Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3455835 A
Publication typeGrant
Publication date15 Jul 1969
Filing date12 Apr 1966
Priority date12 Apr 1966
Publication numberUS 3455835 A, US 3455835A, US-A-3455835, US3455835 A, US3455835A
InventorsBurt James G
Original AssigneeDu Pont
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Azeotropic composition
US 3455835 A
Abstract  available in
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States 3,455,835 AZEOTROPIC COMPOSITION James G. Burt, Oxford, Pa., assignor to E. I. du Pont de Nemours and Company, Wilmington, Del., 2 corporation of Delaware No Drawing. Filed Apr. 12 1966, Ser. No. 541,969 Int. Cl. Clld 7/50 U.S. Cl. 252-172 3 Claims ABSTRACT OF THE DISCLOSURE An essentially constant boiling composition useful for cleaning electrical printed circuit boards comprising from about 54% to about 64% by weight 1,1,2-trichloro-1,2, 2-trifiuoroethane and about 46% to about 36% trans-1,2- dichloroethylene. The binary azeotrope of 59% 1,1,2- trichloro-l,2,2-trifiuoroethane and 41% trans-1,2-dichloroethylene.

This invention is directed to a novel cleaning solvent composition.

The solvent cleaning of complex electronic circuitry, especially printed circuit boards such as those used in television receivers, copying machines, and missile guidance systems, has become increasingly important in recent years. In the manufacture of such printed circuits, the board is usually treated with solder flux prior to the soldering operation. The preferred solder fluxes are organic acids, particularly the rosin acids. On the conclusion of the soldering operation, substantial residues of the flux remain on the board. These residues, if allowed to remain on the board over long periods of time, tend to re act with the oxygen of the air and each other to yield conductive materials which interfere with the electrical functioning of the circuit. These printed circuits are so intricate and compact that the only practical method of removing such residual flux and other foreign matter from the circuits is by a solvent cleaning operation.

The solvent cleaning of these circuits is usually carried out in an apparatus well known to those skilled in the art as a vapor degreaser. The procedure for cleaning the soldered circuit board in such apparatus is as follows. First, the board is immersed in the bottom of the degreaser in a slightly agitated solvent bath maintained at or near its boiling point. In the boiling bath, most of the contaminants are dissolved and carried away from the board. Thereafter, to prevent the redeposition of dissolved contaminants on the circuit board left by the evaporation of the residual contaminated solvent, the board is rinsed in pure solvent vapors. The rinsing step is most conveniently accomplished by raising the board into the vapor space above the boiling solvent in the vapor degreaser. In this manner, pure solvent vapor condenses on the circuit board and runs ofi carrying away the residual contaminated solvent.

Organic solvents, in order to be effective in cleaning circuit boards, must be low boiling, nonfiarnmable, nontoxic, and possess a selective solvent power sufiicient to dissolve the contaminants but insufficient to attack the diverse materials making up the circuit board.

Among the solvents useful in cleaning these delicate assemblies, 1,1,2-trichloro-1,2,2-trifiuoroethane has received particular attention. This is due to its unique solvent characteristics. 1,1,Z-trichlorotrifluoroethane is useful as a cleaning liquid for the removal of contaminants from articles which are themselves sensitive to other, more common and more powerful solvents, such as trichloroethylene and perchloroethylene. One drawback of trichlorotrifluoroethane as a cleaning solvent, however, is that its solvency is often insufiicient to remove some 3,455,835 Patented July 15, 1969 ice contaminants such as, for example, rosin soldering fluxes. Trans-1,2-dichloroethylene is a much stronger solvent than the 1,1,2-trichlorotrifluoroethane, but it is not commercially acceptable as a solvent since it is flammable.

The present invention is directed, therefore, to a novel solvent cleaning composition possessing azeotropic characteristics and consisting of from about 54% to 64% by weight of 1,1,Z-trichlorotrifiuoroethane and from about 46% to 36% by weight of trans-1,2-dichloroethylene. An azeotrope is a liquid mixture that exhibits a constant boiling point that may be higher or lower than the boiling points of the separate components. A feature of such a mixture is that its distillate is the same composition as the residue. No change in properties of the mixture occurs as the result of evaporation. No method is known by which the existence of an azeotrope can be predicted. The mixture of 1,1,2-trichlorotrifluoroethane and trans-1,2-dichloroethylene containing from 36% to 46% by weight of trans-1,2-dichloroethylene has essentially a constant boiling point, i.e., from about 44.09 C. to 44.12 C. Moreover, being essentially constant boiling, the mixtures does not tend to fractionate to any great extent upon evaporation. For those mixtures within he defined invention which depart from the composition of the true binary azeotrope, only a small dilference exists after evaporation between the compositions of the vapor phase and the compositions of the initial liquid phase. This difference is so insignificant that the compositions of the vapor phase and liquid phase are considered essentially identical. Hence, any mixture within this define range exhibits properties which are characteristic of a true binary azeotrope. The composition consisting of about 41% by weight of trans-1,2-dichloroethylene and 59% of 1,1,2- trichlorotrifiuoroethane and boiling at 44.09 C. at one atmosphere has been established Within the accuracy of the boiling point determination procedure as the true binary azeotrope. The true binary azeotrope is the preferred solvent composition of the present invention.

Where a solvent cleaning composition consisting of a mixture of two solvents is to be used in a vapor degreaser as hereinbefore discussed, it is essential that the solvent mixture have essentially the same properties wherever it comes into contact with the object being cleaned. The only solvent mixture which can meet this requirement is one that is azeotropic. The necessity of having an azeotropic solvent is apparent for two reasons. First of all, if the solvent were to fractionate, the danger of flammability in the degreaser would be markedly increased. Secondly, if the solvent fractionates, an undesirable difference in solvent power between liquid and vapor phase would be created in the system. Furthermore, the existence of an azeotrope simplifies separating the solvent from the contaminants and recovering the solvent in the form of its original composition for reuse.

Existence of the azetrope is shown in Table I.

TABLE I.NORMAL BOILING POINTS OF MIX- TURES OF TRANS-1,2-DICHLOROETHYLENE AND l,1,Z-TRICHLOROTRIFLUOROETHANE Weight percent trans- Normal boiling 1,2-dichloroethylene: point, C. 0 47.61

The azeotropic compositions of the present invention make appropriate cleaning compositions since they are low boiling, nonflammable, and nontoxic. In order to determine nonflammable characteristics of the present composition, tests were made by the open-cup method (ASTM Method D131063) for flash points on various compositions Within the present invention. The specific compositions employed and the results obtained are set forth in Table II below.

TABLE II Trans-1,2- 1,1,2-trichloro-1,2,2- dichloroethylene, trifluoroethane, weight percent weight percent Flash point, C.

95. None to the boiling point. 64. 0 Do. 59.0 Do- 54. 0 D0. 50. 0 Do.

Although it was to be expected that a mitxure of these two solvents would be useful as a cleaning solvent, it was totally unexpected that a binary azeotrope would exist or be so effective in removing contaminants such as the rosin soldering fluxes. The rosin acids which are commonly used as solder fluxes as heretofore discussed are readily soluble in the azeotropic compositions of this invention, but are insoluble in the solvent 1,1,2-trichlorotrifiuoroethane. It was also unexpectedly found that the binary azeotropic solvent cleaning compositions of this invention did not attack the sensitive articles or materials in the circuits which are known to be attackedby strong solvents such as trans-1,2-dichloroethylene. The nnexpected solvent power of the binary azeotrope of transl,2-dichloroethylene and 1,1,Z-trichlorotrifluoroethane is demonstrated by the following table. The binary azeotrope composition of the present invention was tested for kauributanol number as well as the two components of the azeotrope. Kauri-butanol number is the number of milliliters of solvent required to cause cloudiness when added to 20 grams of a solution of kauri gum in butyl alcohol. The solution is prepared in the proportion of 100 grams of kauri in 500 grams of butyl alcohol. The kauri-butanol numbers are given in Table III below as well as the solubility of rosin and condenser Wax in the solvent compositions.

TABLE IIL-SOLVENT POWER OF MIXTURES OF TRANS- 1,2-DIOHLOROETHYLENE AND 1,1,2-TRIGHLOROTRI- FLUOROETHANE Weight percent ans- ,2- Kauri-butanol Solubility Solubility of dichloroethylene number of rosin condenser wax 31 Insoluble No attack. 63 Soluble Do Dissolved.

From the above, it is readily seen that the subject azeotrope is of suflicient solvent power to dissolve the rosin solder flux on the printed electrical circuits without attacking or dissolving one of the more sensitive components of the board, i.e., the Wax coating on the condensers.

A representative example demonstrating the usefulness of the subject binary azeotrope as a solvent for cleaning printed electrical circuits follows. All parts are by weight unless otherwise specified.

Example Two hundred ten parts of trans-1,Z-dichloroethylene and 295 parts of l,1,Z-trichlorotrifluoroethane were combined in a vapor degreaser. A printed circuit board for a television receiver was manufactured using rosin-based solder flux. The printed television circuit board was immersed in the boiling solvent at the bottom of the vapor degreaser for eight minutes until the used solder flux was dissolved and thereafter the board was raised into the vapor space for three minutes wherein it Was rinsed by condensing vapor. The board was examined under 20 microscope to determine cleanliness. From all appearances, the circuit board was free of visual contaminants.

The board was thereafter treated with water and the water tested for chloride ion content with silver nitrate with negative results.

It is to be understood that the preceding example is representative and that said example may be varied within the scope of the total specification, as understood by one skilled in the art, to produce essentially the same results.

As many widely different embodiments of this invention may be made without departing from the spirit and scope thereof, it is to be understood that this invention is not limited to the specific embodiments thereof except as defined in the appended claims.

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:

1. An azeotropic composition consisting of from about 54% to 64% by weight of 1,1,2-trichlorotrifiuoroethane and from 46% to 36% by weight of trans-1,2-dichloroethylene.

2. The binary azeotrope composition of claim 1 wherein the weight of 1,1,2-trichlorotrifluoroethane is 59% and the weight of trans-1,2-dichloroethylene is 41%.

3. In a process for cleaning electrical printed circuit boards in a vapor degreaser, the improvement which comprises using as a cleaning solvent the azeotropic composition of claim 1.

References Cited UNITED STATES PATENTS 3,349,039 10/ 1967 Renault 252-172 LEON D. ROSDOL, Primary Examiner W. SCHULZ, Assistant Examiner US. Cl. X.R.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3349039 *19 Jun 196324 Oct 1967Pechiney Saint GobainCleaning composition
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3527610 *20 Oct 19698 Sep 1970Miller Stephenson Chem Co IncMethods for cleaning tape recorder transducer heads and similar devices
US3625763 *4 Dec 19687 Dec 1971Bunker RamoConformal coating stripping method and composition
US3951843 *8 Nov 197320 Apr 1976Lfe CorporationFluorocarbon composition for use in plasma removal of photoresist material from semiconductor devices
US4684933 *15 May 19864 Aug 1987Rita Ann GrayUnauthorized personnel detection system
US4767561 *23 Sep 198730 Aug 1988E. I. Du Pont De Nemours And CompanyAzeotrope or azeotrope-like composition of trichlorotrifluoroethane, methanol and 1,2-dichloroethylene
US4803009 *2 Feb 19887 Feb 1989E. I. Du Pont De Nemours And CompanyStabilized azeotrope or azeotrope-like composition of 1,1,2-trichloro-1,2,2-trifluoroethane, methanol and 1,2-dichloroethylene
US4804493 *24 May 198814 Feb 1989E. I. Du Pont De Nemours And CompanyStabilizers of oxy compounds and nitromethane; cleaning compounds for vapor defluxing printed circuit boards; storage stability
US4808331 *24 May 198828 Feb 1989E. I. Du Pont De Nemours And CompanyAzeotrope or azeotrope-like composition of 1,1,2,-trichloro-1,2,2-trifluoroethane, trans-1,2-dichloroethylene and cyclopentane
US4961870 *14 Dec 19899 Oct 1990Allied-Signal Inc.Azeotrope-like compositions of 1,1,2-trichloro-1,2,2-trifluoroethane,1,2-dichloroethylene, and alkanol having 3 to 7 carbon atoms
US4971085 *22 Dec 198920 Nov 1990Allied-Signal Inc.Azeotrope-like compositions of 1,1,2-trichloro-1,2,3-trifluoroethane, methanol, nitromethane, 1,2-dichloroethylene, acetone and hexane
US4973362 *22 Dec 198927 Nov 1990Allied-Signal Inc.Vapor degreasing, defluxing printed circuit boards
US5035831 *6 Oct 198930 Jul 1991Allied-Signal Inc.Fluxing of pritned circuits, industrial cleaning
US5851977 *26 Aug 199722 Dec 1998Ppg Industries, Inc.Nonflammable organic solvent compositions
US739077713 Feb 200424 Jun 2008Ppg Industries Ohio, Inc.Stabilized with C3-C12 alkylene oxide, e.g., butylene oxide, aliphatic and cycloaliphatic alcohols having 2-8 carbon atoms, e.g., isopropanol, C1-C5 alkoxyphenol, e.g., 4-methoxyphenol, free radical stabilizer having 2,2,6,6-tetra(lower alkyl)-)-1-piperidinyloxy-yl group; vapor degreasing of metal parts
EP0309082A1 *29 Jul 198829 Mar 1989E.I. Du Pont De Nemours And CompanyAn azeotrope or azeotrope-like composition of trichlorotrifluoroethane, methanol and 1,2-dichlorethylene
EP0327282A1 *30 Jan 19899 Aug 1989E.I. Du Pont De Nemours And CompanyStabilized azeotrope or azeotrope-like composition of 1,1,2-trichloro-1,2,2-trifluoroethane, methanol and 1,2-dichloroethylene
EP0343761A1 *30 Jan 198929 Nov 1989E.I. Du Pont De Nemours And CompanyStabilized azeotrope or azeotrope-like composition
EP0411778A1 *13 Jul 19906 Feb 1991E.I. Du Pont De Nemours And CompanyTernary azeotropic compositions of 2,3-dichloro-1,1,1,3,3-pentafluoropropane with trans-1,2-dichloroethylene and methanol
WO1991009156A1 *13 Jun 199027 Jun 1991Allied Signal IncAzeotrope-like compositions of 1,1,2-trichloro-1,2,2-trifluoroethane, 1,2-dichloroethylene, and alkanol having 3 to 7 carbon atoms
Classifications
U.S. Classification510/177, 134/37, 510/408, 252/364, 252/67
International ClassificationC11D7/50, C23G5/028, C23G5/00
Cooperative ClassificationC11D7/5059, C23G5/02819
European ClassificationC23G5/028D1B33, C11D7/50D2K