US3462330A - Method for making a hollow plastic core structure - Google Patents

Method for making a hollow plastic core structure Download PDF

Info

Publication number
US3462330A
US3462330A US512639A US3462330DA US3462330A US 3462330 A US3462330 A US 3462330A US 512639 A US512639 A US 512639A US 3462330D A US3462330D A US 3462330DA US 3462330 A US3462330 A US 3462330A
Authority
US
United States
Prior art keywords
core
plastic
sheets
skin
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US512639A
Inventor
James W Greig
David P Anderson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Woodall Industries Inc
Original Assignee
Woodall Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Woodall Industries Inc filed Critical Woodall Industries Inc
Application granted granted Critical
Publication of US3462330A publication Critical patent/US3462330A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/266Auxiliary operations after the thermoforming operation
    • B29C51/267Two sheets being thermoformed in separate mould parts and joined together while still in the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/133Fin-type joints, the parts to be joined being flexible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/438Joining sheets for making hollow-walled, channelled structures or multi-tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D22/00Producing hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/12Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2024/00Articles with hollow walls
    • B29L2024/003Articles with hollow walls comprising corrugated cores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1003Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina by separating laminae between spaced secured areas [e.g., honeycomb expanding]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1025Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina to form undulated to corrugated sheet and securing to base with parts of shaped areas out of contact
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/108Flash, trim or excess removal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24562Interlaminar spaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24628Nonplanar uniform thickness material
    • Y10T428/24661Forming, or cooperating to form cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24628Nonplanar uniform thickness material
    • Y10T428/24669Aligned or parallel nonplanarities
    • Y10T428/24694Parallel corrugations
    • Y10T428/24702Parallel corrugations with locally deformed crests or intersecting series of corrugations

Definitions

  • the method includes heating a pair of plastic sheets to their fusion temperature, supporting the heated plastic sheets in spaced relation, forming the sheets against a pair of die faces, disposing a plastic core between the sheets, and closing the die faces to bring predetermined portions of the sheets thus formed into fusion contact with portions of the plastic core, cooling the sheets and separtaing the dies.
  • the core member may be preformed, or formed simultaneously with the outer sheets.
  • This invention relates to an improved hollow plastic structural element, which is adaptable to a wide variety of applications, and to a method of making same.
  • An object of this invention is to provide an improved plastic structural element which is relatively rigid yet light in weight, and inexpensive to manufacture.
  • Another object is to provide an improved plastic structure formed of thermoplastic sheets heat-sealed together along opposed boundary margins.
  • the structure thus formed is defined by an outer skin which overlies, and is heat fused to a plastic core, which may be formed concurrently with the plastic skin in a continuous operation, or in a previous separate operation.
  • the plastic structure of this invention is defined by a thermoplastic sheet-like core having oppositely displaced portions with the core disposed between and the oppositely displaced portions thereof heat fused to a pair of outer thermoplastic cover sheets.
  • the core may be formed of two thermoplastic sheets defining a channel, or a series of channels therebetween, and is heat sealed along opposed boundary margins.
  • a plastic skin which may be formed of a pair of thermoplastic sheets heat fused to opposed faces of the plastic core, and fused at its marginal edges to define a channel about the plastic core.
  • a further object is the provision of a hollow plastic structural shape as hereinabove described, which is light in weight, strong and rugged construction, inexpensive, and the opposed side walls of which may be independently shaped to the desired decorative or structural contour.
  • One embodiment of the invention herein described relates to automotive crash panels, such as are secured to the forward portion of automotive interiors.
  • the structure is in the form of a hollow panel shaped to conform to the automotive frame.
  • Such structure is eufiiciently self-supporting to maintain its contour and impressed shape without additional reinforcement, while possessing sufiicient flexibility or energy absorptive characteristics to recover its shape after deformation pressure or impact.
  • the plastic structure of this invention is especially meritorious in this embodiment, because the panel may be designed to yield or collapse on a predetermined impact by varying the design and shape of the 3 Claims plastic core, and by controlling the plastic fusion between the core and the plastic skin.
  • Another object is therefore to provide an improved energy absorbent plastic structural element which is resilient within a range of impact and pressure forces, and which will yieldably collapse under a predetermined impact loading.
  • a further object is to provide an improved plastic structural element which may be formed to present a patterned surface in the forming operation of the structure, without the requirement of an additional forming step, or a patterned overlay.
  • the improved plastic structural element of this invention is capable of supporting many times its own weight, for example, it is sufiiciently rugged to be used in floor panels and door panels, yet is inexpensive and light in weight.
  • the disclosed structure is also shock absorbent, which makes it useful in such applications as instrument cases and containers.
  • the structure may be formed into fluid-tight channels or containers, which provide lightweight rugged containers for use as gas tanks and/ or fluid conduits. These containers or conduits may be formed with several channels, or provided with an integral insulation chamber without additional forming operations.
  • a variety of other structures may also be made based on the teachings disclosed herein and each may be relatively inexpensive to manufacture and light in weight, yet rugged in construction.
  • FIG. 1 is a perspective view of a hollow plastic structure of the invention, such as a gas tank;
  • FIG. 2 is a cross-sectional view taken on line 22 of FIG. 1;
  • FIG. 3 is an exploded fragmentary view of the cross section shown in FIG. 2;
  • FIG. 4 is a perspective view of one embodiment of the core member
  • FIG. 5 is a cross-sectional view of another embodiment of the structure shown in FIG. 1;
  • FIG. 6 is a cross-sectional view of an automotive crash panel embodiment of the invention.
  • FIGS. 7 to 18 are schematic representations of one method of forming the structure of this invention.
  • FIGS. 19 to 30 are schematic representations of another method of forming the structure of this invention.
  • FIGS. 1 to 5 there is shown two embodiments of a hollow structure, for example a container, such as an automotive gasoline tank.
  • the structure comprises an outer skin 50 and a core member, referred to generally as 52.
  • the core 52 is formed of two sheets of thermoplastic heat sealed along opposed boundary margins 58.
  • the elements of the basic structure are best shown in an exploded view FIG. 3, wherein the formed upper sheet 54 is brought into fusion contact with the lower sheet 56 while the sheets are maintained at their fusion temperature.
  • the plastic core thus formed is illustrated in FIG. 4, and may be formed concurrently with the plastic skin in a continuous operation, or in a separate operation, as will be described in reference to FIGS. 7 to 30. It is understood that the design of the core member 52, and
  • the skin 50 shown, are illustrative only, and that any core or skin configuration may be used, dependent upon the desired product, and the limitations of the process described.
  • the core 52 has a peripheral flange portion 58 which is the fused junction between the upper and the lower sheets. Between these flanges are oppositely displaced portions defining channels 60. Between these channels are inwardly disposed sections 62 which define further areas of fusion between the sheets. Between the indentations 62, are a series of communication vents 64 which provide fluid communication between the outwardly disposed channels 60, and communication vents 65 which provide communication through the channel walls. Communication is provided through the peripheral flange portion 58 by the spaced apertures 66.
  • a pressure inlet 68 is also provided to the center channel, and communication is provided between the hollow interior of the channels by the passages 70, which allow air communication between the sheets (i.e., between the hollow interior of the channels) during the forming operation, which is more fully explained in our copending application, referred to hereinabove.
  • the oppositely displaced portions 60 of the core define oppositely disposed fusion faces 72, which are fused to the inner surface of the skin, as described hereinbelow.
  • the skin 50 is formed in the same manner as the core 52, that is from a pair of heat fusible plastic sheets, 74 and 76, which are heat sealed at their peripheral margins 78.
  • the plastic sheets of the skin overlie, and are heat fused to the oppositely disposed faces 72 of the core member, forming a substantially unitary plastic structure.
  • FIG. 2 the fused peripheral margins 78 of the skin are fused directly to the fused peripheral portion 58 of the core member.
  • the fused peripheral flange portion 58' of the core does not extend into fused engagement with the skin.
  • the structure of FIG. 2 provides somewhat more rigidity in the completed container, however the structure of FIG. 5 has free communication between the channels.
  • the perspective view of the container shown in FIG. 1 illustrates an inlet 80, whose location and configuration would depend upon the function of the container.
  • FIG. 6' illustrates self-supporting automotive crash panel embodiment of this invention.
  • the panel is formed in the manner herein described, and consists of a core, referred to generally at 100, fused to an outer skin 102.
  • the structure illustrated employs four hexagonal channels 104 and one pentagonal channel 106.
  • the pentagonal section 106 has only a point contact with the inner surface of the skin at 108, and therefore will be less rigid than the hexagonal sections which proivde face to face contact.
  • the rigidity of the core may thus be varied at desired locations, or the rigidity may be varied by the use of other geometric channel configurations.
  • the fusion between the core 100 and the skin 102 may also be varied by controlling the area of the core available for fusion, such as by the use of the communication vents 64, shown in the core of the container in FIG. 4.
  • FIGS. 7 to 18 schematically illustrate one method of forming the structures shown in FIGS. 1 to 6.
  • FIG. 7 shows a pair of opposed core forming dies 200 open to receive pro-heated fusible plastic sheets. The faces of the dies define the configuration of the desired core member.
  • FIG. 8 illustrates a pair of heated plastic sheets 202 supported in spaced relation on a frame means 204. The sheets have been heated to their fusion temperature at a heating station not shown, and will sag under their weight, as shown in FIG. 8.
  • FIG. 9 the dies have partially closed into forming contact with the plastic sheets, and a vacuum has been drawn through the die faces to form the sheets to the configuration of the die faces. The dies are then fully closed as shown in FIG.
  • FIGS. 13 to 15 represent the initial forming cycle of the outer skin, which is performed concurrently with the molding of the core member at a separate molding station.
  • FIG. 13 represents the skin forming dies 208 open for reception of the thermoplastic sheets.
  • the palstic sheets 212 have been received between the die faces, and are supported in spaced relation in the frame means 210.
  • the plastic sheets 212 have been heated to their fusion temperature in a heating station, not shown.
  • FIG. 15 shows the die members 208 partially closed into forming contact with the plastic sheets 212. As described in relation to the forming of the core 206, a vacuum is drawn through the die faces at this point to cause the heated plastic sheets to conform to the configuration of the die faces.
  • the core member 206 has been introduced and positioned for fusion with the outer skin. Because the core has been formed concurrently with the forming of the contour of the outer skin, the core member has been maintained at its fusion temperature, and therefore no additional heating should be required.
  • the dies are then fully closed, as shown in FIG. 17, bringing the opposed peripheral margins of the plastic sheets into fusion contact with the peripheral portions of the core, and the oppositely disposed faces 72 of the core member into fusion contact with the inner surfaces of the skin.
  • the dies have been opened after the completed structure has cooled sufiiciently to maintain its shape, and the article may be removed from the frame means, and the excess trimmed. It can be seen from FIG. 18 that the peripheral flange portions of the core and the skin have been fused together to provide a substantially homogeneous wall, similar to the structure shown in FIG. 2.
  • FIGS. 19 to 30 schematically illustrate a forming method which is similar to the process described above, except that the core member is formed in a distinct operation.
  • FIGS. 19 to 23 are identical to the operations shown in FIGS. 7 to 11, and have been numbered accordingly.
  • the core is removed from its supporting frame and trimmed, as shown in FIG. 24 at 206.
  • the core may now be inspected and stored for future use.
  • FIGS. 25 to 27 shows the forming of the outer skin to the contour of the die faces, which is identical to FIGS. 13 to 15 above.
  • the trimmed core member 206 has been introduced and positioned between the sheets defining the outer skin.
  • the core has been reheated to its fusion temperature, so that when the dies are completely closed, as shown in FIG. 29, the core 206' is fused to the outer skin in the same manner as described in relation to FIG. 17.
  • the completed structure is ready to be removed from the dies for subsequent trimming.
  • the structure formed by the method described in reference to FIGS. 19 to 30 may be of the type shown in FIG. 2 or FIG. 5, because the peripheral fused portion of the core 206' may be trimmed to extend between the fused area of the skin, or may be trimmed as shown in FIG. 5.
  • the process described with reference to FIGS. 7 to 18 has the advantage of being a continuous process, and elimi- 1O nates the necessity of reheating the core 206.
  • the machine performing this operation will necessarily be more complex than is required by the process described in relation to FIGS. 19 to 30. This is true because of the two press means that are required to carry out the simultaneous forming of the core and the skin, and the timing and additional size requirements required by the process.
  • the process described in reference to FIGS. 19 to 30 requires only one press, because the dies may be changed for separate runs of the core and the skin. Further, the cores may be easily separately inspected for imperfections prior to the final forming operation.
  • the final structure is substantially free from stresses, and the areas of fusion have the same structural integrity as the original sheets.
  • Previous structures which required localized heating or bonding, created areas of stress inherent in the structure, and the bond between the elements could not be adequately controlled, and was seldom complete. Further, subsequent bonding steps are considerably more expensive, and are diflicult to carry out in a substantially continuous operation.
  • the structures disclosed herein are illustrative only, and that many other structures can be conceived without departing from the purview of the ap pended claims.
  • the core may be a single plastic sheet having oppositely displaced surfaces for fusing to the opposite outer skin sheets.

Description

Aug. 19, 1969 J. w. GREIG ETAL METHOD FOR MAKING A HOLLOW PLASTIC CORE STRUCTURE a Sheets-Sheet 1' Filed Dec. 9, 1965 FIG.3
FIG l F I G. 2
lNVENTO/PS JAMES w- GREIG DAVID P.ANDERSON 8V ATTORNEYS Aug. 19, 1969 J. w. GREG ET AL 3,462,330
METHOD FOR MAKING A HOLLOW PLASTIC CORE STRUCTURE Filed Dec 9, 1965 4 3 Sheets-Sheet 2 2* 3 E w o 9 E LL Q N l 9 o [L E b b 0 N N N g N A l\ 0W k2 0 [L N B N uo N\ g N J 9 Q 11. Q N 0 W W N o lNVE/VTORS JAMES w. GREIG DAVID RANDERSON LL 19V [1.
Gan/m 'l wuay,
A TTORNEVS Aug. 19, 1969 I 3,462,330
METHOD FOR MAKING A HOLLOW PLASTIC CORE STRUCTURE Filed Dec. 9, 1965 J. W. GREIG ET AL 3 Sheets-Sheet 5 5 v, w M EN mU h. m M E 2 m 0/ w E W .N G A A P E 7 M 5 AVON. Y B mum 0 .h
United States Patent 3,462,330 METHOD FOR MAKING A HOLLUW PLASTIC CORE STRUCTURE James W. Greig, Grosse Pointe Park, and David P. Anderson, Lathrup Village, Mich, assignors to Woodall Industries, Incorporated, Detroit, Mich., a corporation of Michigan Filed Dec. 9, 1965, Ser. No. 512,639 Int. Cl. B3111 3/02; 132% 17/04 U.S. Cl. 156197 ABSTRACT OF THE DISCLOSURE A method of forming a hollow plastic structure having a plastic core member fused to the plastic skin, or outer plastic sheets. The method includes heating a pair of plastic sheets to their fusion temperature, supporting the heated plastic sheets in spaced relation, forming the sheets against a pair of die faces, disposing a plastic core between the sheets, and closing the die faces to bring predetermined portions of the sheets thus formed into fusion contact with portions of the plastic core, cooling the sheets and separtaing the dies. The core member may be preformed, or formed simultaneously with the outer sheets.
This invention relates to an improved hollow plastic structural element, which is adaptable to a wide variety of applications, and to a method of making same.
An object of this invention is to provide an improved plastic structural element which is relatively rigid yet light in weight, and inexpensive to manufacture.
Another object is to provide an improved plastic structure formed of thermoplastic sheets heat-sealed together along opposed boundary margins. The structure thus formed is defined by an outer skin which overlies, and is heat fused to a plastic core, which may be formed concurrently with the plastic skin in a continuous operation, or in a previous separate operation.
More particularly, the plastic structure of this invention is defined by a thermoplastic sheet-like core having oppositely displaced portions with the core disposed between and the oppositely displaced portions thereof heat fused to a pair of outer thermoplastic cover sheets. As herein disclosed the core may be formed of two thermoplastic sheets defining a channel, or a series of channels therebetween, and is heat sealed along opposed boundary margins. Overlying, and heat fused thereto is a plastic skin which may be formed of a pair of thermoplastic sheets heat fused to opposed faces of the plastic core, and fused at its marginal edges to define a channel about the plastic core.
A further object is the provision of a hollow plastic structural shape as hereinabove described, which is light in weight, strong and rugged construction, inexpensive, and the opposed side walls of which may be independently shaped to the desired decorative or structural contour.
One embodiment of the invention herein described relates to automotive crash panels, such as are secured to the forward portion of automotive interiors. In such embodiment the structure is in the form of a hollow panel shaped to conform to the automotive frame. Such structure is eufiiciently self-supporting to maintain its contour and impressed shape without additional reinforcement, while possessing sufiicient flexibility or energy absorptive characteristics to recover its shape after deformation pressure or impact. The plastic structure of this invention is especially meritorious in this embodiment, because the panel may be designed to yield or collapse on a predetermined impact by varying the design and shape of the 3 Claims plastic core, and by controlling the plastic fusion between the core and the plastic skin.
Another object is therefore to provide an improved energy absorbent plastic structural element which is resilient within a range of impact and pressure forces, and which will yieldably collapse under a predetermined impact loading.
A further object is to provide an improved plastic structural element which may be formed to present a patterned surface in the forming operation of the structure, without the requirement of an additional forming step, or a patterned overlay.
The improved plastic structural element of this invention is capable of supporting many times its own weight, for example, it is sufiiciently rugged to be used in floor panels and door panels, yet is inexpensive and light in weight. The disclosed structure is also shock absorbent, which makes it useful in such applications as instrument cases and containers. Further, the structure may be formed into fluid-tight channels or containers, which provide lightweight rugged containers for use as gas tanks and/ or fluid conduits. These containers or conduits may be formed with several channels, or provided with an integral insulation chamber without additional forming operations. A variety of other structures may also be made based on the teachings disclosed herein and each may be relatively inexpensive to manufacture and light in weight, yet rugged in construction.
Other objects, advantages and meritorious features will more fully appear from the following description, claims and accompanying drawings, wherein:
FIG. 1 is a perspective view of a hollow plastic structure of the invention, such as a gas tank;
FIG. 2 is a cross-sectional view taken on line 22 of FIG. 1;
FIG. 3 is an exploded fragmentary view of the cross section shown in FIG. 2;
FIG. 4 is a perspective view of one embodiment of the core member;
FIG. 5 is a cross-sectional view of another embodiment of the structure shown in FIG. 1;
FIG. 6 is a cross-sectional view of an automotive crash panel embodiment of the invention;
FIGS. 7 to 18 are schematic representations of one method of forming the structure of this invention; and
FIGS. 19 to 30 are schematic representations of another method of forming the structure of this invention.
In the fabrication of the embodiments of this invention as shown in FIGS. 1 to 6, the process set forth in copending application, Ser. No. 467,819, filed June 18, 1965, now United States Patent 3,242,245, which is a continuation-in-part application of Ser. No. 69,521, filed Nov. 15, 1960, now abandoned may be used. However, because the structures herein disclosed are provided with a core and are shown as may be formed of four thermoplastic sheets, rather than two as shown in the copending application, the modification of this process is set out in FIGS. 7 to 30.
In FIGS. 1 to 5, there is shown two embodiments of a hollow structure, for example a container, such as an automotive gasoline tank. The structure comprises an outer skin 50 and a core member, referred to generally as 52. The core 52 is formed of two sheets of thermoplastic heat sealed along opposed boundary margins 58. The elements of the basic structure are best shown in an exploded view FIG. 3, wherein the formed upper sheet 54 is brought into fusion contact with the lower sheet 56 while the sheets are maintained at their fusion temperature. The plastic core thus formed is illustrated in FIG. 4, and may be formed concurrently with the plastic skin in a continuous operation, or in a separate operation, as will be described in reference to FIGS. 7 to 30. It is understood that the design of the core member 52, and
the skin 50, shown, are illustrative only, and that any core or skin configuration may be used, dependent upon the desired product, and the limitations of the process described.
The core 52, best illustrated in FIG. 4, has a peripheral flange portion 58 which is the fused junction between the upper and the lower sheets. Between these flanges are oppositely displaced portions defining channels 60. Between these channels are inwardly disposed sections 62 which define further areas of fusion between the sheets. Between the indentations 62, are a series of communication vents 64 which provide fluid communication between the outwardly disposed channels 60, and communication vents 65 which provide communication through the channel walls. Communication is provided through the peripheral flange portion 58 by the spaced apertures 66. A pressure inlet 68 is also provided to the center channel, and communication is provided between the hollow interior of the channels by the passages 70, which allow air communication between the sheets (i.e., between the hollow interior of the channels) during the forming operation, which is more fully explained in our copending application, referred to hereinabove.
The oppositely displaced portions 60 of the core define oppositely disposed fusion faces 72, which are fused to the inner surface of the skin, as described hereinbelow. The skin 50 is formed in the same manner as the core 52, that is from a pair of heat fusible plastic sheets, 74 and 76, which are heat sealed at their peripheral margins 78. The plastic sheets of the skin overlie, and are heat fused to the oppositely disposed faces 72 of the core member, forming a substantially unitary plastic structure.
In FIG. 2 the fused peripheral margins 78 of the skin are fused directly to the fused peripheral portion 58 of the core member. In the modification of FIG. 5 the fused peripheral flange portion 58' of the core does not extend into fused engagement with the skin. The structure of FIG. 2 provides somewhat more rigidity in the completed container, however the structure of FIG. 5 has free communication between the channels. The perspective view of the container shown in FIG. 1 illustrates an inlet 80, whose location and configuration would depend upon the function of the container.
FIG. 6' illustrates self-supporting automotive crash panel embodiment of this invention. The panel is formed in the manner herein described, and consists of a core, referred to generally at 100, fused to an outer skin 102. It can be seen that the rigidity of this structure may be varied by employing various designs of plastic cores, and by controlling the fusion between the core and the plastic skin. The structure illustrated employs four hexagonal channels 104 and one pentagonal channel 106. The pentagonal section 106 has only a point contact with the inner surface of the skin at 108, and therefore will be less rigid than the hexagonal sections which proivde face to face contact. The rigidity of the core may thus be varied at desired locations, or the rigidity may be varied by the use of other geometric channel configurations. The fusion between the core 100 and the skin 102 may also be varied by controlling the area of the core available for fusion, such as by the use of the communication vents 64, shown in the core of the container in FIG. 4.
Conventional padded automotive crash panels often collapse under the pressures normally encountered in use, or deteriorate with age. Thus, they may be useless at the critical moment of impact. Further, such panels do not provide suflicient resistance to impact to provide adequate protection for the passengers. In the automotive crash panel embodiment of my invention, the impact required to collapse the structure may be varied to provide the optimum protection for a passenger, and the impact and pressure normally encountered in use will not deform the structure. Thus, the panel will maintain its structural integrity for use when it is critically needed.
FIGS. 7 to 18 schematically illustrate one method of forming the structures shown in FIGS. 1 to 6. FIG. 7 shows a pair of opposed core forming dies 200 open to receive pro-heated fusible plastic sheets. The faces of the dies define the configuration of the desired core member. FIG. 8 illustrates a pair of heated plastic sheets 202 supported in spaced relation on a frame means 204. The sheets have been heated to their fusion temperature at a heating station not shown, and will sag under their weight, as shown in FIG. 8. In FIG. 9 the dies have partially closed into forming contact with the plastic sheets, and a vacuum has been drawn through the die faces to form the sheets to the configuration of the die faces. The dies are then fully closed as shown in FIG. 10, while the vacuum is sustained through the die faces. The closing of the dies brings predetermined portions of the heated sheets into fusion contact, forming the hollow core member 206, hereinabove described. At this stage air may be injected between the sheets to sustain the sheets against the die faces during the cooling operation, as through the communication channels 68 and 70 of FIG. 4. After the core has cooled suificiently to retain its structure, the dies are opened as shown in FIG. 11. The completed core member shown in FIG. 12, is retained in the supporting frame means 204 and transferred to a subsequent molding station, shown in FIG. 16.
FIGS. 13 to 15 represent the initial forming cycle of the outer skin, which is performed concurrently with the molding of the core member at a separate molding station. FIG. 13 represents the skin forming dies 208 open for reception of the thermoplastic sheets. In FIG. 14 the palstic sheets 212 have been received between the die faces, and are supported in spaced relation in the frame means 210. The plastic sheets 212 have been heated to their fusion temperature in a heating station, not shown. FIG. 15 shows the die members 208 partially closed into forming contact with the plastic sheets 212. As described in relation to the forming of the core 206, a vacuum is drawn through the die faces at this point to cause the heated plastic sheets to conform to the configuration of the die faces.
In FIG. 16 the core member 206 has been introduced and positioned for fusion with the outer skin. Because the core has been formed concurrently with the forming of the contour of the outer skin, the core member has been maintained at its fusion temperature, and therefore no additional heating should be required. The dies are then fully closed, as shown in FIG. 17, bringing the opposed peripheral margins of the plastic sheets into fusion contact with the peripheral portions of the core, and the oppositely disposed faces 72 of the core member into fusion contact with the inner surfaces of the skin. In FIG. 18, the dies have been opened after the completed structure has cooled sufiiciently to maintain its shape, and the article may be removed from the frame means, and the excess trimmed. It can be seen from FIG. 18 that the peripheral flange portions of the core and the skin have been fused together to provide a substantially homogeneous wall, similar to the structure shown in FIG. 2.
FIGS. 19 to 30 schematically illustrate a forming method which is similar to the process described above, except that the core member is formed in a distinct operation. FIGS. 19 to 23 are identical to the operations shown in FIGS. 7 to 11, and have been numbered accordingly. At this stage of the operation, the core is removed from its supporting frame and trimmed, as shown in FIG. 24 at 206. The core may now be inspected and stored for future use. FIGS. 25 to 27 shows the forming of the outer skin to the contour of the die faces, which is identical to FIGS. 13 to 15 above. In FIG. 28 the trimmed core member 206 has been introduced and positioned between the sheets defining the outer skin. In a separate station, not shown, the core has been reheated to its fusion temperature, so that when the dies are completely closed, as shown in FIG. 29, the core 206' is fused to the outer skin in the same manner as described in relation to FIG. 17. In FIG. 30 the completed structure is ready to be removed from the dies for subsequent trimming.
The structure formed by the method described in reference to FIGS. 19 to 30 may be of the type shown in FIG. 2 or FIG. 5, because the peripheral fused portion of the core 206' may be trimmed to extend between the fused area of the skin, or may be trimmed as shown in FIG. 5.
The process described with reference to FIGS. 7 to 18 has the advantage of being a continuous process, and elimi- 1O nates the necessity of reheating the core 206. However, the machine performing this operation will necessarily be more complex than is required by the process described in relation to FIGS. 19 to 30. This is true because of the two press means that are required to carry out the simultaneous forming of the core and the skin, and the timing and additional size requirements required by the process. The process described in reference to FIGS. 19 to 30 requires only one press, because the dies may be changed for separate runs of the core and the skin. Further, the cores may be easily separately inspected for imperfections prior to the final forming operation.
It can be seen from the structure and method herein described that the final structure is substantially free from stresses, and the areas of fusion have the same structural integrity as the original sheets. Previous structures, which required localized heating or bonding, created areas of stress inherent in the structure, and the bond between the elements could not be adequately controlled, and was seldom complete. Further, subsequent bonding steps are considerably more expensive, and are diflicult to carry out in a substantially continuous operation. It should be understood that the structures disclosed herein are illustrative only, and that many other structures can be conceived without departing from the purview of the ap pended claims. For example, the core may be a single plastic sheet having oppositely displaced surfaces for fusing to the opposite outer skin sheets.
What is claimed is:
1. The method of forming a hollow plastic structure, comprising the steps of:
heating a pair of plastic sheets to their fusion temperature,
supporting the heated plastic sheets at their fusion temperat-ure in spaced relation between a pair of die faces, shifting the die faces into forming contact with the plastic sheets while maintaining their spaced relation,
drawing a vacuum through the die faces to cause the sheets to conform to the configuration of the die faces,
placing a plastic core having oppositely displaced p01- tions between the formed plastic sheets,
closing the die faces to brin predetermined portions of the plastic sheets thus formed into fusion contact with at least portions of said oppositely disposed portions of the plastic core,
cooling the sheets while maintaining the sheets in contact with the die faces, and
separating the dies and removing the plastic structure therefrom.
2. The method of forming a hollow plastic structure defined in claim 1, wherein the plastic core is formed by shaping a heated thermoplastic sheet to provide said oppositely displaced portions.
3. The method of forming a hollow plastic structure defined in claim 1, wherein the plastic core is formed by the steps of:
heating a pair of plastic sheets to their fusion temperature,
supporting the heated plastic sheets at their fusion temperature in spaced relation between a pair of die aces,
shifting the die faces into forming contact with the plastic sheets,
drawing a vacuum through the die faces to cause the sheets to conforms to the configuration of the die faces,
closing the die faces to bring predetermined portions of the plastic sheets thus formed into fusion contact with each other,
cooling the sheets while maintaining the sheets in contact with the die faces, and
separating the dies and removin the hollow plastic core therefrom.
References Cited UNITED STATES PATENTS 1,539,869 6/1925 Roberts 156285 XR 2,543,879 3/ 1951 Stuckey 156-292 XR 2,703,770 3/1955 Melzer 156289 XR 2,996,417 8/1961 Wilson 161---127 XR 3,086,899 4/1963 Smith et al 161-131 XR 3,142,599 7/1964 Chavannes 156-292 XR 3,388,522 6/1968 Lowes 161l27 XR ROBERT F. BURNETT, Primary Examiner W. A. POWELL, Assistant Examiner U.S. Cl. X.R.
US512639A 1965-12-09 1965-12-09 Method for making a hollow plastic core structure Expired - Lifetime US3462330A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US51263965A 1965-12-09 1965-12-09

Publications (1)

Publication Number Publication Date
US3462330A true US3462330A (en) 1969-08-19

Family

ID=24039937

Family Applications (1)

Application Number Title Priority Date Filing Date
US512639A Expired - Lifetime US3462330A (en) 1965-12-09 1965-12-09 Method for making a hollow plastic core structure

Country Status (2)

Country Link
US (1) US3462330A (en)
GB (1) GB1165933A (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3640831A (en) * 1969-12-15 1972-02-08 Protective Pads Inc Protective body pad
US3654013A (en) * 1969-04-14 1972-04-04 Uniroyal Inc Method of making a formed and bonded plastic sheet structure
US3736004A (en) * 1970-05-04 1973-05-29 Nissan Motor Vehicular safety device
US3834482A (en) * 1971-10-20 1974-09-10 Toyota Motor Co Ltd Occupant protection device for motor vehicles and the like
US3938963A (en) * 1973-10-01 1976-02-17 Hale Jesse R Sandwich core panel having cured face sheets and a core formed with projecting modes
US4039643A (en) * 1974-09-23 1977-08-02 Formex Manufacturing, Inc. Method for forming plastic sheets
US4149919A (en) * 1974-12-10 1979-04-17 Lea James M Method of making a self-inflating air mattress
US4167795A (en) * 1978-04-14 1979-09-18 Liberty Vinyl Corporation Motion suppressing fluid mattress
US4249976A (en) * 1979-04-04 1981-02-10 Grumman Aerospace Corporation Manufacture of honeycomb sandwich
US4315050A (en) * 1980-01-25 1982-02-09 Norfield Corporation Laminates structure of an expanded core panel and a flat sheet of material which does not easily bond and a process for making the same
US4479621A (en) * 1981-10-22 1984-10-30 Messerschmitt-Bolkow-Blohm G.M.B.H. Floor construction for the upper compartment of an aircraft
US4533583A (en) * 1981-05-22 1985-08-06 May Michael G Thermal insulating mat
US4960483A (en) * 1989-06-26 1990-10-02 Switlik Parachute Company, Inc. Heat pressing apparatus for making an inflatable life vest and method for use thereof
US5046434A (en) * 1990-05-02 1991-09-10 Penda Corporation Plastic reinforced thermoformed pallet
US5050341A (en) * 1990-05-02 1991-09-24 Penda Corporation Thermoplastic aquatic biomass containment barrier with reinforced hinge
US5114767A (en) * 1990-02-09 1992-05-19 General Electric Company Process for twin-sheet forming high heat distortion temperature thermoplastic material and articles therefrom
US5180501A (en) * 1989-03-17 1993-01-19 The Lemna Corporation Floating aquatic plant water treatment system
US5190803A (en) * 1988-11-25 1993-03-02 Bayer Aktiengesellschaft Structural shell with reinforcing ribs connected via perforations
EP0549105A1 (en) * 1991-10-09 1993-06-30 British United Shoe Machinery Limited Forming workpieces and a forming assembly therefor
US5260117A (en) * 1989-09-07 1993-11-09 Hexcel Corporation Honeycomb of fabric-reinforced polyimide polymer
US5283028A (en) * 1990-05-02 1994-02-01 Penda Corporation Process for producing a selectively reinforced thermoformed article
US5427732A (en) * 1993-12-28 1995-06-27 Shuert; Lyle H. Method of forming deep draw twin sheet plastic articles
US5649721A (en) * 1995-01-20 1997-07-22 The Boeing Co. Impact protection apparatus
US5750236A (en) * 1996-04-26 1998-05-12 Royal Truck Bodies, Inc. Apparatus and method for forming compound shaped surfaces
US6004652A (en) * 1996-09-13 1999-12-21 Clark; Brian Hall Structural dimple panel
WO2000006370A1 (en) * 1998-07-28 2000-02-10 Chung, Chaosen A high-strength corrugated board
EP0995668A1 (en) * 1998-10-21 2000-04-26 Bayer Ag Light weight hollow chamber constructional element
US6274215B1 (en) * 1998-12-21 2001-08-14 General Electric Company Aerodynamic article with partial outer portion and method for making
US20020017745A1 (en) * 2000-08-11 2002-02-14 Vorenkamp Erich James High volume production of low permeation plastic fuel tanks using parallel offset twinsheet pressure forming
GB2374056A (en) * 2001-04-06 2002-10-09 Darchem Engineering Ltd Impact-resistant fuel tank device
US6571490B2 (en) 2000-03-16 2003-06-03 Nike, Inc. Bladder with multi-stage regionalized cushioning
US20050168041A1 (en) * 2000-10-04 2005-08-04 Glance Patrick M. Thin, double-wall molded seat frame system
US6939599B2 (en) 1996-09-13 2005-09-06 Brian H. Clark Structural dimple panel
US20060147672A1 (en) * 2003-02-12 2006-07-06 Sintex Beteilingungs, Gmbh Method for the production of a structural part comprising a rigid material and a plastic material, and structural composite part thus obtained
US20060234012A1 (en) * 2005-04-19 2006-10-19 Jack Wang Cushion pad for shoes
US20070084083A1 (en) * 2005-10-19 2007-04-19 Nike, Inc. Fluid system having an expandable pump chamber
US20090192359A1 (en) * 2008-01-25 2009-07-30 Theodore Hale Flexible surgical retractor
US20110011010A1 (en) * 2004-03-29 2011-01-20 Lifetime Products, Inc. Modular enclosure
US7926227B2 (en) 2004-03-29 2011-04-19 Lifetime Products, Inc. Modular enclosure with living hinges
US20110135862A1 (en) * 2008-04-30 2011-06-09 Takehiko Sumi Core material for sandwich panel, method of molding core material for sandwich panel, sandwich panel, and method of molding sandwich panel
US8091289B2 (en) * 2004-03-29 2012-01-10 Lifetime Products, Inc. Floor for a modular enclosure
US20120006476A1 (en) * 2004-12-15 2012-01-12 Inergy Auto. Systems Research (Societe Anonyme) Method for manufacturing a plastic fuel tank with improved creep strength
US8132372B2 (en) 2004-03-29 2012-03-13 Lifetime Products Inc. System and method for constructing a modular enclosure
US8161711B2 (en) 2003-04-30 2012-04-24 Lifetime Products, Inc. Reinforced plastic panels and structures
US20130240539A1 (en) * 2010-06-14 2013-09-19 Ford Global Technologies, Llc Compliance structure for a distensible fuel tank
US20150049464A1 (en) * 2013-08-13 2015-02-19 Samsung Display Co., Ltd. Backlight unit and display device including the backlight unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005053917A1 (en) * 2005-11-11 2007-05-16 Geiss Ag Method and device for producing a double-walled plastic molding with at least one inserted component

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1539869A (en) * 1922-04-10 1925-06-02 Paramount Rubber Cons Inc Method and apparatus for making jars of hard rubber and similar materials
US2543879A (en) * 1948-02-27 1951-03-06 Franklin J Essner Paddle
US2703770A (en) * 1952-04-15 1955-03-08 Melzer Jean Manufacture of flat inflatable objects
US2996417A (en) * 1958-07-07 1961-08-15 Wilson Bertram Arnold Luminous ceiling panel
US3086899A (en) * 1956-05-04 1963-04-23 Dow Chemical Co Constructional lamina
US3142599A (en) * 1959-11-27 1964-07-28 Sealed Air Corp Method for making laminated cushioning material
US3388522A (en) * 1965-10-11 1968-06-18 Dow Chemical Co Aircraft stiffening section

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1539869A (en) * 1922-04-10 1925-06-02 Paramount Rubber Cons Inc Method and apparatus for making jars of hard rubber and similar materials
US2543879A (en) * 1948-02-27 1951-03-06 Franklin J Essner Paddle
US2703770A (en) * 1952-04-15 1955-03-08 Melzer Jean Manufacture of flat inflatable objects
US3086899A (en) * 1956-05-04 1963-04-23 Dow Chemical Co Constructional lamina
US2996417A (en) * 1958-07-07 1961-08-15 Wilson Bertram Arnold Luminous ceiling panel
US3142599A (en) * 1959-11-27 1964-07-28 Sealed Air Corp Method for making laminated cushioning material
US3388522A (en) * 1965-10-11 1968-06-18 Dow Chemical Co Aircraft stiffening section

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3654013A (en) * 1969-04-14 1972-04-04 Uniroyal Inc Method of making a formed and bonded plastic sheet structure
US3640831A (en) * 1969-12-15 1972-02-08 Protective Pads Inc Protective body pad
US3736004A (en) * 1970-05-04 1973-05-29 Nissan Motor Vehicular safety device
US3834482A (en) * 1971-10-20 1974-09-10 Toyota Motor Co Ltd Occupant protection device for motor vehicles and the like
US4261776A (en) * 1972-01-10 1981-04-14 Lea James M Method of making self-inflating air mattress
US3938963A (en) * 1973-10-01 1976-02-17 Hale Jesse R Sandwich core panel having cured face sheets and a core formed with projecting modes
US4039643A (en) * 1974-09-23 1977-08-02 Formex Manufacturing, Inc. Method for forming plastic sheets
US4149919A (en) * 1974-12-10 1979-04-17 Lea James M Method of making a self-inflating air mattress
US4167795A (en) * 1978-04-14 1979-09-18 Liberty Vinyl Corporation Motion suppressing fluid mattress
US4249976A (en) * 1979-04-04 1981-02-10 Grumman Aerospace Corporation Manufacture of honeycomb sandwich
US4315050A (en) * 1980-01-25 1982-02-09 Norfield Corporation Laminates structure of an expanded core panel and a flat sheet of material which does not easily bond and a process for making the same
US4533583A (en) * 1981-05-22 1985-08-06 May Michael G Thermal insulating mat
US4479621A (en) * 1981-10-22 1984-10-30 Messerschmitt-Bolkow-Blohm G.M.B.H. Floor construction for the upper compartment of an aircraft
US5190803A (en) * 1988-11-25 1993-03-02 Bayer Aktiengesellschaft Structural shell with reinforcing ribs connected via perforations
US5180501A (en) * 1989-03-17 1993-01-19 The Lemna Corporation Floating aquatic plant water treatment system
US4960483A (en) * 1989-06-26 1990-10-02 Switlik Parachute Company, Inc. Heat pressing apparatus for making an inflatable life vest and method for use thereof
US5260117A (en) * 1989-09-07 1993-11-09 Hexcel Corporation Honeycomb of fabric-reinforced polyimide polymer
US5114767A (en) * 1990-02-09 1992-05-19 General Electric Company Process for twin-sheet forming high heat distortion temperature thermoplastic material and articles therefrom
US5635129A (en) * 1990-05-02 1997-06-03 Trienda Corporation Twin-sheet thermoforming process with shell reinforcement
US5050341A (en) * 1990-05-02 1991-09-24 Penda Corporation Thermoplastic aquatic biomass containment barrier with reinforced hinge
US5046434A (en) * 1990-05-02 1991-09-10 Penda Corporation Plastic reinforced thermoformed pallet
US5283028A (en) * 1990-05-02 1994-02-01 Penda Corporation Process for producing a selectively reinforced thermoformed article
US5885691A (en) * 1990-05-02 1999-03-23 Trienda Corporation Selectively reinforced thermoformed article and process
EP0549105A1 (en) * 1991-10-09 1993-06-30 British United Shoe Machinery Limited Forming workpieces and a forming assembly therefor
US5296065A (en) * 1991-10-09 1994-03-22 British United Shoe Machinery Limited Method of forming workpieces by means of multi-sectional pressing members
US5427732A (en) * 1993-12-28 1995-06-27 Shuert; Lyle H. Method of forming deep draw twin sheet plastic articles
US5649721A (en) * 1995-01-20 1997-07-22 The Boeing Co. Impact protection apparatus
US5750236A (en) * 1996-04-26 1998-05-12 Royal Truck Bodies, Inc. Apparatus and method for forming compound shaped surfaces
US6939599B2 (en) 1996-09-13 2005-09-06 Brian H. Clark Structural dimple panel
US6004652A (en) * 1996-09-13 1999-12-21 Clark; Brian Hall Structural dimple panel
WO2000006370A1 (en) * 1998-07-28 2000-02-10 Chung, Chaosen A high-strength corrugated board
EP0995668A1 (en) * 1998-10-21 2000-04-26 Bayer Ag Light weight hollow chamber constructional element
US6503585B1 (en) 1998-10-21 2003-01-07 Bayer Aktiengesellschaft Hollow-chamber lightweight component
US6274215B1 (en) * 1998-12-21 2001-08-14 General Electric Company Aerodynamic article with partial outer portion and method for making
US7132032B2 (en) 2000-03-16 2006-11-07 Nike, Inc. Bladder with multi-stage regionalized cushioning
US6571490B2 (en) 2000-03-16 2003-06-03 Nike, Inc. Bladder with multi-stage regionalized cushioning
US20030183324A1 (en) * 2000-03-16 2003-10-02 Nike, Inc. Bladder with multi-stage regionalized cushioning
WO2002014050A3 (en) * 2000-08-11 2002-05-02 Visteon Global Tech Inc High volume production of low permeation plastic fuel tanks using parallel offset twinsheet pressure forming
WO2002014050A2 (en) * 2000-08-11 2002-02-21 Visteon Global Technologies, Inc. High volume production of low permeation plastic fuel tanks using parallel offset twinsheet pressure forming
US6969485B2 (en) 2000-08-11 2005-11-29 Visteon Global Technologies, Inc. High volume production of low permeation plastic fuel tanks using parallel offset twinsheet pressure forming
US20020017745A1 (en) * 2000-08-11 2002-02-14 Vorenkamp Erich James High volume production of low permeation plastic fuel tanks using parallel offset twinsheet pressure forming
US20050168041A1 (en) * 2000-10-04 2005-08-04 Glance Patrick M. Thin, double-wall molded seat frame system
GB2374056A (en) * 2001-04-06 2002-10-09 Darchem Engineering Ltd Impact-resistant fuel tank device
GB2374056B (en) * 2001-04-06 2004-08-18 Darchem Engineering Ltd Impact-resistant fuel tank device
US20060147672A1 (en) * 2003-02-12 2006-07-06 Sintex Beteilingungs, Gmbh Method for the production of a structural part comprising a rigid material and a plastic material, and structural composite part thus obtained
US8161711B2 (en) 2003-04-30 2012-04-24 Lifetime Products, Inc. Reinforced plastic panels and structures
US8132372B2 (en) 2004-03-29 2012-03-13 Lifetime Products Inc. System and method for constructing a modular enclosure
US8051617B2 (en) 2004-03-29 2011-11-08 Lifetime Products, Inc. Modular enclosure
US8091289B2 (en) * 2004-03-29 2012-01-10 Lifetime Products, Inc. Floor for a modular enclosure
US7926227B2 (en) 2004-03-29 2011-04-19 Lifetime Products, Inc. Modular enclosure with living hinges
US20110011010A1 (en) * 2004-03-29 2011-01-20 Lifetime Products, Inc. Modular enclosure
US20120006476A1 (en) * 2004-12-15 2012-01-12 Inergy Auto. Systems Research (Societe Anonyme) Method for manufacturing a plastic fuel tank with improved creep strength
US9452577B2 (en) 2004-12-15 2016-09-27 Inergy Automotive Systems Research (Societe Anonyme) Method for manufacturing a plastic fuel tank with improved creep strength
US10369736B2 (en) 2004-12-15 2019-08-06 Plastic Omnium Advanced Innovation And Research Method for manufacturing a plastic fuel tank with improved creep strength
US8663544B2 (en) * 2004-12-15 2014-03-04 Inergy Automotive Systems Research (Societe Anonyme) Method for manufacturing a plastic fuel tank with improved creep strength
US9764507B2 (en) 2004-12-15 2017-09-19 Inergy Automotive Systems Research (Societe Anonyme) Method for manufacturing a plastic fuel tank with improved creep strength
US7399517B2 (en) * 2005-04-19 2008-07-15 I Shing Trade Co., Ltd. Cushion pad for shoes
US20060234012A1 (en) * 2005-04-19 2006-10-19 Jack Wang Cushion pad for shoes
US20070084083A1 (en) * 2005-10-19 2007-04-19 Nike, Inc. Fluid system having an expandable pump chamber
US7451554B2 (en) 2005-10-19 2008-11-18 Nike, Inc. Fluid system having an expandable pump chamber
US20090192359A1 (en) * 2008-01-25 2009-07-30 Theodore Hale Flexible surgical retractor
US8529444B2 (en) * 2008-01-25 2013-09-10 Theodore Hale Flexible surgical retractor
US20110135862A1 (en) * 2008-04-30 2011-06-09 Takehiko Sumi Core material for sandwich panel, method of molding core material for sandwich panel, sandwich panel, and method of molding sandwich panel
US9981443B2 (en) 2008-04-30 2018-05-29 Kyoraku Co., Ltd. Core material for sandwich panel, method of molding core material for sandwich panel, sandwich panel, and method of molding sandwich panel
US10112361B2 (en) * 2008-04-30 2018-10-30 Kyoraku Co., Ltd. Core material for sandwich panel, method of molding core material for sandwich panel, sandwich panel, and method of molding sandwich panel
US9321347B2 (en) * 2010-06-14 2016-04-26 Ford Global Technologies, Llc Compliance structure for a distensible fuel tank
US20130240539A1 (en) * 2010-06-14 2013-09-19 Ford Global Technologies, Llc Compliance structure for a distensible fuel tank
US9709252B2 (en) * 2013-08-13 2017-07-18 Samsung Display Co., Ltd. Backlight unit and display device including truss structure
US20150049464A1 (en) * 2013-08-13 2015-02-19 Samsung Display Co., Ltd. Backlight unit and display device including the backlight unit

Also Published As

Publication number Publication date
GB1165933A (en) 1969-10-01

Similar Documents

Publication Publication Date Title
US3462330A (en) Method for making a hollow plastic core structure
CA1272863A (en) Composite molded article and method of making same
US3867240A (en) Decorative resilient laminar panel
KR840000174B1 (en) Method of preparing vacuum molded products
US6280551B1 (en) Method and system for producing a 3-D deep-drawn article using a thermoplastic sandwich material
US5034076A (en) Method for press molding thermoplastic resins
US5501890A (en) Invisible tear seam for an air bag deployment opening cover
US6695998B2 (en) Mold apparatus and method for one step steam chest molding
US20030197400A1 (en) Reinforced composite inner roof panel of the cellular core sandwich-type and method of making same
US3069725A (en) Apparatus and method for making foamed plastic containers
JP2000033839A (en) Vehicle interior trim panel with soft touch foam layer, producing method thereof, and producing device therefor
US2947653A (en) Method of producing containers from thermoplastic material
EP0465719B1 (en) Flat product with honeycomb structure and method of production thereof
US6685875B2 (en) Foamed thermoplastic resin molding and process for producing the same
US4861543A (en) Method for thermoforming multiple coverstock and such stock having finished styling lines therein
US3654013A (en) Method of making a formed and bonded plastic sheet structure
US5238513A (en) Method of forming a vehicle seat with a removable vacuum seal
US3281301A (en) Method of making rigid laminate of thermoplastic sheets having increased load-bearing ability
US3346686A (en) Method of uniting foamed plastic sheets and thermoforming the same
US3589972A (en) Hollow structure
JPH07285149A (en) Production of molded piece by back emboss preforming method
KR101467126B1 (en) Method for the production of hollow bodies from thermoplastic and apparatus for carrying out the method
US20030057583A1 (en) Apparatus and method of making interior trim panel
Pflug et al. Thermoplastic folded honeycomb cores-cost efficient production of all thermoplastic sandwich panels
JPS61272126A (en) Molding of grained synthetic resin molded body equipped with undercuts and device therefor