US3440589A - Resistor unit and method of making same - Google Patents

Resistor unit and method of making same Download PDF

Info

Publication number
US3440589A
US3440589A US539531A US3440589DA US3440589A US 3440589 A US3440589 A US 3440589A US 539531 A US539531 A US 539531A US 3440589D A US3440589D A US 3440589DA US 3440589 A US3440589 A US 3440589A
Authority
US
United States
Prior art keywords
resistor
shell
unit
mass
resistor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US539531A
Inventor
Floyd M Minks
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brunswick Corp
Original Assignee
Brunswick Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brunswick Corp filed Critical Brunswick Corp
Application granted granted Critical
Publication of US3440589A publication Critical patent/US3440589A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/08Cooling, heating or ventilating arrangements
    • H01C1/084Cooling, heating or ventilating arrangements using self-cooling, e.g. fins, heat sinks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49085Thermally variable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49087Resistor making with envelope or housing
    • Y10T29/49089Filling with powdered insulation

Definitions

  • a plastic member having an inner conical surface is inserted in the shell and held therein by the rolled end.
  • the shell is filled with the mixture of the alumina bubbles and the silicone rubber.
  • the resistor is then inserted into the tube with the conical inner surface of the plastic end directing the resistor lead through the assembly.
  • the opposite end is then closed with a plastic member.
  • This invention relates to a current responsive resistor unit including a thermal impedance to provide a varying resistance with current and particularly to such a resistor which can be employed in severe vibration and temperature environments.
  • resistors having high temperature coeflicients to control the current in a circuit in accordance with temperature and current levels.
  • various resistors are available, they are not readily adapted as a practical matter to severe environmental conditions particularly where they are subjected to vibration and the like.
  • applicants copending application entitled, Triggered Ignition System filed on Oct. 4, 1965, with Ser. No. 492,571, now abandoned, and assigned to the same assignee as the present application discloses a highly practical capacitor discharge ignition system wherein a transistor is connected as a part of a triggered blocking oscillator. The transistor is supplied with a turn-on current from the battery or other suitable DC. power supply.
  • a relatively low resistance is desirably inserted in the base circuit to provide the desired turn-on current.
  • the resistance is preferably increased to limit the current to approximately that required to drive the transistor. This is of course desirable to prevent excessive power dissipation in the base circuit and adverse overloading of the components.
  • the present invention is thus directed to a resistor unit or element having a high temperature coefiicient resistor embedded in a controlled thermal impedance mass which is particularly adapted and constructed to form a part of a potted ignition system and the like.
  • the resistor is embedded in a mass of hollow members, preferably ceramic bubbles of alumina or the like.
  • the bubbles are mixed with a suitable binder, preferably silicone rubber or the like, in a suflicient amount to maintain or hold the bubbles together; for example, similar to a mass of wet sand.
  • a suitable binder preferably silicone rubber or the like
  • the mass is not saturated with the binder however in order to establish a number of air spaces within the mass which prevent expansion and contraction of the silicone rubber with temperature from producing destructive pressures.
  • the spongy characteristic of the mass maintains good thermal contact and controlled heat transfer thus insuring that the temperature of the resistance element varies in the desired manner with variation in current through the element.
  • a nickel wire wound on and covered with ceramic provides a resistor which must reach a temperature in the order of 350 C. without degradation of the insulation to provide the desired action.
  • the present invention has been found to operate highly satisfactorily at such temperatures over extended and practically indefinite periods of time.
  • the resistor is enclosed within an outer tubular housing or shell one end of which is rolled over.
  • a plastic member having an inner conical surface is inserted in the shell and held therein by the rolled end.
  • the shell is filled with the mixture of the ceramic bubbles and the binder.
  • the resistor is then inserted into the tube with the conical inner surface of the plastic end directing the resistor lead through the assembly.
  • the resistor can be inserted in the shell and the mass then inserted.
  • the opposite end is then closed with a suitable plastic member and the total mass allowed to set to firmly interconnect the elements to the casing and to each other.
  • FIG. 1 is a cross sectional view of a resistor unit constructed in accordance with the present invention
  • FIG. 2 is an exploded view of the elements shown in FIG. 1 to more clearly disclose the components of the preferred construction
  • FIG. 3 is a substantially enlarged view of the thermal insulation shown in FIGS. 1 and 2.
  • a small elongated resistor 1 having end leads 2 and 3 projecting axially from the opposite ends thereof.
  • the resistor 1 is concentrically disposed within a tubular shell 4 of aluminum or the like with the end leads 2 and 3 projecting outwardly through the opposite ends of the shell 4.
  • the ends of the shell are closed by small plastic end caps 5 and 6 to seal the ends and hold a thermal impendance material 7 within the shell 4 completely encircling and enclosing the resistor 1.
  • the illustrated resistor 1 is a commercially available unit, generally including a nickel wire 8 spirally wound upon a central ceramic core 9 and connected in any suitable manner to leads 2 and 3.
  • An outer ceramic protective coating covers the nickel wire 8 and the core 9. Leads 2 and 3 project generally axially outwardly of the ends of the core 1.
  • the shell 4 is formed of any suitable metal such as aluminum or the like and has the one end rolled over slightly as at 11 to provide a support for the inner plastic end cap 5, as presently described.
  • the plastic end caps 5 and 6 are shown as identical members having an outer cone-shaped nose 12 integrally formed with a cylindrical end 13.
  • the diameter of the cylindrical end .13 generally corresponds to the inner diameter of the shell 4 and the end caps 5 and 6 are assembled with the cylindrical ends 13 within the corresponding outermost ends of the shell 4 and with the coneshaped nose 12 projecting outwardly therefrom.
  • the end caps 5 and 6 further include internal cone-shaped surfaces 14 to form a guide for the end lead 2 during assembly, as hereinafter described.
  • the thermal impedance material 7 which completely fills the shell 4 to enclose resistorl is formed of a mass of fine hollow balls 15 of alumina or other similar high temperature material.
  • the hollow balls 15 are held together by a suitable high temperature binder 15 such as silicone rubber.
  • the binder 16 only partially fills the space between the hollow balls 15 to provide a plurality of air spaces 17 within the insulation. This permits the binder to expand and contract with temperature changes while maintaining good thermal contact with the surfaces of the several other components.
  • the hollow balls of alumina do not essentially change configuration or size with temperature.
  • the :balls 15 and the liquid silicone rubber 16 are intermixed as a wet soggy mass similar to damp soggy sand.
  • the mixture may be such that the surfaces of the balls are coated with the binder while the space therebetween is free.
  • the end cap 5 is assembled with the shell 4 with the rolled end 11 supporting the cap within the shell.
  • the mixture of the alumina balls 15 and the silicone rubber v16 is inserted into the shell 4 to substantially fill the shell.
  • the resistor 1 is inserted into the wet mass within the shell 4 with the lead 2 moving downwardly through the shell 4 and being directed through the exit opening of cap 5 by the inner coneshaped surface 14.
  • the cap 6 is then slipped over the end of the opposite lead 3 with the cylindrical portion forced into the corresponding cylindrical end of the shell 4.
  • the silicone rubber 16 is then cured as by heating or the like. When cured, the silicone rubber binds to the shell 4 and to the end caps to firmly interconnect the several members and establish stable thermal impedance between the resistor 1 and the shell
  • the embedding of the resistor 1 within the thermal material 7 consisting of the small ceramic balls 15 and the limited amount of silicone binder 16 maintains highly desirable operating characteristics.
  • the resistance unit can be operated at a high temperature level without degradation of the material and in a potted assembly such as diagrammatically shown in FIG. 1.
  • the environmental surroundings and particularly vibration of the unit will not adversely affect its operation and consequently provides a highly practical resistance element as a part of an ignition system for outboard motors and the like.
  • the unit is shown disposed within a recess within a metallic housing or base 18.
  • the unit is secured therein by a suitable adhesive 19 such as an epoxy to firmly attach the unit in physical and heat exchange relation to the base 18.
  • a suitable potting compound 20 completely covers the unit as well as any associated components, such as a transistor 21, to form a potted assembly, such as more fully described and shown in applicants previously referred to applicuti on.
  • the particular attachment of the shell 4 to the base 18, which serves as a heat sink, will substantially eliminate transfer of the temperature variation of the unit to the other components such as transistor 21 and thereby further adapt the unit for incorporation in an ignition system and the like.
  • a resistor unit comprising a resistance element with a positive temperature coefficient of resistance
  • the resistor unit of claim 1 wherein said hollow members are alumina and said binder is silicone rubber and having a metallic outer housing, a heat sink, and securement means to secure the housing in heat exchange relation to the heat sink.
  • the resistor unit of claim 8 having a temperature sensitive solid state component in the potting compound.
  • the resistor unit of claim 1 for use in vibrating environments, wherein said resistance element has a high temperature coefficient of resistance, and includes an outer metallic tube open at the opposite ends, end caps located within the opposite ends of the tube, said thermal impedance filling said tube and having said binder adhered to the tube and end caps to form a unitary unit.
  • the resistor unit of claim 1 including a metallic tubular shell having the opposite ends closed by plastic end caps with the leads projecting through the end caps, and said thermal impedance fills the shell and binds to the end caps and the shell.
  • the resistor unit of claim 11 wherein the hollow members are spherical ceramic members and the binder is a silicone rubber.

Description

F. M. MINKS RESISTOR UNIT AND METHOD OF MAKING SAME April 22, 1969 Filed April 1, 1966 INVENTOR /20Y0 M. Alma 4/far e s United States Patent 3,440,589 RESTSTDR UNIT AND METHOD OF MAKING SAME US. Cl. 333-22 13 Claims ABSTRACT OF THE DISCLOSURE This disclosure is directed to a nickel wire wound on and covered with ceramic to form a resistor embedded in a controlled thermal impedance mass. The impedance mass includes hollow alumina bubbles which are mixed with a silicone rubber binder to maintain good thermal contact and controlled heat transfer. The resistor is enclosed within an outer tubular shell, one end of which is rolled over. A plastic member having an inner conical surface is inserted in the shell and held therein by the rolled end. The shell is filled with the mixture of the alumina bubbles and the silicone rubber. The resistor is then inserted into the tube with the conical inner surface of the plastic end directing the resistor lead through the assembly. The opposite end is then closed with a plastic member.
This invention relates to a current responsive resistor unit including a thermal impedance to provide a varying resistance with current and particularly to such a resistor which can be employed in severe vibration and temperature environments.
The use of resistors having high temperature coeflicients to control the current in a circuit in accordance with temperature and current levels is known. Although various resistors are available, they are not readily adapted as a practical matter to severe environmental conditions particularly where they are subjected to vibration and the like. For example, applicants copending application entitled, Triggered Ignition System, filed on Oct. 4, 1965, with Ser. No. 492,571, now abandoned, and assigned to the same assignee as the present application discloses a highly practical capacitor discharge ignition system wherein a transistor is connected as a part of a triggered blocking oscillator. The transistor is supplied with a turn-on current from the battery or other suitable DC. power supply. With low battery voltage and low engine speed such as encountered under engine cranking conditions, a relatively low resistance is desirably inserted in the base circuit to provide the desired turn-on current. However, as the engine speed increases and/ or the battery voltage goes up, the resistance is preferably increased to limit the current to approximately that required to drive the transistor. This is of course desirable to prevent excessive power dissipation in the base circuit and adverse overloading of the components.
However, a suitable resistor having the desired sharp change in resistance characteristics with current was not available, particularly in the potted construction of the above entitled application wherein a potted ignition system is mounted as a part of an outboard motor and therefore subjected to great amounts of vibration. The available units generally employ air as the thermal impedance. In p nom [Ho s/ s ponod a u; stamp 12 qons poquro 0; 19pm require scaling to prevent introduction of potting material and further mounting of the resistor therein to prevent vibration damage.
The present invention is thus directed to a resistor unit or element having a high temperature coefiicient resistor embedded in a controlled thermal impedance mass which is particularly adapted and constructed to form a part of a potted ignition system and the like.
Generally, in accordance with the present invention, the resistor is embedded in a mass of hollow members, preferably ceramic bubbles of alumina or the like. The bubbles are mixed with a suitable binder, preferably silicone rubber or the like, in a suflicient amount to maintain or hold the bubbles together; for example, similar to a mass of wet sand. The mass is not saturated with the binder however in order to establish a number of air spaces within the mass which prevent expansion and contraction of the silicone rubber with temperature from producing destructive pressures. The spongy characteristic of the mass maintains good thermal contact and controlled heat transfer thus insuring that the temperature of the resistance element varies in the desired manner with variation in current through the element.
In a preferred construction, a nickel wire wound on and covered with ceramic provides a resistor which must reach a temperature in the order of 350 C. without degradation of the insulation to provide the desired action. The present invention has been found to operate highly satisfactorily at such temperatures over extended and practically indefinite periods of time.
In a preferred construction, the resistor is enclosed within an outer tubular housing or shell one end of which is rolled over. A plastic member having an inner conical surface is inserted in the shell and held therein by the rolled end. The shell is filled with the mixture of the ceramic bubbles and the binder. The resistor is then inserted into the tube with the conical inner surface of the plastic end directing the resistor lead through the assembly. Alternatively, the resistor can be inserted in the shell and the mass then inserted. The opposite end is then closed with a suitable plastic member and the total mass allowed to set to firmly interconnect the elements to the casing and to each other.
The drawing furnished herewith illustrates preferred constuctions of the present invention in which the above advantages and features are clearly disclosed as well as others which will be clear from the following description of the drawing.
In the drawing:
FIG. 1 is a cross sectional view of a resistor unit constructed in accordance with the present invention;
FIG. 2 is an exploded view of the elements shown in FIG. 1 to more clearly disclose the components of the preferred construction; and
FIG. 3 is a substantially enlarged view of the thermal insulation shown in FIGS. 1 and 2.
Referring to the drawing and particularly to FIG. 1, a small elongated resistor 1 is illustrated having end leads 2 and 3 projecting axially from the opposite ends thereof. The resistor 1 is concentrically disposed within a tubular shell 4 of aluminum or the like with the end leads 2 and 3 projecting outwardly through the opposite ends of the shell 4. The ends of the shell are closed by small plastic end caps 5 and 6 to seal the ends and hold a thermal impendance material 7 within the shell 4 completely encircling and enclosing the resistor 1.
The illustrated resistor 1 is a commercially available unit, generally including a nickel wire 8 spirally wound upon a central ceramic core 9 and connected in any suitable manner to leads 2 and 3. An outer ceramic protective coating covers the nickel wire 8 and the core 9. Leads 2 and 3 project generally axially outwardly of the ends of the core 1.
The shell 4 is formed of any suitable metal such as aluminum or the like and has the one end rolled over slightly as at 11 to provide a support for the inner plastic end cap 5, as presently described.
The plastic end caps 5 and 6 are shown as identical members having an outer cone-shaped nose 12 integrally formed with a cylindrical end 13. The diameter of the cylindrical end .13 generally corresponds to the inner diameter of the shell 4 and the end caps 5 and 6 are assembled with the cylindrical ends 13 within the corresponding outermost ends of the shell 4 and with the coneshaped nose 12 projecting outwardly therefrom. The end caps 5 and 6 further include internal cone-shaped surfaces 14 to form a guide for the end lead 2 during assembly, as hereinafter described.
As most clearly shown in FIG. 3, the thermal impedance material 7 which completely fills the shell 4 to enclose resistorl is formed of a mass of fine hollow balls 15 of alumina or other similar high temperature material. The hollow balls 15 are held together by a suitable high temperature binder 15 such as silicone rubber.
In accordance with an important feature of the present invention, the binder 16 only partially fills the space between the hollow balls 15 to provide a plurality of air spaces 17 within the insulation. This permits the binder to expand and contract with temperature changes while maintaining good thermal contact with the surfaces of the several other components. The hollow balls of alumina do not essentially change configuration or size with temperature.
In assembly, the :balls 15 and the liquid silicone rubber 16 are intermixed as a wet soggy mass similar to damp soggy sand. Generally, the mixture may be such that the surfaces of the balls are coated with the binder while the space therebetween is free. The end cap 5 is assembled with the shell 4 with the rolled end 11 supporting the cap within the shell. The mixture of the alumina balls 15 and the silicone rubber v16 is inserted into the shell 4 to substantially fill the shell. The resistor 1 is inserted into the wet mass within the shell 4 with the lead 2 moving downwardly through the shell 4 and being directed through the exit opening of cap 5 by the inner coneshaped surface 14. The cap 6 is then slipped over the end of the opposite lead 3 with the cylindrical portion forced into the corresponding cylindrical end of the shell 4. The silicone rubber 16 is then cured as by heating or the like. When cured, the silicone rubber binds to the shell 4 and to the end caps to firmly interconnect the several members and establish stable thermal impedance between the resistor 1 and the shell.
It has been found that the embedding of the resistor 1 within the thermal material 7 consisting of the small ceramic balls 15 and the limited amount of silicone binder 16 maintains highly desirable operating characteristics. In particular, the resistance unit can be operated at a high temperature level without degradation of the material and in a potted assembly such as diagrammatically shown in FIG. 1. The environmental surroundings and particularly vibration of the unit will not adversely affect its operation and consequently provides a highly practical resistance element as a part of an ignition system for outboard motors and the like.
In FIG. 1, the unit is shown disposed within a recess within a metallic housing or base 18. The unit is secured therein by a suitable adhesive 19 such as an epoxy to firmly attach the unit in physical and heat exchange relation to the base 18. A suitable potting compound 20 completely covers the unit as well as any associated components, such as a transistor 21, to form a potted assembly, such as more fully described and shown in applicants previously referred to applicuti on.
The particular attachment of the shell 4 to the base 18, which serves as a heat sink, will substantially eliminate transfer of the temperature variation of the unit to the other components such as transistor 21 and thereby further adapt the unit for incorporation in an ignition system and the like.
Various modes of carrying out the invention are contemplated as being within the scope of the following claims particularly pointing out and distinctly claiming the subject matter which is regarded as the invention.
I claim:
1. A resistor unit, comprising a resistance element with a positive temperature coefficient of resistance, and
thermal impedance material surrounding said element,
said thermal impedance material comprising a mass of hollow members formed of a high temperature material and partially bound together by a high temperature binder to define a mass having substantial air spaces within the mass.
2. The resistor unit of claim 1 wherein said members are generally spherical ceramic members.
3. The resistor unit of claim 1 wherein said binder is a silicone rubber.
4. The resistor unit of claim 3 wherein the hollow members are formed of alumina.
5. The resistor unit of claim 1 wherein an outer metallic tube is provided having the resistance element centrally located therein, said thermal impedance material is within the tube and about said element.
6. The resistor unit of claim 1 wherein said hollow members are alumina and said binder is silicone rubber and having a metallic outer housing, a heat sink, and securement means to secure the housing in heat exchange relation to the heat sink.
7. The resistor unit of claim 6 wherein the heat sink is a metallic mounting member and the securement means is an adhesive.
8. The resistor unit of claim 6 having a potting compound enclosing the resistor unit.
9. The resistor unit of claim 8 having a temperature sensitive solid state component in the potting compound.
10. The resistor unit of claim 1 for use in vibrating environments, wherein said resistance element has a high temperature coefficient of resistance, and includes an outer metallic tube open at the opposite ends, end caps located within the opposite ends of the tube, said thermal impedance filling said tube and having said binder adhered to the tube and end caps to form a unitary unit.
11. The resistor unit of claim 1, including a metallic tubular shell having the opposite ends closed by plastic end caps with the leads projecting through the end caps, and said thermal impedance fills the shell and binds to the end caps and the shell.
12. The resistor unit of claim 11 wherein the hollow members are spherical ceramic members and the binder is a silicone rubber.
13. The method of forming a resistor unit having a resistance element with oppositely extending leads embedded in a thermal mass held within a tubular shell closed at the opposite ends by cap members, comprising the steps of mixing hollow members with a settable binder to form the thermal mass,
assembling one end cap with the tubular shell,
filling the tube with the thermal mass,
inserting the resistance element through the open end of the shell,
assembling the second end cap with the tubular shell,
and
setting said binder to interconnect the hollow members to each other and to the resistance element, the end caps and the shell.
(References on following page) References Cited UNITED STATES PATENTS Lien 29-6 14 6 FOREIGN PATENTS 475,667 11/1937 Great Britain.
REUBEN EPSTEIN, Primary Examiner.
5 US. 01. X.R.
US539531A 1966-04-01 1966-04-01 Resistor unit and method of making same Expired - Lifetime US3440589A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US53953166A 1966-04-01 1966-04-01

Publications (1)

Publication Number Publication Date
US3440589A true US3440589A (en) 1969-04-22

Family

ID=24151620

Family Applications (1)

Application Number Title Priority Date Filing Date
US539531A Expired - Lifetime US3440589A (en) 1966-04-01 1966-04-01 Resistor unit and method of making same

Country Status (1)

Country Link
US (1) US3440589A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3728660A (en) * 1969-11-21 1973-04-17 Thermo Couple Prod Co Inc Temperature responsive resistance element for a temperature sensitive control sensor
US4001655A (en) * 1974-01-10 1977-01-04 P. R. Mallory & Co., Inc. Compressible intermediate layer for encapsulated electrical devices
US4092487A (en) * 1975-02-11 1978-05-30 Nippondenso Co., Ltd. Resin-sealed electrical device
US4200077A (en) * 1977-10-15 1980-04-29 Robert Bosch Gmbh Glow plug structure
US4462020A (en) * 1981-08-25 1984-07-24 Harris Corporation Miniature resistive temperature detector and method of fabrication
US4546209A (en) * 1983-03-24 1985-10-08 U.S. Philips Corporation Electrical component comprising an electric circuit element having leads which are centered with respect to the walls of a housing
DE3505517C1 (en) * 1985-02-18 1986-09-04 Türk & Hillinger GmbH, 7200 Tuttlingen Electric heating device, in particular for plastics injection nozzles
DE3506759C1 (en) * 1985-02-26 1986-09-18 Türk & Hillinger GmbH, 7200 Tuttlingen Self-regulating electrical heating body
US4641423A (en) * 1974-10-21 1987-02-10 Fast Heat Element Manufacturing Co., Inc. Method of making electrically heated nozzles and nozzle systems
US6487367B2 (en) * 2001-04-05 2002-11-26 C.T.R. Consultoria Técnica e Representacöes Lta. Evaporation device for volatile substances
US20040033171A1 (en) * 2000-07-27 2004-02-19 The Procter & Gamble Company Systems and devices for emitting volatile compositions
US20040265164A1 (en) * 2000-07-27 2004-12-30 The Procter & Gamble Company Methods, devices, compositions, and systems for improved scent delivery
USRE40464E1 (en) 2001-04-05 2008-08-26 C.T.R. Evaporation device for multiple volatile substances
US8061628B1 (en) 2000-07-27 2011-11-22 The Procter & Gamble Company Systems and devices for emitting volatile compositions

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB475667A (en) * 1936-06-06 1937-11-24 Elliott Brothers London Ltd Improvements in or relating to resistance thermometer elements
US2332392A (en) * 1941-11-19 1943-10-19 Clarke C Minter Current regulator tube
US2588014A (en) * 1949-04-27 1952-03-04 Lewis Eng Co Resistance thermometer bulb
US2802925A (en) * 1954-03-13 1957-08-13 Degussa Resistance thermometer
US2818482A (en) * 1953-04-21 1957-12-31 Victory Engineering Corp High speed clinical thermometers
US2957153A (en) * 1959-08-12 1960-10-18 Engellard Ind Inc Resistance temperature detector
US2962684A (en) * 1958-11-12 1960-11-29 Gen Electric Sheathed electric heating units and methods of making the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB475667A (en) * 1936-06-06 1937-11-24 Elliott Brothers London Ltd Improvements in or relating to resistance thermometer elements
US2332392A (en) * 1941-11-19 1943-10-19 Clarke C Minter Current regulator tube
US2588014A (en) * 1949-04-27 1952-03-04 Lewis Eng Co Resistance thermometer bulb
US2818482A (en) * 1953-04-21 1957-12-31 Victory Engineering Corp High speed clinical thermometers
US2802925A (en) * 1954-03-13 1957-08-13 Degussa Resistance thermometer
US2962684A (en) * 1958-11-12 1960-11-29 Gen Electric Sheathed electric heating units and methods of making the same
US2957153A (en) * 1959-08-12 1960-10-18 Engellard Ind Inc Resistance temperature detector

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3728660A (en) * 1969-11-21 1973-04-17 Thermo Couple Prod Co Inc Temperature responsive resistance element for a temperature sensitive control sensor
US4001655A (en) * 1974-01-10 1977-01-04 P. R. Mallory & Co., Inc. Compressible intermediate layer for encapsulated electrical devices
US4641423A (en) * 1974-10-21 1987-02-10 Fast Heat Element Manufacturing Co., Inc. Method of making electrically heated nozzles and nozzle systems
US4092487A (en) * 1975-02-11 1978-05-30 Nippondenso Co., Ltd. Resin-sealed electrical device
US4200077A (en) * 1977-10-15 1980-04-29 Robert Bosch Gmbh Glow plug structure
US4462020A (en) * 1981-08-25 1984-07-24 Harris Corporation Miniature resistive temperature detector and method of fabrication
US4546209A (en) * 1983-03-24 1985-10-08 U.S. Philips Corporation Electrical component comprising an electric circuit element having leads which are centered with respect to the walls of a housing
DE3505517C1 (en) * 1985-02-18 1986-09-04 Türk & Hillinger GmbH, 7200 Tuttlingen Electric heating device, in particular for plastics injection nozzles
DE3506759C1 (en) * 1985-02-26 1986-09-18 Türk & Hillinger GmbH, 7200 Tuttlingen Self-regulating electrical heating body
US20050201944A1 (en) * 2000-07-27 2005-09-15 The Procter & Gamble Company Systems and devices for emitting volatile compositions
US8016207B2 (en) 2000-07-27 2011-09-13 The Procter & Gamble Company Systems and devices for emitting volatile compositions
US20040265164A1 (en) * 2000-07-27 2004-12-30 The Procter & Gamble Company Methods, devices, compositions, and systems for improved scent delivery
US8721962B2 (en) 2000-07-27 2014-05-13 The Procter & Gamble Company Methods, devices, compositions and systems for improved scent delivery
US20080069725A1 (en) * 2000-07-27 2008-03-20 The Procter & Gamble Company Systems and devices for emitting volatile compositions
US8651395B2 (en) 2000-07-27 2014-02-18 The Procter & Gamble Company Systems and devices for emitting volatile compositions
US7981367B2 (en) 2000-07-27 2011-07-19 The Procter & Gamble Company Systems and devices for emitting volatile compositions
US20040033171A1 (en) * 2000-07-27 2004-02-19 The Procter & Gamble Company Systems and devices for emitting volatile compositions
US8061628B1 (en) 2000-07-27 2011-11-22 The Procter & Gamble Company Systems and devices for emitting volatile compositions
US8119064B2 (en) 2000-07-27 2012-02-21 The Proctor & Gamble Company Methods, devices, compositions, and systems for improved scent delivery
US8210448B2 (en) 2000-07-27 2012-07-03 The Procter & Gamble Company Systems and devices for emitting volatile compositions
US8349251B2 (en) 2000-07-27 2013-01-08 The Procter & Gamble Company Methods, devices, compositions, and systems for improved scent delivery
USRE44312E1 (en) 2001-04-05 2013-06-25 Pedro Queiroz Vieira Evaporation device for multiple volatile substances
USRE40464E1 (en) 2001-04-05 2008-08-26 C.T.R. Evaporation device for multiple volatile substances
US6487367B2 (en) * 2001-04-05 2002-11-26 C.T.R. Consultoria Técnica e Representacöes Lta. Evaporation device for volatile substances

Similar Documents

Publication Publication Date Title
US3440589A (en) Resistor unit and method of making same
US2961625A (en) Thermistor probe
US4821010A (en) Thermal cutoff heater
US2558798A (en) Electrical resistor
JPH0359558B2 (en)
US6884967B1 (en) Multi-layer ceramic heater element and method of making same
EP0315571A2 (en) Thermal cutoff and resistance heater assembly
US2775742A (en) Electromagnet coil assembly
US6084212A (en) Multi-layer ceramic heater element and method of making same
US6184497B1 (en) Multi-layer ceramic heater element and method of making same
US6457229B1 (en) Ignition device for internal combustion engine
JP4849765B2 (en) Multilayer ceramic heater element and manufacturing method thereof
US4730103A (en) Compact PTC resistance heater
US3355687A (en) Variable inductor with a reinforced coil form
US3013181A (en) Combination spark plug and electrical element
US4823064A (en) Quick reset motor starting device
US3339090A (en) Piezoelectric impact fuze
US4190810A (en) Gas laser with resistive strip arrangement for starting enhancement
GB2027206A (en) Proximity detector
US2833950A (en) Spark plug
US2962685A (en) High voltage resistor
US3169237A (en) Electrical resistor device
US3041567A (en) Electric heater
US3136972A (en) Encapsulated resistor
SU1190422A1 (en) Power volume resistor