Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3552384 A
Publication typeGrant
Publication date5 Jan 1971
Filing date3 Jul 1967
Priority date3 Jul 1967
Publication numberUS 3552384 A, US 3552384A, US-A-3552384, US3552384 A, US3552384A
InventorsWill R Pierie, Donald A Raible, David L Swendson
Original AssigneeAmerican Hospital Supply Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Controllable tip guide body and catheter
US 3552384 A
Abstract  available in
Images(4)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 72] inventors Will R. Pierie Tustin; Donald A. Raible, Corona; David L. Swendson, Garden Grove, Calif.

[21] Appl. No. 650,863

[22] Filed July 3, 1967 [45] Patented Jan. 5, 1971 [73] Assignee American Hospital Supply Corporation Evanston, Ill. a corporation of Illinois. by mesne assignment [54] CONTROLLABLE TIP GUIDE BODY AND OTHER REFERENCES Smith. et 21].: Surgery. vol. 27. no. 6. June 1950, pp. 817-821.

Primary Examiner Dalton L. Truluck Attorney-Lee R. Schermerhorn ABSTRACT: A device for general and selective angiography and other purposes having a handle, controllable tip guide body, injection tube unit and catheter outer body wherein the tip of the guide body may be bent, rotated, exposed and sheathed in the catheter by control means on the handle and injection tube unit, and locked in selected position, the several parts being usable as a complete assemblage and in different combinations. The guide body is made torsionally rigid so that the rotation of the tip corresponds to the manipulation of a rotator on the handle, the guide body rotating within the catheter outer body which is nonrotatable. The guide body extends through the injection tube unit which is interposed between the handle and the catheter outer body. The injection tube unit has a sliding telescoping part for extending the catheter outer body to sheath the guide body and for retracting the catheter outer body to unsheath the tip of the guide body.' For certain purposes the injection tube unit and catheter outer body may be removed and the guide body and handle used together as an operative unit. Also, the guide body is conveniently removable from the handle.

PATENIED JAN 5m: 3,552,384

sum 1 or 4 INVENTOR5= WILL R. PIERIE DONALD A. RAIBLE DAVID L.- SWENDSON Bag Attorney on on A .9 R 8 Q G 3 2\ 3 5 S S 92 lvwwl EW PATENTEU JAN 5197:

SHEET U 0F 4 INVENTORS: WILL R. PIERJE.

DONALD A. RABBLE pvm L. SWENDSON Aflorne I 1 CONTROLLABLE TIP GUIDE BODY AND CATHETER BACKGROUND OF THE INVENTION It is often desired to place a catheter or other instrument at a particular point in a body lumen, such as a blood vessel, which is difficult of access. In selective angiography, for example, the blood vessel often must be entered at some remote point and the catheter or instrument guided into a selected branch as it is pushed along throughthe vessel. The necessary guidance to effect entry into the selected branch involves the two variables of bending and orientation of bending.

The change of direction has generally been accomplished heretofore by the use of prebent catheter tips. This has advantages for certain purposes but the configuration of the bend cannot be changed after the catheter has been inserted entire length. It isdesireable to provide precise control of the orientation of the bendable tip as well as the degree of bending and it is further desirable to afford greater flexibility in the manner in which such instruments may be used in blood ves' sels and other body lumens. Torsional rigidity is necessary for control of orientation.

SUMMARY OF THE INVENTION This invention relates to an improved controllable tip guide body which may be used to guide a catheter tube or other instrument into a relatively inaccessible location in a blood vessel or other body lumen and to an improved intralumenal device including such a guide body.

The present instrument comprises a handle detachably connected with an injection tube unit. A catheter outer body may be detachably mounted on the'latter. The handle carries a controllable tip guide body which extends through the injection tube unit and catheter outer body and is removable therefrom. The guide body is freely flexible in bending but torsionally rigid. It has a tip which is bendable in one direction. Devices are provided on the handle for bending and rotating the tip. Means are provided on the injection tube unit for sliding the catheter outer body on the guide body to expose or sheath the bendable tip. Means are also provided for locking the bending and sliding adjustments in selected positions.

The detachable connections are arranged in such a way that the guide body may be inserted intothe vessel first and then the catheter outer body applied over the guide body, or the catheter outer body may be first inserted in the vessel and then the guide body inserted through the catheter. After the catheter has been inserted to its desired position in the vessel or other lumen, the handIe and guide body may be removed from the injection fitting and catheter. The injection tube unit may be used to introduce an X-ray opaque dye through the catheter either while the guide body remains in the catheter or after the guide body has been removed. These capabilities provide a flexibility of operation which is of great advantage to the surgeon and which has not been available in prior instruments.

Objects of the invention are, therefore, to provide an improved controllable tip guide bodyfor a catheter and other purposes, to provide a controllable tip guide body in which the degree of bending may be controlled and locked in selected adjustment on a handle part, to provide a controllable tip guide body and catheter combination in which the guide body tip may be sheathed and unsheathed by the catheter, to provide a catheter probe assembly having an inner guide bodywhich is rotatable within a nonrotatable catheter outer body, to provide an improved injection tube unit fora catheter of the type described to provide a handle having a controllable tip guide body and detachable injection tube unit and catheter wherein the guide body is removable along with the handle from the injection tube unit and catheter and to provide an instrument of the type described in which the several parts may be used in different combinations and as a complete assemblage.

The foregoing and other objects and advantages will become apparent and the invention will be better understood with reference to the following description of the preferred embodiment illustrated in the accompanying drawings. Various changes may be made, however, in the details of construction and arrangement of the parts and certain features may be used without others. All such modifications within the scope of the appended claims are included in the invention.

BRIEF DESCRIPTION OF THE DRAWINGS ,FIG. 1 is an elevation view of a complete instrument embodying the features of the invention, showing the bendable tip of the guide body unsheathed by the catheter;

FIG. 2 is view similar to FIG. 1, showing thebendable tip sheathed;

FIG. 3 is a longitudinal sectional view of the handle of the instrument, showing the palm lever in relaxed position FIG. 4 is an elevation view of the handle, with parts broken away, showing the palm lever in actuated position;

FIG. 5 is a view on the line 5-5 in FIG. 3;

FIG. 6 is a view on the line 6-6 in FIG. 3;

FIG. 7 is a view on the line 7-7 in FIG. 3', I

FIG. 8 is an exploded perspective view of the slide in FIGS. 3 and 4;

FIG. 9 is a longitudinal sectional view of the injection tube unit;

FIG. 10 is a view on the line 10-10 in FIG. 9;

FIG. 11 is an enlarged fragmentary sectional view showing a portion of the handle and a portion of the injection tube unit;

FIG. 12 is an elevation view of the catheter outer body;

FIG. 13 is an elevation view of the controllable tip guide body, with parts broken away, showing the tip in straight position FIG. 14 is a view similar to FIG. 13, showing the tip in bent position;

FIG. 15 is an enlarged longitudinal sectional view, showing the bendable tip portion of the guide body;

FIG. 16 is a view on the line l6-I6 in FIG. 15; I

FIG. 17 is an enlarged view on the line l7-l7 in FIG. 14; and

FIG. 18 is a view on the line l8-l8 in FIG. 17.

The complete instrument comprises a handle A, guide body B, injection tube unit C and catheter outer body D as shown in FIGS. 1 and 2.

Referring now to FIG. 3, the operating mechanism in the handle A is carried by a tubular body member 10. Body member 10 has a distal end wall 11 provided with a bore 12 to receive a cylindrical rotator support 13. The rotator support is fixedly secured in this bore by setscrews l4. Extending through the rotator support is n axial passageway 15 which opens into a socket 16 in the outer end of the rotator support. The inside of socket 16 is provided with a plurality of longitudinal grooves 17. Rotatably mounted on the outside of socket 16 is a threaded support collar 20 for connecting the injection tube unit C with handle A.

A knurled cylindrical rotator 21 is rotatably mounted on Teflon balls 22 on the inner end of support 13. These balls are introduced through a radial bore 23 which is closed by a screw plug 24. An index fitting 25 is fixedly mounted by press fit in intersect opposite sides of passageway 26 to form a transversely'elongated slot extending through the length of index fitting 25.1The adjacent ends of passageways and 26 are chamfered at 28. The distal end of passageway 26 is counterbored to form an enlarged circular end portion 29 having a seating shoulder at 30. The proximal end of guide body B extends through passageway 15 and seats against shoulder 30. The proximal end of passageway 26 is chamfered at 31. An axial tube is soldered onto the proximal end of index fitting 25, this tube being provided with a pair of longitudinal slots 36.

A lever bracket is detachably mounted in body 10 by means of thumb screw 41. A forwardly extending palm lever 42 is pivotally mounted on a pin 43 in ears 44 on the bracket 40 as shown in FIG. 6. In order to reduce friction, the pin 43 is 7 preferably equipped with an oil-less nylon bushing 45.

A slide bracket 46 is mounted on lever bracket 40 by means of screws 47. Slide bracket 46 is bored to receive a bushing 48 for a cylindrical slide 50 which is adapted to reciprocate and rotate in the bushing 48. Slide 50 is: urged toward the left in FIG. 3 by a compression spring 51 which is seated at its opposite ends on the bushing 48 and a support washer 52 which is rotatable on the slide. Washer 52 abuts a radial flange 53 on the slide. The distal end of slide 50 is equipped witha pair of radial guide pins 54 which are disposed in the slots 36 of tube 35. Slide 50 further contains an axial passageway 55 in alignment with the in alignment with the passageways 15 and 26, the distal end of passageway 55 being chamfered at 56.

Palm lever 42 is in bell crank shape having a forked inner end 60 which straddles slide 50 on the proximal side of slide bracket 46. The end 60 is rounded to function as a cam and is normally held in a limit position against slide bracket 46 by a cam washer 61 on the slide. Washer 61 is mounted so that it rotates when the slide 50 rotates, by means of a setscrew 62 which enters a longitudinal slot 63 in the slide. The position of washer 61 is fixed by a retainer 65 which bears against a thrust abutment in the form of a two-part stop washer 66. Washer 66 is mounted in a circumferential groove 67 in slide 50 as best shown in FIG. 8. The position of washer 66 is fixed by its abutment against the right side of groove 67 as shown in FIG. 3.

When palm lever 42 is squeezed toward body 10 as shown in FIG. 4, its cam-shaped inner end 60 bearing against washer 61 moves slide 50 to the right in FIG. 3, causing pins 54 to slide in slots 36. The purpose of this movement is to retract a pull wire, presently to be described, which bends the tip of guide body B. The proximal end of the guide body seats in counterbore 29 and the pull wire extends through passageways 26 and 55 and has its end anchored at the extreme proximal end of slide 50 by means presently to be described. Such squeezing movement of lever 42 compresses the spring 51 and when the squeezing force on the lever is relaxed, the spring acts through washer 61 to return the parts to their FIG. 3 position. Slide bracket 46 acts as a stop for this return movement, as washer 61 presses lever end 60 against the end of bracket 46.

Slide 50 may be rotated at all times 'by finger and thumb manipulation of rotator 21. Rotator 21 directly rotates the guide body seating bore 29 and indirectly rotates slide 50 through its pins 54. During such rotation, washer 61 slides freely against the inner lever end 60 regardless of the position of the lever.

An adjustable anchor for the guide body pull wire will now be described with reference to FIG. 3. A slide cap 70 is mounted for longitudinal sliding movement on the end of slide 50. For this purpose the slide 50 is provided with a longitudinal tongue 71 which is received in a slot 72 in one side of the slide cap. The slide cap is externally threaded at 73 for engagement with an internallythreaded adjustment nut 75. The

inner end of nut is externally threaded at 74 for connection with the retainer 65, this connection being screwed tightly together so that the retainer will rotate as a part of the nut. Thus, the longitudinal position of nut 75 is fixed by retainer 65 which is confined between stop washer 66 and cam washer 61 so thatrotation of the nut causes slide cap 70 to move longitudinally on slide 50.

Slide cap 70 has a slot for the guide body pull wire with a narrow central portion 76 interconnecting a wider end portion 77 and a hole 78. Wide portion 77 has a seat 80 for a button on the end of the pull wire while hole 78 forms a smooth bore angular passage for insertion of the pullvwire' from the distal end of the handle. The inner end of this slot communicates with passageway 55 and the proximal end' of passageway 55 is chamfered as indicated at81.- at .-1.. t v

The proximal end of body 10 is covered-by a'cap85 having an opening 86 therein for the adjustinglnut-75. This cap is secured to handle bracket 40 by screws 87. Mounted on the cap is a locking thumb screw 90 for holding the palm-lever 42 I in adjusted position. The inner end of this thumb screw has i threaded engagement with a bore- 91- in lever bracket. 40.

Thumb screw 90 extends between. the forks of lever end por tion 60 and is equipped with an abu tment flange 92 which is FIG. 4. a

By removing thumb screw 41, the'entire assemblage of palm lever 42, brackets 40 and .46; slide '50 ,"and adjustment devices 75 and 90 are removable through the proximal end' of handle body 10. I I I Injection Tube Unit C and Catheter Outer Body -D Referring now to FIG. 9 the injection tube unit C comprises an injection tube slidably mounted in a guide tube 101. The guide tube has a threaded proximal end.102 for detachable connection with support collar 20 on the handle A and a projection 103 to fit in the socket l6as shown in FIG. 11. Lands 104 fit in grooves 17 so that the unit will fit in the handle in different rotative positions but' will be' fixedly held against relative rotation. e

A stop screw 105 in tube 100 extends through a longitudinal slot 106 in guide tube 101. Tightening screw 105 clamps the two parts in adjusted position and loosening the screw permits longitudinal movement of the injection tube 100 in the guide tube 101 within the range of travel allowed by end stops .107 and 108. The injection tube is shown fully retracted in FIGS. 1 and 9 and fully extended in FIG. 2.

Injection tube 100 has an axialv passageway 110 for the guide body B. The distal end of the injection tube is provided with a branch fitting 111 communicating with passageway 110 and immediately on the proximal side of branch 111 is a shutoff valve 112 to open and close passageway 110. The distal extremity of tube 100is threaded at 113for connection with the catheter outer body D. Fitting 111 maybe use'dfor injecting dye or medication through catheter outer body D, for withdrawing a blood sample or for taking blood pressure measurements.

The proximalend'of injection tube 100 is threaded at119 to receive a squeeze .nut 120 containing a.resilientrubber O-ring 121. Nut 120 is adjusted to squeeze the O-ring. sufficiently to effect a seal with the guide body B at the endiof passageway 110 while still permitting the guide body to beihserted and removed through the O-ring, as shown in FIG. 11. Thus,,when valve 112 is open and guide body B is in place in passageway 110, the passageway is sealed by O-ring l21so that fluid'in jected through branch 111 cannot escape from tube 100,-and enter the handle A. When-the -guide body is removed in a proximal direction, valve ll2;is closed as soon: as the distal end of the guide body has'cleared the valve in FIG. 9.- but-;before the end of the guide body has cleared the-seal l 2-1;-. After' the guide body has been completelywithdrawmthe'valve 112, prevents any fluid in branch"1-11"a'rrd outer body D from escapingfrom tube 100. i r T The catheter outer body D 'is shown in FIG:- 12. This is simply a flexible plastic tube' having'a screw threaded fitting 126 on its proximal end for connection wit the threadeded l ever end 60 as shown in member 113 in FIG 9. The distal end 127 of tube 125 is open so that guide body B may be projected as shown in FIG. 2 and for the other purposes mentioned.

Guide Body B Guide body B is illustrated in-FIGS. 13 to 18. This guide body comprises a flexible plastic tube 140 having a tip end and cannot be compressed lengthwise, although it is freely flexible in bending. The mandrel on which coil 155 is wound is of a suitable size so that the pull wire 150'will be freely slidable therein. Surrounding coil 155 is a tightly wound triple wrap coil 156 of finer wire in three layers as best shown in FIG. 17. The center layer is wound in the opposite direction from the inner and outer layers. That is to say, that if the center layer is wound clockwise, the inner and outer layers are wound counterclockwise. Coil 156 is wound on a mandrel of a size to form an inside coil'diameter suitable for insertion of coil 155.

Coil 155 may be omitted if desired. Triple wrap coil 156 in itself provides adequate thrust resistance for the pull wire.

The purpose of the three layer, triple wrap coil 156 is to provide torsional rigidity for guide body B while still retaining free flexibility in bending. Since the middle layer of coil 156 is a locked between the inner and outer layers, the middle layer can neither contract nor expand radially when the tube is stressed in torsion in opposite directions of rotation. Also, the inner layer cannot expand in one direction of rotation and the outer layer cannot contract in the oppositedirection of rota tion. This internal and external restraint eliminates all torsional flexibility so that when one end of the tube is rotated about its axis, the opposite end will rotate preciselythe same amount. v

Such rotation is imparted by the flat tongue 160 on the end of fitting 142 which fits in the grooves 27 of index fitting 25 on the rotator 21 in FIG. 3. Fitting 142 has a flat end surface 161 which seats against the shoulder 30. FIG. 11 shows these parts in assembled relation.

Guide body tube 140 further includes an outer layer of plastic 162 which encloses the wire coil assemblage just described and provides a smooth outer surface to minimize sliding and rotating friction against other objects. Plastic 162 also prevents leakage of any fluid into the coils 155 and 156. Fitting 142 is secured tightly to the tube 140 so as to transmit rotative movements of rotator 21 to the tube. Pull wire 150 slides freely in a bore 163 in the fitting 142.

The distal end of tube 140 is equipped with a tip junction fitting 165 which is likewise securely attached to the tube. The opposite ends of both coils 155 and 156 seat against end walls in the two fittings 142 and 165 as shown. Fitting 165 has a bore 166 slidably receiving the pull wire 150. Fitting 165 has an extension 167 with a flat side 168 offset from bore 166 on which is soldered a proximal end of a metal leaf spring member 170. The distal end of spring leaf 170 is similarly sol-- dered to atip wire fitting 171. Full wire'150 extends along one flat side of spring leaf 170 and the end of the pull wire is soldered at 172 to the fitting 171.

Spring leaf 170 and pull wire 150 are enclosed in a cage formed by wrapping a wire 173 around the two elements in spiral configuration. One end of wire 173 is soldered at 174 to spring leaf 170 and fitting 165 and the other end is soldered at 175 to spring leaf 170 and fitting 171. The spiral wrap 173 is sufficiently loose that it does not impede free axial movement of pull wire 150.

The metal parts 165, 170,171 and 173 are then coated with a primer and pull wire 150 is coated with a lubricant and a plastic covering 176 is molded around the parts as shown. The

plastic bonds itself to the primer coated surfaces but does not adhere to pull wire 150 whereby the latter may slide freely through the plastic and through wire cage 173 for bending the tip 141. During the molding operation the plastic 176 on the tip is merged with the plastic 162 on the tube portion making a smooth surfaced juncture completely covering the fitting 165. The tip 141, however,'may be molded separately and attached to the body 140.

When pull wire is drawn through fitting 165, leaf spring is caused to bend, producing the curved tip configuration shown in FIG. 14. Coil 155in the main tube portion 140 acts as a thrust member to prevent snaking of the whole length of the guide body when the pull wire is-tensioned. Thus, the tip 141 may be bent at any angle desired up to 180. I

An advantage of the present form of construction of guide body tube 140 is that this tube may be manufactured conveniently incontinuous length and then cut to the desired lengths for different surgical purposes. The bendable tip portions 141 may be standardized and used with any length tube portion 140. This effects distinct economy in manufacture while still permitting the different lengths required by surgeons.

Adjustment nut 75 in conjunction with slide cap 70 in FIG. 3 allowsfor reasonable manufacturing tolerance in the length of pull wire 150. In installing guide body B in handle A, the

.button 151 is inserted in' a proximal direction through passageways 15, 26 and 55 until the button appears in wide slot portion 78 of slide cap 70. The depth of insertion is limited by the seating of tube fitting 142 against shoulder 30. If necessary, adjusting nut 75 is turned to retract slide cap 70 into the nut until button 151 is emergent from the slide cap so that guide wire 150 may be passed through the narrow portion 76 of the slot to the upper wide portion 77 in FIGS. 3 and 7. Then nut 75 is rotated in the reverse direction to seat button 151 against the seat 80. This longitudinal adjustment of slide cap 70 thereby compensates for any variation in the distance between button 151 and the proximal end fitting 142 on the tube 140.

When lever 42 is squeezed toward handle body 10, the entire slide 50 is moved rearwardly carrying with it slide cap 70 and nut 75 and causing tip 141 to bend. A desired degree of bending may be retained by means of locking thumb screw 9 is previously described.

Guide body B is removed from handle A by merely returning palm lever 42 to its FIG. 3 position and moving slide cap 70 inwardly by rotating nut 75 until button 151 emerges from the wide slot portion 77. Then pull wire 150 is shifted through narrow slot portion 76 to .the opposite wide slot portion 78. Guide body B may then be withdrawn from the distal end of the handle. Passageway 55 and hole 78 are of sufficient width to permit the button 151 to pass freely through the angular juncture. Y

Operation The parts A, B, C and D may be assembled in different order andused in different combinations for different purposes.

In one type of-use guide body B may be assembled with handle A without injection tube unit C and catheter outer body D. After guide body B has been advanced to its destination in a blood vessel or other body lumen, the handle A maybe removed and catheter outer body D, with or without injection tube unit C, may be introduced over guide body B and inserted into the vessel or lumen to follow the path of the guide body. Then guide body B may be withdrawn if desired, leaving outer body D in the vessel.

Alternatively, the catheter outer body D, with injection tube unit C attached, may be inserted first for a distance into the vessel or lumen and then the guide body B, assembled with handle A, may be pushed through the injection tube unit and catheter outer body and the handle connected with the injection tube unit. Then the complete. assemblage may be advanced farther into the vessel or into a. branch of the vessel.

gthe desired vessel, then setting guide body B and catheter outer body D into this vessel for further advance in the vessel or into a branch vessel.

. In a third alternative, the 355 B and D of the complete assemblage may be inserted in the vessel or other lumen. This shown in FIG. 1 or with the catheter outer body projected to cove the bendable tip of the guide body as shown in' FIG. 2. In some cases, it is most effective to proceed with a step-by-step movement advancing first the guide body B and then the catheter outer body D by sliding stop screw 105 back and forth in its slot 106 in FIG. 9 and continuing in this manner until the objective has been reached. In this connection, it will be mentioned that the bendable tip portion 141 of the guide body will bend the catheter outer body D when completely enclosed by the latter,'when desired.

The instrument may be used in three different catheterization techniques known as cutdown, percutaneous with separate guide wire and percutaneous using guide body B in place of separate guide wire. The cutdown procedure involves simply cutting through the overlyingtissue to obtain access to cannulating this vessel and, finally, in-

ln the general percutaneous procedure,a conventional flexible guide wire is first inserted into the vessel and then the catheter outer body D is inserted over the guide wire. Injection tube unit'C may be assembled to the catheter outer body D optionally before or after the catheter outer body is inserted over the guide wire. Then, the flexible guide wire is removed and guide body B, assembled with handle A, is inserted through injection tube unit C and catheter outer bodyD for further advance.

In the second percutaneous procedure, guide body B is inserted through the needle cannula into the vessel. Then the cannula is removed over the proximal end of guide body B and catheter outer body D is inserted into the vessel over guide body B. Handle A may be assembled to guide body B before or after the guide body is inserted through the needle cannula into the vessel. Likewise, the injection tube unit C may optionally be assembled with the catheter outer body D before or after the latter is inserted into the vessel over guide body B. A surgeon will usually elect to minimize the bulk assembled to intralumenal devices during the installation phases, hence will defer attachment of assemblies and instrumentalities.

Specialized types of catheters may be used instead of the plan tube catheter outer body D. For example, the guide body B is of particular advantage in guiding a double lumen balloon catheter to a desired location in the body. Such catheter is attached to the injection tube unit C for injection of an X-ray contrast medium or localized medication through branch connector 111. With the vessel occluded by inflation of the balloon, washing of the blood is minimized and less contrast dye ormedication is required.

The present instrument is also useful in connection with other specialized instrumentalities. For example, in fiber optics visualization guide body B is used as previously described to get an outer body tube D to the desired location within the body. Then the guide body B is removed and a fiber optic device inserted through the outer body D for the visualization study. Similarly, the present instrument may be used to guide the placement of other devices such as flow probes, pressure probes, etc.

For still other purposes, a PH probe, pressure transducer or thermistor is attached to the tip of guide body B which my then be used advantageously in combination with a double lumen balloon catheter. Very selective localized measuremetres of a variety of kinds are thereby possible concurrently with angiography or administration of medication in a single procedure. Such modifications are applicable to systems other than vascular, such a the urinary system.

The foregoing examples are merely illustrative of the wide variety of uses of the present instrument. Still other applications are possible and the field of use is not intended to be limited tojthe specific examples cited.

The handle A is easily taken apart for cleaning and autoclaving and is reusable indefinitely as is also the injection tube unit C. Guide body B is intended to be reusable for a limited timefCatheter outer body D is essentially'a single-use, disposable device, although it may be cleaned, sterilized and reused a number of times, if desired.

Two other advantages of major importance are the rotatability of guide body B continuously in one direction without twisting the pull wire and therotatability ofzthe guide body within the nonrotatable catheter outer body D.. ln regard to the former, it will be observed in FIG, 3 thatrotator 21 rotates the pull wire anchorage in slide cap70 together with index fitting 25 which rotates guide body tube 140. There is no restraint upon the degree of rptation. The advantage of the latter is that the smooth inner surface of catheter other body D imposes less frictional resistance against rotation ofthe guide body than does the inner surface of a body lumen. This makes it easier to orient the bendable tip. v I

1. An instrument comprising an elongated flexible guide body having bending means in its tip portion, a pull wire in said guide body for actuating said bending means, a handle lo'n the proximal end of said guidebody, means in said handle connected with said guide bodyforfrotatling said guide relative to said handle, means in said handle for pulling sa d'piill wire relative to said guide body,.an injection tube unitfi'xedly mounted on said handlega catheter outer body fixedly mounted on a portion of said injection tube unit, said guide body extending through saidcatheter outeribod'y and said 'injection tube unit, detachable connections between the proximal end of said injection tube unitand said handle and between the distal end of said injection tube unit and said catheter outer body, a shutoff valve insaidinjection tube unit arranged to close a passageway for s'aidjg uide body in said unit, a branch fitting on said injectiori'tube unit between said valve and the distal end of the unit, and a resilient circular seal in said unit on the opposite side of said valve engaging said guide body. I s

2. A handle for a flexible, elongated controllable guide body having a pull wire extending out of said body for bending.

said tip; said handle comprising an elongated body member, a rotator on said body member, a slide mounted in said body member for rotation and reciprocation on the axis of said rotator, means on said rotator or rotating said slide, means on said handle for reciprocating said slide, axial'passageways through said rotator and slide, an axial thrust seat in said rotator passageway for the proximal end of said guide body, an axial thrust seat on said side at the proximal end of said slide passageway for a button on the proximal end of said pullwire, a hole in the proximal end of said slide at one side of said button thrust seat arranged to convey said button toa'position emergent from said slidewhen said guide body and'pull wire are inserted in said passageways, and a slot of less width than said button interconnecting said hole and button seat for lateral transfer of said pull wire from said hole to said button seat for seating said button. a

3. A handle as defined in claim 2, said rotator bein'g sit'uated at the distal end of said slide, said rotator having a sliding connection with said slide for rotating the slide. I

4. A handle as defined in claim 2, including means for adjusting said button seat lengthwise on said slide.

5. A handle as defined in claim'Z, including adjustable stop means on said handle to hold said slide in longitudinally adjusted positions. '5

6. A handle as defined in claim 2,-includin'g 'a connec'tor on the distal end of the ha'ndleifor mounting a tub'iila'rrii'rnber over said guide body.

7. A handle as defined in claim 2 includinga rotator support having an outer end extending outside of said handle-find means on said outer end of saidrotator support for mounting a tubular member concentric with said passageways:

8, A handle as defined in claim 2, including aspri gurging said slide in a distal direction, said means for reciprocating said slide comprising a lever on said handle arranged toi'nove said slide in a proximaldirection. v

9. A handle as defined in claim 8, including a lever bracket in said body member having a pivotal support for said lever, a slide bracket mounted on said lever bracket and having a bearing for said slide, said lever having a cam-shaped inner end, a cam washer on said slide engaging said cam-shaped inner end, and a thumb screw securing said lever bracket in said body member, said brackets, slide and lever being removable from said proximal end of said body member as a unit when said thumb screw is removed.

10. An injection tube unit comprising a guide tube, an injection tube slidably mounted in said guide tub, a longitudinal passageway through said injection tube, a shutoff valve for said passageway, a branch fitting communication with said passageway between said valve and one end of said injection tube, and a resilient circular seal in said passageway at the opposite end of said injection tube arranged to engage a body extending through said passageway.

11. An injection tube unit as defined in claim 10, said one end of said injection tube projecting out of one end of said guide tube, connector means in communication with said passageway on said one end of said injection tube, and connector means in communication with said passageway on the opposite end of said guide tube.

12. An injection tube unit as defined in claim 10, including a longitudinal guide slot in said guide tube, a stop screw in said injection tube slidable in said slot, and stop means for said screw at the opposite ends of said slot.

13. A torsionally rigid controllable tip guide body comprising a plural layer wire coil having adjacent turns in each layer in contact with each other and adjacent layers wound in opposite directions, a pull 'wireslidable in said coil, a distal end fitting on said guide body abutting the distal ends of said coil and layers of wire, a spring leaf having a proximal end connected with said fitting, said pull wire extending slidably through said fitting and connected with the distal end of said spring leaf, and a continuous plastic covering over said coil, said fitting and said spring leaf and pull wire, said plastic being adherent to said coil, fitting and spring leaf and nonadherent to said pull wire,

14. A guide body as defined in claim 13, including guide means for said pull wire along the length of said spring leaf.

15. A guide body as defined in claim 14, said guide means comprising a coil of wire surrounding said spring leaf and pull wire.

16. A guide body as defined in claim 13, including a fitting on the proximal end of said guide body having an end seating surface and a flat tongue extending therefrom for rotating the guide body. l

17. An instrument comprising an elongated flexible and torsionally rigid guide body having bending means in its tip portion, a handle on said guide body having means to operate said bending means and means to rotate said guide body relative to said handle, a catheter outer body surrounding said guide body, and means connected with said handle and said catheter outer body arranged to slide said catheterouter body on said guide body so as to sheath and unsheath the bendable tip portion of said guide body, said last means holding said catheter outer body nonrotatable relative to said handle.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3416531 *2 Jan 196417 Dec 1968Edwards Miles LowellCatheter
US3452740 *31 May 19661 Jul 1969Us Catheter & Instr CorpSpring guide manipulator
SE156901A * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3847140 *16 Dec 197112 Nov 1974Catheter & Instr CorpOperating handle for spring guides
US4178810 *9 Aug 197718 Dec 1979Nagashige TakahashiApparatus for manipulating a medical instrument
US4235245 *8 Nov 197825 Nov 1980Olympus Optical Co., Ltd.Device for picking up tissues from a body cavity
US4256113 *8 Dec 197717 Mar 1981Chamness Dale LSurgical apparatus
US4329983 *9 May 198018 May 1982Fletcher Thomas SGuide device for endotracheal tubes
US4554929 *13 Jul 198326 Nov 1985Advanced Cardiovascular Systems, Inc.Catheter guide wire with short spring tip and method of using the same
US4573470 *30 May 19844 Mar 1986Advanced Cardiovascular Systems, Inc.Low-profile steerable intraoperative balloon dilitation catheter
US4586923 *25 Jun 19846 May 1986Cordis CorporationCurving tip catheter
US4619263 *10 May 198528 Oct 1986Advanced Cardiovascular Systems, Inc.Adjustable rotation limiter device for steerable dilatation catheters
US4664113 *30 Jul 198512 May 1987Advanced Cardiovascular Systems, Inc.Steerable dilatation catheter with rotation limiting device
US4685457 *29 Aug 198611 Aug 1987Donenfeld Roger FEndotracheal tube and method of intubation
US4742817 *23 Apr 198610 May 1988Olympus Optical Co., Ltd.Endoscopic apparatus having a bendable insertion section
US4799496 *3 Jun 198724 Jan 1989Lake Region Manufacturing Company, Inc.Guide wire handle
US4817630 *2 Nov 19874 Apr 1989Schintgen Jean MarieControl cable for a biopsy forceps
US4838859 *19 May 198713 Jun 1989Steve StrassmannSteerable catheter
US4886067 *3 Jan 198912 Dec 1989C. R. Bard, Inc.Steerable guidewire with soft adjustable tip
US4917102 *14 Sep 198817 Apr 1990Advanced Cardiovascular Systems, Inc.Guidewire assembly with steerable adjustable tip
US4932419 *21 Mar 198812 Jun 1990Boston Scientific CorporationMulti-filar, cross-wound coil for medical devices
US4940062 *26 May 198810 Jul 1990Advanced Cardiovascular Systems, Inc.Guiding member with deflectable tip
US4960134 *18 Nov 19882 Oct 1990Webster Wilton W JrSteerable catheter
US5024617 *3 Mar 198918 Jun 1991Wilson-Cook Medical, Inc.Sphincterotomy method and device having controlled bending and orientation
US5047018 *14 Aug 198910 Sep 1991Minnesota Mining And Manufacturing CompanyCatheter and stylet assembly having dual position stylet
US5057092 *4 Apr 199015 Oct 1991Webster Wilton W JrBraided catheter with low modulus warp
US5075062 *20 Sep 199024 Dec 1991Wilson-Cook Medical, Inc.Method of fabricating a medical spincterotome
US5098376 *22 Dec 198924 Mar 1992Cardiopulmonics, Inc.Apparatus and methods for furling and introducing an extrapulmonary blood gas exchange device
US5111829 *18 Jan 199112 May 1992Boston Scientific CorporationSteerable highly elongated guidewire
US5125896 *10 Oct 199030 Jun 1992C. R. Bard, Inc.Steerable electrode catheter
US5154705 *24 Jul 198913 Oct 1992Lake Region Manufacturing Co., Inc.Hollow lumen cable apparatus
US5163911 *3 Apr 199217 Nov 1992Baxter International Inc.Over-the-wire catheter
US5163912 *11 Jul 199117 Nov 1992Minnesota Mining And Manufacturing CompanyFor venting/draining a chamber of a heart during surgery
US5165421 *20 Jul 199024 Nov 1992Lake Region Manufacturing Co., Inc.Guidewire system for medical procedures
US5318525 *10 Apr 19927 Jun 1994Medtronic CardiorhythmSteerable electrode catheter
US5346498 *25 Jan 199313 Sep 1994Imagyn Medical, Inc.Controller for manipulation of instruments within a catheter
US5373619 *14 Sep 199220 Dec 1994Lake Region Manufacturing Co., Inc.Method of making a hollow lumen cable
US5377690 *9 Feb 19933 Jan 1995C. R. Bard, Inc.Guidewire with round forming wire
US5389100 *6 Nov 199114 Feb 1995Imagyn Medical, Inc.Controller for manipulation of instruments within a catheter
US5396902 *28 May 199314 Mar 1995Medtronic, Inc.Steerable stylet and manipulative handle assembly
US5397304 *29 Jun 199314 Mar 1995Medtronic CardiorhythmShapable handle for steerable electrode catheter
US5409015 *11 May 199325 Apr 1995Target Therapeutics, Inc.Deformable tip super elastic guidewire
US5439006 *3 Feb 19938 Aug 1995Medtronic, Inc.Steerable stylet and manipulative handle assembly
US5562619 *19 Oct 19938 Oct 1996Boston Scientific CorporationDeflectable catheter
US5611777 *23 Aug 199518 Mar 1997C.R. Bard, Inc.Steerable electrode catheter
US5624379 *13 Oct 199529 Apr 1997G. I. Medical Technologies, Inc.Endoscopic probe with discrete rotatable tip
US5636642 *25 Apr 199510 Jun 1997Target Therapeutics, Inc.Deformable tip super elastic guidewire
US5662119 *21 Apr 19952 Sep 1997Medtronic Inc.Steerable stylet and manipulative handle assembly
US5666970 *2 May 199516 Sep 1997Heart Rhythm Technologies, Inc.Locking mechanism for catheters
US5681280 *2 May 199528 Oct 1997Heart Rhythm Technologies, Inc.Catheter control system
US5715817 *7 Jun 199510 Feb 1998C.R. Bard, Inc.Bidirectional steering catheter
US5741320 *2 May 199521 Apr 1998Heart Rhythm Technologies, Inc.Catheter control system having a pulley
US5749837 *1 Aug 199612 May 1998Target Therapeutics, Inc.Enhanced lubricity guidewire
US5769796 *22 Jan 199723 Jun 1998Target Therapeutics, Inc.Super-elastic composite guidewire
US5772609 *28 Jun 199630 Jun 1998Target Therapeutics, Inc.Guidewire with variable flexibility due to polymeric coatings
US5865800 *8 Oct 19962 Feb 1999Boston Scientific CorporationDeflectable catheter
US5873842 *26 Jun 199723 Feb 1999Medtronic, Inc.Steerable stylet and manipulative handle assembly
US5935102 *23 Oct 199610 Aug 1999C. R. BardSteerable electrode catheter
US6139510 *11 May 199431 Oct 2000Target Therapeutics Inc.An elongated, flexible alloy wire core coated with a lubricious polymeric material and a tie layer disposed between; a surgical device for use in a catheter, accessing a targeted site in a lumen system
US62035073 Mar 199920 Mar 2001Cordis Webster, Inc.Deflectable catheter with ergonomic handle
US621039520 Oct 19973 Apr 2001Lake Region Mfg., Inc.Hollow lumen cable apparatus
US626767930 Dec 199831 Jul 2001Jack W. RomanoMethod and apparatus for transferring drilling energy to a cutting member
US66856969 Feb 20013 Feb 2004Lake Region Manufacturing, Inc.Hollow lumen cable apparatus
US700493827 Nov 200228 Feb 2006Medwaves, Inc.Radio-frequency-based catheter system with improved deflection and steering mechanisms
US70705958 Aug 20034 Jul 2006Medwaves, Inc.Radio-frequency based catheter system and method for ablating biological tissues
US772722823 Mar 20041 Jun 2010Medtronic Cryocath LpMethod and apparatus for inflating and deflating balloon catheters
US781563722 Feb 200619 Oct 2010Ormsby Theodore CRadio-frequency-based catheter system with improved deflection and steering mechanisms
US788347430 Apr 19968 Feb 2011Target Therapeutics, Inc.Composite braided guidewire
US806497824 Nov 200422 Nov 2011Cathrx LtdModular catheter
US808000030 Oct 200720 Dec 2011Acclarent, Inc.Methods and apparatus for treating disorders of the ear nose and throat
US808810126 Oct 20073 Jan 2012Acclarent, Inc.Devices, systems and methods for treating disorders of the ear, nose and throat
US809043330 Oct 20073 Jan 2012Acclarent, Inc.Methods and apparatus for treating disorders of the ear nose and throat
US81009338 May 200824 Jan 2012Acclarent, Inc.Method for treating obstructed paranasal frontal sinuses
US81140621 Oct 200914 Feb 2012Acclarent, Inc.Devices and methods for delivering therapeutic substances for the treatment of sinusitis and other disorders
US81141134 Oct 200514 Feb 2012Acclarent, Inc.Multi-conduit balloon catheter
US811875730 Apr 200721 Feb 2012Acclarent, Inc.Methods and devices for ostium measurement
US812372229 Oct 200728 Feb 2012Acclarent, Inc.Devices, systems and methods for treating disorders of the ear, nose and throat
US81424224 Mar 200827 Mar 2012Acclarent, Inc.Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, nose and/or throat
US8146400 *31 Jul 20073 Apr 2012Acclarent, Inc.Endoscopic methods and devices for transnasal procedures
US81527998 Sep 201010 Apr 2012Medwaves, Inc.Radio frequency-based catheter system with improved deflection and steering mechanisms
US817282830 Oct 20078 May 2012Acclarent, Inc.Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US818243210 Mar 200822 May 2012Acclarent, Inc.Corewire design and construction for medical devices
US819038917 May 200629 May 2012Acclarent, Inc.Adapter for attaching electromagnetic image guidance components to a medical device
US82063457 Mar 200526 Jun 2012Medtronic Cryocath LpFluid control system for a medical device
US82603945 Oct 20114 Sep 2012Cathrx LtdModular catheter
US830872223 Jul 200713 Nov 2012Medwaves, Inc.Hollow conductive coaxial cable for radio frequency based tissue ablation system
US831781630 Sep 200227 Nov 2012Acclarent, Inc.Balloon catheters and methods for treating paranasal sinuses
US838864229 Aug 20085 Mar 2013Acclarent, Inc.Implantable devices and methods for treating sinusitis and other disorders
US841447316 Sep 20099 Apr 2013Acclarent, Inc.Methods and apparatus for treating disorders of the ear nose and throat
US842545729 Dec 200923 Apr 2013Acclarent, Inc.Devices, systems and methods for diagnosing and treating sinusitus and other disorder of the ears, nose and/or throat
US843529024 Mar 20107 May 2013Acclarent, Inc.System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
US843968729 Dec 200614 May 2013Acclarent, Inc.Apparatus and method for simulated insertion and positioning of guidewares and other interventional devices
US84851998 May 200716 Jul 2013Acclarent, Inc.Methods and devices for protecting nasal turbinate during surgery
US849163616 Oct 200623 Jul 2013Medtronic Cryopath LPMethod and apparatus for inflating and deflating balloon catheters
US854549113 Dec 20051 Oct 2013Medtronic Cryocath LpMethod and apparatus for inflating and deflating balloon catheters
US870262629 Dec 200622 Apr 2014Acclarent, Inc.Guidewires for performing image guided procedures
US871516930 Oct 20076 May 2014Acclarent, Inc.Devices, systems and methods useable for treating sinusitis
US872159123 Jan 201213 May 2014Acclarent, Inc.Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US87409296 Feb 20023 Jun 2014Acclarent, Inc.Spacing device for releasing active substances in the paranasal sinus
US874738924 Apr 200710 Jun 2014Acclarent, Inc.Systems for treating disorders of the ear, nose and throat
US876470930 Jun 20101 Jul 2014Acclarent, Inc.Devices, systems and methods for treating disorders of the ear, nose and throat
US876472618 Aug 20091 Jul 2014Acclarent, Inc.Devices, systems and methods useable for treating sinusitis
US876472922 Dec 20081 Jul 2014Acclarent, Inc.Frontal sinus spacer
US87647869 Oct 20121 Jul 2014Acclarent, Inc.Balloon catheters and methods for treating paranasal sinuses
US877792615 Mar 201315 Jul 2014Acclarent, Inc.Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasel or paranasal structures
US882804118 Mar 20109 Sep 2014Acclarent, Inc.Devices, systems and methods useable for treating sinusitis
USRE33911 *27 Mar 19865 May 1992Advanced Cardiovascular Systems, Inc.Catheter guide wire with short spring tip and method of using the same
USRE34502 *11 Mar 199211 Jan 1994Webster, Jr.; Wilton W.Steerable catheter
USRE408151 Oct 200730 Jun 2009Ams Research CorporationControl system for cryosurgery
USRE408681 Oct 200711 Aug 2009Cryocor, Inc.Refrigeration source for a cryoblation catheter
EP0027704A2 *9 Oct 198029 Apr 1981Dale L. ChamnessSurgical snare apparatus
EP0431727A1 *30 Jul 199012 Jun 1991Medical Devices, Inc.Nasal intubation adjunct
EP0605796A2 *3 Dec 199313 Jul 1994C.R. Bard, Inc.Catheter with independent proximal and distal control and actuator for use with same
EP1046406A2 *3 Dec 199325 Oct 2000C.R. Bard, Inc.Actuator for use with a catheter with independent proximal and distal control
EP1686909A1 *24 Nov 20049 Aug 2006Cathrx LtdA modular catheter
EP2599458A1 *24 Nov 20045 Jun 2013Cathrx LtdA modular catheter
WO1993004724A1 *10 Jun 199218 Mar 1993Rissman John ASteerable stylet and manipulative handle assembly
WO2014053918A2 *19 Oct 201310 Apr 2014Diros Technology Inc.A steerable multifunction catheter probe with high guidability and reversible rigidity
Classifications
U.S. Classification600/434, 604/95.4
International ClassificationA61B6/00, A61M23/00, A61M5/00, A61M25/01
Cooperative ClassificationA61M25/0136, A61M5/00, A61B6/504, A61B6/481, A61M25/0147, A61M25/09033, A61M25/0144, A61M25/09041, A61M25/0108
European ClassificationA61M25/01C10K, A61M25/01C10G, A61B6/50H, A61M25/09B2, A61M5/00, A61M25/09C, A61M25/01C10A
Legal Events
DateCodeEventDescription
30 Jan 1990ASAssignment
Owner name: BAXTER INTERNATIONAL INC.
Free format text: CHANGE OF NAME;ASSIGNOR:BAXTER TRAVENOL LABORATORIES, INC., A CORP. OF DE;REEL/FRAME:005050/0870
Effective date: 19880518
2 Mar 1987ASAssignment
Owner name: BAXTER TRAVENOL LABORATORIES, INC. A CORP. OF DE
Free format text: MERGER;ASSIGNOR:AMERICAN HOSPITAL SUPPLY CORPORATION INTO;REEL/FRAME:004760/0345
Effective date: 19870126