists turning and then said clutch means allows relative rotation between said hammer and said cam means so that said hammer is cammed axially by said cam means into engagement with said anvil to impart a rotary impact thereto.
2. An impact tool according to claim 1 wherein said connecting means includes a shaft carrier positioned within said recess, a drive shaft being in driving engagement with said anvil at one end and extending through said hammer into engagement with said shaft carrier at its other end, and said clutch means includes a clutch member positioned in said recess and engaging said carrier and the interior of said recess to form a releasable driving connection between said rotor and said carrier, said cam means being adapted to engage said hammer to move it into engagement with said anvil when said rotor rotates independently of said anvil.
3. An impact tool according to claim 2 wherein said cam means includes a cam member having an Axial bore therethrough, an indexing recess and a cam surface, means for connecting said indexing recess to said hammer whereby rotation of said hammer with said anvil stationary rotates said cam member relative to said carrier, and means coacting with said cam surface to move said hammer axially when said cam surface rotates relative to said carrier.
4. An impact tool according to claim 1 including means urging said hammer in a direction away from said anvil.
5. An impact tool according to claim 1 wherein said rotor mounting means includes ball bearing assemblies mounted at each end of said rotor for rotationally supporting said rotor within said housing, and a thrust bearing assembly positioned between the housing and rotor to prevent movement of the rotor in the direction away from said hammer when said hammer is cammed into engagement with said anvil.
6. An impact tool according to claim 2 including a spring surrounding a portion of said shaft and engaging said hammer to urge said hammer in a direction away from said anvil.
7. A rotary impact tool comprising: a housing, a fluid-operated motor within said housing having a rotor, means for conducting fluid to said motor to rotate said rotor, a rotatable hammer having an axial recess, said rotor having a reduced end portion engaging within the recess in said hammer to connect said hammer and rotor for rotation together with said hammer being axially slidable on said reduced end portion of said rotor, said rotor end portion defining a recess, an anvil rotatably mounted in said housing, and driving means to rotate said anvil responsive to rotation of said rotor, said driving means including clutch means for releasing the driving connection between said rotor and said anvil and cam means for moving said hammer into engagement with said anvil responsive to relative rotation of said rotor with respect to said anvil to thereby impart a rotary impact to said anvil, said clutch means and said cam means being positioned substantially wholly within said rotor recess.
8. A rotary impact tool comprising a housing, a motor including a rotor having a front end facing toward the front end of said housing and a rear end facing toward a rear end of said housing, a hammer rotatably carried by and slidable on a front end portion of said rotor, an anvil at the front end of said housing normally spaced axially from said hammer, and drive means for rotating said anvil responsive to rotation of said rotor, said drive means terminating operatively connected to said motor at a location within the front end portion of said rotor and including cam means connected to move said hammer into engagement with said anvil to impart a rotary impact thereto.
9. A rotary impact tool according to claim 8 in which the front end of said rotor includes an annular extension having an internal recess in which said drive means terminates operatively connected to said motor.
10. A rotary impact tool according to claim 9 in which said annular rotor extension comprises the front end portion of said rotor on which said hammer is carried and slidable.
11. A rotary impact tool according to claim 10 including an axially extending splined interfit between said hammer and said annular rotor extension by which said hammer is carried and slidable on said extension.
US834278A 1969-06-18 1969-06-18 Rotary impact tool Expired - Lifetime US3581831A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US83427869A 1969-06-18 1969-06-18

Publications (1)

Publication Number Publication Date
US3581831A true US3581831A (en) 1971-06-01

Family

ID=25266555

Family Applications (1)

Application Number Title Priority Date Filing Date
US834278A Expired - Lifetime US3581831A (en) 1969-06-18 1969-06-18 Rotary impact tool

Country Status (2)

Country Link
US (1) US3581831A (en)
BE (1) BE754703A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4063601A (en) * 1976-08-23 1977-12-20 Dresser Industries, Inc. Rotary impact tool
EP0894576A2 (en) * 1997-07-29 1999-02-03 Chicago Pneumatic Tool Company Twin lobe impact mechanism
US9289886B2 (en) 2010-11-04 2016-03-22 Milwaukee Electric Tool Corporation Impact tool with adjustable clutch
US11213934B2 (en) * 2018-07-18 2022-01-04 Milwaukee Electric Tool Corporation Impulse driver
US11724368B2 (en) 2020-09-28 2023-08-15 Milwaukee Electric Tool Corporation Impulse driver

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3156334A (en) * 1961-05-16 1964-11-10 Reed Roller Bit Co Impact tool with hammer rotatable and axially movable within the motor
US3212590A (en) * 1963-07-29 1965-10-19 Reed Roller Bit Co Impact wrench

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3156334A (en) * 1961-05-16 1964-11-10 Reed Roller Bit Co Impact tool with hammer rotatable and axially movable within the motor
US3212590A (en) * 1963-07-29 1965-10-19 Reed Roller Bit Co Impact wrench

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4063601A (en) * 1976-08-23 1977-12-20 Dresser Industries, Inc. Rotary impact tool
EP0894576A2 (en) * 1997-07-29 1999-02-03 Chicago Pneumatic Tool Company Twin lobe impact mechanism
EP0894576A3 (en) * 1997-07-29 2000-03-29 Chicago Pneumatic Tool Company Twin lobe impact mechanism
EP1226902A2 (en) * 1997-07-29 2002-07-31 Chicago Pneumatic Tool Company Twin lobe impact mechanism
EP1240979A2 (en) * 1997-07-29 2002-09-18 Chicago Pneumatic Tool Company Twin lobe impact mechanism
EP1240979A3 (en) * 1997-07-29 2002-11-27 Chicago Pneumatic Tool Company Twin lobe impact mechanism
EP1226902A3 (en) * 1997-07-29 2002-11-27 Chicago Pneumatic Tool Company Twin lobe impact mechanism
US9289886B2 (en) 2010-11-04 2016-03-22 Milwaukee Electric Tool Corporation Impact tool with adjustable clutch
US11213934B2 (en) * 2018-07-18 2022-01-04 Milwaukee Electric Tool Corporation Impulse driver
US11890726B2 (en) 2018-07-18 2024-02-06 Milwaukee Electric Tool Corporation Impulse driver
US11724368B2 (en) 2020-09-28 2023-08-15 Milwaukee Electric Tool Corporation Impulse driver

Also Published As

Publication number Publication date
BE754703A (en) 1971-01-18

Similar Documents

Publication Publication Date Title
US3161241A (en) Rotary power hammer
US2425793A (en) Impact wrench
US3305031A (en) Power hammer
JP4008865B2 (en) Fastener
US3156334A (en) Impact tool with hammer rotatable and axially movable within the motor
EP1454714B1 (en) Rotary tool
US3581831A (en) Rotary impact tool
CN200995288Y (en) Pressure and oil-pressure rotary gripping head
US2947283A (en) Impact tool
US2784625A (en) Rotary impact tool
CA1119488A (en) Vacuum motor
US6684964B2 (en) Hammer drill
US3465646A (en) Pneumatic motor structure
EP1432552B1 (en) A percussion device
US3732026A (en) Hand operated power tool and chuck therefor
US3212590A (en) Impact wrench
JPS6393578A (en) Hammer drill
US3133601A (en) Impact drill
CN102892537A (en) A core drilling machine and a handle assembly for a core drilling machine
US4304047A (en) Impact chisel attachment
US2268412A (en) Rotary impact tool
US4134460A (en) Hydraulic drilling device
US2786376A (en) Rotary impact tool
KR920009834B1 (en) Impact clutch
US2126829A (en) Mechanical hammer