US3492463A - Electrical resistance heater - Google Patents

Electrical resistance heater Download PDF

Info

Publication number
US3492463A
US3492463A US676595A US3492463DA US3492463A US 3492463 A US3492463 A US 3492463A US 676595 A US676595 A US 676595A US 3492463D A US3492463D A US 3492463DA US 3492463 A US3492463 A US 3492463A
Authority
US
United States
Prior art keywords
molybdenum
tantalum
insulating material
cylinder
resistance conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US676595A
Inventor
Petrus H J De Wringer
Meindert W Brieko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reactor Centrum Nederland
Original Assignee
Reactor Centrum Nederland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reactor Centrum Nederland filed Critical Reactor Centrum Nederland
Application granted granted Critical
Publication of US3492463A publication Critical patent/US3492463A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor

Definitions

  • heating elements of the conductor-insulation-jacket type often suffer from the disadvantage that the thermal loading capacity as expressed in watts/cm. is not sufficiently high for a variety of applications.
  • the thermal load actually a thermal load of the order of about 500 watts/cmF, at a temperature of about 600 C., because the heating element is constructed in such a way that even at the working temperature of the element there is maintained a contraction joint or shrink fit, and hence a surface pressure, between the outer jacket and the insulating layer. This surface pressure at the working temperature is of great importance, as it constitutes the only way in which the emission of the heat produced is ensured.
  • This pressure furthermore ensures, in conjunction with the close fit of the contraction joint, that the basic geometry of the heating body is maintained. This is an important improvement as compared with electrical heating elements of prior art, which often showed local cavities due to deficient surface contact, or asymmetrical geometry, as a result of the swaging process to which the element had been subjected. Such asymmetrical configurations and local cavities invariably gave rise in practice to local overheating (hot spots), which adversely affected the loading level.
  • the insulating layer is made of boron nitride, while both the resistance conductor and the metal outer jacket are made of molybdenum, tantalum or columhium, or of alloys of these metals.
  • the advantageous effect that is obtained in this Way, especially with the preferred materials boron nitride and molybdenum, is enhanced by the fact that the coeificients of thermal expansion of boron nitride and molybdenum are of approximately the same magnitude. The result is that, when the heating element has heated up, its temperature gradient gives rise to such an expansion of the component materials that a mutual surface pressure is maintained.
  • beryllium oxide may be used to advantage as an electrical insulating material.
  • the most efficacious way of obtaining the said contraction joint in a heating element is by first selecting a tube of molybdenum, tantalum or columhium or of alloys of these metals, after which this tube is firmly shrunk around a solid cylinder of the electrical insulating material consisting essentially of boron nitride or beryllium oxide. Owing to the fact that this cylinder is solid, the required contraction joint or shrink fit may 'be elfected so as to have a firm contraction fit at about 700 to 800 C., without there being any need to fear that the boron nitride or the beryllium oxide might show dislocations.
  • the central part of the cylinder made of the electrical insulating material is drilled out, with consequent formation of a cylindrical jacket of the electrical insulating material which is surrounded, via a contraction joint, by a cylindrical jacket of molybdenum, tantalum, columhium or alloys of these metals.
  • this structure of coaxial cylinder and jacket is shrunk at a temperature of C. with a light contraction fit around a resistance conductor which is likewise composed of molybdenum, tantalum, columhium or an alloy of these metals.
  • the heating element made in this way proves capable of emitting a very high heating current, resulting in a thermal load up to about 500 watts/cm. at temperatures in the neighborhood of 600 C.
  • This heating element is very well adapted for heating liquid metals such as sodium, potassium, lithium or alloys thereof.
  • the heating elements according to the invention will have an external diameter of about mm. or slightly higher. With this diameter it is possible to obtain a length of such a heating body of about 50 cm.
  • FIGURE 1 is a transverse cross-sectional view of one form of a heating element embodying the principles of the present invention.
  • FIGURE 2 is a similar view of a modified form of heating element.
  • FIGURE 1 there is shown a heating element constructed of a central rod-shaped resistance conductor 1, a surrounding layer of insulating material 2, such as boron nitride or beryllium oxide and an outer metal jacket 3 of molybdenum, tantalum, columbium or alloys thereof.
  • the heating element is fabricated by the steps previously described.
  • FIGURE 2 differs from the embodiment represented in FIGURE 1 only insofar as the central resistance conductor 1 possesses the form of a cylindrical jacket having inside it a cylinder 4 in which other possible components (not shown in the drawing) may be incorporated.
  • this cylinder 4 may be fitted, for instance, channels for electrical conductors or for a fluid.
  • Cylinder 4 may be made of a material having qualities suitable for this purpose.
  • An electrical resistance heating element comprising: an elongated resistance conductor having a closed cylindrical outer layer and constructed of a metal selected from the group consisting of molybdenum, tantalum and columbium and alloys thereof, a solid tube of solid insulating material concentrically surrounding said resistance conductor and being shrink-fitted in tight engagement therewith so as to establish a contraction joint at room temperature, said insulating material being selected from the group consisting of boron nitride and beryllium oxide, and an outer tubular jacket concentrically surrounding said layer of insulating material and shrink-fitted in tight engagement therewith so as to establish a contraction joint at the working temperature of said heating element in the range of 700 to 800 C., said jacket being constructed of a metal selected from the group consisting of molybdenum, tantalum and columbium and alloys thereof.

Abstract

1,136,368. Electric resistance heaters. REACTOR CENTRUM NEDERLAND. 17 Oct., 1967 [20 Oct., 1966], No. 47286/67. Heading H5H. A heater comprises on outer jacket 3 of molybdenum, tantalum, niobium or an alloy thereof shrunk around a cylinder 2 of electrically insulating material, either boron nitride or beryllium oxide, which is subsequently drilled out and lightly shrunk around the resistance conductor 1 of molybdenum, tantalum, niobium or an alloy thereof. The central resistance conductor 1 may be a cylindrical jacket enclosing a cylinder (4) containing other components such as channels for conductors or a fluid, (Fig. 2, not shown). The heater is used, e.g. for heating liquid sodium, potassium or lithium.

Description

Jan. 27, 1970 P. H. J. DE WRINGER E AL 3,492,453
ELECTRICAL RESISTANCE E TER Filed Oct. 19, 1967 INVENTORS United States Patent 3,492,463 ELECTRICAL RESISTANCE HEATER Petrus H. J. de Wringer and Meindert W. Brieko, Schagen,
Netherlands, assignors to Reactor Centrum Nederland, The Hague, Netherlands, an institute of the Netherlands Filed Oct. 19, 1967, Ser. No. 676,595
Claims priority, application Netherlands, Oct. 20, 1966,
6614751 Int. Cl. HOSb 3/10 US. Cl. 219553 3 Claims ABSTRACT OF THE DISCLOSURE DISCLOSURE This invention relates to resistance heating elements and in particular to heating elements having high heat emission characteristics due to tight engagement between the insulating layer and an inner conductor and between the insulating layer and an outer jacket.
In practice, heating elements of the conductor-insulation-jacket type often suffer from the disadvantage that the thermal loading capacity as expressed in watts/cm. is not sufficiently high for a variety of applications. According to the present invention it is possible to obtain a high thermal load, actually a thermal load of the order of about 500 watts/cmF, at a temperature of about 600 C., because the heating element is constructed in such a way that even at the working temperature of the element there is maintained a contraction joint or shrink fit, and hence a surface pressure, between the outer jacket and the insulating layer. This surface pressure at the working temperature is of great importance, as it constitutes the only way in which the emission of the heat produced is ensured. This pressure furthermore ensures, in conjunction with the close fit of the contraction joint, that the basic geometry of the heating body is maintained. This is an important improvement as compared with electrical heating elements of prior art, which often showed local cavities due to deficient surface contact, or asymmetrical geometry, as a result of the swaging process to which the element had been subjected. Such asymmetrical configurations and local cavities invariably gave rise in practice to local overheating (hot spots), which adversely affected the loading level.
It is, moreover, desirable that measures be taken to provide a further contraction joint between the resistance conductor and the insulating layer surrounding it, which contraction joint should already exist at room temperature. It is pointed out by way of information that the first-mentioned, or outer contraction joint is particularly important. As the contact. surface on which the outer contraction joint acts is situated more toward the outer side of the heating element, the temperature gradient there has already lost some of its importance. In order to allow for possible inequalities in the coeificients of thermal expansion of the materials exerting pressure upon each other thereabouts, it is advisable to ensure a continual surface pressure at this particular location by providing a firm contraction joint.
This provision is necessary to a somewhat lesser extent at the contact between the resistance conductor and ice the insulating material, situated more toward the center of the heating element. Owing to the high temperature of the resistance conductor itself it will as a rule expand so much more than the insulating layer around it that it generally creates a surface pressure due to difference in thermal expansion even without the aid of a contraction joint.
The condition for this, however, is that even when cold there shall be close contact between the resistance conductor and the insulating layer. On this account it is advisable, according to the second preferred embodiment, to make a slight contraction joint between the resistance conductor and the insulating material.
According to a preferred embodiment, the insulating layer is made of boron nitride, while both the resistance conductor and the metal outer jacket are made of molybdenum, tantalum or columhium, or of alloys of these metals. The advantageous effect that is obtained in this Way, especially with the preferred materials boron nitride and molybdenum, is enhanced by the fact that the coeificients of thermal expansion of boron nitride and molybdenum are of approximately the same magnitude. The result is that, when the heating element has heated up, its temperature gradient gives rise to such an expansion of the component materials that a mutual surface pressure is maintained.
Although the coefficients of expansion of boron nitride and tantalum differ somewhat from each other it is quite possible to make serviceable use of this combination of materials if the contraction measures are matched with this inequality in coefficient of expansion.
Instead of boron nitride, beryllium oxide may be used to advantage as an electrical insulating material.
The most efficacious way of obtaining the said contraction joint in a heating element is by first selecting a tube of molybdenum, tantalum or columhium or of alloys of these metals, after which this tube is firmly shrunk around a solid cylinder of the electrical insulating material consisting essentially of boron nitride or beryllium oxide. Owing to the fact that this cylinder is solid, the required contraction joint or shrink fit may 'be elfected so as to have a firm contraction fit at about 700 to 800 C., without there being any need to fear that the boron nitride or the beryllium oxide might show dislocations. After the structure described has cooled down, the central part of the cylinder made of the electrical insulating material is drilled out, with consequent formation of a cylindrical jacket of the electrical insulating material which is surrounded, via a contraction joint, by a cylindrical jacket of molybdenum, tantalum, columhium or alloys of these metals.
Then, after the inner side of the cylindrical jacket of the electrical insulating material has been subjected to precise after-machining, this structure of coaxial cylinder and jacket is shrunk at a temperature of C. with a light contraction fit around a resistance conductor which is likewise composed of molybdenum, tantalum, columhium or an alloy of these metals.
Attention is drawn here to the fact that the highly loaded electrical heating elements of prior art have sometimes failed. This was generally caused either by the formation of local cavities due to differences in thermal expansion, or by chemical reactions, either because in many cases the thickness of the insulating layer was not uniform or because the insulating material was not homogeneous in its qualities. By applying the method described above for making a heating body according to the invention, the drawbacks attaching to heating elements of prior art are surmounted, because the structure taken as basis is a cylindrical tube of the insulating material made out of full bodied material. To this is added the advantage arising from the possibility of obtaining the desired and necessary surface pressures, as a result of correct selection of the contraction measurements which have to be obtained with a high degree of precision.
The heating element made in this way proves capable of emitting a very high heating current, resulting in a thermal load up to about 500 watts/cm. at temperatures in the neighborhood of 600 C.
This heating element is very well adapted for heating liquid metals such as sodium, potassium, lithium or alloys thereof.
It is particularly suitable for heat transfer tests with cooling by liquid sodium, to be carried out in a nuclear reactor or in a plant other than a nuclear reactor but designed to simulate the latter. This is because the metal outer jacket of molybdenum, tantalum or columbium or alloys of these metals is in no way attacked by the said liquid metals.
In many cases the heating elements according to the invention will have an external diameter of about mm. or slightly higher. With this diameter it is possible to obtain a length of such a heating body of about 50 cm.
The invention will be further understood from a consideration of the drawings in which:
FIGURE 1 is a transverse cross-sectional view of one form of a heating element embodying the principles of the present invention; and
FIGURE 2 is a similar view of a modified form of heating element.
In FIGURE 1 there is shown a heating element constructed of a central rod-shaped resistance conductor 1, a surrounding layer of insulating material 2, such as boron nitride or beryllium oxide and an outer metal jacket 3 of molybdenum, tantalum, columbium or alloys thereof. The heating element is fabricated by the steps previously described.
The embodiment of FIGURE 2 differs from the embodiment represented in FIGURE 1 only insofar as the central resistance conductor 1 possesses the form of a cylindrical jacket having inside it a cylinder 4 in which other possible components (not shown in the drawing) may be incorporated. In this cylinder 4 may be fitted, for instance, channels for electrical conductors or for a fluid. Cylinder 4 may be made of a material having qualities suitable for this purpose.
While preferred embodiments of the present invention have been described, further modificationsmay be made without departing from the scope of the invention. Therefore, it is to be understood that the details set forth or shown in the drawings are to be interpreted in an illustrative, and not in a limiting sense, except as they appear in the appended claims.
What is claimed is:
1. An electrical resistance heating element comprising: an elongated resistance conductor having a closed cylindrical outer layer and constructed of a metal selected from the group consisting of molybdenum, tantalum and columbium and alloys thereof, a solid tube of solid insulating material concentrically surrounding said resistance conductor and being shrink-fitted in tight engagement therewith so as to establish a contraction joint at room temperature, said insulating material being selected from the group consisting of boron nitride and beryllium oxide, and an outer tubular jacket concentrically surrounding said layer of insulating material and shrink-fitted in tight engagement therewith so as to establish a contraction joint at the working temperature of said heating element in the range of 700 to 800 C., said jacket being constructed of a metal selected from the group consisting of molybdenum, tantalum and columbium and alloys thereof.
2. An electrical resistance heating element as in claim 1 wherein said conductor is a solid cylindrical body.
3. An electrical resistance heating element as in claim 1 wherein said conductor is a tubular cylindrical body.
References Cited UNITED STATES PATENTS 1,981,878 11/1934 Ruben 29-195 3,121,154 2/1964 Menzies et a1 2l9'-5'52 X 3,205,467 9/1965 Ganci 338-268 3,217,280 11/1965 Norton 338268 3,254,320 5/1966 Hill et a1. 338-241 3,356,834 12/1957 Mekjean 219-530 VOLODYMYR Y. MAYEWSKY, Primary Examiner US. Cl. X.R.
US676595A 1966-10-20 1967-10-19 Electrical resistance heater Expired - Lifetime US3492463A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL666614751A NL153755C (en) 1966-10-20 1966-10-20 METHOD FOR MANUFACTURING AN ELECTRIC HEATING ELEMENT, AS WELL AS HEATING ELEMENT MANUFACTURED USING THIS METHOD.

Publications (1)

Publication Number Publication Date
US3492463A true US3492463A (en) 1970-01-27

Family

ID=19797967

Family Applications (1)

Application Number Title Priority Date Filing Date
US676595A Expired - Lifetime US3492463A (en) 1966-10-20 1967-10-19 Electrical resistance heater

Country Status (5)

Country Link
US (1) US3492463A (en)
BE (1) BE705286A (en)
DE (1) DE1690665C2 (en)
GB (1) GB1136368A (en)
NL (1) NL153755C (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3665598A (en) * 1970-12-17 1972-05-30 Meindert Willem Brieko Method of making a heating body
EP0057172A2 (en) * 1981-01-26 1982-08-04 Walther Dr. Menhardt Self-regulating heating element
US4998006A (en) * 1990-02-23 1991-03-05 Brandeis University Electric heating elements free of electromagnetic fields
US5976333A (en) * 1998-01-06 1999-11-02 Pate; Ray H. Collector bar
EP1145842A2 (en) * 2000-04-13 2001-10-17 Saint-Gobain Glass France Laminated glazing
WO2005103445A1 (en) 2004-04-23 2005-11-03 Shell Oil Company Subsurface electrical heaters using nitride insulation
US20070137857A1 (en) * 2005-04-22 2007-06-21 Vinegar Harold J Low temperature monitoring system for subsurface barriers
US20080035347A1 (en) * 2006-04-21 2008-02-14 Brady Michael P Adjusting alloy compositions for selected properties in temperature limited heaters
US20090090158A1 (en) * 2007-04-20 2009-04-09 Ian Alexander Davidson Wellbore manufacturing processes for in situ heat treatment processes
US20090194286A1 (en) * 2007-10-19 2009-08-06 Stanley Leroy Mason Multi-step heater deployment in a subsurface formation
US20090272526A1 (en) * 2008-04-18 2009-11-05 David Booth Burns Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US20100126727A1 (en) * 2001-10-24 2010-05-27 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US7735935B2 (en) 2001-04-24 2010-06-15 Shell Oil Company In situ thermal processing of an oil shale formation containing carbonate minerals
US7831133B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration
US7942203B2 (en) 2003-04-24 2011-05-17 Shell Oil Company Thermal processes for subsurface formations
US20110124223A1 (en) * 2009-10-09 2011-05-26 David Jon Tilley Press-fit coupling joint for joining insulated conductors
US20110134958A1 (en) * 2009-10-09 2011-06-09 Dhruv Arora Methods for assessing a temperature in a subsurface formation
US20110132661A1 (en) * 2009-10-09 2011-06-09 Patrick Silas Harmason Parallelogram coupling joint for coupling insulated conductors
US8224164B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Insulated conductor temperature limited heaters
US8220539B2 (en) 2008-10-13 2012-07-17 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8225866B2 (en) 2000-04-24 2012-07-24 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8485256B2 (en) 2010-04-09 2013-07-16 Shell Oil Company Variable thickness insulated conductors
US8586866B2 (en) 2010-10-08 2013-11-19 Shell Oil Company Hydroformed splice for insulated conductors
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8857051B2 (en) 2010-10-08 2014-10-14 Shell Oil Company System and method for coupling lead-in conductor to insulated conductor
US8939207B2 (en) 2010-04-09 2015-01-27 Shell Oil Company Insulated conductor heaters with semiconductor layers
US8943686B2 (en) 2010-10-08 2015-02-03 Shell Oil Company Compaction of electrical insulation for joining insulated conductors
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US9048653B2 (en) 2011-04-08 2015-06-02 Shell Oil Company Systems for joining insulated conductors
US9080409B2 (en) 2011-10-07 2015-07-14 Shell Oil Company Integral splice for insulated conductors
US9080917B2 (en) 2011-10-07 2015-07-14 Shell Oil Company System and methods for using dielectric properties of an insulated conductor in a subsurface formation to assess properties of the insulated conductor
US9226341B2 (en) 2011-10-07 2015-12-29 Shell Oil Company Forming insulated conductors using a final reduction step after heat treating
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US20180176991A1 (en) * 2015-12-08 2018-06-21 Temp4 Inc. Efficient Assembled Heating Elements of Large Sizes and of Metallic Tubular Designs for Electric Radiant Heaters
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
WO2023046943A1 (en) 2021-09-27 2023-03-30 Basf Se Multiple cylinders

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3042893B2 (en) * 1995-02-21 2000-05-22 ホスキンズ マニュファクチュアリング カンパニー Tubular heating element with insulating core

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1981878A (en) * 1929-09-23 1934-11-27 Sirian Lamp Co Lamp, filament, and process of making the same
US3121154A (en) * 1959-10-30 1964-02-11 Babcock & Wilcox Ltd Electric heaters
US3205467A (en) * 1962-07-27 1965-09-07 Ward Leonard Electric Co Plastic encapsulated resistor
US3217280A (en) * 1962-11-29 1965-11-09 Thermel Inc Heating element
US3254320A (en) * 1963-08-15 1966-05-31 Babcock & Wilcox Co Electric heaters
US3356834A (en) * 1964-05-11 1967-12-05 Hooker Chemical Corp Process and apparatus for storing heat

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB775522A (en) * 1954-07-07 1900-01-01
DE1079238B (en) * 1956-05-30 1960-04-07 Manfried Steinmetz Electric high temperature radiator
DE1090790B (en) * 1957-12-11 1960-10-13 Max Planck Inst Eisenforschung Ceramic heating element containing chromium oxide, especially for high-temperature ovens

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1981878A (en) * 1929-09-23 1934-11-27 Sirian Lamp Co Lamp, filament, and process of making the same
US3121154A (en) * 1959-10-30 1964-02-11 Babcock & Wilcox Ltd Electric heaters
US3205467A (en) * 1962-07-27 1965-09-07 Ward Leonard Electric Co Plastic encapsulated resistor
US3217280A (en) * 1962-11-29 1965-11-09 Thermel Inc Heating element
US3254320A (en) * 1963-08-15 1966-05-31 Babcock & Wilcox Co Electric heaters
US3356834A (en) * 1964-05-11 1967-12-05 Hooker Chemical Corp Process and apparatus for storing heat

Cited By (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3665598A (en) * 1970-12-17 1972-05-30 Meindert Willem Brieko Method of making a heating body
EP0057172A2 (en) * 1981-01-26 1982-08-04 Walther Dr. Menhardt Self-regulating heating element
EP0057172A3 (en) * 1981-01-26 1982-09-01 Walther Dr. Menhardt Self-regulating heating element
US4998006A (en) * 1990-02-23 1991-03-05 Brandeis University Electric heating elements free of electromagnetic fields
US5976333A (en) * 1998-01-06 1999-11-02 Pate; Ray H. Collector bar
EP1145842A2 (en) * 2000-04-13 2001-10-17 Saint-Gobain Glass France Laminated glazing
EP1145842A3 (en) * 2000-04-13 2002-05-02 Saint-Gobain Glass France Laminated glazing
US8485252B2 (en) 2000-04-24 2013-07-16 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8225866B2 (en) 2000-04-24 2012-07-24 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8789586B2 (en) 2000-04-24 2014-07-29 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US7735935B2 (en) 2001-04-24 2010-06-15 Shell Oil Company In situ thermal processing of an oil shale formation containing carbonate minerals
US8627887B2 (en) 2001-10-24 2014-01-14 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US20100126727A1 (en) * 2001-10-24 2010-05-27 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8224163B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Variable frequency temperature limited heaters
US8238730B2 (en) 2002-10-24 2012-08-07 Shell Oil Company High voltage temperature limited heaters
US8224164B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Insulated conductor temperature limited heaters
US8579031B2 (en) 2003-04-24 2013-11-12 Shell Oil Company Thermal processes for subsurface formations
US7942203B2 (en) 2003-04-24 2011-05-17 Shell Oil Company Thermal processes for subsurface formations
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
CN1954131B (en) * 2004-04-23 2012-02-08 国际壳牌研究有限公司 Subsurface electrical heaters using nitride insulation
WO2005103445A1 (en) 2004-04-23 2005-11-03 Shell Oil Company Subsurface electrical heaters using nitride insulation
US20060289536A1 (en) * 2004-04-23 2006-12-28 Vinegar Harold J Subsurface electrical heaters using nitride insulation
AU2005236490B2 (en) * 2004-04-23 2009-01-29 Shell Internationale Research Maatschappij B.V. Subsurface electrical heaters using nitride insulation
US8230927B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US7831134B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Grouped exposed metal heaters
US7831133B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration
US8224165B2 (en) 2005-04-22 2012-07-17 Shell Oil Company Temperature limited heater utilizing non-ferromagnetic conductor
US7986869B2 (en) 2005-04-22 2011-07-26 Shell Oil Company Varying properties along lengths of temperature limited heaters
US7860377B2 (en) 2005-04-22 2010-12-28 Shell Oil Company Subsurface connection methods for subsurface heaters
US20070137857A1 (en) * 2005-04-22 2007-06-21 Vinegar Harold J Low temperature monitoring system for subsurface barriers
US8233782B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Grouped exposed metal heaters
US8192682B2 (en) 2006-04-21 2012-06-05 Shell Oil Company High strength alloys
US7785427B2 (en) 2006-04-21 2010-08-31 Shell Oil Company High strength alloys
US20080035347A1 (en) * 2006-04-21 2008-02-14 Brady Michael P Adjusting alloy compositions for selected properties in temperature limited heaters
US7683296B2 (en) 2006-04-21 2010-03-23 Shell Oil Company Adjusting alloy compositions for selected properties in temperature limited heaters
US20090090158A1 (en) * 2007-04-20 2009-04-09 Ian Alexander Davidson Wellbore manufacturing processes for in situ heat treatment processes
US8662175B2 (en) 2007-04-20 2014-03-04 Shell Oil Company Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US7950453B2 (en) 2007-04-20 2011-05-31 Shell Oil Company Downhole burner systems and methods for heating subsurface formations
US7931086B2 (en) 2007-04-20 2011-04-26 Shell Oil Company Heating systems for heating subsurface formations
US8327681B2 (en) 2007-04-20 2012-12-11 Shell Oil Company Wellbore manufacturing processes for in situ heat treatment processes
US7849922B2 (en) 2007-04-20 2010-12-14 Shell Oil Company In situ recovery from residually heated sections in a hydrocarbon containing formation
US7841425B2 (en) 2007-04-20 2010-11-30 Shell Oil Company Drilling subsurface wellbores with cutting structures
US8042610B2 (en) 2007-04-20 2011-10-25 Shell Oil Company Parallel heater system for subsurface formations
US7841408B2 (en) 2007-04-20 2010-11-30 Shell Oil Company In situ heat treatment from multiple layers of a tar sands formation
US7832484B2 (en) 2007-04-20 2010-11-16 Shell Oil Company Molten salt as a heat transfer fluid for heating a subsurface formation
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US8791396B2 (en) 2007-04-20 2014-07-29 Shell Oil Company Floating insulated conductors for heating subsurface formations
US9181780B2 (en) 2007-04-20 2015-11-10 Shell Oil Company Controlling and assessing pressure conditions during treatment of tar sands formations
US8381815B2 (en) 2007-04-20 2013-02-26 Shell Oil Company Production from multiple zones of a tar sands formation
US7866386B2 (en) 2007-10-19 2011-01-11 Shell Oil Company In situ oxidation of subsurface formations
US8162059B2 (en) 2007-10-19 2012-04-24 Shell Oil Company Induction heaters used to heat subsurface formations
US8536497B2 (en) 2007-10-19 2013-09-17 Shell Oil Company Methods for forming long subsurface heaters
US8146661B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Cryogenic treatment of gas
US8196658B2 (en) 2007-10-19 2012-06-12 Shell Oil Company Irregular spacing of heat sources for treating hydrocarbon containing formations
US8146669B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Multi-step heater deployment in a subsurface formation
US8113272B2 (en) 2007-10-19 2012-02-14 Shell Oil Company Three-phase heaters with common overburden sections for heating subsurface formations
US8011451B2 (en) 2007-10-19 2011-09-06 Shell Oil Company Ranging methods for developing wellbores in subsurface formations
US7866388B2 (en) 2007-10-19 2011-01-11 Shell Oil Company High temperature methods for forming oxidizer fuel
US8272455B2 (en) 2007-10-19 2012-09-25 Shell Oil Company Methods for forming wellbores in heated formations
US20090200022A1 (en) * 2007-10-19 2009-08-13 Jose Luis Bravo Cryogenic treatment of gas
US20090200290A1 (en) * 2007-10-19 2009-08-13 Paul Gregory Cardinal Variable voltage load tap changing transformer
US20090194286A1 (en) * 2007-10-19 2009-08-06 Stanley Leroy Mason Multi-step heater deployment in a subsurface formation
US8240774B2 (en) 2007-10-19 2012-08-14 Shell Oil Company Solution mining and in situ treatment of nahcolite beds
US8276661B2 (en) 2007-10-19 2012-10-02 Shell Oil Company Heating subsurface formations by oxidizing fuel on a fuel carrier
US8752904B2 (en) 2008-04-18 2014-06-17 Shell Oil Company Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8172335B2 (en) 2008-04-18 2012-05-08 Shell Oil Company Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US20090272536A1 (en) * 2008-04-18 2009-11-05 David Booth Burns Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US20100071903A1 (en) * 2008-04-18 2010-03-25 Shell Oil Company Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8636323B2 (en) 2008-04-18 2014-01-28 Shell Oil Company Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US20090272526A1 (en) * 2008-04-18 2009-11-05 David Booth Burns Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8562078B2 (en) 2008-04-18 2013-10-22 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US9528322B2 (en) 2008-04-18 2016-12-27 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8177305B2 (en) 2008-04-18 2012-05-15 Shell Oil Company Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8162405B2 (en) 2008-04-18 2012-04-24 Shell Oil Company Using tunnels for treating subsurface hydrocarbon containing formations
US8261832B2 (en) 2008-10-13 2012-09-11 Shell Oil Company Heating subsurface formations with fluids
US8881806B2 (en) 2008-10-13 2014-11-11 Shell Oil Company Systems and methods for treating a subsurface formation with electrical conductors
US9129728B2 (en) 2008-10-13 2015-09-08 Shell Oil Company Systems and methods of forming subsurface wellbores
US9022118B2 (en) 2008-10-13 2015-05-05 Shell Oil Company Double insulated heaters for treating subsurface formations
US8267170B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Offset barrier wells in subsurface formations
US8353347B2 (en) 2008-10-13 2013-01-15 Shell Oil Company Deployment of insulated conductors for treating subsurface formations
US8267185B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Circulated heated transfer fluid systems used to treat a subsurface formation
US9051829B2 (en) 2008-10-13 2015-06-09 Shell Oil Company Perforated electrical conductors for treating subsurface formations
US8220539B2 (en) 2008-10-13 2012-07-17 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8281861B2 (en) 2008-10-13 2012-10-09 Shell Oil Company Circulated heated transfer fluid heating of subsurface hydrocarbon formations
US8256512B2 (en) 2008-10-13 2012-09-04 Shell Oil Company Movable heaters for treating subsurface hydrocarbon containing formations
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8851170B2 (en) 2009-04-10 2014-10-07 Shell Oil Company Heater assisted fluid treatment of a subsurface formation
US8448707B2 (en) 2009-04-10 2013-05-28 Shell Oil Company Non-conducting heater casings
US8434555B2 (en) 2009-04-10 2013-05-07 Shell Oil Company Irregular pattern treatment of a subsurface formation
US9466896B2 (en) 2009-10-09 2016-10-11 Shell Oil Company Parallelogram coupling joint for coupling insulated conductors
US20110124228A1 (en) * 2009-10-09 2011-05-26 John Matthew Coles Compacted coupling joint for coupling insulated conductors
US8257112B2 (en) 2009-10-09 2012-09-04 Shell Oil Company Press-fit coupling joint for joining insulated conductors
US20110134958A1 (en) * 2009-10-09 2011-06-09 Dhruv Arora Methods for assessing a temperature in a subsurface formation
US8356935B2 (en) 2009-10-09 2013-01-22 Shell Oil Company Methods for assessing a temperature in a subsurface formation
US20110132661A1 (en) * 2009-10-09 2011-06-09 Patrick Silas Harmason Parallelogram coupling joint for coupling insulated conductors
US20110124223A1 (en) * 2009-10-09 2011-05-26 David Jon Tilley Press-fit coupling joint for joining insulated conductors
US8816203B2 (en) 2009-10-09 2014-08-26 Shell Oil Company Compacted coupling joint for coupling insulated conductors
US8485847B2 (en) 2009-10-09 2013-07-16 Shell Oil Company Press-fit coupling joint for joining insulated conductors
US8485256B2 (en) 2010-04-09 2013-07-16 Shell Oil Company Variable thickness insulated conductors
US9022109B2 (en) 2010-04-09 2015-05-05 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8739874B2 (en) 2010-04-09 2014-06-03 Shell Oil Company Methods for heating with slots in hydrocarbon formations
US8859942B2 (en) 2010-04-09 2014-10-14 Shell Oil Company Insulating blocks and methods for installation in insulated conductor heaters
US8502120B2 (en) 2010-04-09 2013-08-06 Shell Oil Company Insulating blocks and methods for installation in insulated conductor heaters
US9127538B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
US8939207B2 (en) 2010-04-09 2015-01-27 Shell Oil Company Insulated conductor heaters with semiconductor layers
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8967259B2 (en) 2010-04-09 2015-03-03 Shell Oil Company Helical winding of insulated conductor heaters for installation
US9127523B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US9399905B2 (en) 2010-04-09 2016-07-26 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US9755415B2 (en) 2010-10-08 2017-09-05 Shell Oil Company End termination for three-phase insulated conductors
US8943686B2 (en) 2010-10-08 2015-02-03 Shell Oil Company Compaction of electrical insulation for joining insulated conductors
US8732946B2 (en) 2010-10-08 2014-05-27 Shell Oil Company Mechanical compaction of insulator for insulated conductor splices
US8586867B2 (en) 2010-10-08 2013-11-19 Shell Oil Company End termination for three-phase insulated conductors
US8857051B2 (en) 2010-10-08 2014-10-14 Shell Oil Company System and method for coupling lead-in conductor to insulated conductor
US8586866B2 (en) 2010-10-08 2013-11-19 Shell Oil Company Hydroformed splice for insulated conductors
US9337550B2 (en) 2010-10-08 2016-05-10 Shell Oil Company End termination for three-phase insulated conductors
US9048653B2 (en) 2011-04-08 2015-06-02 Shell Oil Company Systems for joining insulated conductors
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9080409B2 (en) 2011-10-07 2015-07-14 Shell Oil Company Integral splice for insulated conductors
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9226341B2 (en) 2011-10-07 2015-12-29 Shell Oil Company Forming insulated conductors using a final reduction step after heat treating
US9080917B2 (en) 2011-10-07 2015-07-14 Shell Oil Company System and methods for using dielectric properties of an insulated conductor in a subsurface formation to assess properties of the insulated conductor
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US20180176991A1 (en) * 2015-12-08 2018-06-21 Temp4 Inc. Efficient Assembled Heating Elements of Large Sizes and of Metallic Tubular Designs for Electric Radiant Heaters
US10542587B2 (en) * 2015-12-08 2020-01-21 Temp4 Inc. Heating elements of large sizes and of metallic tubular designs
WO2023046943A1 (en) 2021-09-27 2023-03-30 Basf Se Multiple cylinders

Also Published As

Publication number Publication date
NL6614751A (en) 1968-04-22
BE705286A (en) 1968-03-01
GB1136368A (en) 1968-12-11
NL153755C (en) 1977-11-15
DE1690665C2 (en) 1975-12-04
DE1690665B1 (en) 1971-07-29

Similar Documents

Publication Publication Date Title
US3492463A (en) Electrical resistance heater
US3142158A (en) Thermoelectric cooling device
Slack et al. Thermal conductivity of germanium from 3 K to 1020 K
JPH0359558B2 (en)
GB1380379A (en) Silicon carbide junction thermistor
US3650844A (en) Diffusion barriers for semiconductive thermoelectric generator elements
US3794527A (en) Thermoelectric converter
US2352056A (en) Thermally controlled resistor
US2332596A (en) Resistor device
US4429295A (en) Variable impedance current limiting device
US2335358A (en) Thermocouple structure
US4794229A (en) Flexible, elongated thermistor heating cable
US1924368A (en) Vacuum tube
US2916594A (en) Electric heating
US3403212A (en) Electric furnace having a heating element of carbon or graphite for producing temperatures under high pressures
US3254320A (en) Electric heaters
US4007369A (en) Tubular oven
US4258569A (en) Self-regulated device for temperature stabilization of at least one connection point, and temperature-controlled plug-in connector for the use of said device
US2972654A (en) Thermoelectric generator
US2397445A (en) Electric resistance element and method of operating the same
US5386870A (en) High thermal conductivity connector having high electrical isolation
US3057941A (en) Heat-sensing device with protective sheath
US2815423A (en) Electric control device
US4251908A (en) Side-welded fast response sheathed thermocouple
KR102414859B1 (en) Sheath heater and heater for manufacturing process use