US3270817A - Method and apparatus for installing a permeable well liner - Google Patents

Method and apparatus for installing a permeable well liner Download PDF

Info

Publication number
US3270817A
US3270817A US354837A US35483764A US3270817A US 3270817 A US3270817 A US 3270817A US 354837 A US354837 A US 354837A US 35483764 A US35483764 A US 35483764A US 3270817 A US3270817 A US 3270817A
Authority
US
United States
Prior art keywords
liner
well bore
spring
formation
springs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US354837A
Inventor
Papaila John
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gulf Research and Development Co
Original Assignee
Gulf Research and Development Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gulf Research and Development Co filed Critical Gulf Research and Development Co
Priority to US354837A priority Critical patent/US3270817A/en
Application granted granted Critical
Publication of US3270817A publication Critical patent/US3270817A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • E21B43/108Expandable screens or perforated liners
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/08Screens or liners
    • E21B43/088Wire screens
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53613Spring applier or remover
    • Y10T29/53622Helical spring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53657Means to assemble or disassemble to apply or remove a resilient article [e.g., tube, sleeve, etc.]

Definitions

  • This invention relates to a method and an apparatus for preventing the movement into a well bore of individual particles comprising an unconsolidated rock formation.
  • unconsolidated formations Many underground rock formations are unconsolidated or so poorly consolidated that they readily disintegrate under the forces exerted upon them by the flow of formation fluids into a well bore penetrating the formation. Such rock formations are hereinafter referred to generally as unconsolidated formations. It has been found that when fluids flow from unconsolidated formations into a well bore, the displacement of formation particles into the well bore permits the movement of additional particles farther back in the formation and results in plugging of the well bore and of the formation flow channels around the well bore. To prevent the rearrangement of the formation particles under the forces of fluid flow, it is necessary to prevent substantially the movement of formation particles into the well bore.
  • This invention resides in a method and an apparatus for arresting the movement of formation particles around a well bore penetrating an unconsolidated rock formation by setting in the well bore an expansible permeable liner containing a helical spring whereby the liner is forcibly urged against the wall of the well bore.
  • the apparatus of this invention comprises a setting tool suitable for maintaining the spring and liner in a stressed condition while the liner and spring are being run in the well bore.
  • the setting tool is so designed that, when the liner and spring are in position in the well bore, the setting tool first reduces the elongating force on the spring and then reduces the torsional force.
  • FIGURE 1 is a vertical cross-sectional view of an expansible permeable liner and its supporting springs secured in a stressed condition on the setting tool of this invention.
  • FIGURE 2 is a plan view of the top of the setting tool with the liner springs attached.
  • FIGURE 3 is a plan view of the bottom of the setting tool with the liner springs attached.
  • a Well bore 2 penetrating an unconsolidated subterranean rock formation 3.
  • the bottom of a string of well casing 4 rests on an inwardly extending shoulder 5 in well bore 2.
  • Casing 4 is secured to the wall of well bore 2 by a sheath of cement 6.
  • An inwardly extending shoulder 7 at the bottom of casing 4 engages the upper end of a rigid liner support 8.
  • a snap ring 9 secures the upper end of an expansible permeable tubular liner 10 to the bottom of liner support 8.
  • the setting tool indicated generally by reference numeral 12, is shown with liner 10, liner support 8, and two interwoven helical liner springs 14 and 16 secured to the setting tool 12 in the stressed condition employed when the apparatus is suspended from a wire liner 18 and run in the well bore 2.
  • the setting tool 12 comprises a cylinder 20 forming therein a torque pressure chamber 22 and an elongation pressure chamber 24 which are separated by a transverse wall 27.
  • a bushing 28 is threadably connected to the upper end of cylinder 20 and partially closes the upper end of chamber 22.
  • a torque piston 26 is incased in chamber 22, and a fluid seal between the side of piston 26 and the wall of chamber 22 is effected by an O-ring 30 set in a groove 32 cut around the circumference of piston 26.
  • Piston 26 extends from the lower end of a threaded shaft 34 which passes through the threaded central passage of bushing 28.
  • the mating threads of shaft 34 and bushing 28 are both low-pitch, coarse threads to minimize the force required to turn shaft 34 in bushing 28.
  • valve housing 38 Extending from the upper end of shaft 34 is a valve housing 38 connected to the lower end of wire line 18 and containing an upper pressuring valve 40 and an upper pressure release valve 42.
  • Pressure release valve 42 is actuated by suitable means such as an automatic timing mechanism 43, a solenoid (not shown in the drawing), or a detonating cap (not shown).
  • a lateral fluid passage 44 extends through valve housing 38 between pressuring valve 4% and pressure release valve 42.
  • An upper longitudinal fluid passage 46 communicates with lateral fluid passage 44 and extends downwardly through shaft 34 and piston 26 and opens into chamber 22.
  • a circular disc 48 extends radially from the upper end of shaft 34 below valve housing 38.
  • the diameter of disc 48 is slightly larger than the external diameter of cylinder 20.
  • An upper cylindrical tool sleeve 50 extends from the circumference of disc 48 downwardly around cylinder 20 for approximately the length of shaft 34.
  • the internal diameter of tool sleeve 50 is slightly larger than the external diameter of cylinder 20 to permit the unrestricted movement of tool sleeve 50 around cylinder 20 as shaft 34 is rotated in bushing 28.
  • Two spring stays 52 extend from the edge of disc 48 to secure the ends of springs 14 and 16 as indicated in FIGURE 2.
  • the spring stays 52 positioned diametrically opposite each other on the circumference of disc 48, engage the ends of springs 14 and 16 to impart a torsional force to springs 14 and 16 when the springs are wound and to secure springs 14 and 16 to the upper end of setting tool 12 until they unwind.
  • An elongation piston 54 is sidably incased within hamber 24 and a fluid seal between piston 54 and the wall of chamber 24 is provided by an O-ring 56 set in a groove 58 cut around the circumference of piston 54.
  • a cylinder collar 60 threadably connected to the lower end of cylinder has an inwardly extending shoulder 62 to limit downward movement of piston 54 in chamber 24.
  • a piston shaft 64 having a non-round cross-section, extends from the bottom of piston 54 downwardly through a similarly shaped central passage 66 in collar 60. The seating of shaft 64 in passage 66 prevents the turning of shaft 64.
  • a circular base plate 68 extending radially from the lower end of shaft 64, has a diameter slightly larger than the external diameter of cylinder 20.
  • a lower cylindrical tool sleeve 70 extends upwardly from the circumference of base plate 68 and slides along the outer surface of cylinder 20 as shaft 64 moves through passage 66 in collar 60.
  • Spring latches 72 are pivotally connected at 74 to base plate 68 as indicated in FIGURES 1 and 3.
  • the lower ends of springs 14 and 16 are secured to spring latches 72 as shown in FIGURE 3, and the upward rotation of latches 72 past a position that is parallel to the bottom of base plate 68 is prevented by the seating of latches 72 against the surfaces 76 of base plate 68.
  • a lower valve housing 78 extending downwardly from the bottom of base plate 68, contains an elongation pressuring valve 80 and an elongation pressure release valve 82.
  • Pressure release valve 82 is actuated by suitable means such as an automatic timing mechanism 83, a sole noid (not shown in the drawing), or a detonation cap (not shown).
  • a lateral fluid passage 84 connects valves 80 and 82 with a longitudinal fluid passage 86 extending through shaft 64 and piston 54 and opening into chamber 24.
  • the lower end of liner 10 is secured, as indicated in FIGURE 1, around a rigid retaining ring 88.
  • the retaining ring 88 has a diameter less than the diameter of base plate 68 and prevents upward movement of liner 10 around setting tool 12 while the tool and liner are being lowered through well bore 2.
  • a ribbed disc 90 is secured within a groove 92 in the wall of liner support 8.
  • the disc 90 is shaped like a spoked wheel and fits around wire line 18 to seat on top of valve housing 38 to prevent movement of liner 10 and liner support 8 downwardly around setting tool 12 as the tool and liner assembly are lowered through well bore 2.
  • the disc 90 is made of a frangible or deformable material that can be unseated from groove 92 by upward tension applied to wire line 18 and thereby permits the removal of setting tool 12 from the well bore 2 after liner 10 and liner support 8 are set therein.
  • a single helical spring can be employed to support the liner in the well bore 2 according to the method of this invention.
  • two interwoven helical springs 14 and 16 have been described in the embodiment of the invention set forth in the specification because the use of two springs instead of one imparts less motion and less stress to the expansible liner 10 when the liner 10 and springs 14 and 16 are released in the Well bore 2, thereby reducing the possibility of damaging the liner 10 while setting it.
  • the interwoven springs 14 and 16 are slipped over the setting tool 12 and the tool 12 and springs 14 and 16 are elongated by pumping a liquid through pressuring valve 80 in valve housing 78. While the springs 14 and 16 are being elongated, care must be taken that the ends of springs 14 and 16 remain engaged by spring latches 72 at the lower end of springs 14 and 16 and by the spring stays 52 at the upper end of springs 14 and 16. When the fluid pressure in chamber 24 has forced the piston 54 into contact with the inwardly projecting shoulders 62 of collar 60, the injection of liquid through pressuring valve 80 is halted.
  • the expansible permeable tubular liner 10 is stretched over the springs 14 and 16 and mounted on setting tool 12.
  • the liner 10 and springs 14 and 16 can be mounted on the tool 12 I simultaneously before the stresses are applied to springs 14 and 16.
  • the expansible permeable liner 10 may be made from any material that resists corrosion from the formation fluids and is sufiiciently deformable to conform to the variations in the diameter, of the well bore over the interval of the unconsolidated formation.
  • the liner 10 can comprise a tube of nylon or chemically treated rubber. Such a liner might fit smoothly around springs 14 and 16, or it might be pleated or convoluted to allow for greater expansion.
  • Such a liner can consist of a continuous, substantially cylindrical metal sheet or a wound sheet with overlapping ends.
  • a metallic liner can be made of either smooth or corrugated metal. If the material of the expansible liner 10 is not naturally permeable, it can be rendered permeable by cutting slits in the liner or by perforating the liner wall and setting in each perforation a permeable sand barrier or cloth or a fine mesh screen.
  • the liner support 8 can be constructed of any rigid material such as metal or plastic that is resistant to corrosion by the formation fluids and can comprise any suitable means for securing liner 10 to the lower end of easing 4.
  • the upper end of liner 10 is secured to the lower end of liner support 8 by the metallic snap ring 9.
  • valve 82 is actuated a substantial period of time before valve 42.
  • det-onating caps or solenoids can be attached to actuatevalves 42 and 82 and can be connected by suitable electric leads to an energizing source at the surface.
  • liner support 8 secured are lowered through the well bore to the level of the unconsolidated formation.
  • pressure release valve 82 is actuated first and permits the gradual bleeding off of the pressure liquid contained in chamber 24. Such a release of the pressure exerted on piston 54 forces of springs 14 and 16 are then capable of rotating Alternatively, liner 10- disc 48, thereby reducing the torsional stress on springs 14 and 16. As springs 14 and 16 unwind and the diameter of the springs increases, springs 14 and 16 and the expansible well bore liner forcibly engage the wall of the well bore in substantial conformity with the contours of the wall.
  • the preceding description discloses a method and an apparatus for setting an expansible liner in a well bore penetrating an unconsolidated formation.
  • the invention disclosed herein has many advantages over the methods and apparatus heretofore suggested for supporting a well bore in an unconsolidated formation.
  • the method by which the tool operates to set the liner in the well bore by first gradually reducing the elongation of the spring and subsequently gradually releasing the torsion in the spring prevents damage to the liner and assures a substantial conformance of the shape of the set liner to the contours of the wall of the well bore.
  • Another advantage provided by the method and apparatus of this invention is that the forceable engagement of the liner with the wall of the Well bore in conformity with the irregularities therein assures substantially complete prevention of the movement of individual formation particles around or into the well bore. Thus, plugging of the unconsolidated formation some distance away from the well bore owing to rearrangement of the formation particles is prevented.
  • a method for arresting the movement of formation particle-s around a well bore penetrating an unconsolidated formation comprising inserting in the well bore at the level of the formation an expansible permeable tubular liner, inserting with the liner into the well bore controllable means to expand the liner; said means constricted by tensional and torsional stresses when said means are inserted in the well bore to permit the passage of said means and liner through the Well bore, positioning the liner and said means in the Well bore adjacent the formation, first gradually releasing the tensional stress in said means, then gradually releasing the torsional stress in said means, thereby expanding said means and urging the liner into forceable engagement with the wall of the well bore in substantial conformity with the contours of said well bore.
  • a method for arresting the movement of formation particles around a well bore penetrating an unconsolidated formation comprising inserting in the well bore at the level of the formation an expansible, permeable tubular liner having extending therethrough a helical spring subjected to both tensional and torsional forces which oonstrict the spring and reduce its diameter sufficiently to permit the passage of the spring and liner through the well bore, positioning the spring and liner adjacent the unconsolidated formation, first releasing the tensional forces, exerted upon the spring to shorten the spring and increase its diameter, then releasing the torsional force exerted upon the spring to expand the diameter of the spring, thereby urging the liner to forceably engage the wall of the well bore in substantial conformity with the contours of said well bore.
  • a method for arresting the movement of formation particles around a well bore penetrating an unconsolidated formation comprising inserting in the Well bore at the level of the formation an expansible permeable tubular liner containing a helical spring subjected to both tensional and torsional forces to const-rict the spring and reduce its diameter sufi'iciently to permit the passage of the spring and liner through the well bore, positioning the spring and liner in the Well bore adjacent the formation, first gradually releasing the tensional force exerted upon the spring to shorten the spring and increase its diameter, subsequently gradually releasing the torsional force exerted upon the spring to farther expand the diameter of the spring and thereby urge the liner to forceably engage the wall of the well bore in substantial conformity with the contours of the well bore.
  • a tool for inserting and setting in a well bore an expansible permeable liner mounted on said tool around a helical spring comprising first means to impart a tensional stress to said spring, second means to impart a torsional stress to said spring, third means for gradually releasing the tensional and torsional stresses whereby the spring and liner are urged into forceable engagement with the Wall of the well bore, and control means adapted to assure that the tensional stress is substantially released before the torsional stress is reduced.
  • a tool for inserting and setting in a well bore an expansible permeable liner containing a spring to urge the liner into forceable engagement with the wall of the well bore said tool comprising a first cylinder-piston unit having means to secure the spring to one end of the tool and to sustain a torsional stress in the spring while the tool is being run in the well bore, a second cylinderpiston unit having means to secure the spring to the other end of the tool and to impart a tensional stress to the spring and sustain said tensional stress while the spring is being run in the well bore, and means whereby first the tensional stress is substantially released and thereafter the torsional stress is released to free the spring from the tool, thereby permitting removal of [the tool from the well bore after the spring and liner have been set therein.
  • Apparatus for arresting the movement of formation particles around a well bore penetrating an unconsolidated formation comprising a string of well casing secured to the Wall of the well bore and extending therein from the surface to a depth slightly above the top of the formation, a setting tool suspended on a steel cable Within the well bore adjacent the formation below the lower end of the casing, an expansible permeable tubular liner containing a helical spring and detachably mounted with the spring on the setting tool, rigid liner supporting means connected to the upper end of the liner and adapted to engage the lower end of the casing above the formation, said setting tool having means to impart tensional and torsional stresses to said spring, said setting tool also having controllable means for gradually releasing first the tensional, and thereafter the torsional, stresses in said spring whereby the spring and liner are disengaged from the setting tool and are urged into forceable engagement with the wall of the well bore.
  • a tool for inserting and setting in a well bore an expansible permeable tubular liner containing a helical spring to urge said liner into forceable engagement with the wall of the well bore comprising a cylinder forming separate first and second pressure chambers therein, an upper closure means connected to the upper end of said cylinder, said closure means having a threaded passage therethrough, a threaded cylindrical shaft rotatably secured in the passage through said upper closure means, an upper piston mounted on the bottom of the threaded shaft and slidably incased in the first chamber, means extending from the upper end of said threaded shaft and engaging the upper end of the spring, means to impart fluid pressure to the first chamber and the upper piston whereby motion of the threaded shaft through the upper closure means is prevented, lower closure means connected to the lower end of the cylinder, a non-round passage extending through said lower closure means, a non-round shaft slidable in the passage through the lower closure means, a lower piston mounted on the upper end of said non-round shaft
  • a setting tool for inserting and setting in a well bore an expansible permeable tubular liner mounted on said tool around a plurality of interwoven helical springs, said tool suspended on a steel cable in the well bore and comprising a cylinder having upper and lower pressure chambers therein, a bushing threadably connected to the upper end of the cylinder, a central threaded passage through said bushing, a rotatable threaded shaft extending through said central passage, an upper piston extending from the lower end of the threaded shaft and slidably incased in the upper chamber, means at the upper end of the threaded shaft adapted to engage the upper ends of the springs and secure the springs to the tool, means to impart a fluid pressure to the upper chamber and piston whereby rotation of the threaded shaft in the bushing is prevented, a

Description

p 6, 1966 J. PAPAILA 3,270,817
METHOD AND APPARATUS FOR INSTALLING A PERMEABLE WELL LINER Filed March 26, 1964 INVENTOR. JOH/V PAPA/4 ATTOENETY.
United States Patent 3,270,817 METHOD AND APPARATUS FOR INSTALLING A PERMEABLE WELL LINER John Papaila, Kiskiminetas Township, Armstrong County,
Pa., assignor to Gulf Research & Development Company, Pittsburgh, Pa., a corporation of Delaware Filed Mar. 26, 1964, Ser. No. 354,837 9 Claims. (Cl. 166-46) This invention relates to a method and an apparatus for preventing the movement into a well bore of individual particles comprising an unconsolidated rock formation.
Many underground rock formations are unconsolidated or so poorly consolidated that they readily disintegrate under the forces exerted upon them by the flow of formation fluids into a well bore penetrating the formation. Such rock formations are hereinafter referred to generally as unconsolidated formations. It has been found that when fluids flow from unconsolidated formations into a well bore, the displacement of formation particles into the well bore permits the movement of additional particles farther back in the formation and results in plugging of the well bore and of the formation flow channels around the well bore. To prevent the rearrangement of the formation particles under the forces of fluid flow, it is necessary to prevent substantially the movement of formation particles into the well bore. It is possible to assure the substantially complete prevention of the movement of individual formation particles around or into the well bore by continually exerting a force outwardly from the well bore upon the wall of the well bore. Such force should be approximately equal to the force exerted upon the unconsolidated formation by the weight of the overbearing rock formations.
Various methods and types of apparatus have been suggested for alleviating the problems involved in producing fluids from a well bore penetrating an unconsolidated formation, among which is the setting of screens or slotted liners in the well bore adjacent the formation. Such devices frequently are not entirely satisfactory because the slight movement of sand from the formation into the annulus of the well bore around the slot-ted liner or screen often results in plugging of the formation around the well bore and requires a work over operation to restore the well to production. Gravel packing of the annulus formed by the wall of the well bore around a liner has also been suggested, but that method is expensive, involves a considerable amount of rig time and does not always prevent plugging of the formation around the well bore.
It is an object of this invention to provide a means whereby a spring supported expansible permeable liner can be set in a well bore penetrating a formation without substantial damage to the liner.
This invention resides in a method and an apparatus for arresting the movement of formation particles around a well bore penetrating an unconsolidated rock formation by setting in the well bore an expansible permeable liner containing a helical spring whereby the liner is forcibly urged against the wall of the well bore. The apparatus of this invention comprises a setting tool suitable for maintaining the spring and liner in a stressed condition while the liner and spring are being run in the well bore. The setting tool is so designed that, when the liner and spring are in position in the well bore, the setting tool first reduces the elongating force on the spring and then reduces the torsional force. When the tensional stress in the spring is substantially released before the torsional stress is reduced, the forces acting to expand the liner into contact with the wall of the well bore are not exerted completely until the torsional stress in the spring is substantially released. Such a gradual relaxation of stresses in the spring produces a gradual expansion of the liner which prevents tearing of the liner as the liner engages the wall of the well bore.
The construction and operation of the apparatus of this invention can be explained with reference to the accompanying drawings wherein:
FIGURE 1 is a vertical cross-sectional view of an expansible permeable liner and its supporting springs secured in a stressed condition on the setting tool of this invention.
FIGURE 2 is a plan view of the top of the setting tool with the liner springs attached.
FIGURE 3 is a plan view of the bottom of the setting tool with the liner springs attached.
Referring to FIGURE 1, a Well bore 2 is shown penetrating an unconsolidated subterranean rock formation 3. The bottom of a string of well casing 4 rests on an inwardly extending shoulder 5 in well bore 2. Casing 4 is secured to the wall of well bore 2 by a sheath of cement 6. An inwardly extending shoulder 7 at the bottom of casing 4 engages the upper end of a rigid liner support 8. A snap ring 9 secures the upper end of an expansible permeable tubular liner 10 to the bottom of liner support 8. The setting tool, indicated generally by reference numeral 12, is shown with liner 10, liner support 8, and two interwoven helical liner springs 14 and 16 secured to the setting tool 12 in the stressed condition employed when the apparatus is suspended from a wire liner 18 and run in the well bore 2.
The setting tool 12 comprises a cylinder 20 forming therein a torque pressure chamber 22 and an elongation pressure chamber 24 which are separated by a transverse wall 27. A bushing 28 is threadably connected to the upper end of cylinder 20 and partially closes the upper end of chamber 22. A torque piston 26 is incased in chamber 22, and a fluid seal between the side of piston 26 and the wall of chamber 22 is effected by an O-ring 30 set in a groove 32 cut around the circumference of piston 26. Piston 26 extends from the lower end of a threaded shaft 34 which passes through the threaded central passage of bushing 28. The mating threads of shaft 34 and bushing 28 are both low-pitch, coarse threads to minimize the force required to turn shaft 34 in bushing 28.
Extending from the upper end of shaft 34 is a valve housing 38 connected to the lower end of wire line 18 and containing an upper pressuring valve 40 and an upper pressure release valve 42. Pressure release valve 42 is actuated by suitable means such as an automatic timing mechanism 43, a solenoid (not shown in the drawing), or a detonating cap (not shown). A lateral fluid passage 44 extends through valve housing 38 between pressuring valve 4% and pressure release valve 42. An upper longitudinal fluid passage 46 communicates with lateral fluid passage 44 and extends downwardly through shaft 34 and piston 26 and opens into chamber 22.
A circular disc 48 extends radially from the upper end of shaft 34 below valve housing 38. The diameter of disc 48 is slightly larger than the external diameter of cylinder 20. An upper cylindrical tool sleeve 50 extends from the circumference of disc 48 downwardly around cylinder 20 for approximately the length of shaft 34. The internal diameter of tool sleeve 50 is slightly larger than the external diameter of cylinder 20 to permit the unrestricted movement of tool sleeve 50 around cylinder 20 as shaft 34 is rotated in bushing 28. Two spring stays 52 extend from the edge of disc 48 to secure the ends of springs 14 and 16 as indicated in FIGURE 2. The spring stays 52, positioned diametrically opposite each other on the circumference of disc 48, engage the ends of springs 14 and 16 to impart a torsional force to springs 14 and 16 when the springs are wound and to secure springs 14 and 16 to the upper end of setting tool 12 until they unwind.
An elongation piston 54 is sidably incased within hamber 24 and a fluid seal between piston 54 and the wall of chamber 24 is provided by an O-ring 56 set in a groove 58 cut around the circumference of piston 54. A cylinder collar 60, threadably connected to the lower end of cylinder has an inwardly extending shoulder 62 to limit downward movement of piston 54 in chamber 24. A piston shaft 64, having a non-round cross-section, extends from the bottom of piston 54 downwardly through a similarly shaped central passage 66 in collar 60. The seating of shaft 64 in passage 66 prevents the turning of shaft 64. A circular base plate 68, extending radially from the lower end of shaft 64, has a diameter slightly larger than the external diameter of cylinder 20. A lower cylindrical tool sleeve 70 extends upwardly from the circumference of base plate 68 and slides along the outer surface of cylinder 20 as shaft 64 moves through passage 66 in collar 60. Spring latches 72 are pivotally connected at 74 to base plate 68 as indicated in FIGURES 1 and 3. The lower ends of springs 14 and 16 are secured to spring latches 72 as shown in FIGURE 3, and the upward rotation of latches 72 past a position that is parallel to the bottom of base plate 68 is prevented by the seating of latches 72 against the surfaces 76 of base plate 68.
A lower valve housing 78, extending downwardly from the bottom of base plate 68, contains an elongation pressuring valve 80 and an elongation pressure release valve 82. Pressure release valve 82 is actuated by suitable means such as an automatic timing mechanism 83, a sole noid (not shown in the drawing), or a detonation cap (not shown). A lateral fluid passage 84 connects valves 80 and 82 with a longitudinal fluid passage 86 extending through shaft 64 and piston 54 and opening into chamber 24.
The lower end of liner 10 is secured, as indicated in FIGURE 1, around a rigid retaining ring 88. The retaining ring 88 has a diameter less than the diameter of base plate 68 and prevents upward movement of liner 10 around setting tool 12 while the tool and liner are being lowered through well bore 2. At the upper end of the apparatus, a ribbed disc 90 is secured within a groove 92 in the wall of liner support 8. The disc 90 is shaped like a spoked wheel and fits around wire line 18 to seat on top of valve housing 38 to prevent movement of liner 10 and liner support 8 downwardly around setting tool 12 as the tool and liner assembly are lowered through well bore 2. The disc 90 is made of a frangible or deformable material that can be unseated from groove 92 by upward tension applied to wire line 18 and thereby permits the removal of setting tool 12 from the well bore 2 after liner 10 and liner support 8 are set therein.
When the method and apparatus of this invention are employed to arrest the movement of unconsolidated formation particles into a well bore 2 penetrating the formation, the following procedure can be used. A single helical spring can be employed to support the liner in the well bore 2 according to the method of this invention. However two interwoven helical springs 14 and 16 have been described in the embodiment of the invention set forth in the specification because the use of two springs instead of one imparts less motion and less stress to the expansible liner 10 when the liner 10 and springs 14 and 16 are released in the Well bore 2, thereby reducing the possibility of damaging the liner 10 while setting it. The interwoven springs 14 and 16 are slipped over the setting tool 12 and the tool 12 and springs 14 and 16 are elongated by pumping a liquid through pressuring valve 80 in valve housing 78. While the springs 14 and 16 are being elongated, care must be taken that the ends of springs 14 and 16 remain engaged by spring latches 72 at the lower end of springs 14 and 16 and by the spring stays 52 at the upper end of springs 14 and 16. When the fluid pressure in chamber 24 has forced the piston 54 into contact with the inwardly projecting shoulders 62 of collar 60, the injection of liquid through pressuring valve 80 is halted.
Then liquid is injected into pressuring valve 40 in valve housing 38 at the upper end of setting tool 12. Whilev liquid is being injected through valve 40 and fluid passage 46 into pressure chamber 22, the disc 48 is rotated to impart a torsional stress to the springs 14 and 16. Without the upward force exerted upon shaft 34 by the action of the fluid pressure in chamber 22 upon piston 26, the restoring force of the springs 14 and 16 would be adequate to rotate the disc 48 and unwind springs 14 and 16. Howi ever, when a sufiicient pressure is attained in chamber 22, the upward force exerted upon piston 26, and thereby transmitted to shaft 34, prevents the recession of piston 26 and shaft 34 into chamber 22 and thereby prevents the restoring forces exerted by springs 14 and 16 from rotating disc 48 to unwind the springs.
After the forces of elongation and torsion are applied to springs 14 and 16, the expansible permeable tubular liner 10 is stretched over the springs 14 and 16 and mounted on setting tool 12. Alternatively, the liner 10 and springs 14 and 16 can be mounted on the tool 12 I simultaneously before the stresses are applied to springs 14 and 16. The expansible permeable liner 10 may be made from any material that resists corrosion from the formation fluids and is sufiiciently deformable to conform to the variations in the diameter, of the well bore over the interval of the unconsolidated formation. Thus the liner 10 can comprise a tube of nylon or chemically treated rubber. Such a liner might fit smoothly around springs 14 and 16, or it might be pleated or convoluted to allow for greater expansion. can comprise a thinwalled tube of sheet metal such as steel, copper, or brass. Such a liner can consist of a continuous, substantially cylindrical metal sheet or a wound sheet with overlapping ends. A metallic liner can be made of either smooth or corrugated metal. If the material of the expansible liner 10 is not naturally permeable, it can be rendered permeable by cutting slits in the liner or by perforating the liner wall and setting in each perforation a permeable sand barrier or cloth or a fine mesh screen.
The liner support 8 can be constructed of any rigid material such as metal or plastic that is resistant to corrosion by the formation fluids and can comprise any suitable means for securing liner 10 to the lower end of easing 4. In a preferred embodiment of this invention, the upper end of liner 10 is secured to the lower end of liner support 8 by the metallic snap ring 9. The preceding descriptions of the liner 10 and liner support 8 are' not intended as exclusive of other embodiments of the apparatus of this invention but are presented merely by way of illustration.
After liner 10 is mounted on setting tool 12, the timing mechanisms 43 and 83 on pressure release valves 42 and 82 are set to assure that valve 82 is actuated a substantial period of time before valve 42. In the alternative,
det-onating caps or solenoids can be attached to actuatevalves 42 and 82 and can be connected by suitable electric leads to an energizing source at the surface. After the pressure release valve release mechanisms are set, the setting t ol 12 with springs 14 and 16, liner 10, and
liner support 8 secured are lowered through the well bore to the level of the unconsolidated formation.
According to the method of this invention pressure release valve 82 is actuated first and permits the gradual bleeding off of the pressure liquid contained in chamber 24. Such a release of the pressure exerted on piston 54 forces of springs 14 and 16 are then capable of rotating Alternatively, liner 10- disc 48, thereby reducing the torsional stress on springs 14 and 16. As springs 14 and 16 unwind and the diameter of the springs increases, springs 14 and 16 and the expansible well bore liner forcibly engage the wall of the well bore in substantial conformity with the contours of the wall. Because the release of the liquids from chambers 22 and 24 is controlled to allow for a gradual reduction in the forces exerted on pistons 26 and 54, the release of the stresses in springs 1-4 and 16 does not occur substantially instantaneously but rather is reduced gradually to prevent damage to the liner 10 as it comes into contact with the wall of the well bore 2. As the torsional stresses in springs 14 and 16 are reduced and the diameter of the springs increases, the upper and lower ends of springs 14 and 16 disengage from spring stays 52 and spring latches 72 to permit the subsequent release and removal of setting tool 12 from well bore 2 after the liner 10 and springs 1-4 and 16 have engaged the wall of Well bore 2.
The preceding description discloses a method and an apparatus for setting an expansible liner in a well bore penetrating an unconsolidated formation. The invention disclosed herein has many advantages over the methods and apparatus heretofore suggested for supporting a well bore in an unconsolidated formation. For example, the method by which the tool operates to set the liner in the well bore by first gradually reducing the elongation of the spring and subsequently gradually releasing the torsion in the spring prevents damage to the liner and assures a substantial conformance of the shape of the set liner to the contours of the wall of the well bore. Another advantage provided by the method and apparatus of this invention is that the forceable engagement of the liner with the wall of the Well bore in conformity with the irregularities therein assures substantially complete prevention of the movement of individual formation particles around or into the well bore. Thus, plugging of the unconsolidated formation some distance away from the well bore owing to rearrangement of the formation particles is prevented.
Although the foregoing specification has described the use of the apparatus of this invention in an open well bore, the apparatus and procedures set forth can also be used to set an expansible liner in a cased or cemented well bore. Such an embodiment of this invention can be employed to set an impermeable liner in a well bore to seal off a leaking joint of casing or a poorly cemented section of the well bore. While the preceding specification has described a single embodiment of this invention in considerable detail, it is obvious that others skilled in the art can device and build alternate and equivalent devices which are within the scope and spirit of this invention. Therefore it is desired that the protection afforded this invention be limited not by the constructions illustrated and described herein but only by the proper scope of the appended claims.
Therefore I claim:
1. A method for arresting the movement of formation particle-s around a well bore penetrating an unconsolidated formation comprising inserting in the well bore at the level of the formation an expansible permeable tubular liner, inserting with the liner into the well bore controllable means to expand the liner; said means constricted by tensional and torsional stresses when said means are inserted in the well bore to permit the passage of said means and liner through the Well bore, positioning the liner and said means in the Well bore adjacent the formation, first gradually releasing the tensional stress in said means, then gradually releasing the torsional stress in said means, thereby expanding said means and urging the liner into forceable engagement with the wall of the well bore in substantial conformity with the contours of said well bore.
2. A method for arresting the movement of formation particles around a well bore penetrating an unconsolidated formation comprising inserting in the well bore at the level of the formation an expansible, permeable tubular liner having extending therethrough a helical spring subjected to both tensional and torsional forces which oonstrict the spring and reduce its diameter sufficiently to permit the passage of the spring and liner through the well bore, positioning the spring and liner adjacent the unconsolidated formation, first releasing the tensional forces, exerted upon the spring to shorten the spring and increase its diameter, then releasing the torsional force exerted upon the spring to expand the diameter of the spring, thereby urging the liner to forceably engage the wall of the well bore in substantial conformity with the contours of said well bore.
3. A method for arresting the movement of formation particles around a well bore penetrating an unconsolidated formation comprising inserting in the Well bore at the level of the formation an expansible permeable tubular liner containing a helical spring subjected to both tensional and torsional forces to const-rict the spring and reduce its diameter sufi'iciently to permit the passage of the spring and liner through the well bore, positioning the spring and liner in the Well bore adjacent the formation, first gradually releasing the tensional force exerted upon the spring to shorten the spring and increase its diameter, subsequently gradually releasing the torsional force exerted upon the spring to farther expand the diameter of the spring and thereby urge the liner to forceably engage the wall of the well bore in substantial conformity with the contours of the well bore.
4. In a method for arresting the movement of formation particles around a well bore penetrating an unconsolidated formation by forceably urging against the wall of the well bore an expansible permeable tubular liner containing a helical spring which has been constricted by the imposition in. the spring of tensional and torsional stresses to allow the passage of the spring and liner through the well bore, the improvement comprising the setting of the spring and liner in the well bore adjacent the formation by first releasing the tensional stress in the spring, then releasing the torsional stress in the spring to increase the diameter of the spring and urge the liner into forceable engagement with the wall of the well bore in substantial conformity with the contours of the well bore.
5. A tool for inserting and setting in a well bore an expansible permeable liner mounted on said tool around a helical spring comprising first means to impart a tensional stress to said spring, second means to impart a torsional stress to said spring, third means for gradually releasing the tensional and torsional stresses whereby the spring and liner are urged into forceable engagement with the Wall of the well bore, and control means adapted to assure that the tensional stress is substantially released before the torsional stress is reduced.
6. A tool for inserting and setting in a well bore an expansible permeable liner containing a spring to urge the liner into forceable engagement with the wall of the well bore, said tool comprising a first cylinder-piston unit having means to secure the spring to one end of the tool and to sustain a torsional stress in the spring while the tool is being run in the well bore, a second cylinderpiston unit having means to secure the spring to the other end of the tool and to impart a tensional stress to the spring and sustain said tensional stress while the spring is being run in the well bore, and means whereby first the tensional stress is substantially released and thereafter the torsional stress is released to free the spring from the tool, thereby permitting removal of [the tool from the well bore after the spring and liner have been set therein.
7. Apparatus for arresting the movement of formation particles around a well bore penetrating an unconsolidated formation comprising a string of well casing secured to the Wall of the well bore and extending therein from the surface to a depth slightly above the top of the formation, a setting tool suspended on a steel cable Within the well bore adjacent the formation below the lower end of the casing, an expansible permeable tubular liner containing a helical spring and detachably mounted with the spring on the setting tool, rigid liner supporting means connected to the upper end of the liner and adapted to engage the lower end of the casing above the formation, said setting tool having means to impart tensional and torsional stresses to said spring, said setting tool also having controllable means for gradually releasing first the tensional, and thereafter the torsional, stresses in said spring whereby the spring and liner are disengaged from the setting tool and are urged into forceable engagement with the wall of the well bore.
8. A tool for inserting and setting in a well bore an expansible permeable tubular liner containing a helical spring to urge said liner into forceable engagement with the wall of the well bore, said tool comprising a cylinder forming separate first and second pressure chambers therein, an upper closure means connected to the upper end of said cylinder, said closure means having a threaded passage therethrough, a threaded cylindrical shaft rotatably secured in the passage through said upper closure means, an upper piston mounted on the bottom of the threaded shaft and slidably incased in the first chamber, means extending from the upper end of said threaded shaft and engaging the upper end of the spring, means to impart fluid pressure to the first chamber and the upper piston whereby motion of the threaded shaft through the upper closure means is prevented, lower closure means connected to the lower end of the cylinder, a non-round passage extending through said lower closure means, a non-round shaft slidable in the passage through the lower closure means, a lower piston mounted on the upper end of said non-round shaft and slidably incased in the second cham ber, means extending from the lower end of the non round shaft to secure the lower end of the spring to the tool, means to impart fluid pressure to the second chamber and the lower piston to move the lower piston downwardly and thereby elongate the spring, and means to provide for the controlled gradual release of fluid pressure from the second chamber and thereafter from the first chamber whereby the liner and spring are released from the tool and forceably engage the wall of the well bore in substantial conformity with the contours thereof.
9. A setting tool for inserting and setting in a well bore an expansible permeable tubular liner mounted on said tool around a plurality of interwoven helical springs, said tool suspended on a steel cable in the well bore and comprising a cylinder having upper and lower pressure chambers therein, a bushing threadably connected to the upper end of the cylinder, a central threaded passage through said bushing, a rotatable threaded shaft extending through said central passage, an upper piston extending from the lower end of the threaded shaft and slidably incased in the upper chamber, means at the upper end of the threaded shaft adapted to engage the upper ends of the springs and secure the springs to the tool, means to impart a fluid pressure to the upper chamber and piston whereby rotation of the threaded shaft in the bushing is prevented, a
collar connected to the lower end of the cylinder and having an inwardly extending shoulder, a non-round passage extending through the shoulder, a non-round shaft slidable in the non-round passage, a lower piston extending from the top of the non-round shaft and slidably incased in the lower chamber, a disc mounted on the lower end of said non-round shaft, a plurality of rigid spring latches pivotally connected to said disc and extending radially therefrom to engage the lower ends of the springs and secure the springs to the tool, means to impart a fluid pressure to the lower chamber and piston whereby the springs are elongated, and timing means to effect the gradual release of fluid pressure first from the lower chamber and thereafter from the upper chamber whereby the springs are disengaged from the tool and urge the liner to engage the wall of the well bore in substantial conformity with the contours thereof.
References Cited by the Examiner UNITED STATES PATENTS 2,138,156 11/1938 Halliburton l66l79 X 2,812,025 11/1957 Teague et a1 166207 2,833,352 5/1958 Lloyd 166227 X 3,067,819 12/1962 Gore 16648 CHARLES E. OCONNELL, Primary Examiner.
D. H. BROWN, Assistant Examiner.

Claims (1)

  1. 3. A METHOD FOR ARRESTING THE MOVEMENT OF FORMATION PARTICLES AROUND A WELL BORE PENETRATING AN UNCONSOLIDATED FORMATION COMPRISING INSERTING IN THE WELL BORE AT THE LEVEL OF THE FORMATION AN EXPANSIBLE PERMEABLE TUBULAR LINER CONTAINING A HELICAL SPRING SUBJECTED TO BE TENSIONAL AND TORSIONAL FORCES TO CONSTRICT THE SPRING REDUCE ITS DIAMETER SUFFICIENTLY TO PERMIT THE PASSAGE THE SPRING AND LINER THROUGH THE WELL BORE, POSITION THE SPRING AND LINER IN THE WELL BORE ADJACENT THE FORM
US354837A 1964-03-26 1964-03-26 Method and apparatus for installing a permeable well liner Expired - Lifetime US3270817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US354837A US3270817A (en) 1964-03-26 1964-03-26 Method and apparatus for installing a permeable well liner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US354837A US3270817A (en) 1964-03-26 1964-03-26 Method and apparatus for installing a permeable well liner

Publications (1)

Publication Number Publication Date
US3270817A true US3270817A (en) 1966-09-06

Family

ID=23395099

Family Applications (1)

Application Number Title Priority Date Filing Date
US354837A Expired - Lifetime US3270817A (en) 1964-03-26 1964-03-26 Method and apparatus for installing a permeable well liner

Country Status (1)

Country Link
US (1) US3270817A (en)

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3371492A (en) * 1964-09-05 1968-03-05 Mise Tadashi Foundation utilizing osmotic pressure
US4577694A (en) * 1983-12-27 1986-03-25 Baker Oil Tools, Inc. Permanent lock open tool
US4647072A (en) * 1984-03-30 1987-03-03 Stig Westman Repair sleeve for piping
WO1997017524A2 (en) * 1995-11-08 1997-05-15 Shell Internationale Research Maatschappij B.V. Deformable well screen and method for its installation
US6328113B1 (en) 1998-11-16 2001-12-11 Shell Oil Company Isolation of subterranean zones
US6412565B1 (en) 2000-07-27 2002-07-02 Halliburton Energy Services, Inc. Expandable screen jacket and methods of using same
US6470966B2 (en) 1998-12-07 2002-10-29 Robert Lance Cook Apparatus for forming wellbore casing
US6494261B1 (en) 2000-08-16 2002-12-17 Halliburton Energy Services, Inc. Apparatus and methods for perforating a subterranean formation
US6530431B1 (en) 2000-06-22 2003-03-11 Halliburton Energy Services, Inc. Screen jacket assembly connection and methods of using same
US6543545B1 (en) 2000-10-27 2003-04-08 Halliburton Energy Services, Inc. Expandable sand control device and specialized completion system and method
US6557640B1 (en) 1998-12-07 2003-05-06 Shell Oil Company Lubrication and self-cleaning system for expansion mandrel
US20030094277A1 (en) * 1998-12-07 2003-05-22 Shell Oil Co. Expansion cone for radially expanding tubular members
US6568472B1 (en) 2000-12-22 2003-05-27 Halliburton Energy Services, Inc. Method and apparatus for washing a borehole ahead of screen expansion
US6568471B1 (en) 1999-02-26 2003-05-27 Shell Oil Company Liner hanger
US6575250B1 (en) 1999-11-15 2003-06-10 Shell Oil Company Expanding a tubular element in a wellbore
US6575240B1 (en) 1998-12-07 2003-06-10 Shell Oil Company System and method for driving pipe
US20030107217A1 (en) * 1999-10-12 2003-06-12 Shell Oil Co. Sealant for expandable connection
US20030116325A1 (en) * 2000-07-28 2003-06-26 Cook Robert Lance Liner hanger with standoffs
US6604763B1 (en) 1998-12-07 2003-08-12 Shell Oil Company Expandable connector
US6634431B2 (en) 1998-11-16 2003-10-21 Robert Lance Cook Isolation of subterranean zones
US6640903B1 (en) 1998-12-07 2003-11-04 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
US20030233524A1 (en) * 2002-06-12 2003-12-18 Poisner David I. Protected configuration space in a protected environment
US6681862B2 (en) 2002-01-30 2004-01-27 Halliburton Energy Services, Inc. System and method for reducing the pressure drop in fluids produced through production tubing
US20040045718A1 (en) * 2000-09-18 2004-03-11 Brisco David Paul Liner hanger with sliding sleeve valve
US6712154B2 (en) 1998-11-16 2004-03-30 Enventure Global Technology Isolation of subterranean zones
US20040069499A1 (en) * 2000-10-02 2004-04-15 Cook Robert Lance Mono-diameter wellbore casing
US6725919B2 (en) 1998-12-07 2004-04-27 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
US6745845B2 (en) 1998-11-16 2004-06-08 Shell Oil Company Isolation of subterranean zones
US20040118574A1 (en) * 1998-12-07 2004-06-24 Cook Robert Lance Mono-diameter wellbore casing
US6755249B2 (en) 2001-10-12 2004-06-29 Halliburton Energy Services, Inc. Apparatus and method for perforating a subterranean formation
US20040123983A1 (en) * 1998-11-16 2004-07-01 Enventure Global Technology L.L.C. Isolation of subterranean zones
US20040168799A1 (en) * 2000-10-27 2004-09-02 Simonds Floyd Randolph Apparatus and method for completing an interval of a wellbore while drilling
US6823937B1 (en) 1998-12-07 2004-11-30 Shell Oil Company Wellhead
US20050098323A1 (en) * 1999-03-11 2005-05-12 Shell Oil Co. Forming a wellbore casing while simultaneously drilling a wellbore
US6892819B2 (en) 1998-12-07 2005-05-17 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
US6968618B2 (en) 1999-04-26 2005-11-29 Shell Oil Company Expandable connector
US7048067B1 (en) 1999-11-01 2006-05-23 Shell Oil Company Wellbore casing repair
US20060137877A1 (en) * 2002-09-20 2006-06-29 Watson Brock W Cutter for wellbore casing
US7100685B2 (en) 2000-10-02 2006-09-05 Enventure Global Technology Mono-diameter wellbore casing
US7168499B2 (en) 1998-11-16 2007-01-30 Shell Oil Company Radial expansion of tubular members
US7168496B2 (en) 2001-07-06 2007-01-30 Eventure Global Technology Liner hanger
US7195064B2 (en) 1998-12-07 2007-03-27 Enventure Global Technology Mono-diameter wellbore casing
US7231985B2 (en) 1998-11-16 2007-06-19 Shell Oil Company Radial expansion of tubular members
US7234531B2 (en) 1999-12-03 2007-06-26 Enventure Global Technology, Llc Mono-diameter wellbore casing
US20070158080A1 (en) * 2001-12-22 2007-07-12 Harrall Simon J Tubular hanger and method of lining a drilled bore
US7258168B2 (en) 2001-07-27 2007-08-21 Enventure Global Technology L.L.C. Liner hanger with slip joint sealing members and method of use
US7290605B2 (en) 2001-12-27 2007-11-06 Enventure Global Technology Seal receptacle using expandable liner hanger
US7290616B2 (en) 2001-07-06 2007-11-06 Enventure Global Technology, L.L.C. Liner hanger
US7308755B2 (en) 2003-06-13 2007-12-18 Shell Oil Company Apparatus for forming a mono-diameter wellbore casing
US7325602B2 (en) 2000-10-02 2008-02-05 Shell Oil Company Method and apparatus for forming a mono-diameter wellbore casing
US7350563B2 (en) 1999-07-09 2008-04-01 Enventure Global Technology, L.L.C. System for lining a wellbore casing
US7360591B2 (en) 2002-05-29 2008-04-22 Enventure Global Technology, Llc System for radially expanding a tubular member
US7363984B2 (en) 1998-12-07 2008-04-29 Enventure Global Technology, Llc System for radially expanding a tubular member
US7377326B2 (en) 2002-08-23 2008-05-27 Enventure Global Technology, L.L.C. Magnetic impulse applied sleeve method of forming a wellbore casing
US7383889B2 (en) 2001-11-12 2008-06-10 Enventure Global Technology, Llc Mono diameter wellbore casing
US7398832B2 (en) 2002-06-10 2008-07-15 Enventure Global Technology, Llc Mono-diameter wellbore casing
US7404444B2 (en) 2002-09-20 2008-07-29 Enventure Global Technology Protective sleeve for expandable tubulars
US7410000B2 (en) 2001-01-17 2008-08-12 Enventure Global Technology, Llc. Mono-diameter wellbore casing
US7416027B2 (en) 2001-09-07 2008-08-26 Enventure Global Technology, Llc Adjustable expansion cone assembly
US7424918B2 (en) 2002-08-23 2008-09-16 Enventure Global Technology, L.L.C. Interposed joint sealing layer method of forming a wellbore casing
US7438133B2 (en) 2003-02-26 2008-10-21 Enventure Global Technology, Llc Apparatus and method for radially expanding and plastically deforming a tubular member
US7503393B2 (en) 2003-01-27 2009-03-17 Enventure Global Technology, Inc. Lubrication system for radially expanding tubular members
US7513313B2 (en) 2002-09-20 2009-04-07 Enventure Global Technology, Llc Bottom plug for forming a mono diameter wellbore casing
US7516790B2 (en) 1999-12-03 2009-04-14 Enventure Global Technology, Llc Mono-diameter wellbore casing
US7552776B2 (en) 1998-12-07 2009-06-30 Enventure Global Technology, Llc Anchor hangers
US7571774B2 (en) 2002-09-20 2009-08-11 Eventure Global Technology Self-lubricating expansion mandrel for expandable tubular
US7603758B2 (en) 1998-12-07 2009-10-20 Shell Oil Company Method of coupling a tubular member
US7712522B2 (en) 2003-09-05 2010-05-11 Enventure Global Technology, Llc Expansion cone and system
US7739917B2 (en) 2002-09-20 2010-06-22 Enventure Global Technology, Llc Pipe formability evaluation for expandable tubulars
US7740076B2 (en) 2002-04-12 2010-06-22 Enventure Global Technology, L.L.C. Protective sleeve for threaded connections for expandable liner hanger
US7775290B2 (en) 2003-04-17 2010-08-17 Enventure Global Technology, Llc Apparatus for radially expanding and plastically deforming a tubular member
US7793721B2 (en) 2003-03-11 2010-09-14 Eventure Global Technology, Llc Apparatus for radially expanding and plastically deforming a tubular member
US7819185B2 (en) 2004-08-13 2010-10-26 Enventure Global Technology, Llc Expandable tubular
US7886831B2 (en) 2003-01-22 2011-02-15 Enventure Global Technology, L.L.C. Apparatus for radially expanding and plastically deforming a tubular member
US7918284B2 (en) 2002-04-15 2011-04-05 Enventure Global Technology, L.L.C. Protective sleeve for threaded connections for expandable liner hanger
WO2013092944A1 (en) * 2011-12-23 2013-06-27 Welltec A/S Downhole tubular system and assembly for sealing an opening
US20150204168A1 (en) * 2013-01-08 2015-07-23 Halliburton Energy Services, Inc Expandable Screen Completion Tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2138156A (en) * 1936-11-16 1938-11-29 Halliburton Oil Well Cementing Packer
US2812025A (en) * 1955-01-24 1957-11-05 James U Teague Expansible liner
US2833352A (en) * 1954-04-23 1958-05-06 Pan American Petroleum Corp Method and apparatus for completing wells
US3067819A (en) * 1958-06-02 1962-12-11 George L Gore Casing interliner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2138156A (en) * 1936-11-16 1938-11-29 Halliburton Oil Well Cementing Packer
US2833352A (en) * 1954-04-23 1958-05-06 Pan American Petroleum Corp Method and apparatus for completing wells
US2812025A (en) * 1955-01-24 1957-11-05 James U Teague Expansible liner
US3067819A (en) * 1958-06-02 1962-12-11 George L Gore Casing interliner

Cited By (149)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3371492A (en) * 1964-09-05 1968-03-05 Mise Tadashi Foundation utilizing osmotic pressure
US4577694A (en) * 1983-12-27 1986-03-25 Baker Oil Tools, Inc. Permanent lock open tool
US4647072A (en) * 1984-03-30 1987-03-03 Stig Westman Repair sleeve for piping
US5901789A (en) * 1995-11-08 1999-05-11 Shell Oil Company Deformable well screen
WO1997017524A3 (en) * 1995-11-08 1997-06-19 Shell Int Research Deformable well screen and method for its installation
WO1997017524A2 (en) * 1995-11-08 1997-05-15 Shell Internationale Research Maatschappij B.V. Deformable well screen and method for its installation
US6012522A (en) * 1995-11-08 2000-01-11 Shell Oil Company Deformable well screen
US6745845B2 (en) 1998-11-16 2004-06-08 Shell Oil Company Isolation of subterranean zones
US6712154B2 (en) 1998-11-16 2004-03-30 Enventure Global Technology Isolation of subterranean zones
US7121352B2 (en) 1998-11-16 2006-10-17 Enventure Global Technology Isolation of subterranean zones
US7168499B2 (en) 1998-11-16 2007-01-30 Shell Oil Company Radial expansion of tubular members
US20040123983A1 (en) * 1998-11-16 2004-07-01 Enventure Global Technology L.L.C. Isolation of subterranean zones
US6328113B1 (en) 1998-11-16 2001-12-11 Shell Oil Company Isolation of subterranean zones
US7231985B2 (en) 1998-11-16 2007-06-19 Shell Oil Company Radial expansion of tubular members
US7108072B2 (en) 1998-11-16 2006-09-19 Shell Oil Company Lubrication and self-cleaning system for expansion mandrel
US7357190B2 (en) 1998-11-16 2008-04-15 Shell Oil Company Radial expansion of tubular members
US7246667B2 (en) 1998-11-16 2007-07-24 Shell Oil Company Radial expansion of tubular members
US7270188B2 (en) 1998-11-16 2007-09-18 Shell Oil Company Radial expansion of tubular members
US6634431B2 (en) 1998-11-16 2003-10-21 Robert Lance Cook Isolation of subterranean zones
US7275601B2 (en) 1998-11-16 2007-10-02 Shell Oil Company Radial expansion of tubular members
US7299881B2 (en) 1998-11-16 2007-11-27 Shell Oil Company Radial expansion of tubular members
US20030094279A1 (en) * 1998-12-07 2003-05-22 Shell Oil Co. Method of selecting tubular members
US6497289B1 (en) 1998-12-07 2002-12-24 Robert Lance Cook Method of creating a casing in a borehole
US7357188B1 (en) 1998-12-07 2008-04-15 Shell Oil Company Mono-diameter wellbore casing
US7350564B2 (en) 1998-12-07 2008-04-01 Enventure Global Technology, L.L.C. Mono-diameter wellbore casing
US6604763B1 (en) 1998-12-07 2003-08-12 Shell Oil Company Expandable connector
US7363984B2 (en) 1998-12-07 2008-04-29 Enventure Global Technology, Llc System for radially expanding a tubular member
US6631760B2 (en) 1998-12-07 2003-10-14 Shell Oil Company Tie back liner for a well system
US7419009B2 (en) 1998-12-07 2008-09-02 Shell Oil Company Apparatus for radially expanding and plastically deforming a tubular member
US20030094278A1 (en) * 1998-12-07 2003-05-22 Shell Oil Co. Expansion cone for radially expanding tubular members
US6640903B1 (en) 1998-12-07 2003-11-04 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
US20030094277A1 (en) * 1998-12-07 2003-05-22 Shell Oil Co. Expansion cone for radially expanding tubular members
US7077213B2 (en) 1998-12-07 2006-07-18 Shell Oil Company Expansion cone for radially expanding tubular members
US7240728B2 (en) 1998-12-07 2007-07-10 Shell Oil Company Expandable tubulars with a radial passage and wall portions with different wall thicknesses
US7240729B2 (en) 1998-12-07 2007-07-10 Shell Oil Company Apparatus for expanding a tubular member
US20040045616A1 (en) * 1998-12-07 2004-03-11 Shell Oil Co. Tubular liner for wellbore casing
US6561227B2 (en) 1998-12-07 2003-05-13 Shell Oil Company Wellbore casing
US6557640B1 (en) 1998-12-07 2003-05-06 Shell Oil Company Lubrication and self-cleaning system for expansion mandrel
US7434618B2 (en) 1998-12-07 2008-10-14 Shell Oil Company Apparatus for expanding a tubular member
US6725919B2 (en) 1998-12-07 2004-04-27 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
US6739392B2 (en) 1998-12-07 2004-05-25 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
US7552776B2 (en) 1998-12-07 2009-06-30 Enventure Global Technology, Llc Anchor hangers
US20040118574A1 (en) * 1998-12-07 2004-06-24 Cook Robert Lance Mono-diameter wellbore casing
US7216701B2 (en) 1998-12-07 2007-05-15 Shell Oil Company Apparatus for expanding a tubular member
US6575240B1 (en) 1998-12-07 2003-06-10 Shell Oil Company System and method for driving pipe
US6758278B2 (en) 1998-12-07 2004-07-06 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
US7198100B2 (en) 1998-12-07 2007-04-03 Shell Oil Company Apparatus for expanding a tubular member
US7195061B2 (en) 1998-12-07 2007-03-27 Shell Oil Company Apparatus for expanding a tubular member
US6823937B1 (en) 1998-12-07 2004-11-30 Shell Oil Company Wellhead
US7195064B2 (en) 1998-12-07 2007-03-27 Enventure Global Technology Mono-diameter wellbore casing
US7185710B2 (en) 1998-12-07 2007-03-06 Enventure Global Technology Mono-diameter wellbore casing
US6892819B2 (en) 1998-12-07 2005-05-17 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
US7174964B2 (en) 1998-12-07 2007-02-13 Shell Oil Company Wellhead with radially expanded tubulars
US7603758B2 (en) 1998-12-07 2009-10-20 Shell Oil Company Method of coupling a tubular member
US7077211B2 (en) 1998-12-07 2006-07-18 Shell Oil Company Method of creating a casing in a borehole
US7011161B2 (en) 1998-12-07 2006-03-14 Shell Oil Company Structural support
US7021390B2 (en) 1998-12-07 2006-04-04 Shell Oil Company Tubular liner for wellbore casing
US7036582B2 (en) 1998-12-07 2006-05-02 Shell Oil Company Expansion cone for radially expanding tubular members
US7159665B2 (en) 1998-12-07 2007-01-09 Shell Oil Company Wellbore casing
US7044218B2 (en) 1998-12-07 2006-05-16 Shell Oil Company Apparatus for radially expanding tubular members
US7147053B2 (en) 1998-12-07 2006-12-12 Shell Oil Company Wellhead
US6470966B2 (en) 1998-12-07 2002-10-29 Robert Lance Cook Apparatus for forming wellbore casing
US7048062B2 (en) 1998-12-07 2006-05-23 Shell Oil Company Method of selecting tubular members
US7121337B2 (en) 1998-12-07 2006-10-17 Shell Oil Company Apparatus for expanding a tubular member
US7108061B2 (en) 1998-12-07 2006-09-19 Shell Oil Company Expander for a tapered liner with a shoe
US7665532B2 (en) 1998-12-07 2010-02-23 Shell Oil Company Pipeline
US7159667B2 (en) 1999-02-25 2007-01-09 Shell Oil Company Method of coupling a tubular member to a preexisting structure
US6705395B2 (en) 1999-02-26 2004-03-16 Shell Oil Company Wellbore casing
US6631759B2 (en) 1999-02-26 2003-10-14 Shell Oil Company Apparatus for radially expanding a tubular member
US7556092B2 (en) 1999-02-26 2009-07-07 Enventure Global Technology, Llc Flow control system for an apparatus for radially expanding tubular members
US6684947B2 (en) 1999-02-26 2004-02-03 Shell Oil Company Apparatus for radially expanding a tubular member
US6857473B2 (en) 1999-02-26 2005-02-22 Shell Oil Company Method of coupling a tubular member to a preexisting structure
US7063142B2 (en) 1999-02-26 2006-06-20 Shell Oil Company Method of applying an axial force to an expansion cone
US6966370B2 (en) 1999-02-26 2005-11-22 Shell Oil Company Apparatus for actuating an annular piston
US6631769B2 (en) 1999-02-26 2003-10-14 Shell Oil Company Method of operating an apparatus for radially expanding a tubular member
US7044221B2 (en) 1999-02-26 2006-05-16 Shell Oil Company Apparatus for coupling a tubular member to a preexisting structure
US6568471B1 (en) 1999-02-26 2003-05-27 Shell Oil Company Liner hanger
US7040396B2 (en) 1999-02-26 2006-05-09 Shell Oil Company Apparatus for releasably coupling two elements
US7055608B2 (en) 1999-03-11 2006-06-06 Shell Oil Company Forming a wellbore casing while simultaneously drilling a wellbore
US20050098323A1 (en) * 1999-03-11 2005-05-12 Shell Oil Co. Forming a wellbore casing while simultaneously drilling a wellbore
US7438132B2 (en) 1999-03-11 2008-10-21 Shell Oil Company Concentric pipes expanded at the pipe ends and method of forming
US6968618B2 (en) 1999-04-26 2005-11-29 Shell Oil Company Expandable connector
US7350563B2 (en) 1999-07-09 2008-04-01 Enventure Global Technology, L.L.C. System for lining a wellbore casing
US20030107217A1 (en) * 1999-10-12 2003-06-12 Shell Oil Co. Sealant for expandable connection
US7048067B1 (en) 1999-11-01 2006-05-23 Shell Oil Company Wellbore casing repair
US6575250B1 (en) 1999-11-15 2003-06-10 Shell Oil Company Expanding a tubular element in a wellbore
US7234531B2 (en) 1999-12-03 2007-06-26 Enventure Global Technology, Llc Mono-diameter wellbore casing
US7516790B2 (en) 1999-12-03 2009-04-14 Enventure Global Technology, Llc Mono-diameter wellbore casing
US6530431B1 (en) 2000-06-22 2003-03-11 Halliburton Energy Services, Inc. Screen jacket assembly connection and methods of using same
US6412565B1 (en) 2000-07-27 2002-07-02 Halliburton Energy Services, Inc. Expandable screen jacket and methods of using same
US7100684B2 (en) 2000-07-28 2006-09-05 Enventure Global Technology Liner hanger with standoffs
US20030116325A1 (en) * 2000-07-28 2003-06-26 Cook Robert Lance Liner hanger with standoffs
US6494261B1 (en) 2000-08-16 2002-12-17 Halliburton Energy Services, Inc. Apparatus and methods for perforating a subterranean formation
US7172021B2 (en) 2000-09-18 2007-02-06 Shell Oil Company Liner hanger with sliding sleeve valve
US6976541B2 (en) 2000-09-18 2005-12-20 Shell Oil Company Liner hanger with sliding sleeve valve
US20040045718A1 (en) * 2000-09-18 2004-03-11 Brisco David Paul Liner hanger with sliding sleeve valve
US7325602B2 (en) 2000-10-02 2008-02-05 Shell Oil Company Method and apparatus for forming a mono-diameter wellbore casing
US7146702B2 (en) 2000-10-02 2006-12-12 Shell Oil Company Method and apparatus for forming a mono-diameter wellbore casing
US7204007B2 (en) 2000-10-02 2007-04-17 Shell Oil Company Method and apparatus for forming a mono-diameter wellbore casing
US20040069499A1 (en) * 2000-10-02 2004-04-15 Cook Robert Lance Mono-diameter wellbore casing
US7172019B2 (en) 2000-10-02 2007-02-06 Shell Oil Company Method and apparatus for forming a mono-diameter wellbore casing
US7100685B2 (en) 2000-10-02 2006-09-05 Enventure Global Technology Mono-diameter wellbore casing
US7363691B2 (en) 2000-10-02 2008-04-29 Shell Oil Company Method and apparatus for forming a mono-diameter wellbore casing
US7172024B2 (en) 2000-10-02 2007-02-06 Shell Oil Company Mono-diameter wellbore casing
US7363690B2 (en) 2000-10-02 2008-04-29 Shell Oil Company Method and apparatus for forming a mono-diameter wellbore casing
US7201223B2 (en) 2000-10-02 2007-04-10 Shell Oil Company Method and apparatus for forming a mono-diameter wellbore casing
US7108083B2 (en) 2000-10-27 2006-09-19 Halliburton Energy Services, Inc. Apparatus and method for completing an interval of a wellbore while drilling
US6543545B1 (en) 2000-10-27 2003-04-08 Halliburton Energy Services, Inc. Expandable sand control device and specialized completion system and method
US20040168799A1 (en) * 2000-10-27 2004-09-02 Simonds Floyd Randolph Apparatus and method for completing an interval of a wellbore while drilling
US6766862B2 (en) 2000-10-27 2004-07-27 Halliburton Energy Services, Inc. Expandable sand control device and specialized completion system and method
US6568472B1 (en) 2000-12-22 2003-05-27 Halliburton Energy Services, Inc. Method and apparatus for washing a borehole ahead of screen expansion
US7410000B2 (en) 2001-01-17 2008-08-12 Enventure Global Technology, Llc. Mono-diameter wellbore casing
US7168496B2 (en) 2001-07-06 2007-01-30 Eventure Global Technology Liner hanger
US7290616B2 (en) 2001-07-06 2007-11-06 Enventure Global Technology, L.L.C. Liner hanger
US7258168B2 (en) 2001-07-27 2007-08-21 Enventure Global Technology L.L.C. Liner hanger with slip joint sealing members and method of use
US7416027B2 (en) 2001-09-07 2008-08-26 Enventure Global Technology, Llc Adjustable expansion cone assembly
US6755249B2 (en) 2001-10-12 2004-06-29 Halliburton Energy Services, Inc. Apparatus and method for perforating a subterranean formation
US7383889B2 (en) 2001-11-12 2008-06-10 Enventure Global Technology, Llc Mono diameter wellbore casing
US7559365B2 (en) 2001-11-12 2009-07-14 Enventure Global Technology, Llc Collapsible expansion cone
US7475735B2 (en) * 2001-12-22 2009-01-13 Weatherford/Lamb, Inc. Tubular hanger and method of lining a drilled bore
US20070158080A1 (en) * 2001-12-22 2007-07-12 Harrall Simon J Tubular hanger and method of lining a drilled bore
US7290605B2 (en) 2001-12-27 2007-11-06 Enventure Global Technology Seal receptacle using expandable liner hanger
US6681862B2 (en) 2002-01-30 2004-01-27 Halliburton Energy Services, Inc. System and method for reducing the pressure drop in fluids produced through production tubing
US7740076B2 (en) 2002-04-12 2010-06-22 Enventure Global Technology, L.L.C. Protective sleeve for threaded connections for expandable liner hanger
US7918284B2 (en) 2002-04-15 2011-04-05 Enventure Global Technology, L.L.C. Protective sleeve for threaded connections for expandable liner hanger
US7360591B2 (en) 2002-05-29 2008-04-22 Enventure Global Technology, Llc System for radially expanding a tubular member
US7398832B2 (en) 2002-06-10 2008-07-15 Enventure Global Technology, Llc Mono-diameter wellbore casing
US20030233524A1 (en) * 2002-06-12 2003-12-18 Poisner David I. Protected configuration space in a protected environment
US7377326B2 (en) 2002-08-23 2008-05-27 Enventure Global Technology, L.L.C. Magnetic impulse applied sleeve method of forming a wellbore casing
US7424918B2 (en) 2002-08-23 2008-09-16 Enventure Global Technology, L.L.C. Interposed joint sealing layer method of forming a wellbore casing
US7404444B2 (en) 2002-09-20 2008-07-29 Enventure Global Technology Protective sleeve for expandable tubulars
US7571774B2 (en) 2002-09-20 2009-08-11 Eventure Global Technology Self-lubricating expansion mandrel for expandable tubular
US7513313B2 (en) 2002-09-20 2009-04-07 Enventure Global Technology, Llc Bottom plug for forming a mono diameter wellbore casing
US20060137877A1 (en) * 2002-09-20 2006-06-29 Watson Brock W Cutter for wellbore casing
US7739917B2 (en) 2002-09-20 2010-06-22 Enventure Global Technology, Llc Pipe formability evaluation for expandable tubulars
US7886831B2 (en) 2003-01-22 2011-02-15 Enventure Global Technology, L.L.C. Apparatus for radially expanding and plastically deforming a tubular member
US7503393B2 (en) 2003-01-27 2009-03-17 Enventure Global Technology, Inc. Lubrication system for radially expanding tubular members
US7438133B2 (en) 2003-02-26 2008-10-21 Enventure Global Technology, Llc Apparatus and method for radially expanding and plastically deforming a tubular member
US7793721B2 (en) 2003-03-11 2010-09-14 Eventure Global Technology, Llc Apparatus for radially expanding and plastically deforming a tubular member
US7775290B2 (en) 2003-04-17 2010-08-17 Enventure Global Technology, Llc Apparatus for radially expanding and plastically deforming a tubular member
US7308755B2 (en) 2003-06-13 2007-12-18 Shell Oil Company Apparatus for forming a mono-diameter wellbore casing
US7712522B2 (en) 2003-09-05 2010-05-11 Enventure Global Technology, Llc Expansion cone and system
US7819185B2 (en) 2004-08-13 2010-10-26 Enventure Global Technology, Llc Expandable tubular
WO2013092944A1 (en) * 2011-12-23 2013-06-27 Welltec A/S Downhole tubular system and assembly for sealing an opening
CN103998709A (en) * 2011-12-23 2014-08-20 韦尔泰克有限公司 Downhole tubular system and assembly for sealing an opening
US9523257B2 (en) 2011-12-23 2016-12-20 Welltec A/S Downhole tubular system and assembly for sealing an opening
CN103998709B (en) * 2011-12-23 2017-03-01 韦尔泰克有限公司 For sealing downhole tubular system and the assembly of opening
US20150204168A1 (en) * 2013-01-08 2015-07-23 Halliburton Energy Services, Inc Expandable Screen Completion Tool
US9399902B2 (en) * 2013-01-08 2016-07-26 Halliburton Energy Services, Inc. Expandable screen completion tool

Similar Documents

Publication Publication Date Title
US3270817A (en) Method and apparatus for installing a permeable well liner
US3067819A (en) Casing interliner
US3987854A (en) Gravel packing apparatus and method
US5154228A (en) Valving system for hurricane plugs
US3581817A (en) Tensioned well bore liner and tool
EP2558677B1 (en) Sequenced packing element system
US3136365A (en) Packer with spring biased threaded slips
US2830540A (en) Well packer
WO2007031723A2 (en) Packer
US3712378A (en) Wire line method and apparatus for cleaning well perforations
US3527299A (en) Float shoe apparatus
US2125665A (en) Sleeve packer construction
US3398796A (en) Multiple injection well packer apparatus
CA2118969C (en) Method and apparatus for controlling steam breakthrough in a well
US4059157A (en) Well control valve apparatus
US9243473B2 (en) Swellable packer
US2270648A (en) Cementing plug
US4529038A (en) Differential vent and bar actuated circulating valve and method
US2382578A (en) Producing equipment for wells
US11326409B2 (en) Frac plug setting tool with triggered ball release capability
US2194265A (en) Braden head and pipe hanger
US4751967A (en) Stage cementing apparatus
US3642064A (en) Apparatus for sealingly blocking a conduit
US3861464A (en) Safety valve for wells
US3032113A (en) Extension hanger