US3350888A - Method of increasing strength of frozen soil - Google Patents

Method of increasing strength of frozen soil Download PDF

Info

Publication number
US3350888A
US3350888A US473427A US47342765A US3350888A US 3350888 A US3350888 A US 3350888A US 473427 A US473427 A US 473427A US 47342765 A US47342765 A US 47342765A US 3350888 A US3350888 A US 3350888A
Authority
US
United States
Prior art keywords
soil
reservoir
filler
admixture
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US473427A
Inventor
Adam L Shrier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Priority to US473427A priority Critical patent/US3350888A/en
Priority claimed from US475237A external-priority patent/US3289425A/en
Priority to FR69931A priority patent/FR1501774A/en
Priority to ES0329265A priority patent/ES329265A1/en
Application granted granted Critical
Publication of US3350888A publication Critical patent/US3350888A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/005Underground or underwater containers or vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0119Shape cylindrical with flat end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/032Orientation with substantially vertical main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0308Radiation shield
    • F17C2203/0312Radiation shield cooled by external means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0673Polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0678Concrete
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/068Special properties of materials for vessel walls
    • F17C2203/0695Special properties of materials for vessel walls pre-constrained
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/046Localisation of the removal point in the liquid
    • F17C2223/047Localisation of the removal point in the liquid with a dip tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/04Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by other properties of handled fluid after transfer
    • F17C2225/042Localisation of the filling point
    • F17C2225/046Localisation of the filling point in the liquid
    • F17C2225/047Localisation of the filling point in the liquid with a dip tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0142Applications for fluid transport or storage placed underground
    • F17C2270/0144Type of cavity
    • F17C2270/0147Type of cavity by burying vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0142Applications for fluid transport or storage placed underground
    • F17C2270/0144Type of cavity
    • F17C2270/0149Type of cavity by digging cavities

Description

Nov. 7, 1967 A. L. SHRIER 3,350,888
METHOD OF INCREASING STRENGTH OF FROZEN SOIL Filed July 20, 1965 FIGURE I FIGURE 2 A. L. SHE/ER mvernon I I 1 BY "'10 a? f PATENT ATTORNEY United States Patent 3,350,888 METHOD OF INCREASING STRENGTH F FROZEN SOIL Adam L. Shrier, Orange, N.J., assignor to Esso Research and Engineering Company, a corporation of Delaware Filed July 20, 1965, Ser. No. 473,427
Claims. (CI. 61-36) ABSTRACTOF THE DISCLOSURE This discovery concerns a method for increasing the structural strength or" frozen soil compositions and a method of using such composition to construct an underground reservoir.
It has long been recognized that underground reservoirs can be used'for storing liquefied gases such as liquefied natural gas, liquefied propane gas, and the like. Underground reservoirs have already been proposed wherein the reservoir is lined with a material, e.g., a steel liner, that is impervious to the product stored. In addition, the walls of such reservoirs are often lined with reinforced concrete to provide structural strength to support the roof and to prevent the earth walls from crumbling into the reservoir. Such constructions are expensive and thus are undesirable.
' In some structurally strong soils, a reservoir can be excavated and thereafter be given structural strength by saturating the soil around the reservoir and freezing the saturatedsoil. The frozen, saturated soil walls of the reservoir are strong enough to support the roof of the reservoir and areimpervious to the liquefied gas contained in the reservoir. Such construction is relatively inexpen sive.
Unfortunately, this vtype of construction is not suitable for' structurally weak soils such as sand or silt. In many instances such construction is altogether unsuitable. The saturated soil construction can be used in certain instances in locations having structurally weak soil provided the reservoir is properly designed. For example, the walls of the reservoir could be slanted rather than vertical to reduce the chances of the soil walls crumbling into the reservoir ,and to obtain sufficient structural strength to support the roof. This type of construction is economically unattractive because a much larger roof is required for a reservoir of a given volume.
A method of increasing the strength of soil has now been discovered that permits vertical wall construction. The discovery is particularly applicable to structurally weak soils such as sand, silt, or the like, but also has application to stronger soils.
In accordance with the instant discovery, soil is admixed with a fibrous, inert filler in a ratio of soil to filler in a range of from about 1:20 to 100:1 by weight and preferably in a soil to filler ratio in the range of from about 1:1 to 50:1 by weight. A liquid is added to the soil-filler admixture in an amount at least sufficient to saturate the admixture. The saturated admixture is then frozen.
The materials that are admixed with soil are fibrous fillers, such as spun glass, plastic fibers, rock wool, shredded hemp, expanded mica, sawdust (wood fiber),
pact fillers in the form of beads, chunks, and fragments does not produce the desired effect. The ratio of fiber length to the diameter of the fiber should be at least 5:1 and preferably higher than 15:1. The fibers should be as long as the circumstances permit. The strength of the resulting soil composition is directly proportional to the length of the fibers. However, the fibers must not be too long or admixing of the soil and fiber will be difiicult, and/or the pumping, if necessary, of the admixture Will be difiicult or perhaps even impossible. For the applications suggested herein, the fibers should have an average length of from about /8 inch to 6 inches.
It is desirable to mix the soil and filler until a homogeneous admixture is obtained. Although homogeneity is to be sought, it may be difficult with theequipment at hand to achieve. In any event, the soil and filler should be thoroughly mixed to avoid having segregated pockets of filler or soil.
The mixing step can be performed in conventional equipment. It may be desirable to add. 1iquid,even an excess of liquid, during the mixing step. Thereafter the excess liquid can either be evaporated from the admix.
ture or it can be left in the slurry of the slurry to the construction site.
Almost any liquid is suitable for the process hereindescribed provided that it can be frozen with the refrigeration means that are available at the construction site.
to facilitate pumping Water is preferred because of its low cost and availability.
material may result from settling of the soil and filler or from segregation of the soil from filler.
Freezing the saturated soil-filler admixture yields a structurally strong material. In some instances the strength of the composition can be further increased by adding a wetting agent to the system. If the soil and/or filler are not wet by the'liquid used to saturate the composition, small air bubbles can form on the external surfaces or in the pores of the soil and/ or filler thus causing weak spots in the frozen composition. If a small amount of a wetting agent, e.g., from about 0.02 to 2.0 wt. percent, based on the weightof liquid, is added to the liquid, this problem is obviated. Conventional wetting agents are suitable. For example, if water is the liquid, suitable wetting agents include anionic agents such as sodium benzene sulfonate, short-chain C C alkyl aryl sulfonates, shoitchain dialkyl sulfosuccinates, and short-chain alkyl sulfates; and nonionic compounds such as C -C fatty acid polyglycol esters, and alkyl aryl polyglycol ethers and their derivatives can be employed. These Wetting agents are preferred, but are not the only agents that can be employed. Other agents can be used without departing from the scope of this discovery.
The composition produced by the method hereindescribed has widespread application in extremely cold areas and in areas where adequate refrigeration is readily available. It is particularly suited for forming impervious structural elements for storage reservoirs for liquefied gases. The composition is sufficiently strong to permit vertical construction of reservoirs even in those areas having structurally weak soils. In some instances, it will be desirable to utilize the method described herein to increase the strength of soil that is relatively strong as compared with sand or silt.
The composition produced by the method hereindescribed can be used as the load bearing, vertical walls in an underground reservoir. For example, in a location having sandy or silty soil, a reservoir of the desired dimensions can be excavated. Part of the soil removed during excavating is admixed with a filler, e.g., grass or other inexpensive fibrous material, and the admixture is saturated with water as described hereinabove. The walls of the reservoir are then lined with the saturated admixture. The lining should be sufiiciently thick to support both the soil adjacent the lining and the roof which oftentimes is constructed of prestressed concrete. The required thickness will vary according to the weight of the roof and the strength of the soil adjacent the lining and may vary from top to bottom, but should generally be at least /2 foot, and preferably, within the range of from 1 to 6 feet.
The lining may also be applied to the floor of the reservoir; it is usually, however, not required except to make the floor impermeable to the material stored in the reservoir. Impermeability of the floor can be achieved more easily by merely saturating the ground with water immediately prior to filling the reservoir with the liquefied gas. The water freezes and forms a barrier.
The lining can be frozen into place in a variety of ways. For example, as shown in the cross-sectional view depicted in FIGURE 1, a form, e.g., wooden, enclosing a volume equal to the volume of the desired reservoir is constructed within the excavation.
A space is left between the sides 1 and 3 of the form and the earth walls 5 and 7 for the installation of the freeze pipes 9, 10, 11, 12, 13, 14, and 15. A plurality of freeze pipes is placed around the form at sufficiently close intervals to solidly freeze the lining material that is subsequently poured into the space between the form walls and the earth walls. The freeze pipes are fed by a header 16. FIGURE 1 shows the cavity surrounding the form to be partially filled with the lining composition 17.
After the cavity surrounding the form has been filled, or as it is being filled, a refrigerant is pumped into header 16 to supply the freeze pipes. As soon as the lining composition has frozen, the form can be removed and as shown in FIGURE 2, a roof 20 constructed of prestressed concrete or other suitable material.
The reservoir is then filled with a liquefied gas through conduit 21. As soon as the reservoir is filled, the refrigerant can be removed from the freeze pipes because the liquefied gas in the reservoir will provide adequate refrigeration for the purpose of maintaining the lining in a frozen condition. When the liquefied gas is removed from the reservoir via conduit 23, refrigerant should again be pumped into the freeze pipes.
The method described herein for freezing the lining composition in place is only one of many conceivable methods. Other methods can be devised by those skilled in the art. For example, one could line the walls of the reservoir without using the wooden form or the freeze pipes by filling a pliant container, e.g., a polyethylene bag, with liquefied natural gas and surrounding the container with the lining composition.
The results of various qualitative impact tests that were performed indicated that the discovered concept described herein is effective in increasing the strength of frozen soil samples. For example, it was found that a frozen composition comprising grams of sand, 1 gram of hemp 0/2 inch shred), and 30 cubic centimeters of water was much stronger than a frozen composition consisting of sand and water in the same proportions.
The discovery and methods for utilizing the discovery have been described herein with a certain degree of particularity. Deviations can be made without departing from the basic concepts described herein.
What is claimed is:
l. A method of increasing the strength of a frozen soil composition comprising mixing soil with a fibrous filler in a ratio of soil to filler in the range of from about 100:1 to 1:20 to increase the strength of the resulting composition, adding a liquid to the soil-filler admixture in an amount at least sufficient to saturate said admixture, and freezing the saturated admixture.
2. A method according to claim 1 wherein a wetting agent is added to the com-position before freezing in an amount sulficient to ensure that the soil and filler particles are wet by the liquid.
3. A method of increasing the strength of a structurally weak soil comprising: mixing said structurally weak soil with a fibrous filler in a ratio of soil to filler in the range of from about 100:1 to 1:20, adding water to the soilfiller admixture in an amount sufficient to saturate said admixture, and freezing the saturated admixture.
4. A method of constructing a structurally strong underground reservoir comprising lining the soil walls of a cavity with a composition comprising an admixture of soil and a fibrous filler, wherein the ratio of soil to filler is in the range of about 100:1 to 1:20, and a liquid in an amount sutficient to at least saturate said admixture; and freezing the saturated admixture to form a structurally strong lining in the cavity.
5. A method of constructing a structurally strong underground reservoir in a location having sandy soil comprising: (1) lining the vertical walls of an underground cavity with a composition comprising a water saturated, substantially homogeneous admixture of sandy soil and fibrous filler, wherein the ratio of the soil to filler is in the range of about 100 to 1 to l to 20, and (2) freezing said admixture to form a structurally strong lining in the cavity.
References Cited UNITED STATES PATENTS 2,961,840 11/1960 Goldtrap 6'10.5 X 3,183,675 5/1965 Schroeder 61--36.1
DAVID J. WILLIAMOWSKY, Primary Examiner.
JACOB SHAPIRO, Examiner.

Claims (1)

1. A METHOD OF INCREASING THE STRENGTH OF A FROZEN SOIL COMPOSITION OMPRISING MIXING SOIL WITH A FIBROUS FILLER IN A RATIO OF SOIL TO FILLER IN THE RANGE OF FROM ABOUT 100:1 TO 1:20 TO INCREASE THE STRENGTH OF THE RESULTING
US473427A 1965-07-20 1965-07-20 Method of increasing strength of frozen soil Expired - Lifetime US3350888A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US473427A US3350888A (en) 1965-07-20 1965-07-20 Method of increasing strength of frozen soil
FR69931A FR1501774A (en) 1965-07-20 1966-07-19 A method of making a composition with high structural strength when frozen
ES0329265A ES329265A1 (en) 1965-07-20 1966-07-19 Method for producing a frozen structurally resistant frozen composition. (Machine-translation by Google Translate, not legally binding)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US473427A US3350888A (en) 1965-07-20 1965-07-20 Method of increasing strength of frozen soil
US475237A US3289425A (en) 1965-07-27 1965-07-27 Ice reinforcement

Publications (1)

Publication Number Publication Date
US3350888A true US3350888A (en) 1967-11-07

Family

ID=27044132

Family Applications (1)

Application Number Title Priority Date Filing Date
US473427A Expired - Lifetime US3350888A (en) 1965-07-20 1965-07-20 Method of increasing strength of frozen soil

Country Status (3)

Country Link
US (1) US3350888A (en)
ES (1) ES329265A1 (en)
FR (1) FR1501774A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3464219A (en) * 1968-04-17 1969-09-02 Sun Oil Co Storage of normally gaseous material in subterranean caverns
US3818712A (en) * 1972-07-10 1974-06-25 Atlantic Richfield Co Frozen embankments
US3841404A (en) * 1973-07-02 1974-10-15 Continental Oil Co Subsidence control process for wells penetrating permafrost
US4377353A (en) * 1978-08-03 1983-03-22 Granges Ab Method of selective underground mining and stabilization of rock cavities
US4465402A (en) * 1982-02-19 1984-08-14 Nederlandse Centrale Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek Method for removing undesired components from the soil
US4860544A (en) * 1988-12-08 1989-08-29 Concept R.K.K. Limited Closed cryogenic barrier for containment of hazardous material migration in the earth
US4974425A (en) * 1988-12-08 1990-12-04 Concept Rkk, Limited Closed cryogenic barrier for containment of hazardous material migration in the earth
US5050386A (en) * 1989-08-16 1991-09-24 Rkk, Limited Method and apparatus for containment of hazardous material migration in the earth

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2961840A (en) * 1957-08-12 1960-11-29 Phillips Petroleum Co Storage of volatile liquids
US3183675A (en) * 1961-11-02 1965-05-18 Conch Int Methane Ltd Method of freezing an earth formation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2961840A (en) * 1957-08-12 1960-11-29 Phillips Petroleum Co Storage of volatile liquids
US3183675A (en) * 1961-11-02 1965-05-18 Conch Int Methane Ltd Method of freezing an earth formation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3464219A (en) * 1968-04-17 1969-09-02 Sun Oil Co Storage of normally gaseous material in subterranean caverns
US3818712A (en) * 1972-07-10 1974-06-25 Atlantic Richfield Co Frozen embankments
US3841404A (en) * 1973-07-02 1974-10-15 Continental Oil Co Subsidence control process for wells penetrating permafrost
US4377353A (en) * 1978-08-03 1983-03-22 Granges Ab Method of selective underground mining and stabilization of rock cavities
US4465402A (en) * 1982-02-19 1984-08-14 Nederlandse Centrale Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek Method for removing undesired components from the soil
US4860544A (en) * 1988-12-08 1989-08-29 Concept R.K.K. Limited Closed cryogenic barrier for containment of hazardous material migration in the earth
US4974425A (en) * 1988-12-08 1990-12-04 Concept Rkk, Limited Closed cryogenic barrier for containment of hazardous material migration in the earth
US5050386A (en) * 1989-08-16 1991-09-24 Rkk, Limited Method and apparatus for containment of hazardous material migration in the earth

Also Published As

Publication number Publication date
FR1501774A (en) 1967-11-18
ES329265A1 (en) 1967-05-01

Similar Documents

Publication Publication Date Title
US5494514A (en) Weather resistant soil cement
Jalal et al. Foam concrete
US4352693A (en) Capsules containing cementitious compositions
CA2030628A1 (en) Pumpable cement grout
US3350888A (en) Method of increasing strength of frozen soil
CN103215952A (en) High polymer anchoring grouting method
CS277392B6 (en) Process of consolidating and sealing geological and artificially formed rock and earth formations
CN106243307A (en) A kind of mining macromolecule reinforcement material, filing provision and reinforcement means
KR100451093B1 (en) Lightweight fill materials using waste styrofoam beads
US3618680A (en) Method for drilling in permafrost
KR101235797B1 (en) Light weight fill materials with fluidity and resistance to segregation
CN110397091A (en) Ancient building shock insulation barrier
RU2653193C1 (en) Method of the pile foundation arrangement in the permafrost soil
JP2831441B2 (en) Stabilized soil and construction method using stabilized soil
US20220048817A1 (en) Low buoyancy cellular concrete
KR20000053728A (en) Solidified composition to strengthen weak stratum and constructing method using the same
KR100451092B1 (en) Lightweight fill method applying lightweight fill materials using waste styrofoam beads
KR100462529B1 (en) Lightweight fill method applying lightweight fill materials using waste styrofoam beads
JPH0826538B2 (en) Sediment backfilling method
US3289425A (en) Ice reinforcement
Sutmoller An introduction to low-density cellular concrete and advanced engineered foam technology
JP2005264455A (en) Underground cavity filling method and filler for underground cavity
KR102594564B1 (en) Device for reinforcing sloped ground and method of reinforcing sloped ground by using the same
Biggar et al. Laboratory and field performance of high alumina cement-based grout for piling in permafrost
RU2779153C1 (en) Method for protecting inclined soil surface from erosion