US3343808A - Concrete prestressing apparatus - Google Patents

Concrete prestressing apparatus Download PDF

Info

Publication number
US3343808A
US3343808A US302628A US30262863A US3343808A US 3343808 A US3343808 A US 3343808A US 302628 A US302628 A US 302628A US 30262863 A US30262863 A US 30262863A US 3343808 A US3343808 A US 3343808A
Authority
US
United States
Prior art keywords
bar
wedge
tendons
coupler
tendon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US302628A
Inventor
James W Howlett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOWLETT MACHINE WORKS
Original Assignee
HOWLETT MACHINE WORKS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOWLETT MACHINE WORKS filed Critical HOWLETT MACHINE WORKS
Priority to US302628A priority Critical patent/US3343808A/en
Priority to US630288A priority patent/US3518748A/en
Priority to US669120A priority patent/US3504938A/en
Priority to US669121A priority patent/US3396943A/en
Priority to US669002A priority patent/US3460300A/en
Application granted granted Critical
Publication of US3343808A publication Critical patent/US3343808A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/12Mounting of reinforcing inserts; Prestressing
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/12Mounting of reinforcing inserts; Prestressing
    • E04G21/121Construction of stressing jacks
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/12Mounting of reinforcing inserts; Prestressing
    • E04G2021/127Circular prestressing of, e.g. columns, tanks, domes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T24/00Buckles, buttons, clasps, etc.
    • Y10T24/39Cord and rope holders
    • Y10T24/3969Sliding part or wedge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49863Assembling or joining with prestressing of part
    • Y10T29/49874Prestressing rod, filament or strand
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/57Distinct end coupler
    • Y10T403/5793Distinct end coupler including member wedging or camming means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/70Interfitted members
    • Y10T403/7047Radially interposed shim or bushing
    • Y10T403/7051Wedging or camming
    • Y10T403/7052Engaged by axial movement
    • Y10T403/7058Split or slotted bushing

Definitions

  • the invention relates generally to the art of prestressing various concrete structural members by the use of tensioning tendons such as wires, rods, stranded cables or bars, and more particularly to a tensioning apparatus for drawing together and connecting two generally aligned end opposed tendons.
  • tension-ing tendons In various concrete prestressing operations, it is required that tension be applied to elongated tension-ing tendons. This may involve either pretensioning or posttensioning of such tendons in relation to the concrete to be prestressed.
  • Some tensioning techniques involve securing a rod at one of its ends to a stationary object, and then pulling the rod from its other end and securing it with the rod under tension.
  • it has been common to wind wire or rods around the outer sidewall of the tank as a form of post-tensioning, which creates the desired radially inward prestressing forces.
  • a disadvantage of the wire winding technique is that the wires are relatively small, and therefore are subject to corrosion and breakage whereby maintenance becomes a significant problem.
  • the present invention comprises means for engaging two adjacent ends of opposed tendons for drawing them together under tension and securely connecting them to maintain the tensioned condition.
  • the apparatus used includes improvements on the wedge grip couplers of the type disclosed in Howlett Patent No. 2,930,642.
  • Another object is to provide an apparatus of the character described for quickly, simply and efliciently connecting two spaced end opposed rods and placing them under high tensile stress.
  • a further object is to provide an apparatus of the character described capable of prestressing circular tanks or the like by applying tension to rods disposed circumferentially around the tanks outer wall.
  • Still another object is to provide a novel and improved wedge grip coupler for mounting on the end of a tendon and for axially receiving a bar or rod in one-way gripping relation and holding it against return movement.
  • Yet another object is to provide an improved wedge grip coupler for connecting two end opposed bars that comprises wedge members which can be simply placed on the bars and a coupler housing which can be threadedly screwed onto the wedge members in a quick and simple manner to form a splice between the two bars, with the coupler being adapted to take up slack as the bars are subsequently drawn together under tension.
  • Still a further object is to provide a wedge grip nut that can be removably mounted on a bar portion to provide means for applying axial force to the bar.
  • FIGURE 1 is a side elevation of a concrete tank depicting also the apparatus of the present invention for posttensioning encircling rods employed to prestress the tank.
  • FIGURE 2 is a plan view, in an enlarged scale and partially cut away and in cross-section, of tensioning apparatus embodying the present invention.
  • FIGURE 3 is a fragmentary side view of a portion of the apparatus as suggested by the line 3-3 in FIGURE 2.
  • FIGURE 4 is a cross-sectional view taken substantially on the plane of line 4-4 of FIGURE 2.
  • FIGURE 5 is a cross-sectional View along plane 55 of FIGURE 3 of a one-way wedge grip coupler forming a part of the present invention, and operatively engaging two end opposed bar portions.
  • FIGURE 6 is a fragmentary cross-sectional view on enlarged scale of the wedge member and coupler housing showing the position of the parts during the inserting of the rod tendon.
  • FIGURE 7 is a view substantially the same as FIGURE 6, but illustrating the coupler after the tendon has been placed under tension and is secured by the wedge member.
  • FIGURE 8 is a fragmentary plan view partially cut away and in cross-section, similar to FIGURE 2, but depicting tensioning apparatus forming an alternative embodiment of the invention.
  • FIGURE 9 is a fragmentary plan view similar to FIG- URES 2 and 8, depicting another alternative embodiment of the invention.
  • FIGURE 10 is a side view of a wedge grip nut shown in the embodiment of FIGURES 8 and 9.
  • FIGURE 11 is a cross-sectional transverse view taken along the planes suggested by the line 1111 in FIG- URE 10.
  • FIGURE 12 is a cross-section view taken along the axis of the bar member shown in FIGURE 10*, and is suggested by the line 12-12 as shown in FIGURE 10.
  • the apparatus of the present invention provides means for drawing together and tensioning two generally aligned tendons 11 and 12 having opposed spaced ends 13 and 14, and includes a bar member 16; at least one coupler member 17 having gripping means 18 for axially receiving the bar member 16 and holding it against return movement; one of the members 16 and 17 being mounted on the tendon 11 in opposed .confronting relation to the tendon 12; means for mounting the other of said members 16 and 17 on the tendon 11 in position for operative engagement with the member on the tendon 12; jack engaging means 19 and 21 provided respectively on each said tendon 11 and 12; and jacking means including jaws 23 and 24 for engaging the jack engaging means 19 and 21 for forcing the tendons 11 and 12 towards one another and operatively connecting the members 16 and 17 together, whereby the jacking means can be released to leave the tendons and members under tension.
  • the means for mounting the bar 16 on the tendon 11 includes a second coupler 26 mounted on the tendon 11 and adapted to receive the end 27 of the bar member 16 in the same manner as does the coupler 17.
  • the remote end shoulders of the couplers 17 and 26 are seen in this embodiment to provide the aforesaid jack engaging means 19 and 21, and the jaws 23 and 24 engage these shoulders to draw the tendons together.
  • FIGURES -7 wherein a coupler 28 is illustrated and includes a housing 29 having an interior bore 31 for receipt of bar ends 32 and 33 to be connected.
  • a sleeve-like wedge member 34 comprises the aforesaid gripping means 18 and is dimensioned to fit around the end 33, with an internal diameter having an interference fit therewith.
  • the wedge 34 has an inner surface 36 formed with teeth 35 for biting into and gripping the bar 33, and has a single longitudinal slit 37 to enable radial expansion and compression against the bar.
  • a plurality of longitudinally spaced annular inclined and interfitting cam planes 38 and 39 are formed respectively on the wall of the bore 31 and the external wall of the wedge 34, whereby axial pull on the bar is translated into radially internal gripping forces of the wedge teeth on the bar.
  • the inclined and interfitting cam planes 38 and 39 are preferably formed as mating spiral threads, with the sleeve-like wedge member 34 thus being adapted to be threaded longitudinally in and out of the bore 31.
  • another wedge 40 similar to the wedge 34, is mounted in generally the same manner at the other end of the bore 31.
  • an interference fit is provided between the respective bar and wedge members. More specifically, the external diameter of bar ends 32 and 33 is slightly greater than the normal unstressed internal diameter of the wedge sleeves 34 and 40 so that the axial insertion of the bar ends cause a resilient expansion of the wedge sleeves and a compressive gripping of the bar peripheries by the teeth 35 provided on the internal surfaces 36 of the wedge sleeves. To provide for such resilient expansion of the wedge sleeves 34 and 40, the normal unstressed external diameter of the wedge sleeves at cam planes 39 is less than the internal diameter of mating cam planes 38 provided on the internal wall of the housing.
  • the coupler member 17 is mounted on the tendon 12 and the bar member 16 provided on the end of the tendon 11, which in the embodiment depicted in FIGURE 2 involves the provision of a coupler 26 secured to the tendon 11 and adapted to grippingly receive the end 27 of the bar 16.
  • Force is applied by the jacking means to urge the tendons together and to bring the couplers 17 and 26 into gripping connecting engagement with the bar 16.
  • the bar 16 is initially placed between the couplers 17 and 26 in spaced relation therewith, after which the couplers are drawn together into engagement with the respective ends of the bar. The force of the jacking means is then slowly released thereby enabling the bar to be gripped securely by the coupler wedges.
  • the wedge of each coupler has its cam surfaces formed into a spiral thread configuration, whereby rotation of the sleeve member moves it longitudinally relative to the coupler housing.
  • couplers 17 and 26 can be provided on tendons of varying types, such as stranded cables, rods and the like. As shown in the em bodiment of FIGURE 2, these couplers each are of the double-ended type described more fully with regard to FIGURE 5, and thus are adapted to engage a rod tendon in the manner described. It will be appreciated, however, that single-ended couplers could be used by welding or otherwise securing them to the tendons, be it a rod, cable or other configuration.
  • aforesaid jacking means there are provided a pair of arms 41 and 42 mounted on a link member 43 for pivotal movement relative to one another and having free ends 44 and 46.
  • the aforesaid jaws 23 and 24 are mounted respectively on the ends 44 and 46, and each have bearing surfaces 47 and 48 for engaging the corresponding couplers 17 and 26 in the apparatus of FIGURE 2-.
  • Fluid pressure means 49 is connected to draw the arms together whereby the couplers 17 and 26 can be moved into engagement with the connecting bar 16 as previously described.
  • the fluid pressure means 49 as best seen in FIGURE 2, is of generally conventional construction and consists of a housing 59 providing an interior cylinder 51 within which is mounted for reciprocation a piston 52.
  • One end 53 of the housing is attached by a bracket 54 to arm 41, while the piston 52 is connected to the other arm 42 by a rod 55 which here projects axially through the housing 50 and piston 52 so as to project from a piston shaft section 56 which extends through the opposite end 57 of the cylinder housing.
  • a wedge grip nut 58 forms a protuberance on the outer end 59 of the rod 55 so as to bear against the adjacent end of piston shaft section 56.
  • the opposite end 60 of the rod 55 may be similarly connected to the arm 42 by a wedge grip nut 61 which is arranged to bear against a flange 62 provided on a mounting bracket 63 fixed to the arm 42.
  • the mounting brackets 54 and 63 are of U-shape and are pivotally secured to arms 41 and 42 as illustrated.
  • Housing '50 is here provided with inlet and outlet fittings 64 and 65 located adjacent the opposite ends 53 and 57 of the cylinder for conveying fluid under pressure into and out of the cylinder.
  • inlet fitting 64 will cause a displacement of piston 52 to the left, as seen in FIGURE 2, thus effecting a closing of the arms 41 and 42 and jaws 23 and 24.
  • the admission of fluid into the cylinder by way of fitting 65 and the withdrawal of fluid by way of fitting 64 will permit a displacement of piston 52 to the right, as seen in the drawing, and an opening of the arms and jaws.
  • the rod 55 is disposed intermediate the link 43 and the free ends of the arms 41 and 42. and is substantially parallel to the link 43. The rod 55 is seen to be movable relative to the arm 41.
  • the two arms are symmetrical and substantially identical to one another.
  • the free end 44 of the arm 41 includes a pair of bifurcated elements 44:: and 44b adapted to fit around the corresponding tendon 11, as is shown in detail in FIGURES 3 and 4.
  • the jaw 23 also includes a pair of bifurcated elements 23a and 23b which fit around the tendon 11, and are in general alignment with the elements 44a and 44b.
  • each jaw is pivotally mounted on its respective arm whereby the jaw and coupler need not move relative to one another as the arms are drawn together.
  • the jaw 23 and free end 44 respectively have complementary arcuate bearing surfaces 66 and 67.
  • the surface 66 is convex and is complementary to the concave surface 67.
  • the arms 41 and 42 it is preferred that these arms consist respectively of pairs of spaced arm members 72, 73 and 74, 76.
  • the spaced bifurcated elements 44a and 4412 may be formed as integral extensions respectively of the members 72 and 73.
  • the arm members are secured rigidly together by means of nuts 77, bolts 78, and spacers 79.
  • the bar 55 extends through the spaces between the arm members, and similarly, the link 43 is pivotally secured between the arm members.
  • link 43 is composed of a tubular center section 8d and a pair of removable end members 81 and 82 which are in turn pivotally connected to the adjacent ends of arms 41 and 42 by pivot bolts 83 and 84.
  • end members 81 and 82 are provided with flanges, as seen in FIGURE 2, for abutting the opposite ends of the tubular center section 80.
  • ring clamps 85 and 86 are mounted around the opposite ends of the tubular center section for squeezing down upon the inserted portions of end members 81 and 82 so as to hold the latter in place, the opposite ends of the tubular center section being slitted to permit compression by the ring clamps against the end members.
  • Adjustment of the length of the link 43 may accordingly be conveniently effected by dismantling the center section and end members 81 and 82 and replacing the center section with one of appropriate (longer or shorter) length.
  • FIGURE 8 An alternative embodiment of the invention is depicted in FIGURE 8.
  • the coupler 17a as shown in FIGURE 8, is again secured to the tendon 12a, and preferably comprises a double-ended coupler of the type shown in FIG- URE 5.
  • Separate jack engaging means 19a and 21a are here provided as protuberances on the tendons 11a and 12a, independent of the shoulder of the coupler 17a.
  • the protuberances are formed as removable wedge grip nuts, similar to the nuts 58 and 61 aforementioned, to be described more fully.
  • the jacking means force the two tendons together and into engagement with the two ends of the coupler 17a, whereupon the wedges of the coupler grippingly engage the tendons and hold them against return movement.
  • the setting of the wedge cam planes causes the initial tension in the tendons to be decreased.
  • it is possible to take up the slack caused by this setting by applying force again for a second time thereby placing the ends of the tendons intermediate the wedge nuts in a slack unstressed condition.
  • rotation of the coupler causes the ends of the tendons to be drawn together tightly. Then when the jacking force is released, the tendons will remain in substantially the desired tension condition.
  • FIGURE 9 A third alternative embodiment of the invention is depicted in FIGURE 9, where again the coupler 17b is provided on the end of the tendon 12b and the bar 1612 is provided on the end of the tendon 1132. Unlike the embodiment of FIGURE 8, however, the coupler 17b need not be of the double-ended type, although shown as such, and could for example be welded or otherwise secured to the tendon 12b.
  • the jack engaging means 21b here is provided by an end shoulder of the coupler 1712, while a removable wedge nut 19b mounted on the bar 16 spaced from its end preferably serves as the other jack engaging means. In drawing the tendons toward one another, the bar 16!) is moved axially into gripping engagement with the coupler 1717, thus holding the tendons under tension.
  • Wedge grip nuts 19a, 21a, 19b, 59 and 61 are all here shown of similar construction.
  • One of these nuts, identified as 19a, is illustrated in detail in FIGURES 10, 11 and 12.
  • the nut is particularly constructed for mounting either permanently or temporarily upon a bar or rod and for this purpose is split longitudinally for removal from the rod in two half sections.
  • the nut housing is formed of a pair of half-cylindrical housing sections 91 and 92, and these fit around a pair of half-cylindrical wedge sections 96 and 97, the latter cooperating to surround rod 12a in the same manner as wedge member 34.
  • the wedge sections 96 and 97 have internal bar engaging surfaces 98 formed with teeth for biting into and compressively engaging and gripping the periphery of the bar.
  • the wedge and housing sections are formed with a plurality of longitudinally spaced annular inclined interfitting cam planes formed on the inner surfaces 93 and 94 of the housing sections and the external walls 99 of the wedge sections so as to translate pull of the bar in an axial direction relative to the nut into radially gripping forces of the wedge sections 96 and 97 on the bar.
  • the housing sections 91 and 92 are here secured together by a pair of threaded bolts 101 and 102 which extend through bores 103 in section 91 into threaded engagement with tapped bores 104 in housing section 92.
  • the wedge nut can be readily mounted at any intermediate position on a bar member, thus enabling it for use with the fluid pressure means 49, and the embodiments of FIGURES 8 and 9 as described hereinabove.
  • An important feature of the nut is that it can be easily removed from the bar after it has been used. Consequently, the wedge nuts in the embodiments of FIGURES 8 and 9 can be taken off of the tendons after they have been connected, thus enabling their use elsewhere.
  • FIGURE 1 the present invention, as embodied in the above described apparatus, is generally depicted in the operation of tensioning a plurality of rods 106 around a circular tank 107.
  • a bracket 108 consisting of an eyelet, hook, ear or similar structure suitable for attaching a cable thereto is provided on the arm 41 of the jacking means to enable the jack to be supported by a cable (not shown) from a suitable crane or the like disposed on top of the tank 107 and adapted to move along the tanks periphery.
  • a suitable crane or the like disposed on top of the tank 107 and adapted to move along the tanks periphery.
  • plurality of rods may be simply spliced together at adjacent ends by a coupler 28, as shown in FIGURE 5. This generally is best accomplished by first mounting the wedges separately on the rod ends, after which the housing is threaded onto the pairs of opposed wedges. These spliced rods are then disposed around the tank with the spaced opposed ends of two rods remaining to be joined. As shown, a pair of couplers 17 and 26 and a connecting bar 16 are used to join the remaining ends in the manner described hereinabove with regard to the embodiment of FIGURE 2, thus placing each of the encircling rod assemblies under tension.
  • a high pressure fluid compressor 109 is connected to the fluid pressure fittings 64 and of the hydraulic actuator 49 by a pair of conduits 111 and 112.
  • the compressor 109 is preferably portable for movement around the tank together with the jacking means.
  • the compressor illustrated is one manufactured by Lincoln Engineering Company of St. Louis, Mo., and ordinarily sold as a high pressure lubricant pump. This unit is air-motor operated and may be produced to provide a to 1 ratio so that pounds per square inch air pressure will yield 7,000 pounds per square inch oil pressure for application to the hydraulic actuator 49.
  • any suitable commercially available high pressure hydraulic source may be used.
  • the housing of the present coupler is formed of high strength steel so as to carry the loads imposed upon it and the wedge members are preferably formed of hardened steel so as to take a proper bite into the rods.
  • the present invention affords a highly convenient apparatus for connecting and placing tendons under tension, and which can be utilized to utmost advantage in providing extremely high tensile forces that approach the maximum tensile strength of the tensioned members.
  • a take up coupling apparatus adapted for engagement by a jacking means for joining, drawing together and rejoining two generally aligned end opposed axially stressed tendons comprising:
  • jack engaging means adapted for connection to said tendons and being formed with shoulders adapted for engaging said jacking means
  • coupling means oper-atively joining said tendon ends and including a pair of sleeve-like wedge members permitting limited movement of said tendons in an axial direction toward said coupling means and preventing movement in a direction away from said coupling means, one of said wedge members and a portion of said coupling means being formed with interfitting right-handed spiral threads and the other of said wedge members and another portion of said coupling means being formed with left handed spiral threads to permit taking up slack between said tendons by rotating said stress relieved coupling means when said jack means is actuated and engages said jack engaging means.
  • a take up coupling apparatus adapted for engagement by a jacking means for joining, drawing together, and rejoining two generally aligned end opposed axially stressed tendons comprising:
  • said coupler members each being formed with an interior bore for receipt of one of said ends of said bar;
  • a pair of sleeve-like wedge members dimensioned to fit around each end of said bar in interference relation therewith in said respective bores and being formed with inner surfaces having teeth adapted for biting into and compressively engaging and gripping the periphery of said bar
  • the internal wall of said bore and the external walls of said wedges being formed with interfitting spiral threads for threading said wedge into and out of said bore and adapted to translate the pull of said bar in an axial direction out of said bore into radially internal gripping forces of said wedge on said bar periphery
  • said spiral threads of one said coupler being right-handed and said spiral threads of the other coupler being left-handed for taking up slack between said couplers by rotation of said bar when the ends of said tendons are drawn together in close relation and the axial stress on said bar is relieved.
  • a take up coupling apparatus adapted for engage ment by a jacking means for joining, drawing together and rejoining two generally aligned end opposed axially stressed tendons comprising:
  • a coupler having a tubular housing having a bore extending axially therethrough for receipt of adjacent ends of said aligned tendons to be connected, a pair of sleeve-like wedge members dimensioned to form an interference fit around said tendon ends in said bore and formed with at least one axially extending slit, the inner engaging surfaces of said wedges being formed with teeth adapted for biting into and compressively engaging and gripping the peripheral surfaces of said tendons, the internal wall of said bore and the external wall of said wedges being formed with interfitting spiral threads for threading said wedges into and out of said bore and defining a plurality of longitudinally spaced annular inclined cam planes, said interfitting cam planes being diametrically dimensioned to be in generally spaced radial relationship prior to insertion of said tendon ends into engagement with said wedge teeth, said planes diverging away from the direction of pull out of said respective tendon ends from said bore so as to translate the pull of said tendons away from each other in an axial direction out of said bore into
  • a one-way removable gripping nut mounted on said respective tendons and having a pair of substantially identical half-cylindrical housing members positioned around said tendon in generally opposed relationship and having their inner surfaces spaced radially from the periphery of said tendon, two separate wedge segments each interposed respectively between one of said housing members and said tendon, said segments each having inner engaging surfaces formed with teeth adapted for biti-ng into and compressively engaging and gripping the periphery of said tendon, and a plurality of longitudinally spaced annular inclined and interfitting cam planes formed on s-aid inner surfaces of said housing members and the external walls of said segments, said planes diverging away from the free end of said tendon so as to translate axi-al pull of said tendon relative to said housing members into radially internal gripping forces of said segments on said tendon periphery, and means for securing said housing members together on said bar and urging them towards one another.

Description

P 26, 1957 J. w. HOWLETT CONCRETE PRESTRESSING APPARATUS 5 Sheets-Sheet 1 Filed Aug. 16, 1963 INVENTOR. James W Howlefl Sept. 26, 1967 J. w. HOWLETT CONCRETE PRESTRES S ING APPARATUS INVENTOR. James W Howler! 5 Sheets-Sheet 2 m x iig L w E m & U
m QN Q N. U F K .Q n m m F w Q Q R Sept. 26, 1967 w HOWLETT 3,343,808
CONCRETE PRESTRESSING APPARATUS Filed Aug. 16, 1963 5 Sheets-Sheet 3 Fig. /2
INVENTOR. James W How/e r United States Patent 3,343,808 CONCRETE PRESTRESSING APPARATUS James W. Howlett, Richmond Annex, Calif., assignor to Howlett Machine Works, a corporation of California Filed Aug. 16, 1963, Ser. No. 302,628 5 Claims. (Cl. 254-133) The invention relates generally to the art of prestressing various concrete structural members by the use of tensioning tendons such as wires, rods, stranded cables or bars, and more particularly to a tensioning apparatus for drawing together and connecting two generally aligned end opposed tendons.
In various concrete prestressing operations, it is required that tension be applied to elongated tension-ing tendons. This may involve either pretensioning or posttensioning of such tendons in relation to the concrete to be prestressed. Some tensioning techniques involve securing a rod at one of its ends to a stationary object, and then pulling the rod from its other end and securing it with the rod under tension. In reinforcing large cylindrical tanks or the like, it has been common to wind wire or rods around the outer sidewall of the tank as a form of post-tensioning, which creates the desired radially inward prestressing forces. A disadvantage of the wire winding technique is that the wires are relatively small, and therefore are subject to corrosion and breakage whereby maintenance becomes a significant problem. The use of steel rods in prestressing tanks has generally invloved two ends of opposed axially aligned rods secured at their remote ends, with means being provided for drawing together the adjacent ends of the rods to place them under tension. Heretofore this has been accomplished by the use of turnbuckles or similar devices involving threaded couplings. Aside from the tedious task of tightening a turnbuckle, this type of tensioning device is not capable of achieving the same high order of prestressing that can be withstood by modern special alloy steel rods. For example, rods are available that have a tension strength in excess of 100,000 pounds per square inch, and which can withstand tension forces much greater than that provided in practice by turnbuckle devices. Moreover, it has been found impractical to use coupling devices wherein threads are formed in the tensioned rods, inasmuch as the threads create weakened shear planes incapable of withstanding high tensile forces of the magnitude above mentioned. Another technique has been to provide heads or enlargements on the confronting ends of the tendons. These heads are then engaged by plates which may be drawn together by a hydraulic jack, after which bolts are mounted through the plates in connecting fashion and nuts run down on the bolts to hold the plates against separation upon subsequent release of the hydraulic jack. The plates and bolts thus form a holding frame or bracket for the tendons. While effective as a means for holding tendons under stress, the foregoing arrangement is relatively large and bulky, and considerably time consuming. Also, where center stressing of tendons is used in prestressed floor slabs, the foregoing arrangement may be too large and bulky for convenient use.
Briefly, the present invention comprises means for engaging two adjacent ends of opposed tendons for drawing them together under tension and securely connecting them to maintain the tensioned condition. The apparatus used includes improvements on the wedge grip couplers of the type disclosed in Howlett Patent No. 2,930,642.
Accordingly, it is a main object of the present invention to provide an improved apparatus for tensioning rods by drawing together and connecting them, and whereby the rods can be placed under large tensile forces approaching their maximum tensile strength.
ice
Another object is to provide an apparatus of the character described for quickly, simply and efliciently connecting two spaced end opposed rods and placing them under high tensile stress.
A further object is to provide an apparatus of the character described capable of prestressing circular tanks or the like by applying tension to rods disposed circumferentially around the tanks outer wall.
Still another object is to provide a novel and improved wedge grip coupler for mounting on the end of a tendon and for axially receiving a bar or rod in one-way gripping relation and holding it against return movement.
Yet another object is to provide an improved wedge grip coupler for connecting two end opposed bars that comprises wedge members which can be simply placed on the bars and a coupler housing which can be threadedly screwed onto the wedge members in a quick and simple manner to form a splice between the two bars, with the coupler being adapted to take up slack as the bars are subsequently drawn together under tension.
Still a further object is to provide a wedge grip nut that can be removably mounted on a bar portion to provide means for applying axial force to the bar.
The invention possesses other objects and features of advantage, some of which of the foregoing will be set forth in the following description of the preferred form of the invention which is illustrated in the drawings accompanying and forming part of this specification. It is to be understood, however, the variations in the showing made by the said drawings and description may be adopted within the scope of the invention as set forth in the claims.
Referring to said drawings (three sheets):
FIGURE 1 is a side elevation of a concrete tank depicting also the apparatus of the present invention for posttensioning encircling rods employed to prestress the tank.
FIGURE 2 is a plan view, in an enlarged scale and partially cut away and in cross-section, of tensioning apparatus embodying the present invention.
FIGURE 3 is a fragmentary side view of a portion of the apparatus as suggested by the line 3-3 in FIGURE 2.
FIGURE 4 is a cross-sectional view taken substantially on the plane of line 4-4 of FIGURE 2.
FIGURE 5 is a cross-sectional View along plane 55 of FIGURE 3 of a one-way wedge grip coupler forming a part of the present invention, and operatively engaging two end opposed bar portions.
FIGURE 6 is a fragmentary cross-sectional view on enlarged scale of the wedge member and coupler housing showing the position of the parts during the inserting of the rod tendon.
FIGURE 7 is a view substantially the same as FIGURE 6, but illustrating the coupler after the tendon has been placed under tension and is secured by the wedge member.
FIGURE 8 is a fragmentary plan view partially cut away and in cross-section, similar to FIGURE 2, but depicting tensioning apparatus forming an alternative embodiment of the invention.
FIGURE 9 is a fragmentary plan view similar to FIG- URES 2 and 8, depicting another alternative embodiment of the invention.
FIGURE 10 is a side view of a wedge grip nut shown in the embodiment of FIGURES 8 and 9.
FIGURE 11 is a cross-sectional transverse view taken along the planes suggested by the line 1111 in FIG- URE 10.
FIGURE 12 is a cross-section view taken along the axis of the bar member shown in FIGURE 10*, and is suggested by the line 12-12 as shown in FIGURE 10.
Referring now to the drawings, the apparatus of the present invention provides means for drawing together and tensioning two generally aligned tendons 11 and 12 having opposed spaced ends 13 and 14, and includes a bar member 16; at least one coupler member 17 having gripping means 18 for axially receiving the bar member 16 and holding it against return movement; one of the members 16 and 17 being mounted on the tendon 11 in opposed .confronting relation to the tendon 12; means for mounting the other of said members 16 and 17 on the tendon 11 in position for operative engagement with the member on the tendon 12; jack engaging means 19 and 21 provided respectively on each said tendon 11 and 12; and jacking means including jaws 23 and 24 for engaging the jack engaging means 19 and 21 for forcing the tendons 11 and 12 towards one another and operatively connecting the members 16 and 17 together, whereby the jacking means can be released to leave the tendons and members under tension.
' In the embodiment of the invention depicted in FIG- URES 1-7, and in particular FIGURE 2, the means for mounting the bar 16 on the tendon 11 includes a second coupler 26 mounted on the tendon 11 and adapted to receive the end 27 of the bar member 16 in the same manner as does the coupler 17. The remote end shoulders of the couplers 17 and 26 are seen in this embodiment to provide the aforesaid jack engaging means 19 and 21, and the jaws 23 and 24 engage these shoulders to draw the tendons together.
As more specifically regards the structure of the couplers 17 and 26, reference is made to FIGURES -7 wherein a coupler 28 is illustrated and includes a housing 29 having an interior bore 31 for receipt of bar ends 32 and 33 to be connected. A sleeve-like wedge member 34 comprises the aforesaid gripping means 18 and is dimensioned to fit around the end 33, with an internal diameter having an interference fit therewith. The wedge 34 has an inner surface 36 formed with teeth 35 for biting into and gripping the bar 33, and has a single longitudinal slit 37 to enable radial expansion and compression against the bar. A plurality of longitudinally spaced annular inclined and interfitting cam planes 38 and 39 are formed respectively on the wall of the bore 31 and the external wall of the wedge 34, whereby axial pull on the bar is translated into radially internal gripping forces of the wedge teeth on the bar. In this regard, the interference fit between the bar and inner surface 36 provides an initial grip to start the cam action. The inclined and interfitting cam planes 38 and 39 are preferably formed as mating spiral threads, with the sleeve-like wedge member 34 thus being adapted to be threaded longitudinally in and out of the bore 31. To accommodate the bar 32, another wedge 40, similar to the wedge 34, is mounted in generally the same manner at the other end of the bore 31.
As an important feature of the present construction, and as above noted, an interference fit is provided between the respective bar and wedge members. More specifically, the external diameter of bar ends 32 and 33 is slightly greater than the normal unstressed internal diameter of the wedge sleeves 34 and 40 so that the axial insertion of the bar ends cause a resilient expansion of the wedge sleeves and a compressive gripping of the bar peripheries by the teeth 35 provided on the internal surfaces 36 of the wedge sleeves. To provide for such resilient expansion of the wedge sleeves 34 and 40, the normal unstressed external diameter of the wedge sleeves at cam planes 39 is less than the internal diameter of mating cam planes 38 provided on the internal wall of the housing. There is thus provided an important radial clearance between the wedge sleeve and the housing when the bar end, such as end 33 of FIGURE 6, is inserted axially into the wedge sleeve as depicted by arrow 40. The interference fit between the bar end and wedge sleeve, as aforementioned, causes wedge sleeve 34 to be displaced internally, as depicted by arrow 40a, by the movement of the bar end 33 until the shoulders 45 at the axial ends of the spiral segments defining the mating cam planes 38 and 39 inovepinto abutment as illustrated in FIGURE 6. In this position of the parts a small radial clearance between the wedge sleeve and the housing will still exist to provide manufacturing tolerance and proper functioning of the device. When return tension is placed on bar 33, however, the bar moves in a reverse direction as depicted by arrow 40b in FIG- URE 7; and this return movement of the bar carries with it the surrounding wedge sleeve 34, as depicted by arrow 400. The latter movement of the wedge sleeve closes the clearance between the mating cam planes and the wedging, camming action of the wedge sleeve against the bar 33 sinking teeth 35 into the periphery of the bar and securely gripping the latter with great holding force.
In operation the coupler member 17 is mounted on the tendon 12 and the bar member 16 provided on the end of the tendon 11, which in the embodiment depicted in FIGURE 2 involves the provision of a coupler 26 secured to the tendon 11 and adapted to grippingly receive the end 27 of the bar 16. Force is applied by the jacking means to urge the tendons together and to bring the couplers 17 and 26 into gripping connecting engagement with the bar 16. In the embodiment depicted in FIGURE 2, the bar 16 is initially placed between the couplers 17 and 26 in spaced relation therewith, after which the couplers are drawn together into engagement with the respective ends of the bar. The force of the jacking means is then slowly released thereby enabling the bar to be gripped securely by the coupler wedges. It is noted that the tension initially provided by the packing means is diminished after the force is released and as the teeth of the wedges bite into the bar. More specifically, as the teeth bite radially into the bar, there is a longitudinal displacement of the wedge relative to the coupler bore, which occurs primarily from the relative movement of the aforesaid interfitting cam planes of the wedge and housing bore. This relative movement is indicated by comparing FIG- DRE 6, showing the coupler as the bar is being inserted, and FIGURE 7 showing the coupler when the bar is under tension, it being observed that the coupler is moved to the right relative to its position in FIGURE 6.
In order to achieve a maximum tension in the rods, it is frequently desirable to remove the slack created by the aforesaid setting of the wedges. In the embodiment depicted in FIGURE 2 this is accomplished by applying force to the couplers by the jacking means a second time, whereupon the tensile forces in the bar 16 are substantially eliminated, leaving it in an unstressed slack condition. By substantially taking up the slack in the bar 16, the force of the jacking means again can be released to leave the rods at the desired tension. With regard to the step of taking up the slack in the bar 16, it will be recalled that the wedge of each coupler has its cam surfaces formed into a spiral thread configuration, whereby rotation of the sleeve member moves it longitudinally relative to the coupler housing. By providing the sleeve members of the two couplers 17 and 26 with oppositely wound threads, the bar 16 when in slack condition can be rotated about its axis in a direction pulling the opposed bar ends tightly into the two couplers. Then, after the force of the jaws is released there is virtually no further longitudinal movement of the interfitting cam planes of the couplers, whereby the rods are maintained at substantially the tension achieved by the second application of force. While the rotation of the bar 16 is similar to taking up slack with a turnbuckle, there is no axial tension force on the bar as the slack is taken up. Rather, the rods are maintained in a tensioned condition by the jaws of the jacking means.
It will be appreciated that the couplers 17 and 26 can be provided on tendons of varying types, such as stranded cables, rods and the like. As shown in the em bodiment of FIGURE 2, these couplers each are of the double-ended type described more fully with regard to FIGURE 5, and thus are adapted to engage a rod tendon in the manner described. It will be appreciated, however, that single-ended couplers could be used by welding or otherwise securing them to the tendons, be it a rod, cable or other configuration.
With more detail now regarding the aforesaid jacking means, there are provided a pair of arms 41 and 42 mounted on a link member 43 for pivotal movement relative to one another and having free ends 44 and 46. The aforesaid jaws 23 and 24 are mounted respectively on the ends 44 and 46, and each have bearing surfaces 47 and 48 for engaging the corresponding couplers 17 and 26 in the apparatus of FIGURE 2-. Fluid pressure means 49 is connected to draw the arms together whereby the couplers 17 and 26 can be moved into engagement with the connecting bar 16 as previously described. The fluid pressure means 49, as best seen in FIGURE 2, is of generally conventional construction and consists of a housing 59 providing an interior cylinder 51 within which is mounted for reciprocation a piston 52. One end 53 of the housing is attached by a bracket 54 to arm 41, while the piston 52 is connected to the other arm 42 by a rod 55 which here projects axially through the housing 50 and piston 52 so as to project from a piston shaft section 56 which extends through the opposite end 57 of the cylinder housing. A wedge grip nut 58, to be described more fully hereinafter, forms a protuberance on the outer end 59 of the rod 55 so as to bear against the adjacent end of piston shaft section 56. The opposite end 60 of the rod 55 may be similarly connected to the arm 42 by a wedge grip nut 61 which is arranged to bear against a flange 62 provided on a mounting bracket 63 fixed to the arm 42. Preferably, the mounting brackets 54 and 63 are of U-shape and are pivotally secured to arms 41 and 42 as illustrated. Housing '50 is here provided with inlet and outlet fittings 64 and 65 located adjacent the opposite ends 53 and 57 of the cylinder for conveying fluid under pressure into and out of the cylinder. As will be observed, the introduction of fluid under pressure into inlet fitting 64 will cause a displacement of piston 52 to the left, as seen in FIGURE 2, thus effecting a closing of the arms 41 and 42 and jaws 23 and 24. Contrariwise, the admission of fluid into the cylinder by way of fitting 65 and the withdrawal of fluid by way of fitting 64 will permit a displacement of piston 52 to the right, as seen in the drawing, and an opening of the arms and jaws. It will be noted that the rod 55 is disposed intermediate the link 43 and the free ends of the arms 41 and 42. and is substantially parallel to the link 43. The rod 55 is seen to be movable relative to the arm 41.
In further describing the arms and jaws of the jacking means, it will be appreciated that the two arms are symmetrical and substantially identical to one another. Thus, reference is made now only to the arm 41 and jaw 23 mounted thereon. In particular, it is preferred that the free end 44 of the arm 41 includes a pair of bifurcated elements 44:: and 44b adapted to fit around the corresponding tendon 11, as is shown in detail in FIGURES 3 and 4. Similarly, the jaw 23 also includes a pair of bifurcated elements 23a and 23b which fit around the tendon 11, and are in general alignment with the elements 44a and 44b. As shown, the elements 23:: and 23b are spaced closer together than the elements 44a and 44]), whereby the tendon 11 fits snugly into the jaw while being able to pass relatively freely into the opening of the arm. In order to assure a firm grip of the couplers by the jaws, each jaw is pivotally mounted on its respective arm whereby the jaw and coupler need not move relative to one another as the arms are drawn together. Furthermore, in order to withstand the high forces involved in tensionin'g rods with the instant apparatus, the jaw 23 and free end 44 respectively have complementary arcuate bearing surfaces 66 and 67. In this manner, pivotal movement of the jaw relative to the arm is allowed but while still providing a sufiicient bearing surface between these two members to transmit high force from the arms through the jaws to the couplers and rods. Preferably, the surface 66 is convex and is complementary to the concave surface 67. A pair of strap- like members 68 and 69, secured rigidly to the elements 44a and 44b, pivotally support the jaw 23 by means of stub shafts 70 and 71, but because of the arcuate bearing surfaces these stub shafts need not support the full load transmitted to the tensioned rods.
As further regards the structure of the arms 41 and 42, it is preferred that these arms consist respectively of pairs of spaced arm members 72, 73 and 74, 76. Considering the arm 41, the spaced bifurcated elements 44a and 4412 may be formed as integral extensions respectively of the members 72 and 73. The arm members are secured rigidly together by means of nuts 77, bolts 78, and spacers 79. The bar 55 extends through the spaces between the arm members, and similarly, the link 43 is pivotally secured between the arm members.
It will be seen that the arms 41 and 42 as shown pivotally mounted at spaced positions on the link 43 have their center lines in relatively parallel relationship.
Movement of the arms towards one another about pivot points 83 and 84 thus requires a minimum of pivotal movement of the jaws 23 and 24 relative to their respective arms, thereby minimizing the friction involved in moving the arms together. Inasmuch as the tendons 11 and 12 to be joined are not always spaced the same distance apart, it is desirable that the length of the link 43 be adjustable to provide the aforesaid generally parallel relationship of the arms. As here shown, link 43 is composed of a tubular center section 8d and a pair of removable end members 81 and 82 which are in turn pivotally connected to the adjacent ends of arms 41 and 42 by pivot bolts 83 and 84. Since the force on the link member during operation of the device is in compression, end members 81 and 82 are provided with flanges, as seen in FIGURE 2, for abutting the opposite ends of the tubular center section 80. Preferably, ring clamps 85 and 86 are mounted around the opposite ends of the tubular center section for squeezing down upon the inserted portions of end members 81 and 82 so as to hold the latter in place, the opposite ends of the tubular center section being slitted to permit compression by the ring clamps against the end members. Adjustment of the length of the link 43 may accordingly be conveniently effected by dismantling the center section and end members 81 and 82 and replacing the center section with one of appropriate (longer or shorter) length.
An alternative embodiment of the invention is depicted in FIGURE 8. The coupler 17a, as shown in FIGURE 8, is again secured to the tendon 12a, and preferably comprises a double-ended coupler of the type shown in FIG- URE 5. Separate jack engaging means 19a and 21a are here provided as protuberances on the tendons 11a and 12a, independent of the shoulder of the coupler 17a. Preferably, the protuberances are formed as removable wedge grip nuts, similar to the nuts 58 and 61 aforementioned, to be described more fully. To connect the tendons 11a and 12a, the jacking means force the two tendons together and into engagement with the two ends of the coupler 17a, whereupon the wedges of the coupler grippingly engage the tendons and hold them against return movement. As described with the embodiment in FIGURE 2, when the force of the jacking means is released, the setting of the wedge cam planes causes the initial tension in the tendons to be decreased. However, again in this embodiment, it is possible to take up the slack caused by this setting by applying force again for a second time thereby placing the ends of the tendons intermediate the wedge nuts in a slack unstressed condition. By providing the two wedges of the coupler 17a with oppositely wound spiral threads, rotation of the coupler causes the ends of the tendons to be drawn together tightly. Then when the jacking force is released, the tendons will remain in substantially the desired tension condition.
A third alternative embodiment of the invention is depicted in FIGURE 9, Where again the coupler 17b is provided on the end of the tendon 12b and the bar 1612 is provided on the end of the tendon 1132. Unlike the embodiment of FIGURE 8, however, the coupler 17b need not be of the double-ended type, although shown as such, and could for example be welded or otherwise secured to the tendon 12b. The jack engaging means 21b here is provided by an end shoulder of the coupler 1712, while a removable wedge nut 19b mounted on the bar 16 spaced from its end preferably serves as the other jack engaging means. In drawing the tendons toward one another, the bar 16!) is moved axially into gripping engagement with the coupler 1717, thus holding the tendons under tension. While it is appreciated that this embodiment of the invention does not afford the feature of rotational slack take-up as previously described regarding the other two embodiments, it nevertheless will be seen that a fewer number of parts are here required to join the opposed tendons than in the other embodiments. Since in various instances rotational slack take-up is not necessary, the reduction of parts is of course advantageous. Wedge grip nuts 19a, 21a, 19b, 59 and 61 are all here shown of similar construction. One of these nuts, identified as 19a, is illustrated in detail in FIGURES 10, 11 and 12. The nut is particularly constructed for mounting either permanently or temporarily upon a bar or rod and for this purpose is split longitudinally for removal from the rod in two half sections. Accordingly, the nut housing is formed of a pair of half- cylindrical housing sections 91 and 92, and these fit around a pair of half- cylindrical wedge sections 96 and 97, the latter cooperating to surround rod 12a in the same manner as wedge member 34. The wedge sections 96 and 97 have internal bar engaging surfaces 98 formed with teeth for biting into and compressively engaging and gripping the periphery of the bar. Also similar to the coupling construction above described, the wedge and housing sections are formed with a plurality of longitudinally spaced annular inclined interfitting cam planes formed on the inner surfaces 93 and 94 of the housing sections and the external walls 99 of the wedge sections so as to translate pull of the bar in an axial direction relative to the nut into radially gripping forces of the wedge sections 96 and 97 on the bar. The housing sections 91 and 92 are here secured together by a pair of threaded bolts 101 and 102 which extend through bores 103 in section 91 into threaded engagement with tapped bores 104 in housing section 92. It will be seen from the foregoing that the wedge nut can be readily mounted at any intermediate position on a bar member, thus enabling it for use with the fluid pressure means 49, and the embodiments of FIGURES 8 and 9 as described hereinabove. An important feature of the nut is that it can be easily removed from the bar after it has been used. Consequently, the wedge nuts in the embodiments of FIGURES 8 and 9 can be taken off of the tendons after they have been connected, thus enabling their use elsewhere.
In FIGURE 1, the present invention, as embodied in the above described apparatus, is generally depicted in the operation of tensioning a plurality of rods 106 around a circular tank 107. A bracket 108, consisting of an eyelet, hook, ear or similar structure suitable for attaching a cable thereto is provided on the arm 41 of the jacking means to enable the jack to be supported by a cable (not shown) from a suitable crane or the like disposed on top of the tank 107 and adapted to move along the tanks periphery. In mounting the rods 106 around the tank, a
plurality of rods may be simply spliced together at adjacent ends by a coupler 28, as shown in FIGURE 5. This generally is best accomplished by first mounting the wedges separately on the rod ends, after which the housing is threaded onto the pairs of opposed wedges. These spliced rods are then disposed around the tank with the spaced opposed ends of two rods remaining to be joined. As shown, a pair of couplers 17 and 26 and a connecting bar 16 are used to join the remaining ends in the manner described hereinabove with regard to the embodiment of FIGURE 2, thus placing each of the encircling rod assemblies under tension. A high pressure fluid compressor 109 is connected to the fluid pressure fittings 64 and of the hydraulic actuator 49 by a pair of conduits 111 and 112. The compressor 109 is preferably portable for movement around the tank together with the jacking means. The compressor illustrated is one manufactured by Lincoln Engineering Company of St. Louis, Mo., and ordinarily sold as a high pressure lubricant pump. This unit is air-motor operated and may be produced to provide a to 1 ratio so that pounds per square inch air pressure will yield 7,000 pounds per square inch oil pressure for application to the hydraulic actuator 49. Of course, any suitable commercially available high pressure hydraulic source may be used.
It Will be appreciated that with :a relatively large tank, the joining together of the couplers 17 and 26 may not provide the desired tension in the tendons around the whole tank, since nonuniformity of tension is likely to be caused by friction. Consequently, it may be desirable to draw each pair of opposed tendon ends together to tension them, rather than simply splice them as shown, in addition to applying tension to the last pair of ends to be connected. To do this, considering the embodiment of FIG- URE 8, for example, the wedge members of the coupler would be separately mounted on the tendon ends, apart from the coupler housing, but just far enough to hold them on during initial tensioning. Then the coupler housing is threaded onto the wedges in the manner described to form the splice. By mounting the split wedge nuts on each tendon end, as shown in FIGURE 8, it is then possible to bring the jack to each splice joint and draw the tendons all the way into the wedges, thus taking up slack at each splice position. After all the splices are tightened in this manner, further removal of slack can be accomplished, as described above with regard to the second application of force at each splice connection, and rotation of the coupler to draw up the tendon ends as tightly as possible. Each of the splice connections, of course, can similarly be made in accord with the embodiments of the invention depicted in FIGURES 2 and 9. In order to measure the tension in the bars to assure that the desired stressing conditions are achieved, it is preferable that a device such as a Howlett Extensometer be used in conjunction with each slack take-up point to observe the tensile forces as the jack is operated. Preferably, the housing of the present coupler is formed of high strength steel so as to carry the loads imposed upon it and the wedge members are preferably formed of hardened steel so as to take a proper bite into the rods.
From the foregoing it is apparent that the present invention affords a highly convenient apparatus for connecting and placing tendons under tension, and which can be utilized to utmost advantage in providing extremely high tensile forces that approach the maximum tensile strength of the tensioned members.
I claim:
1. A take up coupling apparatus adapted for engagement by a jacking means for joining, drawing together and rejoining two generally aligned end opposed axially stressed tendons comprising:
jack engaging means adapted for connection to said tendons and being formed with shoulders adapted for engaging said jacking means; and
coupling means oper-atively joining said tendon ends and including a pair of sleeve-like wedge members permitting limited movement of said tendons in an axial direction toward said coupling means and preventing movement in a direction away from said coupling means, one of said wedge members and a portion of said coupling means being formed with interfitting right-handed spiral threads and the other of said wedge members and another portion of said coupling means being formed with left handed spiral threads to permit taking up slack between said tendons by rotating said stress relieved coupling means when said jack means is actuated and engages said jack engaging means.
2. A take up coupling apparatus adapted for engagement by a jacking means for joining, drawing together, and rejoining two generally aligned end opposed axially stressed tendons comprising:
a pair of coupler members secured one to each opposed end of said tendons, said members each having a shoulder adapted for engaging said jacking means for drawing said tendons together;
a connecting bar disposed between said couplers in general alignment with said tendons;
said coupler members each being formed with an interior bore for receipt of one of said ends of said bar; and
a pair of sleeve-like wedge members dimensioned to fit around each end of said bar in interference relation therewith in said respective bores and being formed with inner surfaces having teeth adapted for biting into and compressively engaging and gripping the periphery of said bar, the internal wall of said bore and the external walls of said wedges being formed with interfitting spiral threads for threading said wedge into and out of said bore and adapted to translate the pull of said bar in an axial direction out of said bore into radially internal gripping forces of said wedge on said bar periphery, said spiral threads of one said coupler being right-handed and said spiral threads of the other coupler being left-handed for taking up slack between said couplers by rotation of said bar when the ends of said tendons are drawn together in close relation and the axial stress on said bar is relieved.
3. A coupling apparatus as described in claim 2 wherein said interfitting spiral threads of said wedge members and coupler bores define a plurality of longitudinally spaced annular inclined and interfitting cam planes diverging away from the direction of pull of said bar from said bore for self actuated, gripping of said bar by said couplers upon movement of said bar into said couplers and sequentially followed by movement of said couplers in a direction axially away from said bar.
4. A take up coupling apparatus adapted for engage ment by a jacking means for joining, drawing together and rejoining two generally aligned end opposed axially stressed tendons comprising:
a pair of jack engaging means provided on each of said tendons and spaced from the ends thereof; and
a coupler having a tubular housing having a bore extending axially therethrough for receipt of adjacent ends of said aligned tendons to be connected, a pair of sleeve-like wedge members dimensioned to form an interference fit around said tendon ends in said bore and formed with at least one axially extending slit, the inner engaging surfaces of said wedges being formed with teeth adapted for biting into and compressively engaging and gripping the peripheral surfaces of said tendons, the internal wall of said bore and the external wall of said wedges being formed with interfitting spiral threads for threading said wedges into and out of said bore and defining a plurality of longitudinally spaced annular inclined cam planes, said interfitting cam planes being diametrically dimensioned to be in generally spaced radial relationship prior to insertion of said tendon ends into engagement with said wedge teeth, said planes diverging away from the direction of pull out of said respective tendon ends from said bore so as to translate the pull of said tendons away from each other in an axial direction out of said bore into 5. A take up coupling apparatus as characterized in claim 4 wherein said jack eng-aging means for each tendon comprises:
a one-way removable gripping nut mounted on said respective tendons and having a pair of substantially identical half-cylindrical housing members positioned around said tendon in generally opposed relationship and having their inner surfaces spaced radially from the periphery of said tendon, two separate wedge segments each interposed respectively between one of said housing members and said tendon, said segments each having inner engaging surfaces formed with teeth adapted for biti-ng into and compressively engaging and gripping the periphery of said tendon, and a plurality of longitudinally spaced annular inclined and interfitting cam planes formed on s-aid inner surfaces of said housing members and the external walls of said segments, said planes diverging away from the free end of said tendon so as to translate axi-al pull of said tendon relative to said housing members into radially internal gripping forces of said segments on said tendon periphery, and means for securing said housing members together on said bar and urging them towards one another.
References Cited UNITED STATES PATENTS 457,865 8/ 1891 Manson. 1,366,732 1/1921 Hoyt. 1,744,722 1/19-30 Bromley. 1,854,140 4/1932 Hopkins 24-136 2,058,549 10/ 1936 Austin 24-136 2,091,444 8/1937 Hewett 50-129 X 2,414,011 1/1947 :Billner 50-129 2,535,623 12/1950 Becker 24-81 2,579,183 12/1951 Freyssinet 50-129 X 2,797,943 7/1957 Carpenter 287-60 2,859,504 11/1958 Crowley 264-228 2,863,206 12/1958 Kirchner 25-118 2,930,642 3/ 1960 Howlett 287-114 2,932,964 4/1960 Dobell 50-129 2,945,720 7/1960 Osmun. 3,033,600 5/1962 Drysdale 287-1 14 3,056,183 10/1962 Pigeot 264-228 3,070,867 1/196 3 Belle 25-118 3,123,942 3/1964 Stinton 50-5 31 FOREIGN PATENTS 957,685 2/1957 Germany.
86,778 10/1920 Switzerland.
OTHER REFERENCES Stressrods, September 1959, pp. 8-11.
OTHELL M. SIMPSON, Primary Examiner.
ALEXANDER H. BRODM'ERKEL, BILLY I. WIL- HlT-E, Examiners.
I. A. FINLAYSON, JR., Assistant Examiner.

Claims (1)

1. A TAKE UP COUPLING APPARATUS ADAPTED FOR ENGAGEMENT BY A JACKING MEANS FOR JOINING, DRAWING TOGETHER AND REJOINING TWO GENERALLY ALIGNED END OPPOSED AXIALLY STRESSED TENDONS COMPRISING: JACK ENGAGING MEANS ADAPTED FOR CONNECTION TO SAID TENDONS AND BEING FORMED WITH SHOULDERS ADAPTED FOR ENGAGING SAID JACKING MEANS; AND COUPLING MEANS OPERATIVELY JOINING SAID TENDON ENDS AND INCLUDING A PAIR OF SLEEVE-LIKE WEDGE MEMBER PERMITTING LIMITED MOVEMENT OF SAID TENDONS IN AN AXIAL DIRECTION TOWARD SAID COUPLING MEANS AND PREVENTING MOVEMENT IN A DIRECTION AWAY FROM SAID COUPLING MEANS, ONE OF SAID WEDGE MEMBERS AND A PORTION OF SAID COUPLING MEANS BEING FORMED WITH INTERFITTING RIGHT-HANDED SPIRAL THREADS AND THE OTHER OF SAID WEDGE MEMBERS AND ANOTHER PORTION OF SAID
US302628A 1963-08-16 1963-08-16 Concrete prestressing apparatus Expired - Lifetime US3343808A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US302628A US3343808A (en) 1963-08-16 1963-08-16 Concrete prestressing apparatus
US630288A US3518748A (en) 1963-08-16 1967-04-12 Concrete prestressing method
US669120A US3504938A (en) 1963-08-16 1967-09-20 Concrete prestressing apparatus (split nut)
US669121A US3396943A (en) 1963-08-16 1967-09-20 Concrete prestressing apparatus
US669002A US3460300A (en) 1963-08-16 1967-09-20 Concrete prestressing apparatus (tank)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US302628A US3343808A (en) 1963-08-16 1963-08-16 Concrete prestressing apparatus

Publications (1)

Publication Number Publication Date
US3343808A true US3343808A (en) 1967-09-26

Family

ID=23168562

Family Applications (1)

Application Number Title Priority Date Filing Date
US302628A Expired - Lifetime US3343808A (en) 1963-08-16 1963-08-16 Concrete prestressing apparatus

Country Status (1)

Country Link
US (1) US3343808A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3449876A (en) * 1968-02-21 1969-06-17 George H Howlett Tendon anchorage
US3460300A (en) * 1963-08-16 1969-08-12 Howlett Machine Works Concrete prestressing apparatus (tank)
US4348844A (en) * 1980-09-25 1982-09-14 Morris Schupack Electrically isolated reinforcing tendon assembly and method
US4616458A (en) * 1985-07-01 1986-10-14 Vsl Corporation Protective apparatus for tendons in tendon tensioning anchor assemblies
US4630690A (en) * 1985-07-12 1986-12-23 Dailey Petroleum Services Corp. Spiralling tapered slip-on drill string stabilizer
WO1987003637A1 (en) * 1985-12-05 1987-06-18 Friederike Wimmer Carrier-like structural element
US4773198A (en) * 1986-09-05 1988-09-27 Continental Concrete Structures, Inc. Post-tensioning anchorages for aggressive environments
US20100005661A1 (en) * 2008-07-09 2010-01-14 Mark Sorensen Post-tension strand repair method and apparatus
US20130319686A1 (en) * 2012-05-31 2013-12-05 Tesco Corporation Centralizer connector
US11352790B2 (en) * 2019-12-18 2022-06-07 Kurosawa Construction Co., Ltd. Method of introducing prestress to beam-column joint of PC structure in triaxial compression

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US457865A (en) * 1891-08-18 Joint for electric conductors
CH86778A (en) * 1920-01-31 1920-10-01 Nater Ernst Connection sleeve for electrical power lines.
US1366732A (en) * 1918-04-10 1921-01-25 Hoyt Daniel Turnbuckle
US1744722A (en) * 1926-12-15 1930-01-28 Washington Mold Fishing tool
US1854140A (en) * 1930-06-18 1932-04-12 Hopkins Benjamin Harrison Cable gripping device
US2058549A (en) * 1933-07-27 1936-10-27 Ohio Brass Co Clamp
US2091444A (en) * 1935-12-09 1937-08-31 William S Hewett Building structure reinforcement
US2414011A (en) * 1942-06-07 1947-01-07 Karl P Billner Reinforced concrete body
US2535623A (en) * 1947-05-10 1950-12-26 Fargo Mfg Co Inc Wire gripping assembly and casing connector
US2579183A (en) * 1943-06-29 1951-12-18 Freysainet Eugene Method for tensioning reinforcements
DE957685C (en) * 1957-01-17 Karl Kubler A G , Bauunternehmung, Stuttgart Method for tensioning the tendons on prestressed concrete components
US2797943A (en) * 1955-05-11 1957-07-02 Darcel E Carpenter Self-locking turn buckle
US2859504A (en) * 1952-06-11 1958-11-11 Francis X Crowley Process of making prestressed concrete structures
US2863206A (en) * 1952-08-27 1958-12-09 Kirchner Ignatz Adolf Apparatus for prestressing reinforcing wires for reinforced concrete parts in mass production
US2930642A (en) * 1957-07-10 1960-03-29 George H Howlett Steel bar connector for reinforcing and stressing concrete
US2932964A (en) * 1954-09-14 1960-04-19 Preioad Company Inc Tank construction
US2945720A (en) * 1956-05-28 1960-07-19 Dean W Osmun Grappling tool
US3033600A (en) * 1960-05-04 1962-05-08 Drysdale John Connectors for jointing wires, rods and the like
US3056183A (en) * 1958-12-17 1962-10-02 Entpr S Campenon Bernard Process for the production of lined prestressed concrete hollow bodies
US3070867A (en) * 1959-12-21 1963-01-01 Theodore J Belle Strand holder and dam for prestressed concrete molds
US3123942A (en) * 1964-03-10 Stinton

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE957685C (en) * 1957-01-17 Karl Kubler A G , Bauunternehmung, Stuttgart Method for tensioning the tendons on prestressed concrete components
US457865A (en) * 1891-08-18 Joint for electric conductors
US3123942A (en) * 1964-03-10 Stinton
US1366732A (en) * 1918-04-10 1921-01-25 Hoyt Daniel Turnbuckle
CH86778A (en) * 1920-01-31 1920-10-01 Nater Ernst Connection sleeve for electrical power lines.
US1744722A (en) * 1926-12-15 1930-01-28 Washington Mold Fishing tool
US1854140A (en) * 1930-06-18 1932-04-12 Hopkins Benjamin Harrison Cable gripping device
US2058549A (en) * 1933-07-27 1936-10-27 Ohio Brass Co Clamp
US2091444A (en) * 1935-12-09 1937-08-31 William S Hewett Building structure reinforcement
US2414011A (en) * 1942-06-07 1947-01-07 Karl P Billner Reinforced concrete body
US2579183A (en) * 1943-06-29 1951-12-18 Freysainet Eugene Method for tensioning reinforcements
US2535623A (en) * 1947-05-10 1950-12-26 Fargo Mfg Co Inc Wire gripping assembly and casing connector
US2859504A (en) * 1952-06-11 1958-11-11 Francis X Crowley Process of making prestressed concrete structures
US2863206A (en) * 1952-08-27 1958-12-09 Kirchner Ignatz Adolf Apparatus for prestressing reinforcing wires for reinforced concrete parts in mass production
US2932964A (en) * 1954-09-14 1960-04-19 Preioad Company Inc Tank construction
US2797943A (en) * 1955-05-11 1957-07-02 Darcel E Carpenter Self-locking turn buckle
US2945720A (en) * 1956-05-28 1960-07-19 Dean W Osmun Grappling tool
US2930642A (en) * 1957-07-10 1960-03-29 George H Howlett Steel bar connector for reinforcing and stressing concrete
US3056183A (en) * 1958-12-17 1962-10-02 Entpr S Campenon Bernard Process for the production of lined prestressed concrete hollow bodies
US3070867A (en) * 1959-12-21 1963-01-01 Theodore J Belle Strand holder and dam for prestressed concrete molds
US3033600A (en) * 1960-05-04 1962-05-08 Drysdale John Connectors for jointing wires, rods and the like

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3460300A (en) * 1963-08-16 1969-08-12 Howlett Machine Works Concrete prestressing apparatus (tank)
US3449876A (en) * 1968-02-21 1969-06-17 George H Howlett Tendon anchorage
US4348844A (en) * 1980-09-25 1982-09-14 Morris Schupack Electrically isolated reinforcing tendon assembly and method
US4616458A (en) * 1985-07-01 1986-10-14 Vsl Corporation Protective apparatus for tendons in tendon tensioning anchor assemblies
US4630690A (en) * 1985-07-12 1986-12-23 Dailey Petroleum Services Corp. Spiralling tapered slip-on drill string stabilizer
WO1987003637A1 (en) * 1985-12-05 1987-06-18 Friederike Wimmer Carrier-like structural element
US4773198A (en) * 1986-09-05 1988-09-27 Continental Concrete Structures, Inc. Post-tensioning anchorages for aggressive environments
US20100005661A1 (en) * 2008-07-09 2010-01-14 Mark Sorensen Post-tension strand repair method and apparatus
US8752263B2 (en) * 2008-07-09 2014-06-17 Mark Sorensen Post-tension strand repair method and apparatus
US20130319686A1 (en) * 2012-05-31 2013-12-05 Tesco Corporation Centralizer connector
US9322228B2 (en) * 2012-05-31 2016-04-26 Tesco Corporation Centralizer connector
US11352790B2 (en) * 2019-12-18 2022-06-07 Kurosawa Construction Co., Ltd. Method of introducing prestress to beam-column joint of PC structure in triaxial compression

Similar Documents

Publication Publication Date Title
US4469465A (en) Rebar coupler
US3253332A (en) Connecting means and method for reinforcing rods
US3343808A (en) Concrete prestressing apparatus
US3850535A (en) Connecting means and method for forming reinforcing rod connection
US3551999A (en) Butt-joining of steel bars
US20060201083A1 (en) Tensioning anchor suitable for blind-hole tendon anchoring and tendon repair
US2327683A (en) Wire holding device
US3518748A (en) Concrete prestressing method
US6470636B1 (en) Detensioning apparatus for releasing a chuck on a prestressed strand
US3701509A (en) Splicing system and jack for stressing concrete
US10119646B1 (en) Hydraulic chain clamp apparatus for pipe repair sleeves
US3460300A (en) Concrete prestressing apparatus (tank)
US5251421A (en) Prestress wire splicing apparatus
RU105647U1 (en) COUPLING CONNECTION OF BAR FITTINGS
US3858991A (en) Apparatus for preassembling a cable and dead anchor
JP7355644B2 (en) How to adjust the tension of PC steel materials
US3396943A (en) Concrete prestressing apparatus
US3504938A (en) Concrete prestressing apparatus (split nut)
US3978572A (en) Pipe joint make up tool
US4516431A (en) Pipe testing apparatus
US2783024A (en) Bar gripping means for use in the production of prestressed concrete
US3070056A (en) Apparatus for repairing pipelines
US4782577A (en) Method of using V-clamp installation tool
US4345740A (en) Tensioning system for cables in prestressed concrete
JP7412139B2 (en) Tension adjustment jig for PC steel and tension adjustment method for PC steel