US3217074A - Process for producing a filament having a fibrous linearly oriented core - Google Patents

Process for producing a filament having a fibrous linearly oriented core Download PDF

Info

Publication number
US3217074A
US3217074A US277630A US27763063A US3217074A US 3217074 A US3217074 A US 3217074A US 277630 A US277630 A US 277630A US 27763063 A US27763063 A US 27763063A US 3217074 A US3217074 A US 3217074A
Authority
US
United States
Prior art keywords
filament
godet
drawn
temperature
fibrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US277630A
Inventor
Gould Charna
Gould William
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US277630A priority Critical patent/US3217074A/en
Priority to US47850765 priority patent/US3330721A/en
Application granted granted Critical
Publication of US3217074A publication Critical patent/US3217074A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/229Relaxing
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D11/00Other features of manufacture
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent

Definitions

  • a solid synthetic filament preferably formed of polypropylene of suitable type and comprising a linearly oriented fibrous core having an integral outer surface casing in the form of a homogenous remelt of the synthetic material, and which provides a filament having a high degree of snap-back and stiffness as well as maximum tensile strength and the resistance to splitting, abrasion and fracture.
  • Such filament also has low residual elongation and high resistance to creep. While such filament may find application in many uses it is especially advantageous for the production of brush bristle lengths, particularly heavy-duty brush bristles such as are used in large industrial brushes and street cleaning brushes, where the bristles are relatively large gauge.
  • a tubular synthetic lament preferably formed of polypropylene of suitable type, which is linearly oriented to provide a fibrous tubular inner core or body and is provided with an integral homogenous remelt casing which has the property of allowing the tubular filament to be bent upon itself without splitting or fracture, and which when straightened out will resume useful stiffness through the elastic memory of the material and the property of the homogenous remelt casing of bending, stretching and compressing without splitting or fracture.
  • Such tubular filament while finding application in many uses, is particularly suited to use as the stem or handle of lollipops, medical applicators, and the like, which have heretofore employed stems or handles in the form of wood sticks, compressed paper sticks, and in some case, synthetic plastic sticks.
  • These have the disadvantages ⁇ of being subject to easy breakage and splintering in the case of wood sticks, and permanent loss of the necessary stiffness ⁇ in the case of paper and unoriented synthetic plastic sticks when subjected to sharp bending.
  • such materials in these uses are subject to deterioration from moisture absorption and heat and therefore are unhygienic and do not lend themselves to proper sterilization, particularly in the case of unoriented plastic medical applicators which will deform when subjected to live steam sterilization.
  • the practice heretofore in producing oriented synthetic filaments is to extrude the plasticized material into a quench tank from which it is drawn by a first godet provided with drafting rolls, and is then subjected to an orientation step by drawing it through a heating oven by means of a second godet at a differential speed ratio which Orients the polymer molecules,
  • This orientation transforms the homogeneous plastic into a fibrous filament which is very strong lengthwise and weak crosssection-wise and therefore is subject to lengthwise splitting especially when the filament is sharply bent.
  • the amount of orientation possible is a function of temperature, and the best temperature for a strong filament is that which allows the maximum speed ratio.
  • the oriented filament with its weakened cross-section is drawn by a third godet through a high heat melting oven which remelts the weakened surface structure to a substantial depth inwardly from the surface to produce a homogeneous fused wear-resistant outside layer having a high degree of strength and elasticity both lengthwise and cross-section-wise, and which encases a linearly oriented fibrous core or body of maximum tensile strength.
  • the filament is further proposed to subject the filament to certain cooling steps following the heating steps to set the oriented filament in straight line form following its passage through the godets, and in the case of a tubular filament preventing the pull of the godets from flattening or distorting the tubular shape.
  • FIG. 1 is a schematic side elevation of apparatus suitable for carrying out the method of the invention
  • FIG. 2 is a view partially in side elevation and partially in longitudinal section, and on an enlarged scale, of a length of synthetic filament produced according to the invention
  • FIG. 3 is a transverse sectional view taken along the line 3 3 of FIG. 2;
  • FIG. 4 is a transverse sectional view of a modified filament of oval cross-section produced according to the invention.
  • FIG. 5 is a transverse sectional View of a modified filament of triangular cross-sectio-n produced according to the invention.
  • FIG. 6 is a View partially in side elevation and partially in longitudinal section and on an enlarged scale of a length of synthetic filament produced according to the invention.
  • FIG. 7 is a transverse sectional view taken along the line 7 7 of FIG. 6.
  • the plastic material preferably polypropylene but which may be other suitable fibre-forming, linear polymeric, thermoplastic material
  • a filament forming unit 11 which may be a spinneret in the case of a solid filament or a combination spinneret and mandrel in the case of a tubular filament, these units being of well-known form.
  • the extruded filament is carried through a quench or cooling tank 12 which contains a coolant, preferably water, maintained at a substantially constant temperature suitable for transforming the molten material emerging from the extruder and which solidifies as it encounters the air into a filament F, which at this stage of -the process is homogeneous throughout.
  • a first godet 13 having three driven rollers 14 about which the filament is carried operates at a speed slightly higher than the lineal extrusion of the extruder to draw the filament through the quench tank and slightly stretch it between the extruder and the first godet.
  • the orientation or drafting step by drawing through a heating oven 15 and thence through a cooling tank 16 .
  • a second godet 17 having three driven rollers 18 about which the filament is carried, the temperature of the oven 15 and the speed ratio between the first godet 13 and the second godet 17 being related and predetermined by the particular requirements of the plastic material, the greater the speed ratio below the breaking point of the filament the greater the lineal orientation of the polymer molecules.
  • the cooling tank 16 between the oven 15 and the second godet 17 the oriented filament is set in straight line form as soon as it emerges from the oven. In the case of a tubular filament the pressure of the pull of the second godet is prevented from flattening or distorting the tube.
  • a satisfactory oven temperature for polypropylene extruded in sizes ranging from about .012 to about .120" may range from about 400 F. to about 1200 F. at speed ratios ranging from about 1-4 to 1-11.
  • the orientation step according to the invention is such that the degree of orientation exceeds that heretofore considered practicable and is preferably carried to the point where the surface area of the filament is weakened to obtain maximum orientation of the internal mass of the filament without breakage.
  • the filament is drawn by a third godet 19 having three driven rollers 20 about which the filament is carried through a second heating oven 21 and a Second quench or cooling tank 22, the third godet 19 being driven at a speed substantially less than the speed of the second godet 17 to compensate for lineal shrinkage.
  • the second heating oven is maintained at a temperature, calculated in relation to length of the oven, the lineal speed and cross-sectional area of the filament and the formulation of the particular material, suitable for melting the surface area of the filament, the depth of the melted surface area being predetermined ⁇ as desired by the relationship of these factors. In practice, this temperature in the range of sizes, shapes and types a'bove referred to is of the order of 900 F. to 1400 F.
  • the melted surface area is solidified by the quench or cooling tank 22 into a homogeneous nonfibrous casing which through remelting and solidification while being drawn between the second godet 17 and the third godet 19 connects the oriented and weakened surface fibres into a smooth soldified homogeneous nonfibrous, and split-resistant casing integrally fused with the brous highly oriented body or core.
  • the relatively high heat of the second heating oven 21 followed by cooling in the quench or cooling tank 22 also straightens out the curvature that is imparted to the cooled filament as a result of passing around the rollers of the second godet 17.
  • the relative speeds of the rollers of the second and third godets is such that the filament is drawn without stretching tension, while at the same time permitting the lineal shrinkage of the filament which takes place as a result of the heat induced relaxing of internal stresses.
  • the heating of the filament at the surface melting high temperatures employed herein also causes a limited degree of relaxation of the linearly oriented fibres of the internal core with the result that the surface speed of the filament over the rollers of ⁇ the third godet is somewhat less than the surface speed over the second godet, being at sufiicient variance to compensate for the relaxation shrinkage of the filament without filament-roller slippage.
  • the finished filament is drawn by a pair of feed rollers 23 to the shear plates 24 of a cutoff unit 2S which is synchronized with the speed of movement of the filament to cut off desired lengths of the filament suitable for its end use. It will Ibe understood that if desired the filament may be drawn upon a suitable winding reel for subsequent cutting into suitable lengths.
  • FIGS. 2 and 3 there is shown a filament F of circular cross-section according to the invention in which the core 26 is linearly oriented and is encased in a meltproduced solidified homogeneous casing 27 fused thereto.
  • FIG. 4 there is shown a filament Fa of oval crosssection comprising a fibrous oriented core 26a and a meltproduced solidified homogeneous casing 27a.
  • This crosssectional shape is especially suitable for brush use where the bristles are secured at one end and flex in one direction, that is, in a plane parallel to the narrower dimension of the filament.
  • the dimensions of the filament are of the order of .070 x .110".
  • FIG. 5 there is shown a filament Fb of triangular cross-section comprising a linearly oriented core 26b and a melt-produced homogeneous casing 27b.
  • FIGS. 6 and 7 there is shown a tubular filament Fc of circular cross-section comprising a linearly oriented core 26C and a melt-produced homogeneous casing 27C.
  • the extruded material in each example was polypropylene, the quenching medium in each quenching tank was continuous running cold water having a temperature of approximately 50-60 F., the first heating oven was 6 feet long, and the second heating oven was 3 feet long.
  • the extruded material went through the following sequential steps, having reference to FIG. l: It was drawn from the extruder 10 by the first godet 13 through the first quenching tank 12, it was drawn by the second godet 17 through the first heating oven 15 and the second quenching tank 16, it was drawn by the third godet 19 through the second heating oven 21 and the third quenching tank 22, and the finished filament was drawn from the third godet 19 by feed rollers 23.
  • Example I A solid circular cross-section filament of .012 size was drawn by the first godet at 50 f.p.m. (feet per minute) from the extruder, was drawn by the second godet at 500 f.p.m. through the first heating oven having a temperature of 650 F., and was drawn by the third godet at 450 f.p.m. through the second heating oven having a temperature of 1050 F.
  • Example II A solid circular cross-section filament of .012" size was drawn by the first godet at 60 f.p.m. lfrom the extruder, was drawn by the second godet at 590 f.p.m. through the first heating oven having a temperature of 800 F., and was drawn by the third godet at 500 f.p.m. through the second heating oven having a temperature of 1200 F.
  • Example III A solid oval cross-section filament of .028" X .043" size was drawn by the first godet at 56 f.p.m. from the eX- truder, was drawn -by the second godet at 505 fpm. through the first heating oven having a temperature of' 500 F., and was drawn by the third godet at 400 f.p..m through the second heating oven having a temperature of 900 F.
  • Example 1V A solid oval cross-section filament of .028 X .043 size was drawn by the first godet at 110 fpm. from the eX- truder, was drawn by the second godet at 405 fpm. through the first heating oven having a temperature of 700 F., and was drawn by the third godet at 350 fpm. through the second heating oven having a temperature of 1100 F.
  • Example V A solid oval cross-section filament of .070" X .110 size was drawn by the first godet at 47 fpm. from the eX- truder, was drawn by the second godet at 500 f.p.m. through the first heating oven having a temperature of 400 F., and was drawn by the third godet at 375 fpm.
  • Example VI A tubular circular cross-section filament of .040 I.D. X .090 O.D. was drawn by the first godet from the extruder at 47 fpm. was drawn by the second godet at 400 fpm. through the first heating oven having a temperature of 800 F., and was drawn by the third godet at 350 -f.p.m. through the second heating oven having a temperature of 1400 F.
  • Example VII A tubular circular cross-section filament of .040" LD. X .090 O.D. was drawn by the first godet at 34 f.p.m. from the eXtruder, was drawn by the second godet at 375 f.p.m. through the first heating oven having a temperature of 1175 F., and was drawn by the third godet at 300 f.p.m. through the second heating oven having a temperature of 1200" F.
  • Example VIII A tubular circular cross-section filament of .075 I.D. X .120" O.D. was drawn by the rst godet at 30 f.p.m. from the eXtruder, was drawn yby the second godet at 308 fpm. through the first heating oven having a temperature of 1075 F., and was drawn by the third godet at 250 fpm., through the second heating oven having a temperature of 1200 F.
  • a method of producing -a springy splitand wearresistant smooth surfaced filament which comprises drawing an extruded brous linearly oriented thermoplastic filament between a pair of linearly spaced drawing means through a heating oven having a temperature Within the range of about 900 F. to 1400 F. and at a speed to melt said filament to a substantial depth inwardly from the surface, and immediately ⁇ subjecting said filament in its transition between said spaced drawing means to a quenching coolant to arrest the melting action at a point inwardly spaced from the surface to form a solidified homogeneous splitand wear-resistant smooth surfaced casing of substantial depth surrounding a fibrous linearly oriented core.
  • a method of producing a springy split- Iand wearresistant smooth surfaced filament which comprises drawing an extruded fibrous linearly oriented thermoplastic filament between a pair of linearly spaced drawing means, in which the fibers have substantially maximum orientation below the -breaking point of the filament and wherein the surface area is relatively weakened, through a heating oven having a ytemperature within the range of about 900 F. to 1400 F.
  • a method of producing a springy splitand wearresistant smooth surfaced filament which comprises extruding plasticized polymeric material in the form of a filament, subjecting said filament to a coolant, linearly orienting said filament by drawing it between differential speed first and second drawing means through a heating oven having a temperature less than the melting temperature of the filament, subjecting said filament to a coolant, drawing said oriented filament between said second drawing means and a third drawing means through a second heating oven having a temperature within the range of abou-t '900 F. to 1400 F.
  • a method of producing a springy splitand wear- -resistant smooth surfaced iilament which comprises eX- truding plasticized polypropylene in the form of a filament, linearly orienting said filament by drawing it between differential speed first and second drawing means having a speed ratio within the range of about 1-4 to 1-'11 through a heating oven having a ⁇ temperature within the range of about 400 F. to 1200 F., subjecting said filament to a coolant, drawing said oriented filament between said -second drawing means and a third drawing means through a second heating oven having a temperature within the range of about 900 F. to 1400 F.

Description

3,2 1 7,074 ous NOV 9, 1955 c. GOULD ETAL PROCESS FOR PRODUCING A FILAMENT HAVING A FIBR LINEARLY ORIENTED CARE Filed May a lees INVENTRB, CHARNA EDLILDDAND DUI.. j,
ATTORNEY',
lllvllllllllllill WlLLJAM E: BY
United States Patent O 3,217,074 PROCESS FOR PRODUCING A FILAMENT HAV- ING A FIBRGUS LINEARLY ORIENTED CORE Charna Gould and William Gould, Millburn, NJ. (both of 280 Badger Ave., Newark 8, NJ.) Filed May 2, 1963, Ser. No. 277,630 4 Claims. (Cl. 264-210) This application is a continuation-in-part of our application Serial No. 131,137, filed August 14, 1961, and Serial No. 162,469, filed December 27, 1961, both now abandoned, and relates to the production of synthetic filaments.
According to one aspect of the invention it is an object to provide a solid synthetic filament preferably formed of polypropylene of suitable type and comprising a linearly oriented fibrous core having an integral outer surface casing in the form of a homogenous remelt of the synthetic material, and which provides a filament having a high degree of snap-back and stiffness as well as maximum tensile strength and the resistance to splitting, abrasion and fracture. Such filament also has low residual elongation and high resistance to creep. While such filament may find application in many uses it is especially advantageous for the production of brush bristle lengths, particularly heavy-duty brush bristles such as are used in large industrial brushes and street cleaning brushes, where the bristles are relatively large gauge.
According to another aspect of the invention it is an object to provide a tubular synthetic lament preferably formed of polypropylene of suitable type, which is linearly oriented to provide a fibrous tubular inner core or body and is provided with an integral homogenous remelt casing which has the property of allowing the tubular filament to be bent upon itself without splitting or fracture, and which when straightened out will resume useful stiffness through the elastic memory of the material and the property of the homogenous remelt casing of bending, stretching and compressing without splitting or fracture. Such tubular filament, while finding application in many uses, is particularly suited to use as the stem or handle of lollipops, medical applicators, and the like, which have heretofore employed stems or handles in the form of wood sticks, compressed paper sticks, and in some case, synthetic plastic sticks. These, however, have the disadvantages `of being subject to easy breakage and splintering in the case of wood sticks, and permanent loss of the necessary stiffness `in the case of paper and unoriented synthetic plastic sticks when subjected to sharp bending. Also, such materials in these uses are subject to deterioration from moisture absorption and heat and therefore are unhygienic and do not lend themselves to proper sterilization, particularly in the case of unoriented plastic medical applicators which will deform when subjected to live steam sterilization.
The practice heretofore in producing oriented synthetic filaments is to extrude the plasticized material into a quench tank from which it is drawn by a first godet provided with drafting rolls, and is then subjected to an orientation step by drawing it through a heating oven by means of a second godet at a differential speed ratio which Orients the polymer molecules, This orientation transforms the homogeneous plastic into a fibrous filament which is very strong lengthwise and weak crosssection-wise and therefore is subject to lengthwise splitting especially when the filament is sharply bent. The amount of orientation possible is a function of temperature, and the best temperature for a strong filament is that which allows the maximum speed ratio. Maximum strength is obtained when the highest speed ratio is maintained without breaking the filament and the limitation ICC or maximum speed ratio in relation to oven temperature has been one that will not weaken the surface structure of the filament. The practicable limitations have been a temperature of the order of 350 F. more or less, and a speed ratio of about 7-1.
It is proposed according to the invention to extrude the plasticized material through a suitable die or spinneret, including a mandrel in the case of tubing, and to orient the filament to the point of maximum strength stiffness, i.e., beyond the limit heretofore considered practicable and where surface structure is allowed to weaken in order to obtain maximum tensile strength of the bulk of the mass. It is further proposed to subject the oriented filament with its weakened cross-section to a further step wherein it is drawn by a third godet through a high heat melting oven which remelts the weakened surface structure to a substantial depth inwardly from the surface to produce a homogeneous fused wear-resistant outside layer having a high degree of strength and elasticity both lengthwise and cross-section-wise, and which encases a linearly oriented fibrous core or body of maximum tensile strength. It is further proposed to subject the filament to certain cooling steps following the heating steps to set the oriented filament in straight line form following its passage through the godets, and in the case of a tubular filament preventing the pull of the godets from flattening or distorting the tubular shape.
Heretofore methods have been employed wherein an oriented filament is subjected to the heat of a second oven as a so-called relaxing step vdesigned to relax internal stresses and shrink the filament by heat setting, but the relaxing temperatures employed are considerably below the surface melting temperatures contemplated in the present invention.
Other objects and advantages will become apparent from a consideration of the following detailed description taken in connection with the accompanying drawings wherein satisfactory embodiments of the invent-ion are shown. However, it will be understood that the invention is not limited to the details disclosed but includes all such variations and modifications as fall within the spirit of the invention and the scope of the appended claims.
In the drawings:
FIG. 1 is a schematic side elevation of apparatus suitable for carrying out the method of the invention;
FIG. 2 is a view partially in side elevation and partially in longitudinal section, and on an enlarged scale, of a length of synthetic filament produced according to the invention;
FIG. 3 is a transverse sectional view taken along the line 3 3 of FIG. 2;
FIG. 4 is a transverse sectional view of a modified filament of oval cross-section produced according to the invention;
FIG. 5 is a transverse sectional View of a modified filament of triangular cross-sectio-n produced according to the invention;
FIG. 6 is a View partially in side elevation and partially in longitudinal section and on an enlarged scale of a length of synthetic filament produced according to the invention; and
FIG. 7 is a transverse sectional view taken along the line 7 7 of FIG. 6.
Referring particularly to FIG. 1 of the drawing, the plastic material, preferably polypropylene but which may be other suitable fibre-forming, linear polymeric, thermoplastic material, is extruded from an extruder 10 through a filament forming unit 11 which may be a spinneret in the case of a solid filament or a combination spinneret and mandrel in the case of a tubular filament, these units being of well-known form. The extruded filament is carried through a quench or cooling tank 12 which contains a coolant, preferably water, maintained at a substantially constant temperature suitable for transforming the molten material emerging from the extruder and which solidifies as it encounters the air into a filament F, which at this stage of -the process is homogeneous throughout. The temperature, pressure, and speed of the extruder depends upon the melting temperature and the fiow rate of the particular material, as will be understood. A first godet 13 having three driven rollers 14 about which the filament is carried operates at a speed slightly higher than the lineal extrusion of the extruder to draw the filament through the quench tank and slightly stretch it between the extruder and the first godet.
It is next subjected to the orientation or drafting step by drawing through a heating oven 15 and thence through a cooling tank 16 .by means of a second godet 17 having three driven rollers 18 about which the filament is carried, the temperature of the oven 15 and the speed ratio between the first godet 13 and the second godet 17 being related and predetermined by the particular requirements of the plastic material, the greater the speed ratio below the breaking point of the filament the greater the lineal orientation of the polymer molecules. By interposing the cooling tank 16 between the oven 15 and the second godet 17 the oriented filament is set in straight line form as soon as it emerges from the oven. In the case of a tubular filament the pressure of the pull of the second godet is prevented from flattening or distorting the tube. In practice, it has been found that depending upon the size, shape and type of extruded filament, whether solid or tubular, a satisfactory oven temperature for polypropylene extruded in sizes ranging from about .012 to about .120" may range from about 400 F. to about 1200 F. at speed ratios ranging from about 1-4 to 1-11. In any case the orientation step according to the invention is such that the degree of orientation exceeds that heretofore considered practicable and is preferably carried to the point where the surface area of the filament is weakened to obtain maximum orientation of the internal mass of the filament without breakage.
From the second godet 17 the filament is drawn by a third godet 19 having three driven rollers 20 about which the filament is carried through a second heating oven 21 and a Second quench or cooling tank 22, the third godet 19 being driven at a speed substantially less than the speed of the second godet 17 to compensate for lineal shrinkage. The second heating oven is maintained at a temperature, calculated in relation to length of the oven, the lineal speed and cross-sectional area of the filament and the formulation of the particular material, suitable for melting the surface area of the filament, the depth of the melted surface area being predetermined `as desired by the relationship of these factors. In practice, this temperature in the range of sizes, shapes and types a'bove referred to is of the order of 900 F. to 1400 F. The melted surface area is solidified by the quench or cooling tank 22 into a homogeneous nonfibrous casing which through remelting and solidification while being drawn between the second godet 17 and the third godet 19 connects the oriented and weakened surface fibres into a smooth soldified homogeneous nonfibrous, and split-resistant casing integrally fused with the brous highly oriented body or core. The relatively high heat of the second heating oven 21 followed by cooling in the quench or cooling tank 22 also straightens out the curvature that is imparted to the cooled filament as a result of passing around the rollers of the second godet 17.
The relative speeds of the rollers of the second and third godets is such that the filament is drawn without stretching tension, while at the same time permitting the lineal shrinkage of the filament which takes place as a result of the heat induced relaxing of internal stresses. The heating of the filament at the surface melting high temperatures employed herein also causes a limited degree of relaxation of the linearly oriented fibres of the internal core with the result that the surface speed of the filament over the rollers of `the third godet is somewhat less than the surface speed over the second godet, being at sufiicient variance to compensate for the relaxation shrinkage of the filament without filament-roller slippage.
The relaxation of the linearly oriented fibrous core at the surface melting high temperature employed herein, in combination with the simultaneously produced homogeneous remelt surface, gives to the finished filament a degree of snap-back substantially higher than has obtained with previous relaxation methods.
From the third godet 19 the finished filament is drawn by a pair of feed rollers 23 to the shear plates 24 of a cutoff unit 2S which is synchronized with the speed of movement of the filament to cut off desired lengths of the filament suitable for its end use. It will Ibe understood that if desired the filament may be drawn upon a suitable winding reel for subsequent cutting into suitable lengths.
In FIGS. 2 and 3 there is shown a filament F of circular cross-section according to the invention in which the core 26 is linearly oriented and is encased in a meltproduced solidified homogeneous casing 27 fused thereto.
In FIG. 4 there is shown a filament Fa of oval crosssection comprising a fibrous oriented core 26a and a meltproduced solidified homogeneous casing 27a. This crosssectional shape is especially suitable for brush use where the bristles are secured at one end and flex in one direction, that is, in a plane parallel to the narrower dimension of the filament. In heavy duty rotary brushes of the type employed in street cleaning equipment, the dimensions of the filament are of the order of .070 x .110".
In FIG. 5 there is shown a filament Fb of triangular cross-section comprising a linearly oriented core 26b and a melt-produced homogeneous casing 27b.
In FIGS. 6 and 7 there is shown a tubular filament Fc of circular cross-section comprising a linearly oriented core 26C and a melt-produced homogeneous casing 27C.
The following examples are illustrative of the practice of the invention. The extruded material in each example was polypropylene, the quenching medium in each quenching tank was continuous running cold water having a temperature of approximately 50-60 F., the first heating oven was 6 feet long, and the second heating oven was 3 feet long. In each example the extruded material went through the following sequential steps, having reference to FIG. l: It was drawn from the extruder 10 by the first godet 13 through the first quenching tank 12, it was drawn by the second godet 17 through the first heating oven 15 and the second quenching tank 16, it was drawn by the third godet 19 through the second heating oven 21 and the third quenching tank 22, and the finished filament was drawn from the third godet 19 by feed rollers 23.
Example I A solid circular cross-section filament of .012 size was drawn by the first godet at 50 f.p.m. (feet per minute) from the extruder, was drawn by the second godet at 500 f.p.m. through the first heating oven having a temperature of 650 F., and was drawn by the third godet at 450 f.p.m. through the second heating oven having a temperature of 1050 F.
Example II A solid circular cross-section filament of .012" size was drawn by the first godet at 60 f.p.m. lfrom the extruder, was drawn by the second godet at 590 f.p.m. through the first heating oven having a temperature of 800 F., and was drawn by the third godet at 500 f.p.m. through the second heating oven having a temperature of 1200 F.
Example III A solid oval cross-section filament of .028" X .043" size was drawn by the first godet at 56 f.p.m. from the eX- truder, was drawn -by the second godet at 505 fpm. through the first heating oven having a temperature of' 500 F., and was drawn by the third godet at 400 f.p..m through the second heating oven having a temperature of 900 F.
Example 1V A solid oval cross-section filament of .028 X .043 size was drawn by the first godet at 110 fpm. from the eX- truder, was drawn by the second godet at 405 fpm. through the first heating oven having a temperature of 700 F., and was drawn by the third godet at 350 fpm. through the second heating oven having a temperature of 1100 F.
Example V A solid oval cross-section filament of .070" X .110 size was drawn by the first godet at 47 fpm. from the eX- truder, was drawn by the second godet at 500 f.p.m. through the first heating oven having a temperature of 400 F., and was drawn by the third godet at 375 fpm.
I through the second heating oven having a temperature of Example VI A tubular circular cross-section filament of .040 I.D. X .090 O.D. was drawn by the first godet from the extruder at 47 fpm. was drawn by the second godet at 400 fpm. through the first heating oven having a temperature of 800 F., and was drawn by the third godet at 350 -f.p.m. through the second heating oven having a temperature of 1400 F.
Example VII A tubular circular cross-section filament of .040" LD. X .090 O.D. was drawn by the first godet at 34 f.p.m. from the eXtruder, was drawn by the second godet at 375 f.p.m. through the first heating oven having a temperature of 1175 F., and was drawn by the third godet at 300 f.p.m. through the second heating oven having a temperature of 1200" F.
Example VIII A tubular circular cross-section filament of .075 I.D. X .120" O.D. was drawn by the rst godet at 30 f.p.m. from the eXtruder, was drawn yby the second godet at 308 fpm. through the first heating oven having a temperature of 1075 F., and was drawn by the third godet at 250 fpm., through the second heating oven having a temperature of 1200 F.
The following observations are noted. Relatively small size filaments cool faster and run faster than heavier filaments and require higher heats for orientation and remelting. Heavy solid filaments require more Vcooling between the eXtruder and the orienting godets than the lighter filaments. Hollow or tubular filaments cool faster because they have no hot centers, and relatively higher heats are required for orientation.
What is claimed is:
1. A method of producing -a springy splitand wearresistant smooth surfaced filament which comprises drawing an extruded brous linearly oriented thermoplastic filament between a pair of linearly spaced drawing means through a heating oven having a temperature Within the range of about 900 F. to 1400 F. and at a speed to melt said filament to a substantial depth inwardly from the surface, and immediately `subjecting said filament in its transition between said spaced drawing means to a quenching coolant to arrest the melting action at a point inwardly spaced from the surface to form a solidified homogeneous splitand wear-resistant smooth surfaced casing of substantial depth surrounding a fibrous linearly oriented core.
2. A method of producing a springy split- Iand wearresistant smooth surfaced filament which comprises drawing an extruded fibrous linearly oriented thermoplastic filament between a pair of linearly spaced drawing means, in which the fibers have substantially maximum orientation below the -breaking point of the filament and wherein the surface area is relatively weakened, through a heating oven having a ytemperature within the range of about 900 F. to 1400 F. and at a speed to melt said filament to a substantial depth inwardly from the surface, and immediately subjecting said filament in its transition 'between said spaced drawing means to a quenching coolant to arrest the melting action at a point inwardly spaced from the surface to form a solidified homogeneous splitand wearresistant smooth surfaced casing of substantial depth surrounding a -brous linearly oriented core.
3. A method of producing a springy splitand wearresistant smooth surfaced filament which comprises extruding plasticized polymeric material in the form of a filament, subjecting said filament to a coolant, linearly orienting said filament by drawing it between differential speed first and second drawing means through a heating oven having a temperature less than the melting temperature of the filament, subjecting said filament to a coolant, drawing said oriented filament between said second drawing means and a third drawing means through a second heating oven having a temperature within the range of abou-t '900 F. to 1400 F. to melt said filament to a substantial depth inwardly from the surface, and itnmediately subjecting said filament in its transition between said spaced drawing means to a quenching coolant to arrest the melting action at a point inwardly spaced from the surface to form a solidified homogeneous splitand we-arresistant smooth surfaced casing of substantial depth surrounding a fibrous linearly oriented core.
4. A method of producing a springy splitand wear- -resistant smooth surfaced iilament which comprises eX- truding plasticized polypropylene in the form of a filament, linearly orienting said filament by drawing it between differential speed first and second drawing means having a speed ratio within the range of about 1-4 to 1-'11 through a heating oven having a `temperature within the range of about 400 F. to 1200 F., subjecting said filament to a coolant, drawing said oriented filament between said -second drawing means and a third drawing means through a second heating oven having a temperature within the range of about 900 F. to 1400 F. to melt said filament to a substantial depth inwardly from the surface, and immediately subjecting said filament in its transition between said second and third drawing means to a quenching coolant to arrest the melting action at a point inwardly spaced from the surface to form ya solidified homogeneous splitand wear-resistant smooth surfaced casing of substantial `depth surrounding a fibrous linearly oriented core.
References Cited by the Examiner UNITED STATES PATENTS 2,990,580 7/ 61 Foster 264-346 2,994,110 8/ 61 Hardy 2'64-171 3,001,265 9/ 61 Bundy 161-275 3,016,577 1/62 Riggert 264-342 3,028,622 4/62 Park 264-209 3,039,142 6/ 62 Zavasnik 2'64-210 3,039,174 6/62 Radow et al. 161-275 3,059,991 10/62 Munt .264-210 3,078,139 2/63 Brown et al 264-210 3,106,442 10/63 Compostella et al 264-290 FOREIGN PATENTS 704,665 2/54 Great Britain. 718,715 11/ 54 Great Britain.
ALEXANDER H. BRODMERKEL, Primary Examiner. ROBERT F. WHITE, Examiner.

Claims (1)

1. A METHOD OF PRODUCING A SPRINGY SPLIT- AND WEARRESISTANT SMOOTH SURFACED FILAMENT WHICH COMPRISES DRAWING AN EXTRUDED FIBROUS LINEARLY ORIENTED THERMOPLASTIC FILAMENT BETWEEN A PAIR OF LINEARLY SPACED DRAWING MEANS THROUGH A HEATING OVEN HAVING A TEMPERATURE WITHIN THE RANGE OF ABOUT 900*F. TO 1400*F. AND AT A SPEED TO MELT SAID FILAMENT TO A SUBSTANTIAL DEPTH INWARDLY FROM THE SURFACE, AND IMMEDIATELY SUBJECTING SAID FILAMENT IN ITS TRANSITION BETWEEN SAID SPACED DRAWING MEANS TO A QUENCHING COOLANT TO ARREST THE MELTING ACTION AT A POINT INWARDLY SPACED FROM THE SURFACE TO FORM A SOLIDIFIED HOMOGENEOUS SPLIT- AND WEAR-RESISTANT SMOOTH SURFACED CASING OF SUBSTANTIAL DEPTH SURROUNDING A FIBROUS LINEARLY ORIENTED CORE.
US277630A 1963-05-02 1963-05-02 Process for producing a filament having a fibrous linearly oriented core Expired - Lifetime US3217074A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US277630A US3217074A (en) 1963-05-02 1963-05-02 Process for producing a filament having a fibrous linearly oriented core
US47850765 US3330721A (en) 1963-05-02 1965-06-29 Synthetic filaments and method of making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US277630A US3217074A (en) 1963-05-02 1963-05-02 Process for producing a filament having a fibrous linearly oriented core

Publications (1)

Publication Number Publication Date
US3217074A true US3217074A (en) 1965-11-09

Family

ID=23061712

Family Applications (1)

Application Number Title Priority Date Filing Date
US277630A Expired - Lifetime US3217074A (en) 1963-05-02 1963-05-02 Process for producing a filament having a fibrous linearly oriented core

Country Status (1)

Country Link
US (1) US3217074A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3522342A (en) * 1967-07-03 1970-07-28 Nypel Inc Apparatus and method for making bristles having a filler
US3539668A (en) * 1967-05-15 1970-11-10 Ici Ltd Process for heat treating travelling linear material
US3541198A (en) * 1963-12-07 1970-11-17 Keizo Ueda Process for manufacturing composite filaments
US3548048A (en) * 1968-05-20 1970-12-15 Phillips Petroleum Co Method of producing polymeric articles resistant to fibrillation
EP0262892A2 (en) * 1986-09-29 1988-04-06 David Seidler Method of forming brush with integral holder
AU625405B2 (en) * 1989-09-01 1992-07-09 Ethicon Inc. Thermal treatment of thermoplastic filaments
US5161554A (en) * 1990-07-18 1992-11-10 Georg Karl Geka-Brush Gmbh Brush, in particular mascara brush
US5294395A (en) * 1989-09-01 1994-03-15 Ethicon, Inc. Thermal treatment of theraplastic filaments for the preparation of surgical sutures
US5451461A (en) * 1989-09-01 1995-09-19 Ethicon, Inc. Thermal treatment of thermoplastic filaments for the preparation of surgical sutures
US5567072A (en) * 1995-06-07 1996-10-22 Risdon Corporation Mascara applicator having slotted bristles
US5588172A (en) * 1994-07-11 1996-12-31 Abtex Corporation Radial brush
WO1998004167A1 (en) 1996-07-25 1998-02-05 Whitehill Oral Technologies, Inc. Toothbrush with improved cleaning and abrasion efficiency
US5756030A (en) * 1995-04-24 1998-05-26 Bemis Manufacturing Company Method and apparatus for extruding a rod of homogeneous plastic material
US5762432A (en) * 1995-06-07 1998-06-09 Risdon Corporation Mascara applicator having slotted bristles
US5939049A (en) * 1996-10-11 1999-08-17 Colgate-Palmolive Company Chewing stick made from natural fibers
US20110061189A1 (en) * 2009-09-15 2011-03-17 Mark Stephen Meadows Oral care products and methods of using and making the same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB704665A (en) * 1949-01-18 1954-02-24 Werner Hermann Kreidl A method of improving the bonding properties of polyethylene type plastics
GB718715A (en) * 1951-08-21 1954-11-17 Mathew Francis Kritchever Improvements in or relating to method of treating polyethylene plastics preparatory to printing
US2990580A (en) * 1956-06-04 1961-07-04 Du Pont Process for improving bursting strength of polyethylene pipe
US2994110A (en) * 1957-05-10 1961-08-01 Mobay Chemical Corp Surfacing process for isocyanate foam and product
US3001265A (en) * 1957-03-25 1961-09-26 Du Pont Flat low melting point metal filament having an oriented synthetic resin sheath
US3016577A (en) * 1957-04-06 1962-01-16 Hoechst Ag Process of preparing shrinkproof filaments from low-pressure polyethylene
US3028622A (en) * 1953-07-21 1962-04-10 Plax Corp Method and apparatus for improving polyethylene surfaces
US3039142A (en) * 1960-11-10 1962-06-19 Phillips Petroleum Co Method and means for extrusion of elongated shapes from thermoplastic materials
US3039174A (en) * 1958-05-12 1962-06-19 Du Pont Elongated composite structure
US3059991A (en) * 1959-03-20 1962-10-23 E B & A C Whiting Company Method of making oriented filamentary article of isotactic polypropylene
US3078139A (en) * 1958-10-31 1963-02-19 Union Carbide Corp Process for producing polystyrene fibers
US3106442A (en) * 1956-07-17 1963-10-08 Montecantini Societa Generale Method of producing dimensionally stable polypropylene fibers

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB704665A (en) * 1949-01-18 1954-02-24 Werner Hermann Kreidl A method of improving the bonding properties of polyethylene type plastics
GB718715A (en) * 1951-08-21 1954-11-17 Mathew Francis Kritchever Improvements in or relating to method of treating polyethylene plastics preparatory to printing
US3028622A (en) * 1953-07-21 1962-04-10 Plax Corp Method and apparatus for improving polyethylene surfaces
US2990580A (en) * 1956-06-04 1961-07-04 Du Pont Process for improving bursting strength of polyethylene pipe
US3106442A (en) * 1956-07-17 1963-10-08 Montecantini Societa Generale Method of producing dimensionally stable polypropylene fibers
US3001265A (en) * 1957-03-25 1961-09-26 Du Pont Flat low melting point metal filament having an oriented synthetic resin sheath
US3016577A (en) * 1957-04-06 1962-01-16 Hoechst Ag Process of preparing shrinkproof filaments from low-pressure polyethylene
US2994110A (en) * 1957-05-10 1961-08-01 Mobay Chemical Corp Surfacing process for isocyanate foam and product
US3039174A (en) * 1958-05-12 1962-06-19 Du Pont Elongated composite structure
US3078139A (en) * 1958-10-31 1963-02-19 Union Carbide Corp Process for producing polystyrene fibers
US3059991A (en) * 1959-03-20 1962-10-23 E B & A C Whiting Company Method of making oriented filamentary article of isotactic polypropylene
US3039142A (en) * 1960-11-10 1962-06-19 Phillips Petroleum Co Method and means for extrusion of elongated shapes from thermoplastic materials

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3541198A (en) * 1963-12-07 1970-11-17 Keizo Ueda Process for manufacturing composite filaments
US3539668A (en) * 1967-05-15 1970-11-10 Ici Ltd Process for heat treating travelling linear material
US3522342A (en) * 1967-07-03 1970-07-28 Nypel Inc Apparatus and method for making bristles having a filler
US3548048A (en) * 1968-05-20 1970-12-15 Phillips Petroleum Co Method of producing polymeric articles resistant to fibrillation
EP0262892A2 (en) * 1986-09-29 1988-04-06 David Seidler Method of forming brush with integral holder
EP0262892A3 (en) * 1986-09-29 1990-05-09 David Seidler Method of forming brush with integral holder
AU625405B2 (en) * 1989-09-01 1992-07-09 Ethicon Inc. Thermal treatment of thermoplastic filaments
US5294395A (en) * 1989-09-01 1994-03-15 Ethicon, Inc. Thermal treatment of theraplastic filaments for the preparation of surgical sutures
US5451461A (en) * 1989-09-01 1995-09-19 Ethicon, Inc. Thermal treatment of thermoplastic filaments for the preparation of surgical sutures
US5161554A (en) * 1990-07-18 1992-11-10 Georg Karl Geka-Brush Gmbh Brush, in particular mascara brush
US5588172A (en) * 1994-07-11 1996-12-31 Abtex Corporation Radial brush
US5756030A (en) * 1995-04-24 1998-05-26 Bemis Manufacturing Company Method and apparatus for extruding a rod of homogeneous plastic material
US5567072A (en) * 1995-06-07 1996-10-22 Risdon Corporation Mascara applicator having slotted bristles
US5762432A (en) * 1995-06-07 1998-06-09 Risdon Corporation Mascara applicator having slotted bristles
WO1998004167A1 (en) 1996-07-25 1998-02-05 Whitehill Oral Technologies, Inc. Toothbrush with improved cleaning and abrasion efficiency
US6086373A (en) * 1996-07-25 2000-07-11 Schiff; Thomas Method of cleaning teeth with a toothbrush with improved cleaning and abrasion efficiency
US6138314A (en) * 1996-07-25 2000-10-31 Whitehill Oral Technologies, Inc. Toothbrush with improved cleaning and abrasion efficiency
US5939049A (en) * 1996-10-11 1999-08-17 Colgate-Palmolive Company Chewing stick made from natural fibers
US20110061189A1 (en) * 2009-09-15 2011-03-17 Mark Stephen Meadows Oral care products and methods of using and making the same
US8677541B2 (en) 2009-09-15 2014-03-25 Braun Gmbh Oral care products and methods of using and marking the same

Similar Documents

Publication Publication Date Title
US3217074A (en) Process for producing a filament having a fibrous linearly oriented core
US3594870A (en) Apparatus for the production of filaments from foils
FI92985B (en) Method for making continuous fiber-reinforced profiles from thermoplastic resin and apparatus for obtaining them
US5407623A (en) Process for obtaining ultra-high modulus line products with enhanced mechanical properties
US2917779A (en) Process for preparing improved thin shaped structures, such as filaments or foils, from linear polyesters
US4992229A (en) Thermoplastic re-pultrusion
GB2060469A (en) Drawing thermoplastics material
US3500626A (en) Process for treatment of molecularly oriented crystalline organic polymeric material
US3243339A (en) Continuous monofilament
US3059991A (en) Method of making oriented filamentary article of isotactic polypropylene
CN1084808C (en) Method and apparatus for producing crimped thermoplastics filaments
JPS6040524B2 (en) Manufacturing method for concentric composite system
US3330721A (en) Synthetic filaments and method of making the same
US3505163A (en) Helically crimped vinyl filament
US5256358A (en) Method of making stretched filaments of ultra-high-molecular weight polyethylene
EP0401942B1 (en) Whitened wire of ultra-high-molecular-weight polyethylene and production thereof
US3242023A (en) Method and apparatus for producing extruded plastic net
JP2003504530A (en) Method and apparatus for the production of bristles
CN106498567A (en) Polymer calculus nanometer layer overlapping membrane method carbon fibre precursor and preparation method thereof
JP2007504518A (en) Plastic optical fiber manufacturing method and system
JPH06102847B2 (en) Plastic wire and method for producing the same
JPH03295630A (en) Method for extruding and stretch forming crystalline thermoplastic material and apparatus thereof
JPS62104911A (en) Production of drawn yarn of ultra-high-molecular-weight polyethylene and production unit for undrawn yarn thereof
JP2772105B2 (en) Vulcanization of tubular articles
CA1097470A (en) Synthetic polymeric filaments