US3350176A - Hydrogen generator - Google Patents

Hydrogen generator Download PDF

Info

Publication number
US3350176A
US3350176A US354476A US35447664A US3350176A US 3350176 A US3350176 A US 3350176A US 354476 A US354476 A US 354476A US 35447664 A US35447664 A US 35447664A US 3350176 A US3350176 A US 3350176A
Authority
US
United States
Prior art keywords
hydrogen
fuel
steam
pressure
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US354476A
Inventor
Robert B Green
Hugo H Geissler
Stanley S Kurpit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Catalysts LLC
Engelhard Industries Inc
Original Assignee
Engelhard Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Engelhard Industries Inc filed Critical Engelhard Industries Inc
Priority to US354476A priority Critical patent/US3350176A/en
Priority to FR9386A priority patent/FR1428690A/en
Priority to GB12110/65A priority patent/GB1082260A/en
Priority to DE19651567473 priority patent/DE1567473A1/en
Priority to CH410265A priority patent/CH451887A/en
Application granted granted Critical
Publication of US3350176A publication Critical patent/US3350176A/en
Assigned to ENGELHARD CORPORATION reassignment ENGELHARD CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: PHIBRO CORPORATION, A CORP. OF DE
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S48/00Gas: heating and illuminating
    • Y10S48/05Diffusion membrane for gas reaction or separation

Definitions

  • This invention relates to apparatus for the production of hydrogen. More particularly, the invention concerns novel compact hydrogen generating apparatus which can be readily designed as a selfcontained hydrogen generator useful in connection with commercial and industrial processes to supply hydrogen. The invention is especially concerned with apparatus for hydrogen generation which is completely self-contained and may be employed as a portable hydrogen generator having significant commercial and military value.
  • the present invention constitutes improvements in the method and apparatus of the aforesaid application.
  • An important feature of the present invention is the utilization of the residual undiffused gases separated from the reforming reaction zone as a source of providing the total energy requirements of the system. Heat obtained by the combustion of such unditfused gases provides the heat required for vaporization of fuel and water, as well as providing the heat required for the endothermic hydrocarbon steam reforming reaction. It may also exert the driving force for pressurizing the system by using the vaporization of the water for such purpose.
  • a Ifurther advantage of the present invention resides in the utilization of a unique compartmented Water-fuel vessel wherein steam generated by use of such waste combustion gases provides the pressure necessary to feed fuel under pressure to the system.
  • a further aspect of the present invention is the utilization of the pressure and/or temperature of the steam generator to control the amount of heat transferred from the Waste combustion gases to the steam generator, so as to provide positive control of the over-all system at any desired operating level.
  • a further feature of the present invention is the utilization of the pressure of the steam generator operating through regulators and feed orifices against a nal effluent orifice to control the overall operation of the hydrogen generator.
  • Another aspect is the aspiration of the required combustion air into the combustion chamber by means of the pressure of the reactor.
  • Hydrogen generators in accordance with this invention can be built with capacities of about 1 to 2 s.c.f.h. and greater. As a matter of practicality, with units of about 6-10 s.c.f.h. capacity, the surface to volume relationship of the steam boiler and the start-up time associated with heating the large mass of water in such boiler may indicate the desirability of using other means of providing pressurization and conducting the vaporization. In such case, a hand pump or miniature pumps or other suitable means may be used for pressurization, still utilizing the heat obtained from the residual gases for vaporizat'ion.
  • hydrocarbon '3,350,176 Patented Oct. 31, 1967 r ICC fuel and water are reacted in the presence of a steam reforming catalyst.
  • the reforming reaction produces hydrogen, carbon monoxide, carbon dioxide and methane.
  • the hydrogen is partially withdrawn through a diffusion element, and the remaining hot reactor gases, when used directly as a fuel, supply the heat requirements for the process including steam generation and a sufficient allowance for radiation and convection losses and losses in the ue gas.
  • the heat may also provide the driving force for pressurizing .the system.
  • no further purification or processing of the product hydrogen stream is required.
  • the resulting apparatus therefore can be extremely compact as well as highly efficient, and lends itself well to miniaturization.
  • the apparatus of .the present invention operates as follows: Fuel and steam flow from their respective tanks, are metered, pre-mixed and pass through a vaporizer-preheater coil before entering the reformer. Flue gases passing over the underside of the water-fuel tank, which may be finned to improve heat transfer or, alternatively, through a heat exchange coil which may be positioned in the water tank, provide sufficient heat to generate the steam.
  • the liquid fuel is pressurized by means of auxiliary air pressure or, preferably, by a exible diaphragm disposed between the fuel and steam chambers.
  • Flue gases passing over the vaporizer preheater coil supply the heat to complete the vaporizat-ion of fuel and preheat the fuel-steam mixture to reactor entry temperature.
  • fuel-steam mixture enters the reactor, where, in the presence of steam reforming catalyst, and utilizing heat transferred from the combustion zone, it is reformed to carbon dioxide, carbon monoxide, hydrogen and methane.
  • the product hydrogen is removed through the diffusion elements and passes to the hydrogen delivery line, optionally through a final cooling coil.
  • the residual fuel gas enters an operational burner where it is burned. Air is -aspirated into the combustion zone by the pressure energy of the residual -fuel gas passing through an aspirator orifice which maintains the system pressure.
  • the combustion products ow through the reactor, the preheating coil, steam generator and out the exhaust.
  • a unitary hydrogen generator 11 consisting of a reactor-diffuser vessel 12 and a fuel, water and steam generator tank 13 mounted within the generator and in heat exchange relationship with central flue 14 of the reactor-diffuser.
  • reactor diffuser 12 consists of annular concentric compartments.
  • the inner compartment is a reaction zone 21 which is sealed from the hydrogen collection zone 17 by wall 20 and header 16.
  • Diffusion element 15 is positioned in hydrogen collection zone 17.
  • diffusion element 1S is in the form of a suspended coil. Diffusion element 15 lin the reactor, separated by permeation through the diffusion tubes and collected in chamber 17, exits'by line 18.
  • Line 18 is provided with pressure relief valve 19 and valve 22 which is of the open-closed type.
  • Catalyst 24 which is effective in steam reforming hydrocarbons, for example gasoline, kerosene, JP-4, to a mixture containing hydrogen, is provided in reaction zone 21.
  • the outlet of diffusion coil communicates with outlet line 27 through which residual gases from the reforming reaction after being depleted of product hydrogen (by diffusion into diffusion chamber 17) pass to aspirator 28.
  • Aspirator 28 comprises an orifice which provides the back pressure against which the entire H2 generator is operated. Further, the llow of gases through this aspirator provides the motive power to inspirate the combustion air into the system. The combustion then takes place in combustion chamber 14. Combustion of these gases in flue 14 provides heat for maintaining the catalyst bed at the desired reforming temperature and provides necessary heat for preheating feed in coil 53 and generating steam in tank 13 hereinafter more fully described. Insulation 25 surrounds the reactor-diffuser.
  • a suitable embodiment provides for the steam generator tank to be so placed in the generator that hot flue gas impinges on the underside 31 of the tank 13 which, if desired, may be of finned construction to provide heat transfer characteristics. Openings are provided in the generator wall as at 32 by which llue gas passes to the atmosphere.
  • hot flue gases from flue 14 can be passed by conduit through a coil (not shown) disposed within water chamber 33 of the steam ⁇ generator in order to heat the water and provide necessary steam pressure.
  • the degree of heat transferred to tank 13 is controlled by temperature sensing device 78 which operates damper 77. When the temperature rises above a predetermined set point, some of the flue gas is bypassed.
  • a temperature sensing device 78 could be a pressure sensing device positioned inthe vapor space of tank 13.
  • the fuel-water-steam generator tank 13 is divided into two compartments, water compartment 33 and fuel compartment 34, by a flexible diaphragm 36 which is impervious to steam and resistant to the action of gasoline or kerosene-like fuels.
  • flexible diaphragm 36 is composed of metal, eg., thin stainless steel sheet, plastic such ⁇ as Teflon or the like, or hydrocarbon-resistant rubber, e.g. neoprene.
  • Fuel compartment 34 is provided with -fuel fill nozzle 37 and with pressure-resistant closure 38.
  • Water chamber 33 is provided with water fill-nozzle 39 for introducing Water to the chamber, and with pressureresistant closure 41.
  • the combination water-steam generator tank will have to be emptied periodically by spilling out the residue of water left in it. This emptying is preferably done at the end of every run. If the quality of the water is poo-r, scale will lay down on the sides and bottom of the steam generator over along period of time. When the scale deposit is of such magnitude as to reduce the elliciency of the hydrogen generator below a tolerable level, the scale is removed from the steam generator. This is easily accomplished by removing the quick fastening closure 42 that holds the upper and lower chambers together and removing the upper chamber and diaphragm, which will expose the lower chamber for cleaning.
  • line 61 is provided for passage of fuel in liquid form and under pressure to pressure control valve 62 which valve can be manually controlled.
  • Line 61 is further provided with on-off valve 63.
  • Fuel under controlled pressure as indicated by pressure indicator 64 passes by line 65 to precalibrated orifice 66 and thence by line 67 to fuelsteam mixer 51.
  • the hydrogen generator of the figure is further provided with auxiliary or start-up burner 71 which is of the blow-torch type, provided with manual piston 72 for pressurizing auxiliary fuel 73 of the hydrocarbon type therein, and having fuel feed orifice 74 and adjustable air inlet means 76.
  • auxiliary or start-up burner 71 which is of the blow-torch type, provided with manual piston 72 for pressurizing auxiliary fuel 73 of the hydrocarbon type therein, and having fuel feed orifice 74 and adjustable air inlet means 76.
  • a typical hydrogen generator of the type described herein can be operated as a portable back-pack type generator designed to deliver approximately 4 s.c.f.h. of hydrogen (referred to 1 atm. and 60 F.). Such a unit has been designed having an over-all volu-me of 2 cubic feet and weighing about 20 pounds. Fuel and water for start-up and 10 hours operation weigh approximately 6 pounds.
  • the combustion chamber is fabricated from an Inconel X-750 tube having a 12" length and 0.0322 inch wall thickness.
  • a 3-ineh O.D. tube of 304 stainless steel having a wall thickness of 0.05 inch positioned concentric to the inner combustion chamber provides the annular reaction chamber.
  • the coiled diffusion tubes of 1/sinch O.D. comprised palladium-silver alloy of 4-mil wall thickness.
  • the reactor-diffuser is insulated with 2-inch Kaowool designed to provide the required insulation at a minimum weight and volume.
  • a flexible diaphragm of plastic-coated elastomer Fairprene is employed.
  • Initial start-up is provided by pressurizing start-up fuel in start-up burner 71 by means of manual piston 72. It should be understood that alternate methods of start-up can be provided, e.g. by providing a fuel line from the fuel compartment of the fuel-steam pressure generator to the start-up burner.
  • the burning of fuel in the start-up burner provides heat to bring the reactor up to the start-up temperature of between about 1000'l and 1500 F.
  • water in the steam generator tank 33 is vaporized and is passed by lines 43, 52 and 54, in the absence of fuel, to the reforming catalyst.
  • the apparatus permits a brief steam (and air from pressurization) cleaning of the reforming catalyst to remove carbon deposits from previous operations and to thus regenerate the activity of the catalyst.
  • reactor pressures of the order of 150 p.s.i.g. are used. With the reactor pressurelixed in this manner, a suflcient ow of fuel and the proportionate ow of steam to maintain the reactor pressure are admitted to the unit. This is done by controlling the pressure drop across calibrated xed area réelles 49 and 66.
  • the quantity of hydrogen delivered by the generator can be manually throttled by reducing the pressure drops across the fuel and steam feed orifices. With less material flowing into the reactor and through the eluent réelle, a lower reactor pressure and hence a lower hydrogen delivery rate will result.
  • the steam feed is provided at a pressure of about 160 p.s.i.g. (as indicated by pressure indicator 48), and the fuel feed at a pressure of 160 p.s.i.g. (as indicated by pressure indicator 64).
  • the rate of steam ow to the generator will be in the range of 3 to 4 pounds per hour per pound of catalyst at a steam/fuel ratio of about 3:1.
  • the hydrocarbon fuel employed in the practice of the present invention may comprise normally liquid hydrocarbons, as well as liquiable natural gas hydrocarbons, such as propanes and butanes.
  • Liquid hydrocarbon boiling in the gasoline, kerosene and gas oil boiling ranges, for example, BTX-Udex raflnate, JP-4 fuel, kerosene. and the like can be used as fuel.
  • Suitable catalysts for the production of hydrogen by catalytic steam reforming of hydrocarbon feeds are Well known and, in general, should possess high activity and good physical strength.
  • Platinum group metal catalysts e.g. Pt, Pd, Rh, Ru, Os, Ir, particularly Pt and Rh and combinations thereof have been found to be eifective catalysts.
  • the catalyst metals are supported on refractory oxides, e.g. alumina, silica, thoria and combinations thereof. Calcium and magnesium oxides may be added to secure catalysts of greater strength at higher temperatures. It has been found that precious metal catalysts are particularly desirable because of the low steam/carbon ratios that can be used, thus further enabling the use of compact light-weight equipment.
  • This condition is determined by the hydrogen partial pressure driving force necessary for diffusion, In general,
  • the apparatus is employed at any operating pressure of 100 to 200 p.s.i.g., to provide a pure hydrogen eluent delivered at atmospheric to about 50 p.s.i.g.
  • Apparatus for the generation of hydrogen comprising in combination (a) a fuel source and steam generator contained in a compartmented unitary vessel, the fuel compartment being separated from the steam compartment by a flexible diaphragm impervious to steam,
  • (h) means for supplying heat from the combustion chamber to the steam generator whereby steam pressure generated in said steam compartment exerts pressure on said flexible diaphragm.
  • Apparatus of claim 1 further characterized in that means are provided for controlling the supply of heat from the combustion chamber to the steam generator.
  • Apparatus of claim 2 wherein said means for controlling the supply of heat to steam generator comprises 35 a flue gas damper, the position of said damper being controlled by temperature and/or pressure of the steam generator.

Description

Oct. 31, 1967 R. B. GREEN ET AL 3,350,176
HYDROGEN GENERATOR Filed March 24, 1964 Pare/V2 Gene/*afar l! INVENTORS Habe/2" B. Greer; Haga Gersser 5mn/ey S. /wz'z United States Patent O 3,350,176 HYDROGEN GENERATOR Robert B. Green, Chatham, Hugo H. Geissler, Edison,
and Stanley S. Kurpit, Newark, NJ., assgnors to Engelhard Industries, Inc., Newark, NJ., a corporation of Delaware Filed Mar. 24, 1964, Ser. No. 354,476 3 Claims. (Cl. 23-281) This invention relates to apparatus for the production of hydrogen. More particularly, the invention concerns novel compact hydrogen generating apparatus which can be readily designed as a selfcontained hydrogen generator useful in connection with commercial and industrial processes to supply hydrogen. The invention is especially concerned with apparatus for hydrogen generation which is completely self-contained and may be employed as a portable hydrogen generator having significant commercial and military value.
In co-pending application Ser. No. 217,012, filed Aug. 15, 1962, methods and apparatus for hydrogen production employing steam reforming of hydrocarbon fuels as a source of hydrogen, and diffusion purification of hydrogen produced thereby, have been described. In that application, advantages of removal of hydrogen from a steam reforming reaction by means of diffusion coupled with utilization of 11n-diffused gases as combustion fuel gas for supplying heat to maintain the endothermic reforming reaction are set forth. That application is incorporated herein by reference.
The present invention constitutes improvements in the method and apparatus of the aforesaid application. An important feature of the present invention is the utilization of the residual undiffused gases separated from the reforming reaction zone as a source of providing the total energy requirements of the system. Heat obtained by the combustion of such unditfused gases provides the heat required for vaporization of fuel and water, as well as providing the heat required for the endothermic hydrocarbon steam reforming reaction. It may also exert the driving force for pressurizing the system by using the vaporization of the water for such purpose. A Ifurther advantage of the present invention resides in the utilization of a unique compartmented Water-fuel vessel wherein steam generated by use of such waste combustion gases provides the pressure necessary to feed fuel under pressure to the system. A further aspect of the present invention is the utilization of the pressure and/or temperature of the steam generator to control the amount of heat transferred from the Waste combustion gases to the steam generator, so as to provide positive control of the over-all system at any desired operating level. A further feature of the present invention is the utilization of the pressure of the steam generator operating through regulators and feed orifices against a nal effluent orifice to control the overall operation of the hydrogen generator. Another aspect is the aspiration of the required combustion air into the combustion chamber by means of the pressure of the reactor.
Hydrogen generators, in accordance with this invention can be built with capacities of about 1 to 2 s.c.f.h. and greater. As a matter of practicality, with units of about 6-10 s.c.f.h. capacity, the surface to volume relationship of the steam boiler and the start-up time associated with heating the large mass of water in such boiler may indicate the desirability of using other means of providing pressurization and conducting the vaporization. In such case, a hand pump or miniature pumps or other suitable means may be used for pressurization, still utilizing the heat obtained from the residual gases for vaporizat'ion.
In the practice of thepresent invention, hydrocarbon '3,350,176 Patented Oct. 31, 1967 r ICC fuel and water, in an appropriate ratio, are reacted in the presence of a steam reforming catalyst. The reforming reaction produces hydrogen, carbon monoxide, carbon dioxide and methane. The hydrogen is partially withdrawn through a diffusion element, and the remaining hot reactor gases, when used directly as a fuel, supply the heat requirements for the process including steam generation and a sufficient allowance for radiation and convection losses and losses in the ue gas. As described above, the heat may also provide the driving force for pressurizing .the system. In addition, because only hydrogen diffuses through the diffusion element, no further purification or processing of the product hydrogen stream is required. The resulting apparatus therefore can be extremely compact as well as highly efficient, and lends itself well to miniaturization.
Briefly, the apparatus of .the present invention operates as follows: Fuel and steam flow from their respective tanks, are metered, pre-mixed and pass through a vaporizer-preheater coil before entering the reformer. Flue gases passing over the underside of the water-fuel tank, which may be finned to improve heat transfer or, alternatively, through a heat exchange coil which may be positioned in the water tank, provide sufficient heat to generate the steam. The liquid fuel is pressurized by means of auxiliary air pressure or, preferably, by a exible diaphragm disposed between the fuel and steam chambers.
Flue gases passing over the vaporizer preheater coil supply the heat to complete the vaporizat-ion of fuel and preheat the fuel-steam mixture to reactor entry temperature. 'Ihe fuel-steam mixture enters the reactor, where, in the presence of steam reforming catalyst, and utilizing heat transferred from the combustion zone, it is reformed to carbon dioxide, carbon monoxide, hydrogen and methane. The product hydrogen is removed through the diffusion elements and passes to the hydrogen delivery line, optionally through a final cooling coil.
The residual fuel gas enters an operational burner where it is burned. Air is -aspirated into the combustion zone by the pressure energy of the residual -fuel gas passing through an aspirator orifice which maintains the system pressure. The combustion products ow through the reactor, the preheating coil, steam generator and out the exhaust. I
Specific features and advantages of the invention will become apparent from a consideration of the following detailed description and from the drawings, in which the sole figure accompanying this specification is a cross section of one embodiment of the present invention, showing schematic flow lines and associated controls.
Referring to the figure, a unitary hydrogen generator 11 is shown, consisting of a reactor-diffuser vessel 12 and a fuel, water and steam generator tank 13 mounted within the generator and in heat exchange relationship with central flue 14 of the reactor-diffuser.
As shown in the ligure, reactor diffuser 12 consists of annular concentric compartments. The inner compartment is a reaction zone 21 which is sealed from the hydrogen collection zone 17 by wall 20 and header 16. Diffusion element 15 is positioned in hydrogen collection zone 17. In a preferred embodiment, diffusion element 1S is in the form of a suspended coil. Diffusion element 15 lin the reactor, separated by permeation through the diffusion tubes and collected in chamber 17, exits'by line 18.
Line 18 is provided with pressure relief valve 19 and valve 22 which is of the open-closed type.
Catalyst 24 which is effective in steam reforming hydrocarbons, for example gasoline, kerosene, JP-4, to a mixture containing hydrogen, is provided in reaction zone 21.
The outlet of diffusion coil communicates with outlet line 27 through which residual gases from the reforming reaction after being depleted of product hydrogen (by diffusion into diffusion chamber 17) pass to aspirator 28. Aspirator 28 comprises an orifice which provides the back pressure against which the entire H2 generator is operated. Further, the llow of gases through this aspirator provides the motive power to inspirate the combustion air into the system. The combustion then takes place in combustion chamber 14. Combustion of these gases in flue 14 provides heat for maintaining the catalyst bed at the desired reforming temperature and provides necessary heat for preheating feed in coil 53 and generating steam in tank 13 hereinafter more fully described. Insulation 25 surrounds the reactor-diffuser.
Turning now to fuel, water and steam generating tank 13, it will be understood that this tank is mounted within the unitary generator in heat exchange relationship with the hot combustion gas produced in the reactor-diffuser. As shown in the figure, a suitable embodiment provides for the steam generator tank to be so placed in the generator that hot flue gas impinges on the underside 31 of the tank 13 which, if desired, may be of finned construction to provide heat transfer characteristics. Openings are provided in the generator wall as at 32 by which llue gas passes to the atmosphere. Alternatively, hot flue gases from flue 14 can be passed by conduit through a coil (not shown) disposed within water chamber 33 of the steam `generator in order to heat the water and provide necessary steam pressure. The degree of heat transferred to tank 13 is controlled by temperature sensing device 78 which operates damper 77. When the temperature rises above a predetermined set point, some of the flue gas is bypassed. Alternately, a temperature sensing device 78 could be a pressure sensing device positioned inthe vapor space of tank 13.
The fuel-water-steam generator tank 13 is divided into two compartments, water compartment 33 and fuel compartment 34, by a flexible diaphragm 36 which is impervious to steam and resistant to the action of gasoline or kerosene-like fuels. Suitably, flexible diaphragm 36 is composed of metal, eg., thin stainless steel sheet, plastic such `as Teflon or the like, or hydrocarbon-resistant rubber, e.g. neoprene. Fuel compartment 34 is provided with -fuel fill nozzle 37 and with pressure-resistant closure 38. Water chamber 33 is provided with water fill-nozzle 39 for introducing Water to the chamber, and with pressureresistant closure 41.
Depending upon the hardness and brackishness of the water used, the combination water-steam generator tank will have to be emptied periodically by spilling out the residue of water left in it. This emptying is preferably done at the end of every run. If the quality of the water is poo-r, scale will lay down on the sides and bottom of the steam generator over along period of time. When the scale deposit is of such magnitude as to reduce the elliciency of the hydrogen generator below a tolerable level, the scale is removed from the steam generator. This is easily accomplished by removing the quick fastening closure 42 that holds the upper and lower chambers together and removing the upper chamber and diaphragm, which will expose the lower chamber for cleaning.
Steam generated in chamber 33 during operation of the -generator passes by line 43 provided with pressure indicator 44 and valve 45 to pressure control valve 46 which can be manually adjusted to provide desired steam pressure in the steam exit line. Steam then passes by line 47 provided with pressure gauge 48 to fixed calibrated ori- `c 4.9 'through which the desired flow of steam is metered by controlling the pressure drop across the orifice, and then to mixer 51, from which an admixture of steam and fuel passes by line 52 to preheater coil 53 disposed within flue 14. Preheated mixture of steam and fuel is introduced to the reaction chamber by line 54 for distributing the fuel-steam mixture throughout the reaction zone. Pressure gauge 56 on line 52 is provided to monitor the pressure of the input stream to the reactor.
Referring to fuel chamber 34, it will be seen from the figure that line 61 is provided for passage of fuel in liquid form and under pressure to pressure control valve 62 which valve can be manually controlled. Line 61 is further provided with on-off valve 63. Fuel under controlled pressure as indicated by pressure indicator 64 passes by line 65 to precalibrated orifice 66 and thence by line 67 to fuelsteam mixer 51.
The hydrogen generator of the figure is further provided with auxiliary or start-up burner 71 which is of the blow-torch type, provided with manual piston 72 for pressurizing auxiliary fuel 73 of the hydrocarbon type therein, and having fuel feed orifice 74 and adjustable air inlet means 76.
A typical hydrogen generator of the type described herein can be operated as a portable back-pack type generator designed to deliver approximately 4 s.c.f.h. of hydrogen (referred to 1 atm. and 60 F.). Such a unit has been designed having an over-all volu-me of 2 cubic feet and weighing about 20 pounds. Fuel and water for start-up and 10 hours operation weigh approximately 6 pounds.
It will be understood that such a unit can be manufactured from material of construction known to be suitable, in terms of pressure and temperature requirements, by those skilled in the art. In one apparatus of the type described herein, the combustion chamber is fabricated from an Inconel X-750 tube having a 12" length and 0.0322 inch wall thickness. A 3-ineh O.D. tube of 304 stainless steel having a wall thickness of 0.05 inch positioned concentric to the inner combustion chamber provides the annular reaction chamber. The coiled diffusion tubes of 1/sinch O.D. comprised palladium-silver alloy of 4-mil wall thickness. The reactor-diffuser is insulated with 2-inch Kaowool designed to provide the required insulation at a minimum weight and volume. In the apparatus constructed in accordance with the invention, a flexible diaphragm of plastic-coated elastomer Fairprene is employed.
Operation and control of the apparatus described herein is simple and versatile. Initial start-up is provided by pressurizing start-up fuel in start-up burner 71 by means of manual piston 72. It should be understood that alternate methods of start-up can be provided, e.g. by providing a fuel line from the fuel compartment of the fuel-steam pressure generator to the start-up burner.
The burning of fuel in the start-up burner provides heat to bring the reactor up to the start-up temperature of between about 1000'l and 1500 F. During the start-up period, water in the steam generator tank 33 is vaporized and is passed by lines 43, 52 and 54, in the absence of fuel, to the reforming catalyst. Thus, the apparatus permits a brief steam (and air from pressurization) cleaning of the reforming catalyst to remove carbon deposits from previous operations and to thus regenerate the activity of the catalyst.
As pressure is transferred to the fuel in fuel compartment 34, and upon opening of valve v63, fuel is forced into the reactor in admixture with steam. The fuel-steam feed, preheated to vaporize the fuel in coil 53, passes to the catalyst by line 54 whereupon the reforming reaction is initiated. Residual fuel gas passes through the aspirator 28 by line 27, and is ignited in combustion chamber 14 by the flame from the start-up burner. When substantial hydrogen product gas is being produced, for example after 5-15 minutes of operation after initial start-up, depending on the fuel charge, the start-up burner is shut off and the self-contained unit is on stream.
During operation of the unit, reactor pressures of the order of 150 p.s.i.g. are used. With the reactor pressurelixed in this manner, a suflcient ow of fuel and the proportionate ow of steam to maintain the reactor pressure are admitted to the unit. This is done by controlling the pressure drop across calibrated xed area orices 49 and 66. The quantity of hydrogen delivered by the generator can be manually throttled by reducing the pressure drops across the fuel and steam feed orifices. With less material flowing into the reactor and through the eluent orice, a lower reactor pressure and hence a lower hydrogen delivery rate will result. In normal operation at a reactor pressure of p.s.i.g., the steam feed is provided at a pressure of about 160 p.s.i.g. (as indicated by pressure indicator 48), and the fuel feed at a pressure of 160 p.s.i.g. (as indicated by pressure indicator 64). At these pressures, and in view of the selection of calibrated orices 49 and 66 and in aspirator 28, the rate of steam ow to the generator will be in the range of 3 to 4 pounds per hour per pound of catalyst at a steam/fuel ratio of about 3:1.
The hydrocarbon fuel employed in the practice of the present invention may comprise normally liquid hydrocarbons, as well as liquiable natural gas hydrocarbons, such as propanes and butanes. Liquid hydrocarbon boiling in the gasoline, kerosene and gas oil boiling ranges, for example, BTX-Udex raflnate, JP-4 fuel, kerosene. and the like can be used as fuel.
Suitable catalysts for the production of hydrogen by catalytic steam reforming of hydrocarbon feeds are Well known and, in general, should possess high activity and good physical strength. Platinum group metal catalysts, e.g. Pt, Pd, Rh, Ru, Os, Ir, particularly Pt and Rh and combinations thereof have been found to be eifective catalysts. The catalyst metals are supported on refractory oxides, e.g. alumina, silica, thoria and combinations thereof. Calcium and magnesium oxides may be added to secure catalysts of greater strength at higher temperatures. It has been found that precious metal catalysts are particularly desirable because of the low steam/carbon ratios that can be used, thus further enabling the use of compact light-weight equipment.
In operation of the apparatus described herein, the choice of operating pressure will be dictated by the specification for delivery pressure of the hydrogen product.
This condition is determined by the hydrogen partial pressure driving force necessary for diffusion, In general,
the apparatus is employed at any operating pressure of 100 to 200 p.s.i.g., to provide a pure hydrogen eluent delivered at atmospheric to about 50 p.s.i.g.
What is claimed is: 5 1. Apparatus for the generation of hydrogen comprising in combination (a) a fuel source and steam generator contained in a compartmented unitary vessel, the fuel compartment being separated from the steam compartment by a flexible diaphragm impervious to steam,
(b) a combustion chamber disposed in indirect heat relationship with,
(c) a compartmented reactor consisting of a reaction chamber containing reforming catalyst and a hydrogen diffusion chamber, wherein a diffusion element permeable only to hydrogen is positioned,
(d) means for introducing fuel and steam to the reaction chamber for conversion to a gaseous mixture containing hydrogen,
(e) means for removing hydrogen from the diffusion chamber,
(f) means for removing residual gaseous products from the reactor,
(g) means for introducing said residual gaseous products into said combustion chamber, and
(h) means for supplying heat from the combustion chamber to the steam generator whereby steam pressure generated in said steam compartment exerts pressure on said flexible diaphragm.
2. Apparatus of claim 1 further characterized in that means are provided for controlling the supply of heat from the combustion chamber to the steam generator.
3. Apparatus of claim 2 wherein said means for controlling the supply of heat to steam generator comprises 35 a flue gas damper, the position of said damper being controlled by temperature and/or pressure of the steam generator.
References Cited UNITED STATES PATENTS 5/ 1916 Snelling 48-224 FOREIGN PATENTS 3/ 1927 Great Britain.

Claims (1)

1. APPARATUS FOR THE GENERATION OF HYDROGEN COMPRISING IN COMBINATION (A) A FUEL SOURCE AND STREAM GENERATOR CONTAINED IN A COMPARTMENTED UNITARY VESSEL, THE FUEL COMPARTMENT BEING SEPARATED FROM THE STREAM COMPARTMENT BY A FLEXIBLE DIAPHRAGM INPERVIOUS TO STREAM, (B) A COMBUSTION CHAMBER DISPOSED IN INDIRECT HEAR RELATIONSHIP WITH, (C) A COMPARTMENTED REACTOR CONSISING OF A REACTION CHAMBER CONTAINING REFORMING CATALYST AND A HYDROGEN DIFFUSION CHAMBER, WHEREIN A DIFFUSION ELEMENT PERMEABLE ONLY TO HYDROGEN IS POSITIONED. (D) MEANS FOR INTRODUCING FUEL AND STREAM TO THE REACTION CHAMBER FOR CONVERSION TO A GASEOUS MIXTURE CONTAINING HYDROGEN, (E) MEANS FOR REMOVING HYDROGEN FROM THE DIFFUSION CHAMBER, (F) MEANS FOR REMOVING RESIDUAL GASEOUS PRODUCTS FROM THE REACTOR, (G) MEANS FOR INTRODUCING SAID RESIDUAL GASEOUS PRODUCTS INTO SAID COMBUSTION CHAMBER, AND (H) MEANS FOR SUPPLYING HEAT FROM THE COMBUSTION CHAMBER TO THE STEAM GENERATOR WHEREBY STEAM PRESSURE GENERATED IN SAID STEAM COMPARTMENT EXERTS PRESSURE ON SAID FLEXIBLE DIAPHRAM.
US354476A 1964-03-24 1964-03-24 Hydrogen generator Expired - Lifetime US3350176A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US354476A US3350176A (en) 1964-03-24 1964-03-24 Hydrogen generator
FR9386A FR1428690A (en) 1964-03-24 1965-03-16 Hydrogen generator
GB12110/65A GB1082260A (en) 1964-03-24 1965-03-22 Improvements in or relating to the manufacture of hydrogen
DE19651567473 DE1567473A1 (en) 1964-03-24 1965-03-24 Hydrogen generator
CH410265A CH451887A (en) 1964-03-24 1965-03-24 Plant for the production of hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US354476A US3350176A (en) 1964-03-24 1964-03-24 Hydrogen generator

Publications (1)

Publication Number Publication Date
US3350176A true US3350176A (en) 1967-10-31

Family

ID=23393491

Family Applications (1)

Application Number Title Priority Date Filing Date
US354476A Expired - Lifetime US3350176A (en) 1964-03-24 1964-03-24 Hydrogen generator

Country Status (4)

Country Link
US (1) US3350176A (en)
CH (1) CH451887A (en)
DE (1) DE1567473A1 (en)
GB (1) GB1082260A (en)

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3476534A (en) * 1967-09-26 1969-11-04 United Aircraft Corp Hydrogen generator including desulfurization with low pressure hydrogen feedback
US3476535A (en) * 1967-09-26 1969-11-04 United Aircraft Corp Hydrogen generator including desulfurization with diffused hydrogen feedback
US3480417A (en) * 1967-09-26 1969-11-25 United Aircraft Corp Hydrogen generator including a desulfurizer employing a feed-back ejector
US3490872A (en) * 1967-08-29 1970-01-20 Union Oil Co Production of hydrogen from carbon monoxide and water in alkaline solutions
US3522019A (en) * 1965-08-03 1970-07-28 United Aircraft Corp Apparatus for generating hydrogen from liquid hydrogen - containing feedstocks
US3531263A (en) * 1968-08-05 1970-09-29 United Aircraft Corp Integrated reformer unit
US3541729A (en) * 1968-05-09 1970-11-24 Gen Electric Compact reactor-boiler combination
US3607066A (en) * 1966-08-30 1971-09-21 Varta Ag Process for the production of hydrogen and oxygen gases
US3901668A (en) * 1973-11-05 1975-08-26 Sun Ventures Inc Manufacture of oxygen from high temperature steam
US3967589A (en) * 1975-01-27 1976-07-06 Papineau Ronald I Energy generating system
US4120663A (en) * 1975-08-27 1978-10-17 Compagnie General d'Electricite S.A. Hydrogen generating device
USRE30145E (en) * 1975-01-27 1979-11-13 Unique Energy Systems, Inc. Energy generating system
US4371500A (en) * 1979-06-30 1983-02-01 Unique Energy Systems, Inc. Apparatus for generating hydrogen
WO1984002857A1 (en) * 1983-01-26 1984-08-02 Unique Energy Systems Inc Method and apparatus for generating hydrogen
US4710359A (en) * 1984-03-09 1987-12-01 Erno Raumfahrttechnik Gmbh Gas generator
US5021219A (en) * 1988-12-08 1991-06-04 The Coca-Cola Company Gas generator for a carbonated drink dispenser
US5888273A (en) * 1996-09-25 1999-03-30 Buxbaum; Robert E. High temperature gas purification system
US6221117B1 (en) 1996-10-30 2001-04-24 Idatech, Llc Hydrogen producing fuel processing system
US6319306B1 (en) 2000-03-23 2001-11-20 Idatech, Llc Hydrogen-selective metal membrane modules and method of forming the same
US6375906B1 (en) 1999-08-12 2002-04-23 Idatech, Llc Steam reforming method and apparatus incorporating a hydrocarbon feedstock
US6376113B1 (en) 1998-11-12 2002-04-23 Idatech, Llc Integrated fuel cell system
WO2002038265A1 (en) 2000-11-13 2002-05-16 Idatech, Llc Fuel processing system and improved feedstock therefor
US20020071976A1 (en) * 2000-11-03 2002-06-13 Edlund David J. Sulfur-absorbent bed and fuel processing assembly incorporating the same
US6419726B1 (en) 1999-10-21 2002-07-16 Ati Properties, Inc. Fluid separation assembly and fluid separation module
US6419728B1 (en) 1999-03-22 2002-07-16 Idatech, Llc Hydrogen-permeable metal membrane and method for producing the same
EP1235742A1 (en) * 1999-08-12 2002-09-04 IdaTech, LLC. Volatile feedstock delivery system and fuel processing system incorporating the same
US6461408B2 (en) 1995-11-06 2002-10-08 Robert E. Buxbaum Hydrogen generator
US6494937B1 (en) 2001-09-27 2002-12-17 Idatech, Llc Hydrogen purification devices, components and fuel processing systems containing the same
US6537352B2 (en) 1996-10-30 2003-03-25 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
US6569227B2 (en) 2001-09-27 2003-05-27 Idatech, Llc Hydrogen purification devices, components and fuel processing systems containing the same
US6582499B2 (en) * 1998-11-10 2003-06-24 Ati Properties, Inc. Fluid separation assembly
US6596057B2 (en) 1999-03-22 2003-07-22 Idatech, Llc Hydrogen-selective metal membranes, membrane modules, purification assemblies and methods of forming the same
US6602325B1 (en) 1999-10-21 2003-08-05 Ati Properties, Inc. Fluid separation assembly
US20030167690A1 (en) * 2002-03-05 2003-09-11 Edlund David J. Feedstock delivery system and fuel processing systems containing the same
US20030215374A1 (en) * 2002-05-14 2003-11-20 Wheeldon Ian R. Compact methanol steam reformer with integrated hydrogen separation
US20030223926A1 (en) * 2002-04-14 2003-12-04 Edlund David J. Steam reforming fuel processor, burner assembly, and methods of operating the same
US20040006915A1 (en) * 2002-06-27 2004-01-15 Curtiss Renn Methanol steam reforming catalysts, steam reformers, and fuel cell systems incorporating the same
US20040028581A1 (en) * 1999-03-22 2004-02-12 Edlund David J. Hydrogen-selective metal membranes, membrane modules, purification assemblies and methods of forming the same
US20040060437A1 (en) * 1998-11-10 2004-04-01 Frost Chester B Fluid separation assembly and fluid separation module
US20040081867A1 (en) * 2002-10-23 2004-04-29 Edlund David J. Distributed fuel cell network
US20040081868A1 (en) * 2002-10-23 2004-04-29 Edlund David J. Distributed fuel cell network
US6783741B2 (en) 1996-10-30 2004-08-31 Idatech, Llc Fuel processing system
US20040247961A1 (en) * 2003-06-09 2004-12-09 Edlund David J. Auxiliary fuel cell system
US20040253495A1 (en) * 2003-06-11 2004-12-16 Laven Arne Fuel cell device condition detection
US20050084388A1 (en) * 2003-07-17 2005-04-21 Hayes Alan E. Positive displacement liquid pump
US20050188616A1 (en) * 2004-02-27 2005-09-01 Bizjak Travis A. Fuel processing treatment system and fuel processing systems containing the same
US6967063B2 (en) 2001-05-18 2005-11-22 The University Of Chicago Autothermal hydrodesulfurizing reforming method and catalyst
US20050266285A1 (en) * 2004-05-28 2005-12-01 Edlund David J Utilization-based fuel cell monitoring and control
US20060024540A1 (en) * 2004-07-29 2006-02-02 Laven Arne Shared variable-based fuel cell system control
US20060060084A1 (en) * 2004-09-20 2006-03-23 Edlund David J Hydrogen purification devices, components, and fuel processing systems containing the same
US20060093890A1 (en) * 2004-10-29 2006-05-04 Steinbroner Matthew P Fuel cell stack compression systems, and fuel cell stacks and fuel cell systems incorporating the same
US20070042247A1 (en) * 2005-08-17 2007-02-22 Baird Bret C Fuel cell stacks and systems with fluid-responsive temperature regulation
US20070042233A1 (en) * 2005-08-19 2007-02-22 Lyman Scott W Systems and methods for initiating auxiliary fuel cell system operation
US20070044657A1 (en) * 2005-09-01 2007-03-01 Laven Arne Fuel cell systems and methods for passively increasing hydrogen recovery through vacuum-assisted pressure swing adsorption
US20070065689A1 (en) * 2005-09-16 2007-03-22 Edlund David J Thermally primed hydrogen-producing fuel cell system
US7195663B2 (en) 1996-10-30 2007-03-27 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
US20070113475A1 (en) * 2001-11-01 2007-05-24 Edlund David J Fuel processing systems, fuel cell systems, and improved feedstocks therefor
US20080299423A1 (en) * 2007-05-30 2008-12-04 Laven Arne Fuel cell systems with maintenance hydration
US20080299420A1 (en) * 2007-05-30 2008-12-04 Kelley Mason P Fuel cell systems with maintenance hydration by displacement of primary power
US20080299429A1 (en) * 2007-05-30 2008-12-04 Desrosiers Kevin C Systems and methods for starting and operating fuel cell systems in subfreezing temperatures
US7470293B2 (en) 2004-10-29 2008-12-30 Idatech, Llc Feedstock delivery systems, fuel processing systems, and hydrogen generation assemblies including the same
US20090151249A1 (en) * 2007-12-12 2009-06-18 Adams Patton M Systems and methods for supplying auxiliary fuel streams during intermittent byproduct discharge from pressure swing adsorption assemblies
US20090151560A1 (en) * 2007-12-12 2009-06-18 Idatech, Llc Systems and methods for supplying auxiliary fuel streams during intermittent byproduct discharge from pressure swing adsorption assemblies
US7601302B2 (en) 2005-09-16 2009-10-13 Idatech, Llc Self-regulating feedstock delivery systems and hydrogen-generating fuel processing assemblies and fuel cell systems incorporating the same
US7629067B2 (en) 2006-05-22 2009-12-08 Idatech, Llc Hydrogen-producing fuel processing systems and fuel cell systems with a liquid leak detection system
US7632322B2 (en) 2005-06-07 2009-12-15 Idatech, Llc Hydrogen-producing fuel processing assemblies, heating assemblies, and methods of operating the same
US20100028223A1 (en) * 2008-07-30 2010-02-04 Idatech, Llc Hydrogen-producing assemblies
US20100050520A1 (en) * 2008-08-27 2010-03-04 Idatech, Llc Hydrogen-producing fuel processing and fuel cell systems with a temperature-responsive automatic valve system
US20100055518A1 (en) * 2008-08-26 2010-03-04 Idatech, Llc Hydrogen-producing assemblies, fuel cell systems including the same, methods of producing hydrogen gas, and methods of powering an energy-consuming device
US20100055508A1 (en) * 2008-08-27 2010-03-04 Idatech, Llc Fuel cell systems with water recovery from fuel cell effluent
US7682718B2 (en) 2001-06-26 2010-03-23 Idatech, Llc Fuel processor feedstock delivery system
US7887958B2 (en) 2006-05-15 2011-02-15 Idatech, Llc Hydrogen-producing fuel cell systems with load-responsive feedstock delivery systems
US7939051B2 (en) 2006-05-23 2011-05-10 Idatech, Llc Hydrogen-producing fuel processing assemblies, heating assemblies, and methods of operating the same
US20110129745A1 (en) * 2009-12-02 2011-06-02 Idatech, Llc Fuel cell systems and methods for providing power and cooling to an energy-consuming device
US20110150756A1 (en) * 2009-12-17 2011-06-23 Idatech, Llc Systems and methods for initiating operation of pressure swing adsorption systems and hydrogen-producing fuel processing systems incorporating the same
US7972420B2 (en) 2006-05-22 2011-07-05 Idatech, Llc Hydrogen-processing assemblies and hydrogen-producing systems and fuel cell systems including the same
US20110223507A1 (en) * 2010-03-10 2011-09-15 Idatech, Llc Systems and methods for fuel cell thermal management
US8021446B2 (en) 2005-09-16 2011-09-20 Idatech, Llc Self-regulating feedstock delivery systems and hydrogen-generating fuel processing assemblies and fuel cell systems incorporating the same
US8262752B2 (en) 2007-12-17 2012-09-11 Idatech, Llc Systems and methods for reliable feedstock delivery at variable delivery rates
US8449649B2 (en) 2010-05-11 2013-05-28 Idatech, Llc Systems and methods for starting up pressure swing adsorption assemblies and hydrogen-producing fuel processing systems including the same
US8617754B2 (en) 2009-06-12 2013-12-31 Dcns Sa Systems and methods for independently controlling the operation of fuel cell stacks and fuel cell systems incorporating the same
US8673510B2 (en) 2010-10-11 2014-03-18 Dcns Sa Systems and methods for maintaining hydrogen-selective membranes during periods of inactivity
US8920732B2 (en) 2011-02-15 2014-12-30 Dcns Systems and methods for actively controlling steam-to-carbon ratio in hydrogen-producing fuel processing systems
US8920996B2 (en) 2010-05-11 2014-12-30 Dcns Systems and methods for regulating fuel cell air flow during low loads or cold temperature operation
US9017436B2 (en) 2008-08-26 2015-04-28 Dcns Fuel processing systems with thermally integrated componentry
US10476093B2 (en) 2016-04-15 2019-11-12 Chung-Hsin Electric & Machinery Mfg. Corp. Membrane modules for hydrogen separation and fuel processors and fuel cell systems including the same
US10787363B2 (en) * 2018-12-27 2020-09-29 Automotive Research & Testing Center Hydrogen producing apparatus with emulsifier
WO2021018535A1 (en) * 2019-07-26 2021-02-04 Thyssenkrupp Industrial Solutions Ag Apparatus and method for automatable start-up of a steam reformer arrangement into a normal operating state, and use and open-loop control/closed-loop control device and computer program product
US11316180B2 (en) 2020-05-21 2022-04-26 H2 Powertech, Llc Hydrogen-producing fuel cell systems and methods of operating hydrogen-producing fuel cell systems for backup power operations
US11618676B2 (en) 2020-10-23 2023-04-04 H2 Powertech, Llc Systems and methods for increasing the hydrogen permeance of hydrogen-separation membranes in situ
FR3129608A1 (en) * 2021-11-30 2023-06-02 Naval Group REFORMER STRUCTURE
US11712655B2 (en) 2020-11-30 2023-08-01 H2 Powertech, Llc Membrane-based hydrogen purifiers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1174631A (en) * 1914-09-17 1916-03-07 Walter O Snelling Apparatus for separating gases.
GB266765A (en) * 1925-09-01 1927-03-01 Robert Edwin Goldsbrough Improvements in, and relating to, the generation of gas from liquid hydrocarbons forcombustion, lighting and other purposes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1174631A (en) * 1914-09-17 1916-03-07 Walter O Snelling Apparatus for separating gases.
GB266765A (en) * 1925-09-01 1927-03-01 Robert Edwin Goldsbrough Improvements in, and relating to, the generation of gas from liquid hydrocarbons forcombustion, lighting and other purposes

Cited By (163)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3522019A (en) * 1965-08-03 1970-07-28 United Aircraft Corp Apparatus for generating hydrogen from liquid hydrogen - containing feedstocks
US3607066A (en) * 1966-08-30 1971-09-21 Varta Ag Process for the production of hydrogen and oxygen gases
US3490872A (en) * 1967-08-29 1970-01-20 Union Oil Co Production of hydrogen from carbon monoxide and water in alkaline solutions
US3476534A (en) * 1967-09-26 1969-11-04 United Aircraft Corp Hydrogen generator including desulfurization with low pressure hydrogen feedback
US3476535A (en) * 1967-09-26 1969-11-04 United Aircraft Corp Hydrogen generator including desulfurization with diffused hydrogen feedback
US3480417A (en) * 1967-09-26 1969-11-25 United Aircraft Corp Hydrogen generator including a desulfurizer employing a feed-back ejector
US3541729A (en) * 1968-05-09 1970-11-24 Gen Electric Compact reactor-boiler combination
US3531263A (en) * 1968-08-05 1970-09-29 United Aircraft Corp Integrated reformer unit
US3901668A (en) * 1973-11-05 1975-08-26 Sun Ventures Inc Manufacture of oxygen from high temperature steam
US3967589A (en) * 1975-01-27 1976-07-06 Papineau Ronald I Energy generating system
USRE30145E (en) * 1975-01-27 1979-11-13 Unique Energy Systems, Inc. Energy generating system
US4120663A (en) * 1975-08-27 1978-10-17 Compagnie General d'Electricite S.A. Hydrogen generating device
US4371500A (en) * 1979-06-30 1983-02-01 Unique Energy Systems, Inc. Apparatus for generating hydrogen
WO1984002857A1 (en) * 1983-01-26 1984-08-02 Unique Energy Systems Inc Method and apparatus for generating hydrogen
US4710359A (en) * 1984-03-09 1987-12-01 Erno Raumfahrttechnik Gmbh Gas generator
US5021219A (en) * 1988-12-08 1991-06-04 The Coca-Cola Company Gas generator for a carbonated drink dispenser
US6461408B2 (en) 1995-11-06 2002-10-08 Robert E. Buxbaum Hydrogen generator
US5888273A (en) * 1996-09-25 1999-03-30 Buxbaum; Robert E. High temperature gas purification system
US6168650B1 (en) * 1996-09-25 2001-01-02 Robert E. Buxbaum High temperature gas purification apparatus
US6824593B2 (en) 1996-10-30 2004-11-30 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
US6632270B2 (en) 1996-10-30 2003-10-14 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
US7195663B2 (en) 1996-10-30 2007-03-27 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
US7410531B2 (en) 1996-10-30 2008-08-12 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
US7789941B2 (en) 1996-10-30 2010-09-07 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
US7052530B2 (en) 1996-10-30 2006-05-30 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
US6783741B2 (en) 1996-10-30 2004-08-31 Idatech, Llc Fuel processing system
US7819955B2 (en) 1996-10-30 2010-10-26 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
US8057575B2 (en) 1996-10-30 2011-11-15 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
US6723156B2 (en) 1996-10-30 2004-04-20 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
US6719831B2 (en) 1996-10-30 2004-04-13 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
US8257466B2 (en) 1996-10-30 2012-09-04 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
US6221117B1 (en) 1996-10-30 2001-04-24 Idatech, Llc Hydrogen producing fuel processing system
US6537352B2 (en) 1996-10-30 2003-03-25 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
US8636828B2 (en) 1996-10-30 2014-01-28 Dcns Sa Hydrogen purification membranes, components and fuel processing systems containing the same
US20040060437A1 (en) * 1998-11-10 2004-04-01 Frost Chester B Fluid separation assembly and fluid separation module
US6582499B2 (en) * 1998-11-10 2003-06-24 Ati Properties, Inc. Fluid separation assembly
US6835232B2 (en) 1998-11-10 2004-12-28 Frost Chester B Fluid separation assembly and fluid separation module
US6869707B2 (en) 1998-11-12 2005-03-22 Idatech, Llc Integrated fuel cell system
US6994927B2 (en) 1998-11-12 2006-02-07 Idatech, Llc Integrated fuel cell system
US6376113B1 (en) 1998-11-12 2002-04-23 Idatech, Llc Integrated fuel cell system
US6596057B2 (en) 1999-03-22 2003-07-22 Idatech, Llc Hydrogen-selective metal membranes, membrane modules, purification assemblies and methods of forming the same
US7101421B2 (en) 1999-03-22 2006-09-05 Idatech, Llc Hydrogen-selective metal membranes, membrane modules, purification assemblies and methods of forming the same
US6767389B2 (en) 1999-03-22 2004-07-27 Idatech, Llc Hydrogen-selective metal membranes, membrane modules, purification assemblies and methods of forming the same
US6419728B1 (en) 1999-03-22 2002-07-16 Idatech, Llc Hydrogen-permeable metal membrane and method for producing the same
US20040028581A1 (en) * 1999-03-22 2004-02-12 Edlund David J. Hydrogen-selective metal membranes, membrane modules, purification assemblies and methods of forming the same
US7005113B2 (en) 1999-08-12 2006-02-28 Idatech, Llc Steam reforming method and apparatus incorporating a hydrocarbon feedstock
US6375906B1 (en) 1999-08-12 2002-04-23 Idatech, Llc Steam reforming method and apparatus incorporating a hydrocarbon feedstock
EP1235742A1 (en) * 1999-08-12 2002-09-04 IdaTech, LLC. Volatile feedstock delivery system and fuel processing system incorporating the same
US20020116872A1 (en) * 1999-08-12 2002-08-29 Edlund David J. Steam reforming method and apparatus incorporating a hydrocarbon feedstock
EP1235742A4 (en) * 1999-08-12 2005-04-06 Idatech Llc Volatile feedstock delivery system and fuel processing system incorporating the same
US7135048B1 (en) 1999-08-12 2006-11-14 Idatech, Llc Volatile feedstock delivery system and fuel processing system incorporating the same
US6419726B1 (en) 1999-10-21 2002-07-16 Ati Properties, Inc. Fluid separation assembly and fluid separation module
US6602325B1 (en) 1999-10-21 2003-08-05 Ati Properties, Inc. Fluid separation assembly
US6458189B1 (en) 2000-03-23 2002-10-01 Idatech, Llc Hydrogen-selective metal membrane modules and method of forming the same
US6319306B1 (en) 2000-03-23 2001-11-20 Idatech, Llc Hydrogen-selective metal membrane modules and method of forming the same
US20020071976A1 (en) * 2000-11-03 2002-06-13 Edlund David J. Sulfur-absorbent bed and fuel processing assembly incorporating the same
US7201783B2 (en) 2000-11-13 2007-04-10 Idatech, Llc Fuel processing system and improved feedstock therefor
WO2002038265A1 (en) 2000-11-13 2002-05-16 Idatech, Llc Fuel processing system and improved feedstock therefor
US20020083645A1 (en) * 2000-11-13 2002-07-04 Edlund David J. Fuel processing system and improved feedstock therefor
US6967063B2 (en) 2001-05-18 2005-11-22 The University Of Chicago Autothermal hydrodesulfurizing reforming method and catalyst
US7682718B2 (en) 2001-06-26 2010-03-23 Idatech, Llc Fuel processor feedstock delivery system
US6953497B2 (en) 2001-09-27 2005-10-11 Idatech, Llc Hydrogen purification devices, components and fuel processing systems containing the same
US6494937B1 (en) 2001-09-27 2002-12-17 Idatech, Llc Hydrogen purification devices, components and fuel processing systems containing the same
US6562111B2 (en) 2001-09-27 2003-05-13 Idatech, Llc Hydrogen purification devices, components and fuel processing systems containing the same
US6569227B2 (en) 2001-09-27 2003-05-27 Idatech, Llc Hydrogen purification devices, components and fuel processing systems containing the same
US6719832B2 (en) 2001-09-27 2004-04-13 Idatech, Llc Hydrogen purification devices, components and fuel processing systems containing the same
US20070113475A1 (en) * 2001-11-01 2007-05-24 Edlund David J Fuel processing systems, fuel cell systems, and improved feedstocks therefor
US7632321B2 (en) 2001-11-01 2009-12-15 Idatech, Llc Fuel processing systems, fuel cell systems, and improved feedstocks therefor
US20030167690A1 (en) * 2002-03-05 2003-09-11 Edlund David J. Feedstock delivery system and fuel processing systems containing the same
US20030223926A1 (en) * 2002-04-14 2003-12-04 Edlund David J. Steam reforming fuel processor, burner assembly, and methods of operating the same
US7981172B2 (en) 2002-04-14 2011-07-19 Idatech, Llc Steam reforming fuel processor, burner assembly, and methods of operating the same
US20090205253A1 (en) * 2002-04-14 2009-08-20 Idatech, Llc Steam reforming fuel processor, burner assembly, and methods of operating the same
US7828864B2 (en) 2002-04-14 2010-11-09 Idatech, Llc Steam reforming fuel processor, burner assembly, and methods of operating the same
US8696772B2 (en) 2002-04-14 2014-04-15 Dcns Sa Steam reforming fuel processor, burner assembly, and methods of operating the same
US7115148B2 (en) 2002-05-14 2006-10-03 Her Majesty The Queen In Right Of Canada, As Respresented By The Minister Of Defence Of Her Majesty's Canadian Government Compact methanol steam reformer with integrated hydrogen separation
US20030215374A1 (en) * 2002-05-14 2003-11-20 Wheeldon Ian R. Compact methanol steam reformer with integrated hydrogen separation
US7736404B2 (en) 2002-06-27 2010-06-15 Idatech, Llc Methanol steam reforming catalysts, steam reformers, and fuel cell systems incorporating the same
US20060236607A1 (en) * 2002-06-27 2006-10-26 Curtiss Renn Methanol steam reforming catalysts, steam reformers, and fuel cell systems incorporating the same
US7128769B2 (en) 2002-06-27 2006-10-31 Idatech, Llc Methanol steam reforming catalysts, steam reformers, and fuel cell systems incorporating the same
US7662195B2 (en) 2002-06-27 2010-02-16 Idatech, Llc Methanol steam reforming catalysts, steam reformers, and fuel cell systems incorporating the same
US20040006915A1 (en) * 2002-06-27 2004-01-15 Curtiss Renn Methanol steam reforming catalysts, steam reformers, and fuel cell systems incorporating the same
US20100040918A1 (en) * 2002-06-27 2010-02-18 Idatech, Llc Methanol steam reforming catalysts, steam reformers, and fuel cell systems incorporating the same
US20040081868A1 (en) * 2002-10-23 2004-04-29 Edlund David J. Distributed fuel cell network
US20040081867A1 (en) * 2002-10-23 2004-04-29 Edlund David J. Distributed fuel cell network
US7250231B2 (en) 2003-06-09 2007-07-31 Idatech, Llc Auxiliary fuel cell system
US20040247961A1 (en) * 2003-06-09 2004-12-09 Edlund David J. Auxiliary fuel cell system
US20040253495A1 (en) * 2003-06-11 2004-12-16 Laven Arne Fuel cell device condition detection
US20050084388A1 (en) * 2003-07-17 2005-04-21 Hayes Alan E. Positive displacement liquid pump
US20050188616A1 (en) * 2004-02-27 2005-09-01 Bizjak Travis A. Fuel processing treatment system and fuel processing systems containing the same
US9515334B2 (en) 2004-05-28 2016-12-06 Dcns Utilization-based fuel cell monitoring and control
US20050266285A1 (en) * 2004-05-28 2005-12-01 Edlund David J Utilization-based fuel cell monitoring and control
US20050266284A1 (en) * 2004-05-28 2005-12-01 Mesa Scharf Consumption-based fuel cell monitoring and control
US7842428B2 (en) 2004-05-28 2010-11-30 Idatech, Llc Consumption-based fuel cell monitoring and control
US20110033765A1 (en) * 2004-05-28 2011-02-10 Idatech, Llc Consumption-based fuel cell monitoring and control
US7985510B2 (en) 2004-05-28 2011-07-26 Idatech, Llc Utilization-based fuel cell monitoring and control
US8277997B2 (en) 2004-07-29 2012-10-02 Idatech, Llc Shared variable-based fuel cell system control
US20060024540A1 (en) * 2004-07-29 2006-02-02 Laven Arne Shared variable-based fuel cell system control
US20080115669A1 (en) * 2004-09-20 2008-05-22 Edlund David J Hydrogen purification devices, components, and fuel processing systems containing the same
US20060060084A1 (en) * 2004-09-20 2006-03-23 Edlund David J Hydrogen purification devices, components, and fuel processing systems containing the same
US7297183B2 (en) 2004-09-20 2007-11-20 Idatech, Llc Hydrogen purification devices, components, and fuel processing systems containing the same
US20060093890A1 (en) * 2004-10-29 2006-05-04 Steinbroner Matthew P Fuel cell stack compression systems, and fuel cell stacks and fuel cell systems incorporating the same
US7470293B2 (en) 2004-10-29 2008-12-30 Idatech, Llc Feedstock delivery systems, fuel processing systems, and hydrogen generation assemblies including the same
US8038748B2 (en) 2005-06-07 2011-10-18 Idatech, Llc Hydrogen-producing fuel processing assemblies, heating assemblies, and methods of operating the same
US7632322B2 (en) 2005-06-07 2009-12-15 Idatech, Llc Hydrogen-producing fuel processing assemblies, heating assemblies, and methods of operating the same
US8206864B2 (en) 2005-08-17 2012-06-26 Idatech, Llc Fuel cell stacks and systems with fluid-responsive temperature regulation
US8003270B2 (en) 2005-08-17 2011-08-23 Idatech, Llc Fuel cell stacks and systems with fluid-responsive temperature regulation
US20070042247A1 (en) * 2005-08-17 2007-02-22 Baird Bret C Fuel cell stacks and systems with fluid-responsive temperature regulation
US20070042233A1 (en) * 2005-08-19 2007-02-22 Lyman Scott W Systems and methods for initiating auxiliary fuel cell system operation
US20070044657A1 (en) * 2005-09-01 2007-03-01 Laven Arne Fuel cell systems and methods for passively increasing hydrogen recovery through vacuum-assisted pressure swing adsorption
US8021446B2 (en) 2005-09-16 2011-09-20 Idatech, Llc Self-regulating feedstock delivery systems and hydrogen-generating fuel processing assemblies and fuel cell systems incorporating the same
US20070065689A1 (en) * 2005-09-16 2007-03-22 Edlund David J Thermally primed hydrogen-producing fuel cell system
US7601302B2 (en) 2005-09-16 2009-10-13 Idatech, Llc Self-regulating feedstock delivery systems and hydrogen-generating fuel processing assemblies and fuel cell systems incorporating the same
US8691463B2 (en) 2005-09-16 2014-04-08 Dcns Sa Thermally primed hydrogen-producing fuel cell system
US7659019B2 (en) 2005-09-16 2010-02-09 Idatech, Llc Thermally primed hydrogen-producing fuel cell system
US20100136453A1 (en) * 2005-09-16 2010-06-03 Idatech, Llc Thermally primed hydrogen-producing fuel cell system
US7736596B2 (en) 2005-09-16 2010-06-15 Idatech, Llc Self-regulating feedstock delivery systems and hydrogen-generating fuel processing assemblies and fuel cell systems incorporating the same
US7977000B2 (en) 2005-09-16 2011-07-12 Idatech, Llc Thermally primed hydrogen-producing fuel cell system
US7887958B2 (en) 2006-05-15 2011-02-15 Idatech, Llc Hydrogen-producing fuel cell systems with load-responsive feedstock delivery systems
US8438907B2 (en) 2006-05-22 2013-05-14 Idatech, Llc Hydrogen-producing fuel processing systems with a liquid leak detection system
US8157900B2 (en) 2006-05-22 2012-04-17 Idatech, Llc Hydrogen-processing assemblies and hydrogen-producing systems and fuel cell systems including the same
US7972420B2 (en) 2006-05-22 2011-07-05 Idatech, Llc Hydrogen-processing assemblies and hydrogen-producing systems and fuel cell systems including the same
US7629067B2 (en) 2006-05-22 2009-12-08 Idatech, Llc Hydrogen-producing fuel processing systems and fuel cell systems with a liquid leak detection system
US7939051B2 (en) 2006-05-23 2011-05-10 Idatech, Llc Hydrogen-producing fuel processing assemblies, heating assemblies, and methods of operating the same
US7754361B2 (en) 2007-05-30 2010-07-13 Idatech, Llc Fuel cell systems with maintenance hydration by displacement of primary power
US20080299423A1 (en) * 2007-05-30 2008-12-04 Laven Arne Fuel cell systems with maintenance hydration
US20080299429A1 (en) * 2007-05-30 2008-12-04 Desrosiers Kevin C Systems and methods for starting and operating fuel cell systems in subfreezing temperatures
US20080299420A1 (en) * 2007-05-30 2008-12-04 Kelley Mason P Fuel cell systems with maintenance hydration by displacement of primary power
US8034500B2 (en) 2007-05-30 2011-10-11 Idatech, Llc Systems and methods for starting and operating fuel cell systems in subfreezing temperatures
US8034494B2 (en) 2007-05-30 2011-10-11 Idatech, Llc Fuel cell systems with maintenance hydration by displacement of primary power
US8492044B2 (en) 2007-05-30 2013-07-23 Idatech, Llc Systems and methods for starting and operating fuel cell systems in subfreezing temperatures
US8070841B2 (en) 2007-12-12 2011-12-06 Idatech, Llc Systems and methods for supplying auxiliary fuel streams during intermittent byproduct discharge from pressure swing adsorption assemblies
US7837765B2 (en) 2007-12-12 2010-11-23 Idatech, Llc Systems and methods for supplying auxiliary fuel streams during intermittent byproduct discharge from pressure swing adsorption assemblies
US20090151249A1 (en) * 2007-12-12 2009-06-18 Adams Patton M Systems and methods for supplying auxiliary fuel streams during intermittent byproduct discharge from pressure swing adsorption assemblies
US20090151560A1 (en) * 2007-12-12 2009-06-18 Idatech, Llc Systems and methods for supplying auxiliary fuel streams during intermittent byproduct discharge from pressure swing adsorption assemblies
US8617294B2 (en) 2007-12-12 2013-12-31 Dcns Sa Systems and methods for supplying auxiliary fuel streams during intermittent byproduct discharge from pressure swing adsorption assemblies
US8262752B2 (en) 2007-12-17 2012-09-11 Idatech, Llc Systems and methods for reliable feedstock delivery at variable delivery rates
US8608814B2 (en) 2007-12-17 2013-12-17 Dcns Sa Systems and methods for reliable feedstock delivery at variable delivery rates
US8021447B2 (en) 2008-07-30 2011-09-20 Idatech, Llc Hydrogen-producing assemblies
US20100028223A1 (en) * 2008-07-30 2010-02-04 Idatech, Llc Hydrogen-producing assemblies
US9017436B2 (en) 2008-08-26 2015-04-28 Dcns Fuel processing systems with thermally integrated componentry
US20100055518A1 (en) * 2008-08-26 2010-03-04 Idatech, Llc Hydrogen-producing assemblies, fuel cell systems including the same, methods of producing hydrogen gas, and methods of powering an energy-consuming device
US20100055508A1 (en) * 2008-08-27 2010-03-04 Idatech, Llc Fuel cell systems with water recovery from fuel cell effluent
US20100050520A1 (en) * 2008-08-27 2010-03-04 Idatech, Llc Hydrogen-producing fuel processing and fuel cell systems with a temperature-responsive automatic valve system
US8083819B2 (en) 2008-08-27 2011-12-27 Idatech, Llc Hydrogen-producing fuel processing and fuel cell systems with a temperature-responsive automatic valve system
US8617754B2 (en) 2009-06-12 2013-12-31 Dcns Sa Systems and methods for independently controlling the operation of fuel cell stacks and fuel cell systems incorporating the same
US8492042B2 (en) 2009-12-02 2013-07-23 Idatech, Llc Fuel cell systems and methods for providing power and cooling to an energy-consuming device
US20110129745A1 (en) * 2009-12-02 2011-06-02 Idatech, Llc Fuel cell systems and methods for providing power and cooling to an energy-consuming device
US20110150756A1 (en) * 2009-12-17 2011-06-23 Idatech, Llc Systems and methods for initiating operation of pressure swing adsorption systems and hydrogen-producing fuel processing systems incorporating the same
US8790618B2 (en) 2009-12-17 2014-07-29 Dcns Sa Systems and methods for initiating operation of pressure swing adsorption systems and hydrogen-producing fuel processing systems incorporating the same
US20110223507A1 (en) * 2010-03-10 2011-09-15 Idatech, Llc Systems and methods for fuel cell thermal management
US8790840B2 (en) 2010-03-10 2014-07-29 Dcns Sa Systems and methods for fuel cell thermal management
US8920996B2 (en) 2010-05-11 2014-12-30 Dcns Systems and methods for regulating fuel cell air flow during low loads or cold temperature operation
US8449649B2 (en) 2010-05-11 2013-05-28 Idatech, Llc Systems and methods for starting up pressure swing adsorption assemblies and hydrogen-producing fuel processing systems including the same
US8673510B2 (en) 2010-10-11 2014-03-18 Dcns Sa Systems and methods for maintaining hydrogen-selective membranes during periods of inactivity
US8920732B2 (en) 2011-02-15 2014-12-30 Dcns Systems and methods for actively controlling steam-to-carbon ratio in hydrogen-producing fuel processing systems
US10476093B2 (en) 2016-04-15 2019-11-12 Chung-Hsin Electric & Machinery Mfg. Corp. Membrane modules for hydrogen separation and fuel processors and fuel cell systems including the same
US10787363B2 (en) * 2018-12-27 2020-09-29 Automotive Research & Testing Center Hydrogen producing apparatus with emulsifier
WO2021018535A1 (en) * 2019-07-26 2021-02-04 Thyssenkrupp Industrial Solutions Ag Apparatus and method for automatable start-up of a steam reformer arrangement into a normal operating state, and use and open-loop control/closed-loop control device and computer program product
US11316180B2 (en) 2020-05-21 2022-04-26 H2 Powertech, Llc Hydrogen-producing fuel cell systems and methods of operating hydrogen-producing fuel cell systems for backup power operations
US11831051B2 (en) 2020-05-21 2023-11-28 H2 Powertech, Llc Hydrogen-producing fuel cell systems and methods of operating hydrogen-producing fuel cell systems for backup power operations
US11618676B2 (en) 2020-10-23 2023-04-04 H2 Powertech, Llc Systems and methods for increasing the hydrogen permeance of hydrogen-separation membranes in situ
US11712655B2 (en) 2020-11-30 2023-08-01 H2 Powertech, Llc Membrane-based hydrogen purifiers
FR3129608A1 (en) * 2021-11-30 2023-06-02 Naval Group REFORMER STRUCTURE

Also Published As

Publication number Publication date
DE1567473A1 (en) 1970-08-06
GB1082260A (en) 1967-09-06
CH451887A (en) 1968-05-15

Similar Documents

Publication Publication Date Title
US3350176A (en) Hydrogen generator
US3522019A (en) Apparatus for generating hydrogen from liquid hydrogen - containing feedstocks
US3469944A (en) Process and apparatus for the manufacture of hydrogen for fuel cells
US3198604A (en) Hydrogen generating system
Ledjeff-Hey et al. Compact hydrogen production systems for solid polymer fuel cells
US3338681A (en) Apparatus for hydrogen generation
US3278268A (en) Method for hydrogen production
US7074373B1 (en) Thermally-integrated low temperature water-gas shift reactor apparatus and process
US5229102A (en) Catalytic ceramic membrane steam-hydrocarbon reformer
EP0600621B1 (en) A combined reformer and shift reactor
JP4541646B2 (en) Compact steam reformer
US4162290A (en) Parallel steam reformers to provide low energy process
US4071330A (en) Steam reforming process and apparatus therefor
JPS6018601B2 (en) Convection reformer and its method
GB1476155A (en) Fuel cell shift converter/endothermic catalytic reaction apparatus
US3446594A (en) Method for generating hydrogen from liquid hydrogen-containing feedstocks
US6881394B2 (en) Steam reformer for methane with internal hydrogen separation and combustion
US4805881A (en) Internal gas generator for heat treating furnace
EP0272282B1 (en) Steam reformer with internal heat recovery
EP1274650A1 (en) Fuel processor
NO169114B (en) METHOD AND APPARATUS FOR PREPARING A GAS CURRENT CONTAINING RAW HYDROGEN
JPS5826002A (en) Steam reforming method and reaction tube for steam reforming
US3266875A (en) Production of metal-carbon compounds
JPH06219706A (en) Adiabatic reformer reactor
US2465666A (en) Stark

Legal Events

Date Code Title Description
AS Assignment

Owner name: ENGELHARD CORPORATION 70 WOOD AVENUE SOUTH, METRO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:PHIBRO CORPORATION, A CORP. OF DE;REEL/FRAME:003968/0801

Effective date: 19810518