US3174851A - Nickel-base alloys - Google Patents

Nickel-base alloys Download PDF

Info

Publication number
US3174851A
US3174851A US157049A US15704961A US3174851A US 3174851 A US3174851 A US 3174851A US 157049 A US157049 A US 157049A US 15704961 A US15704961 A US 15704961A US 3174851 A US3174851 A US 3174851A
Authority
US
United States
Prior art keywords
tini
alloys
percent
alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US157049A
Inventor
William J Buehler
Raymond C Wiley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US157049A priority Critical patent/US3174851A/en
Priority to DK513762AA priority patent/DK105237C/en
Priority to GB45517/62A priority patent/GB1020872A/en
Priority to CH1407862A priority patent/CH433772A/en
Priority to AT940562A priority patent/AT247623B/en
Priority to NL62286263A priority patent/NL143279B/en
Application granted granted Critical
Publication of US3174851A publication Critical patent/US3174851A/en
Priority to NL7410044A priority patent/NL7410044A/xx
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/006Resulting in heat recoverable alloys with a memory effect
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/007Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K5/00Measuring temperature based on the expansion or contraction of a material
    • G01K5/48Measuring temperature based on the expansion or contraction of a material the material being a solid
    • G01K5/483Measuring temperature based on the expansion or contraction of a material the material being a solid using materials with a configuration memory, e.g. Ni-Ti alloys

Definitions

  • This invention relates to a series of novel structural alloys of the intermetallic compound type which are characterized by unusual mechanical and physical properties.
  • intermetallic compounds other than TiNi, are very brittle, lack any form of ductility at room temperature and in spite of many other outstandingly good properties displayed by these compounds, such as strength maintenance at high temperatures, their brittleness at room temperature has made these compounds virtually useless in structural applications except as minor strengthening constituents in a more ductile matrix metal or alloy.
  • Novel intermetallic compound base materials of the TiNi type have now been discovered which not only possess the desirable properties characteristic of intermetallic compounds in general but also possess hitherto unknown and unusual properties.
  • intermetallic compounds as a general term is considered hereinafter as an intermediate phase in an alloy system, having a reasonable range of homogeneity and relatively simple stoichiometric proportions, in which the nature of the atomic binding can vary from metallic to ionic, and further includes all intermediate phases in binary and higher order metal systems whether ordered or disordered.
  • These intermetallic compounds are combinations of two or more metals, the atoms of such metals generally being in a simple whole number ratio. In the majority of cases, however, the formulas of intermetallic compounds do not agree with formulas based on the principle of valency.
  • TiNi Ti Ni+TiNi They were prepared as illustrated in the following detailed example.
  • EXAMPLE The raw materials used were Mond nickel shot and commercially pure titanium bar stock.
  • the preparation of the novel intermetallic TiNi alloys may be divided into three distinct steps as follows:
  • All of the cast alloys between about 52 to 56 weight percent nickel and correspondingly between about 48 to 44 Weight percent titanium may be hot worked without any preliminary heat treatment.
  • a stoichiometric TiNi composition of 55.1 weight percent nickel and 44.9 weight percent titanium was readily hot worked in the as cast condition between about 650 C. to about 1100 C., the preferred hot working temperature range being from about 700 C. to 900 C.
  • Alloys containing above 56 weight percent nickel, that is from about 56 to 64 weight percent nickel required a preliminary heat treatment to render them hot workable. This heat treatment consisted of heating the alloys to about 1050 C. until heated through and then slowly cooling to room temperature. Alternatively, the alloys may be heated to about 1050 C. until heated through, cooled slowly to about 850 C. and held at that temperature until heated through and subsequently allowed to slowly cool to room temperature.
  • the principle behind the above pre-working heat treatments is to precipitate and coalesce the excess compound phase TiNi3 from solution with the compound phase of TiNi. This results in a ductile TiNi matrix interspersed with the more brittle TiNi compound coalesced into harmless particles. Following the above described alternative pre-working heat treatments the two phase TiNi-l-excess TiNi alloy was capable of being rolled at any temperature between about 700 C. to about 900 C.
  • alloys containing between about 56 to 64 weight percent nickel are very much affected by heat treatment and particularly by the cooling rate. These alloys when heated to above about 900 C. and quenched in room temperature water .attain a high hardness. For instance, an alloy of about 60 weight percent nickel and about 40 weight percent titanium yielded, when quenched from between 900 C. and 1110 C., a hardness varying between 58 R and 62 R as may be seen from Table I.
  • the hardness of quench-hardened alloy (56 to 64 wt. percent Ni, remainder Ti) components may be reduced to a lesser degree of hardness if such is required for a specific application. Such reduction must be based upon the best compromise of mechanical properties for the particular application. Reduction of hardness of quenchhardened all-oys may be accomplished by (A) slowing down the cooling rate of the heat treated component to yield hardnesses between about 35 R (furnace cool) and about 62 R (water quench) and by (B) tempering.
  • This tempering process is accomplished by reheating the quench-hardened alloy to various temperatures below the point of change in slope of the phase boundary between the TiNi and TiNi-i-TiNi phase areas (about 900 C.) and cooling at a specified slow rate, the final tempered hardness being determined by the heating temperature, period of time at the heating temperature and the rate of cooling.
  • the above hardening and tempering heat treatments may be performed in a controlled atmosphere of helium or argon. In many applications, however, heat treatment in air will sufiice.
  • the room temperature hardness increases with an increase in rolling temperature which is undoubtedly related to the higher temperature of heatingand fairly rapid cooling rate from temperature. It may also be seen that while the Ti Ni composition alloy is quite hard (53 R the TiNi compound has a hardness (34 R more like that of the TiNi alloy. Yet in spite of the much lower hardnessexhibited by TiNi it is similar to the Ti Ni compound in that it is brittle even at high homologous temperatures.
  • test sections were finish lapped in the longitudinal direction to avoid any possible transverse notches.
  • vacuum or controlled atmosphere heat treating was used. Vacuum heat'treating was performed in an evacuated quartz tube. The tensile test results obtained from the two TiNi alloys are shown in Table IV.
  • a paramagnetic material has been defined as a material whose specific permeability is greater than unity and is practically independent of the magnetizing force.
  • the nickel-titanium alloys in the composition range which covers Ti Ni, TiNi, and TiNi are highly paramagnetic, in spite of the high amount of nickel present in there alloys.
  • Alloys of the 54 to 60 w/o Ni, remainder Ti composition have been magnetically evaluated after various thermal treatments and at widely varying temperature. The magnetic testing included both magnetic susceptibility and permeability measurements. In these tests it was found that the permeability approached extremely close to unity regardless of the temperature, residual stresses, or prior thermal treatment. Care must be exercised to remove any oxide coating in cases where the TiNi-base alloys are to be used in non-magnetic applications. This is caused by the combination of some Ni of the base alloy with O to form a ferromagnetic oxide coating.
  • the phase equilibria theory is further confirmed by the fact that alloys containing excess Ni or excess Ti over the stoichiometric composition have distinctly different room temperature damping properties.
  • the Tib cs rich alloys (less than 54.5 w/o Ni) are highly damping at room temperature, while alloys on the Ni-rich side (in excess of 54.5 w/o Ni) show low damping at room temperature, thus indicating that the Ti Ni phase coupled with the liNi produces the high damping capacity.
  • Anything lessening the Ti Ni phase e.g. increased Ni, higher temperatures, impurity atoms like Fe, etc. causes minor changes in the TiNi/Ti Ni phase equilibria and thus promotes drastic vibrational damping changes- This unusual damping phenomenon may lead to the utilization of these alloys as temperature sensing devices.
  • novel TiNi alloys containing from about 50-70 wt. percent Ni have been discovered which possess the unusual combination of properties of high hardness at wide temperature variations and especially at temperatures Well below freezing and having unusually good ductility. and impact strength at these same temperatures.
  • the alloys may be subdivided into those alloys having a range of about 52 to about 56 wt. percent Ni (remainder Ti) and those alloys containing from about 56 to about 64 wt. percent Ni (remainder Ti).
  • the former are characterized by the existence of an almost wholly TiNi phase, by being readily workable whether hot or at room temperature and by exhibition of unusually high ductility at room temperature.
  • the latter alloys are characterized by being two-phase materials (TiNi-I-TiNig) capable of being hardened to'high hardness levels.
  • Magnetic susceptibility (mass, -196 to 550 C.) 5-9 10' [Mechanical] 54.5 w/o Ni V 55.1 w/o Ni Ultimate Tensile Stn, p.s.i-..- 110,000-124,000- 82,000-140,000.
  • a novel alloy composition consisting essentially of from about 50 percent to about 70 percent nickel by weight and correspondingly from about 50 percent to about 30 percent titanium by weight, said alloy having the structure of a TiNi phase in combination with a TiNi pha-se dispersed in a TiNi matrix within a temperature range of from about 500 C. to about -75 C. and having the properties of being paramagnetic, of retaining hardness throughout said temperature range and of being corrosion resistant.
  • a novel alloy composition consisting essentially of from 52 percent to about 5 6 percent nickel by weight and correspondingly from about 48 percent to about 44 percent titanium by weight, said alloy having the structure of a substantially TiNi phase within a temperature range of from about 500 C. to about 75 C. and having the properties of being paramagnetic, of being highly vibration damping at about room temperature and having the capability of being plastically deformed at about room 1t) temperature and retaining the deformed shape until heated to a higher temperature whereupon the prior nondeformed condition will be reassumed.
  • a novel alloy composition consisting essentially of from about 56 percent to about 64 percent nickel by weight and correspondingly from about 44 percent to about 36 percent titanium by weight, said alloy having the structure of a substantially TiNi phase dispersed in a TiNi matrix within a temperature range of from about 450 C. to about 75 C. and having the properties of being paramagnetic, of high hardness upon heat treatment, of being abrasion and corrosion resistant and capable of being hot wrought into useable shapes prior to hardening.

Description

United States Patent 3,174,851 NICKEL-BASE ALLOYS William J. Buehler, Hyattsville, and Raymond C. Wiley,
Rockville, Md., assignors to the United States of America as represented by the Secretary of the Navy No Drawing. Filed Dec. 1, 1961, Ser. No. 157,049
3 Claims. (Cl. 75-170) (Granted under Title 35, US. Code (1952), see. 266) The invention described herein may be manufactured and used by or for the Government of the United States of America for Governmental purposes without the payment of any royalties thereon or therefor.
This invention relates to a series of novel structural alloys of the intermetallic compound type which are characterized by unusual mechanical and physical properties.
Most intermetallic compounds, other than TiNi, are very brittle, lack any form of ductility at room temperature and in spite of many other outstandingly good properties displayed by these compounds, such as strength maintenance at high temperatures, their brittleness at room temperature has made these compounds virtually useless in structural applications except as minor strengthening constituents in a more ductile matrix metal or alloy.
Novel intermetallic compound base materials of the TiNi type have now been discovered which not only possess the desirable properties characteristic of intermetallic compounds in general but also possess hitherto unknown and unusual properties.
Accordingly, it is an object of the present invention to provide a new series of structural alloys of the intermetallic compound type characterized by high strength at room temperature and at elevated temperatures, good oxidation resistance up to a moderate fraction of the melting temperature, good corrosion resistance, moderate density, reasonable ductility and impact resistance at all temperatures, and good weldability and being further characterized by non'magnetic stability at useful temperatures and unusual mechanical vibration damping properties which are sensitive to both composition and temperature changes.
It is a further object to provide intermetallic compoundbase alloys capable of being readily melted, cast into a chemically homogeneous solid mass and worked hot (above recrystallizationtemperature), cold (below recrystallization temperature) or by hot and cold means to a final usable shape.
It is yet another object to provide novel intermetallic compound alloys capable of heat treatment to any required hardness value from approximately about 65 R to approximately about 62 R It is a still further object to provide a non-magnetic alloy capable of being heat treated or developed to high hardness and strength for use in non-magnetic tools and other functions in connection with magnetic sensitive devices.
The term intermetallic compounds as a general term is considered hereinafter as an intermediate phase in an alloy system, having a reasonable range of homogeneity and relatively simple stoichiometric proportions, in which the nature of the atomic binding can vary from metallic to ionic, and further includes all intermediate phases in binary and higher order metal systems whether ordered or disordered. These intermetallic compounds are combinations of two or more metals, the atoms of such metals generally being in a simple whole number ratio. In the majority of cases, however, the formulas of intermetallic compounds do not agree with formulas based on the principle of valency.
The novel alloys developed in accordance with the present invention occur in three possible phases as illustrated by the following equilibrium equation:
TiNi=Ti Ni+TiNi They were prepared as illustrated in the following detailed example.
EXAMPLE The raw materials used were Mond nickel shot and commercially pure titanium bar stock.
The preparation of the novel intermetallic TiNi alloys may be divided into three distinct steps as follows:
(a) Melting of the alloy (b) Working of the arc-cast alloys (c) Heat treating the wrought materials Melting of the alloys The alloys, due to their high titanium content, may be melted by either consumable or non-consumable are methods or the like employing a Water-cooled copper crucible or hearth.
Working of the arc-cast alloys All of the cast alloys between about 52 to 56 weight percent nickel and correspondingly between about 48 to 44 Weight percent titanium may be hot worked without any preliminary heat treatment. A stoichiometric TiNi composition of 55.1 weight percent nickel and 44.9 weight percent titanium was readily hot worked in the as cast condition between about 650 C. to about 1100 C., the preferred hot working temperature range being from about 700 C. to 900 C.
Alloys containing above 56 weight percent nickel, that is from about 56 to 64 weight percent nickel required a preliminary heat treatment to render them hot workable. This heat treatment consisted of heating the alloys to about 1050 C. until heated through and then slowly cooling to room temperature. Alternatively, the alloys may be heated to about 1050 C. until heated through, cooled slowly to about 850 C. and held at that temperature until heated through and subsequently allowed to slowly cool to room temperature. The principle behind the above pre-working heat treatments is to precipitate and coalesce the excess compound phase TiNi3 from solution with the compound phase of TiNi. This results in a ductile TiNi matrix interspersed with the more brittle TiNi compound coalesced into harmless particles. Following the above described alternative pre-working heat treatments the two phase TiNi-l-excess TiNi alloy was capable of being rolled at any temperature between about 700 C. to about 900 C.
35 Heat treating the wrought materials The hardness of alloys containing between about 52 to 56 weight percent nickel (remainder titanium) and being predominantly single phase TiNi was only very slightly affected by any heat treatment regardless of the rate of cooling.
Conversely, the hardness of alloys containing between about 56 to 64 weight percent nickel (remainder titanium) are very much affected by heat treatment and particularly by the cooling rate. These alloys when heated to above about 900 C. and quenched in room temperature water .attain a high hardness. For instance, an alloy of about 60 weight percent nickel and about 40 weight percent titanium yielded, when quenched from between 900 C. and 1110 C., a hardness varying between 58 R and 62 R as may be seen from Table I.
Table 1 AVERAGE HARDNESS OF 60 Ni-40 Ti (WEIGHT PER- CENT) ALLOY WATER QUENCHED FROM DIFFERENT TEMPERATURES Quenching Temp, C. Harilincss, Remarks 1,110" O 62 Heat treated in an air atmosphere. 1,000 C V 01 Do. 900 C 58 Do.
The same 60 Ni-40 Ti (wt. percent) alloy when furnace cooled (average cooling rate about 50" C./hr.) attained a final hardness of about 35 R such hardness being approximately equal to the hardness of alloy compositions being in the T iNi phase (52 to 56 weight percent nickel) as shown in Table II.
The above data clearly show the capability of the nonstoichiometric TiNi alloys (i.e., those containing excess nickel) to be hardened by quenching. It is also clear that an alloy of 56 wt. percent Ni (remainder Ti) is the transition between hardenable and non-hardenable alloys and that a great excess of the hardening constituent TiNi (above about 64 Wt. percent nickel) serves to reduce the quenched hardness. Thus the preferred range, for maximum hardness, would be between 58 and 62 wt. percent Ni.
The hardness of quench-hardened alloy (56 to 64 wt. percent Ni, remainder Ti) components may be reduced to a lesser degree of hardness if such is required for a specific application. Such reduction must be based upon the best compromise of mechanical properties for the particular application. Reduction of hardness of quenchhardened all-oys may be accomplished by (A) slowing down the cooling rate of the heat treated component to yield hardnesses between about 35 R (furnace cool) and about 62 R (water quench) and by (B) tempering. This tempering process is accomplished by reheating the quench-hardened alloy to various temperatures below the point of change in slope of the phase boundary between the TiNi and TiNi-i-TiNi phase areas (about 900 C.) and cooling at a specified slow rate, the final tempered hardness being determined by the heating temperature, period of time at the heating temperature and the rate of cooling. In order to minimize surface oxidation (when heating above about 600 C.) the above hardening and tempering heat treatments may be performed in a controlled atmosphere of helium or argon. In many applications, however, heat treatment in air will sufiice.
Further hardness data for TiNi, Ti Ni and TiNi compositions are shown in Table III.
Table III Alloy Alloy Melting Hot Roll Temp, C Hardness, Composition R TiN i Non-consu1nable 30-31 TiNi TiNi TiNi 'liNL As cast (No H.R.)..
From the above data it may be seen that the room temperature hardness increases with an increase in rolling temperature which is undoubtedly related to the higher temperature of heatingand fairly rapid cooling rate from temperature. It may also be seen that while the Ti Ni composition alloy is quite hard (53 R the TiNi compound has a hardness (34 R more like that of the TiNi alloy. Yet in spite of the much lower hardnessexhibited by TiNi it is similar to the Ti Ni compound in that it is brittle even at high homologous temperatures.
A particularly unusual property was observed of these novel alloys containing from about 50 to 70 wt. percent Ni (remainder Ti) and this was the property of these alloys to retain their hardness characteristics independent of temperature, for example, at temperatures ranging from about room temperature up to about 463 C. and down to about C. Alloys characterizedby an essentially pure TiNi phase (54.5 to 55.1 W/o Ni-Ti have even shown a tendency to exhibit a secondary hardening. This is indicated in Table III, column 8 Tensile properties were measured on both 54.5 and 55.1 wt. percent Ni alloys (remainder Ti). In every case, a standard specimen measuring 0.252 diameter x 1.0" gage length was employed. The test sections were finish lapped in the longitudinal direction to avoid any possible transverse notches. To avoid oxidation of the prepared sample surfaces and minimize the possible interstitial element (0, N, H) pickup, vacuum or controlled atmosphere heat treating was used. Vacuum heat'treating was performed in an evacuated quartz tube. The tensile test results obtained from the two TiNi alloys are shown in Table IV.
Table IV TENSILE TEST DATA 54.5 w/o N i-Ti Alloy (room temperature) Ultimate Yield Elonga- Reduction Modulus of Specimen Treatment Tensile Str., Strength b tion, in area, Elasticity, Remarks s linfl lbs/in. percent percent p.s.i.
800 C. 1 hour furnace cooled e 112, 100 40, 000 8. 1 11. 6X10 Bgoke gutside gage en t 800 C. 1 hour water quench e 123,800 40, 700 15. 16.0 11. 8X10" g 54.5 w/o Ni-Ti Alloy (185 to 192 F. test temperature 800 C. 1 hour furnace cooled e 110,500 46, 800 3. 6 11. 1X10 Biioke olutside gage engt 800 C. 1 hour water quench e 115, 300 55,100 10. 9 13.0 11. 2X10 55.1 W/O Ni-Ti Alloy (room temperature) Hot swaged at 900 0., air cooled 125, 000 81, 400 8.1 1,000 C. min., furnace cooled 116, 700 56, 200 7. 2 Hard-:26 R
Do .1 114, 200 33, 600 3. 2 Broke outside gage lRength. Hard=24 Des 140, 500 as, 200 9.9 Hard =24 3.. 1,000 C. 30 min, water quench 82, 320 71, 400 3. 5 Hard=33 Rt.
Do. 84, 400 62, 250 4. 5 l1. 8X10. Hard=31 Be.
* Tensile specimen size 0.252 dia. x 1.000 gage length.
b Offset- 0.2%.
e Heat treatment performed in an argon atmosphere.
6 Specimen sealed in an evacuated quartz tube during heat treatment.
Upon observation of the above data it becomes appar- Table VI ent that the ductility, as indicated by the percentage 30 elongated, can go as big has 15.5% with the average being in the 7-10 range. For an intermetallic compound this is an unusually and unexpectedly high room temperature elongation. Moreover, it is seen that the yield CORROSION CHARACTERISTICS Corrosive media: Resultant attack Salt spray, 20% soln.,
95 F. for 96 hrs. Faint whitish surface destrength varies considerably with composition and heat 35 treatment while the ultimate tensile strength and modulus posit on b k edge, f of elasticity are fairly constant regardless of composition specimm NO attack on and heat treatment. 6X osed surface For determination of impact properties, carefully p prepared unnotched square cross-section bars were used. 4 Sea Water 192 The specimen surfaces were hand lapped in the longitudi- Normal air atmosnal direction to minimize transverse scratches. The phepe Nil. Charpy impact tests were performed in a standard Riehle Normal handhn N11. machine. The resulting data are summanzed in Table V. g
Table V IMPACT DATA FOR TiNi COMPOSITION ALLOYS 1 GIVEN PRIOR THERMAL TREATMENTS AND AT VARIOUS TEST TEMPERATURES Nominal Alloy Specimen Section Conditions of Test Charpy Composition Size Impact ft.lbs.
54.5 w/o Ni-Ti 2 0.296 x 0.296 Test Temperature: 75 F. (R.T.) 28 54.5 w/o Ni-Ti 0.296 x 0.296 Test Temperature: 125 F 32 54.5 w/o Ni-Ti 0.296 x 0.296. Test Temperature: 200 F- 29. 5 54.5 w/o Ni-Ti 0.296 x 0.296. Test Temperature: 112 F 40 54.5 w/o Ni-Ti 2 0.206" x 0.206 Cooled to l12 F., Warmed in RT. water, 23
stabilized 15 min. in R.T. air. 54.5 w/o Ni-Ti 2 0.296 x 0.296 Cooled to 112 F., Warmed in RT. water, 25
stabilized 15 min. in RT. air, plus heat to a test temperature of 160 F. 55.1 w/o Ni-Ti 3 0.297 x 0.297" Test Temperature: F. (R.T.) 24 55.1 w/o NiTi 0.297 x 0.297 Test Temperature: 200 F 8 55.1 w/o Ni-Ti 3 0.207 x 0.297 Test Temperature: -l12 F- 43 1 Unnotched square cross-section bars were employed. 2 Specimens prepared from hot swaged (0000 0.) bars. 3 Specimens prepared from hot rolled (900 0.) plate. Again, as in the case of the tensile elongation, un- Table VII usually high impact strengths were attained as compared OXIDATION orrannc'rnnrs'rros with most intermetallic compounds. For both of the TiNi alloys the minimum value was 23 ft.-lbs. even on the undersize specimens. Especially to be noted is the Weight Gain (Grns.) due to Oxidation of Various Temperatures Testing Time, Hrs.
increase in impact strength at temperatures well below 800C, 1 0()[)(] freezing.
Specimens of a 55.1wt. percent Ni (remainder Ti) alloy .016 .007 were exposed to various common corrosive media and 1853 to elevated temperature oxidation attack. The results of 3 these tests are summarized, respectively, in following 1 5 I Tables VI and VII.
It will be noted from Table VI that in each case the attack was negligible and only in the rather drastic salt spray tests was a perceptible film formed where the specimen was held. The passivity of this alloy to corrosive attack is obviously a highly desirable characteristic.
From Table VII it will be seen that at 600 C. there was very little initial oxidation and oxide buildup was almost negligible after the first two hours. At 800 C. oxidation proceeded steadily after the first two hours and at 1000" oxidation was initially rapid and proceeded steadily. At 800 C. and 1000 C. spalling of the oxide surface was moderate to heavy.
In the fabrication of present day structural materials joining is an extremely important consideration. To obtain an indication of the Weldability of the TiNi material, two chamfered A5" thick hot rolled plates of TiNi were butt welded together by the heliarc method. Little ditliculty was encountered in making the joint and the weld section appeared to be free of cracks and porosity. Based upon the observed properties in this arc-cast TiNi material, the weld section should be quite strong and tough. Further, examination of the magnetic properties of the weld section indicate that it is equally as paramagnetic as the base material.
Among the various unusual properties exhibited by these novel alloys, the property of paramagnetism is of utmost importance. A paramagnetic material has been defined as a material whose specific permeability is greater than unity and is practically independent of the magnetizing force. The nickel-titanium alloys in the composition range which covers Ti Ni, TiNi, and TiNi are highly paramagnetic, in spite of the high amount of nickel present in there alloys. Alloys of the 54 to 60 w/o Ni, remainder Ti composition have been magnetically evaluated after various thermal treatments and at widely varying temperature. The magnetic testing included both magnetic susceptibility and permeability measurements. In these tests it was found that the permeability approached extremely close to unity regardless of the temperature, residual stresses, or prior thermal treatment. Care must be exercised to remove any oxide coating in cases where the TiNi-base alloys are to be used in non-magnetic applications. This is caused by the combination of some Ni of the base alloy with O to form a ferromagnetic oxide coating.
Of considerable importance in regard to these novel alloys is the unusual characteristics exhibited by the mechanical vibration damping eifect. The stoichiometric alloy in both the arc-cast and hot worked conditions exhibits a unique and drastic change in vibration damping with minor changes in temperature and composition. Quantitative and qualitative experiments have shown the damping of a 54.5 w/o Ni-Ti alloy With minor amounts of Fe (about 0.1 w/o) to change from a highly damping material at room temperature (25 C.) to-a very low vibration damping material at 54 C. and above. Internal friction experiments performed on 0.036 diameter wire showed the logarithm of amplitude to decrease from 2.3 to 1.1 in 35 cycles at room temperature (25 C.) while the same wire drops from 2.3 to 2.1 in 35 cycles when heated at 93 C. This illustrates clearly the damping change in wrought wire of the 54.5 W/o Ni, approximately 0.1 w/o Fe, remainder essentially Ti. Even more'drastic changes in damping behavior are exhibited by this composition alloy when in the arc-cast condition. These changes in damping appear to be associated with the phase equilibria of the alloy system. As the temperature is raised the TiNi phase increases in quantity at the expense of reducing the extraneous phases present (Ti Ni and TiNi As this occurs damping is markedly 'decreased.
The phase equilibria theory is further confirmed by the fact that alloys containing excess Ni or excess Ti over the stoichiometric composition have distinctly different room temperature damping properties. For example the Tib cs rich alloys (less than 54.5 w/o Ni) are highly damping at room temperature, while alloys on the Ni-rich side (in excess of 54.5 w/o Ni) show low damping at room temperature, thus indicating that the Ti Ni phase coupled with the liNi produces the high damping capacity. Anything lessening the Ti Ni phase, e.g. increased Ni, higher temperatures, impurity atoms like Fe, etc. causes minor changes in the TiNi/Ti Ni phase equilibria and thus promotes drastic vibrational damping changes- This unusual damping phenomenon may lead to the utilization of these alloys as temperature sensing devices.
A summary of the properties of the novel TiNi base alloys is presented in Table VH1. (See column 8.)
In summary, novel TiNi alloys containing from about 50-70 wt. percent Ni (remainder Ti) have been discovered which possess the unusual combination of properties of high hardness at wide temperature variations and especially at temperatures Well below freezing and having unusually good ductility. and impact strength at these same temperatures. Within this range of 50-70 wt. percent Ni, the alloys may be subdivided into those alloys having a range of about 52 to about 56 wt. percent Ni (remainder Ti) and those alloys containing from about 56 to about 64 wt. percent Ni (remainder Ti). The former are characterized by the existence of an almost wholly TiNi phase, by being readily workable whether hot or at room temperature and by exhibition of unusually high ductility at room temperature. The latter alloys are characterized by being two-phase materials (TiNi-I-TiNig) capable of being hardened to'high hardness levels. The combination of the high hardness of these latter alloys and their characteristic paramagnetism (magnetic permeability=less than 1.02) is of great importance and leads to their use as superior non-magnetic tools magnetometer applications and structural materials which will remain stably nonmagnetic, free of corrosive attack, and resistant to abrasion.
Table VIII SUMMARY OF PROPERTIES OF TiNi PHASE ALLOYS [Physical (55.1 w/o Ni-Ti)] Density (25 C.), gr./cm. 6.45.
Melting point, C. 1240-1310. Melting point, F. 2264-2390. Crystal structure CsCl (B.C.C.). Lattice parameter, A 3.015.
Electrical resistivity (25 C.), microhm- Electrical resistivity (900 C.), mi-
crohm-cm. -132.
Linear coef. of expansion (24-900 C.),
per C. 10.4 10- Recrystallization temperature, C. 550-650. Magnetic permeability l.002.
Magnetic susceptibility (mass, -196 to 550 C.) 5-9 10' [Mechanical] 54.5 w/o Ni V 55.1 w/o Ni Ultimate Tensile Stn, p.s.i-..- 110,000-124,000- 82,000-140,000.
Yield Str., p.s.i** 40,G00-55,000 33,00081,400.
Youngs Modulus, p.s.i 11.2-11.8 X 10 Up to 11.8 X 10 Tensile Elongation, Up to 15.5- Up to 10.
percent? Reduction in Area, psrcent-... Up to 1G Hardness. Rockwell-A 42-52 65-68.
Hot Hardness," D.P.H.:
Impact Str., ft.-lbs.:
24 0. (room temp.) C Modulus of Rupture, p.s.i.. Mod. of Elas. (Trans. Bend),
p.s.i.
25 0 (room temp.) 0 (3....
*Specimeus rapidly cooled prior to testing. Percent ollset=0 2%. Gage 1ength=1 1H.
It should be understood, of course, that the foregoing disclosure relates only to preferred embodiments of the novel alloys of the invention and that modifications or alterations may be made therein without departing from the spirit and scope of the invention as set forth in the appended claims.
Having thus described the invention, what is claimed and desired to be secured by Letters Patent of the United States of America is:
1.A novel alloy composition consisting essentially of from about 50 percent to about 70 percent nickel by weight and correspondingly from about 50 percent to about 30 percent titanium by weight, said alloy having the structure of a TiNi phase in combination with a TiNi pha-se dispersed in a TiNi matrix within a temperature range of from about 500 C. to about -75 C. and having the properties of being paramagnetic, of retaining hardness throughout said temperature range and of being corrosion resistant.
2.A novel alloy composition consisting essentially of from 52 percent to about 5 6 percent nickel by weight and correspondingly from about 48 percent to about 44 percent titanium by weight, said alloy having the structure of a substantially TiNi phase within a temperature range of from about 500 C. to about 75 C. and having the properties of being paramagnetic, of being highly vibration damping at about room temperature and having the capability of being plastically deformed at about room 1t) temperature and retaining the deformed shape until heated to a higher temperature whereupon the prior nondeformed condition will be reassumed.
3. A novel alloy composition consisting essentially of from about 56 percent to about 64 percent nickel by weight and correspondingly from about 44 percent to about 36 percent titanium by weight, said alloy having the structure of a substantially TiNi phase dispersed in a TiNi matrix within a temperature range of from about 450 C. to about 75 C. and having the properties of being paramagnetic, of high hardness upon heat treatment, of being abrasion and corrosion resistant and capable of being hot wrought into useable shapes prior to hardening.
References Cited by the Examiner I. J. Wallbaurn, Archiv. Fiir Das Eisenhuttenwesen, JG 14, 1940-1941, pages 521-526.
Hansen: Constitution of Binary Alloys, published by McGraw-Hill Book Co., Inc., New York, 1958, pages 1049-1053.
Poole et al.: The Equilibrium Diagram of The System Nickel-Titanium, Journal of the Institute of Metals, vol. 83, pages 473-480, July 1955.
DAVID RECK, Primary Examiner.
RAY K. WINDHAM, WINSTON A. DOUGLAS,
Examiners.

Claims (1)

1. A NOVEL ALLOY COMPOSITION CONSISTING ESSENTAILLY OF FROM ABOUT 50 PERCENT TO ABOUT 70 PERCENT NICKEL BY WEIGHT AND CORRESPONDINGLY FROM ABOUT 50 PERCENT TO ABOUT 30 PERCENT ITANIUM BY WEIGHT, SAID ALLOY HAVING THE STRUCTURE OF A TINI PHASE IN COMBINATION WITH A TINI3 PHASE DISPERSED INA TINI MATRIX WITHIN A TEMPERATURE RANGE OF FROM ABOUT 500*C. TO ABOUT -75*C. AND HAVING THE PROPERTIES OF BEING PARAMAGNETIC, OF RETAINING HARDNESS THROUGHOUT SAID TEMPERATURE RANGE AND OF BEING CORROSION RESISTANT.
US157049A 1961-12-01 1961-12-01 Nickel-base alloys Expired - Lifetime US3174851A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US157049A US3174851A (en) 1961-12-01 1961-12-01 Nickel-base alloys
DK513762AA DK105237C (en) 1961-12-01 1962-11-29 Easily fusible, machinable and corrosion-resistant nickel alloy.
GB45517/62A GB1020872A (en) 1961-12-01 1962-11-30 Nickel-base alloys
CH1407862A CH433772A (en) 1961-12-01 1962-11-30 Nickel alloy
AT940562A AT247623B (en) 1961-12-01 1962-11-30 alloy
NL62286263A NL143279B (en) 1961-12-01 1962-12-03 METHOD OF MANUFACTURING ARTICLES OF A NICKEL TITANO ALLOY AS WELL AS ARTICLES MANUFACTURED IN THIS WAY.
NL7410044A NL7410044A (en) 1961-12-01 1974-07-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US157049A US3174851A (en) 1961-12-01 1961-12-01 Nickel-base alloys

Publications (1)

Publication Number Publication Date
US3174851A true US3174851A (en) 1965-03-23

Family

ID=22562147

Family Applications (1)

Application Number Title Priority Date Filing Date
US157049A Expired - Lifetime US3174851A (en) 1961-12-01 1961-12-01 Nickel-base alloys

Country Status (6)

Country Link
US (1) US3174851A (en)
AT (1) AT247623B (en)
CH (1) CH433772A (en)
DK (1) DK105237C (en)
GB (1) GB1020872A (en)
NL (2) NL143279B (en)

Cited By (372)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3351463A (en) * 1965-08-20 1967-11-07 Alexander G Rozner High strength nickel-base alloys
US3352650A (en) * 1965-07-19 1967-11-14 Goldstein David Metallic composites
US3403238A (en) * 1966-04-05 1968-09-24 Navy Usa Conversion of heat energy to mechanical energy
US3440997A (en) * 1966-07-11 1969-04-29 Avco Corp Temperature indicating device
US3483752A (en) * 1967-02-10 1969-12-16 Avco Corp Temperature monitor
US3483748A (en) * 1967-05-05 1969-12-16 Avco Corp Temperature sensing
US3508914A (en) * 1965-10-07 1970-04-28 Us Navy Methods of forming and purifying nickel-titanium containing alloys
US3516082A (en) * 1967-06-09 1970-06-02 Roy G Cooper Temperature sensing devices
US3529958A (en) * 1966-11-04 1970-09-22 Buehler William J Method for the formation of an alloy composed of metals reactive in their elemental form with a melting container
DE1558715B2 (en) * 1966-09-09 1972-05-31 Buehler William J ALLOYS WITH MARTENSITIC TRANSITION
US3676815A (en) * 1969-07-28 1972-07-11 Essex International Inc Thermally sensitive controls for electric circuits
US3684994A (en) * 1969-07-02 1972-08-15 Robertshaw Controls Co Hot wire relay type devices and methods of maintaining or producing such devices
US3727173A (en) * 1971-12-06 1973-04-10 Ibm Zero-insertion force connector
DE2331568A1 (en) * 1972-06-21 1974-01-31 Raychem Corp DEVICE FOR THE TEMPERATURE-DEPENDENT PRODUCTION OF A CONNECTION, IN PARTICULAR AN ELECTRICAL CONNECTION
US3805567A (en) * 1971-09-07 1974-04-23 Raychem Corp Method for cryogenic mandrel expansion
US3925071A (en) * 1968-05-20 1975-12-09 Chrysler Corp Heat resistant alloys
US3971566A (en) * 1972-03-29 1976-07-27 Raychem Corporation Hydraulic sealing member and process
US3985177A (en) * 1968-12-31 1976-10-12 Buehler William J Method for continuously casting wire or the like
US4002954A (en) * 1975-12-11 1977-01-11 The United States Of America As Represented By The Secretary Of The Army Trigger circuit
US4006381A (en) * 1975-08-28 1977-02-01 Rca Corporation CRT with thermally-set nitinol getter spring
US4022519A (en) * 1974-05-14 1977-05-10 Raychem Limited Heat recoverable connection
US4035007A (en) * 1970-07-02 1977-07-12 Raychem Corporation Heat recoverable metallic coupling
DE2702542A1 (en) * 1976-01-22 1977-07-28 Raychem Corp HEAT RESET, HOLLOW METALLIC COUPLING
DE2748383A1 (en) * 1976-10-29 1978-05-11 Raychem Sa Nv ITEMS THAT CAN BE RECOVERED
DE2900518A1 (en) * 1978-01-09 1979-07-19 Raychem Sa Nv METHOD FOR FORMING A SEALY DIFFERENTIAL JOINT AND FOR CARRYING OUT THE SPECIFIC CLAMP
US4197709A (en) * 1978-06-09 1980-04-15 Hochstein Peter A Thermal energy scavenger (stress limiter)
US4198081A (en) * 1973-10-29 1980-04-15 Raychem Corporation Heat recoverable metallic coupling
EP0016805A1 (en) * 1978-08-03 1980-10-15 Frederick E Wang Energy conversion system.
US4236949A (en) * 1975-08-27 1980-12-02 Raychem Corporation Process for preparing a hermetically sealed assembly
US4242954A (en) * 1978-05-23 1981-01-06 Graham Magnetics Incorporated Calendar roll system
US4246687A (en) * 1978-04-04 1981-01-27 N.V. Raychem S.A. Branch-off method
US4268329A (en) * 1975-10-31 1981-05-19 Raychem Corporation Process for preparing a hermetically sealed assembly
DE3007307A1 (en) * 1980-01-18 1981-07-23 BBC AG Brown, Boveri & Cie., Baden, Aargau Detachable shrunk joint - uses shape memory alloy with two=way effect
US4282033A (en) * 1980-06-16 1981-08-04 The United States Of America As Represented By The Secretary Of The Navy Melting method for high-homogeneity precise-composition nickel-titanium alloys
US4283233A (en) * 1980-03-07 1981-08-11 The United States Of America As Represented By The Secretary Of The Navy Method of modifying the transition temperature range of TiNi base shape memory alloys
US4283079A (en) * 1978-03-30 1981-08-11 The United States Of America As Represented By The United States Department Of Energy Ultra high vacuum seal arrangement
US4304613A (en) * 1980-05-12 1981-12-08 The United States Of America As Represented By The Secretary Of The Navy TiNi Base alloy shape memory enhancement through thermal and mechanical processing
US4310354A (en) * 1980-01-10 1982-01-12 Special Metals Corporation Process for producing a shape memory effect alloy having a desired transition temperature
US4337090A (en) * 1980-09-05 1982-06-29 Raychem Corporation Heat recoverable nickel/titanium alloy with improved stability and machinability
FR2529657A1 (en) * 1982-07-05 1984-01-06 Nat Nuclear Corp Ltd Method for repairing heat exchanger tubes
US4466713A (en) * 1980-09-08 1984-08-21 Kabushiki Kaisha Suwa Seikosha Lens holding structure and wire material
US4468076A (en) * 1982-07-23 1984-08-28 Raychem Corporation Array package connector and connector tool
US4505767A (en) * 1983-10-14 1985-03-19 Raychem Corporation Nickel/titanium/vanadium shape memory alloy
US4522457A (en) * 1983-10-07 1985-06-11 Raychem Corporation Compliant connecting device with heat-recoverable driver
US4553393A (en) * 1983-08-26 1985-11-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Memory metal actuator
US4559512A (en) * 1983-03-14 1985-12-17 Raychem Corporation Self-protecting and conditioning memory metal actuator
US4565589A (en) * 1982-03-05 1986-01-21 Raychem Corporation Nickel/titanium/copper shape memory alloy
US4570851A (en) * 1984-05-07 1986-02-18 Cirillo John R Temperature regulating, pressure relief flow valves employing shaped memory alloys
US4619568A (en) * 1983-10-24 1986-10-28 Carstensen Kenneth J Heat recoverable locking device
US4621844A (en) * 1982-01-25 1986-11-11 Shell Oil Company Memory metal connector
DE3633988A1 (en) * 1985-10-11 1987-04-16 Nippon Musical Instruments Mfg METAL GASKET
FR2589167A1 (en) * 1985-10-28 1987-04-30 Boulanger Catherine Process for obtaining metal objects whose shape changes on heating, and objects obtained by this process
US4679292A (en) * 1985-09-24 1987-07-14 Grumman Aerospace Corporation Method for securing a panel to a structural member
EP0250776A1 (en) 1983-06-30 1988-01-07 RAYCHEM CORPORATION (a Delaware corporation) Method for detecting and obtaining information about changes in variables
US4720944A (en) * 1986-06-04 1988-01-26 Paul Loicq Suspended ceiling panel retaining system
US4729799A (en) * 1986-06-30 1988-03-08 United Technologies Corporation Stress relief of single crystal superalloy articles
DE3736399A1 (en) * 1986-10-31 1988-07-07 Medinvent Sa DEVICE FOR THE TRANSLUMINAL IMPLANTATION
US4759293A (en) * 1986-06-30 1988-07-26 Davis Jr Thomas O Article using shape-memory alloy to improve and/or control the speed of recovery
DE3802919A1 (en) * 1988-02-02 1988-08-18 Systemtechnik Gmbh ACTUATING ELEMENT WITH PRE-MOLDED ELEMENT FROM A HEATABLE MEMORY METAL
US4781606A (en) * 1980-12-12 1988-11-01 Raychem Corporation Wire stripping arrangement
US4813807A (en) * 1985-09-24 1989-03-21 Grumman Aerospace Corporation Memory metal connector for panels
US4832382A (en) * 1987-02-19 1989-05-23 Raychem Corporation Coupling device
US4836496A (en) * 1987-08-27 1989-06-06 Johnson Service Company SMF actuator
US4839479A (en) * 1986-06-30 1989-06-13 Davis Jr Thomas O Article using shape-memory alloy to improve and/or control the speed of recovery
US4872713A (en) * 1987-02-19 1989-10-10 Raychem Corporation Coupling device
US4881981A (en) * 1988-04-20 1989-11-21 Johnson Service Company Method for producing a shape memory alloy member having specific physical and mechanical properties
US4943326A (en) * 1987-10-23 1990-07-24 The Furukawa Electric Co., Ltd. Ornament and method of manufacturing the same
US5002716A (en) * 1984-11-14 1991-03-26 Raychem Corporation Joining insulated elongate conduit members
US5114504A (en) * 1990-11-05 1992-05-19 Johnson Service Company High transformation temperature shape memory alloy
US5160802A (en) * 1975-09-24 1992-11-03 The United States Of America As Represented By The Secretary Of The Navy Prestressed composite gun tube
US5176275A (en) * 1989-03-27 1993-01-05 Bowie Stuart S Temperature release containers
US5199497A (en) * 1992-02-14 1993-04-06 Baker Hughes Incorporated Shape-memory actuator for use in subterranean wells
US5215145A (en) * 1992-02-14 1993-06-01 Baker Hughes Incorporated Wedge-set sealing flap for use in subterranean wellbores
US5238004A (en) * 1990-04-10 1993-08-24 Boston Scientific Corporation High elongation linear elastic guidewire
US5273116A (en) * 1992-02-14 1993-12-28 Baker Hughes Incorporated Firing mechanism for actuating wellbore tools
US5376001A (en) * 1993-05-10 1994-12-27 Tepper; Harry W. Removable orthodontic appliance
US5496294A (en) * 1994-07-08 1996-03-05 Target Therapeutics, Inc. Catheter with kink-resistant distal tip
EP0711532A1 (en) 1994-11-11 1996-05-15 Target Therapeutics, Inc. Delivery device
US5522819A (en) * 1994-05-12 1996-06-04 Target Therapeutics, Inc. Dual coil medical retrieval device
EP0715863A2 (en) 1994-11-10 1996-06-12 Target Therapeutics, Inc. Catheter
DE2954743C2 (en) * 1978-01-09 1996-10-31 Raychem Sa Nv Clips for sealing branches from distributor boxes
US5582619A (en) * 1995-06-30 1996-12-10 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils
US5624461A (en) * 1995-06-06 1997-04-29 Target Therapeutics, Inc. Three dimensional in-filling vaso-occlusive coils
EP0778037A1 (en) 1995-12-04 1997-06-11 Target Therapeutics, Inc. Braided body balloon catheter
US5685148A (en) * 1994-11-14 1997-11-11 Landis & Gyr Technology Innovation Ag Drive apparatus
US5695483A (en) * 1994-06-27 1997-12-09 Target Therapeutics Inc. Kink-free spiral-wound catheter
US5702373A (en) * 1995-08-31 1997-12-30 Target Therapeutics, Inc. Composite super-elastic alloy braid reinforced catheter
EP0826342A1 (en) 1996-08-30 1998-03-04 Target Therapeutics, Inc. Electrolytically deployable braided vaso-occlusion device
US5733329A (en) * 1996-12-30 1998-03-31 Target Therapeutics, Inc. Vaso-occlusive coil with conical end
US5745210A (en) * 1992-03-10 1998-04-28 Bausch & Lomb Incorporated Integral eyewear frame
US5743905A (en) * 1995-07-07 1998-04-28 Target Therapeutics, Inc. Partially insulated occlusion device
US5749837A (en) * 1993-05-11 1998-05-12 Target Therapeutics, Inc. Enhanced lubricity guidewire
US5749891A (en) * 1995-06-06 1998-05-12 Target Therapeutics, Inc. Multiple layered vaso-occlusive coils
US5769796A (en) * 1993-05-11 1998-06-23 Target Therapeutics, Inc. Super-elastic composite guidewire
US5772609A (en) * 1993-05-11 1998-06-30 Target Therapeutics, Inc. Guidewire with variable flexibility due to polymeric coatings
US5782811A (en) * 1996-05-30 1998-07-21 Target Therapeutics, Inc. Kink-resistant braided catheter with distal side holes
US5787947A (en) * 1996-11-19 1998-08-04 Tetra Laval Holdings & Finance S.A. Flexible nozzle integrated with a transformable wire
US5827322A (en) * 1994-11-16 1998-10-27 Advanced Cardiovascular Systems, Inc. Shape memory locking mechanism for intravascular stents
US5827201A (en) * 1996-07-26 1998-10-27 Target Therapeutics, Inc. Micro-braided guidewire
US5833705A (en) * 1995-06-30 1998-11-10 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils
US5853418A (en) * 1995-06-30 1998-12-29 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils (II)
US5856631A (en) * 1995-11-20 1999-01-05 Nitinol Technologies, Inc. Gun barrel
US5868754A (en) * 1996-06-12 1999-02-09 Target Therapeutics, Inc. Medical retrieval device
US5873906A (en) * 1994-09-08 1999-02-23 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US5876432A (en) * 1994-04-01 1999-03-02 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
US5891114A (en) * 1997-09-30 1999-04-06 Target Therapeutics, Inc. Soft-tip high performance braided catheter
US5891112A (en) * 1995-04-28 1999-04-06 Target Therapeutics, Inc. High performance superelastic alloy braid reinforced catheter
US5911731A (en) * 1995-04-20 1999-06-15 Target Therapeutics, Inc. Anatomically shaped vasoocclusive devices
US5925061A (en) * 1997-01-13 1999-07-20 Gore Enterprise Holdings, Inc. Low profile vascular stent
US5927345A (en) * 1996-04-30 1999-07-27 Target Therapeutics, Inc. Super-elastic alloy braid structure
US5935148A (en) * 1998-06-24 1999-08-10 Target Therapeutics, Inc. Detachable, varying flexibility, aneurysm neck bridge
US5951539A (en) * 1997-06-10 1999-09-14 Target Therpeutics, Inc. Optimized high performance multiple coil spiral-wound vascular catheter
US5971975A (en) * 1996-10-09 1999-10-26 Target Therapeutics, Inc. Guide catheter with enhanced guidewire tracking
US5972019A (en) * 1996-07-25 1999-10-26 Target Therapeutics, Inc. Mechanical clot treatment device
US6001123A (en) * 1994-04-01 1999-12-14 Gore Enterprise Holdings Inc. Folding self-expandable intravascular stent-graft
WO1999064098A1 (en) 1998-06-11 1999-12-16 Boston Scientific Limited Catheter with composite stiffener
US6013084A (en) * 1995-06-30 2000-01-11 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils (II)
US6017323A (en) * 1997-04-08 2000-01-25 Target Therapeutics, Inc. Balloon catheter with distal infusion section
US6019757A (en) * 1995-07-07 2000-02-01 Target Therapeutics, Inc. Endoluminal electro-occlusion detection apparatus and method
US6024907A (en) * 1998-02-02 2000-02-15 Bruce Jagunich Embossing with an endless belt composed of a shape memory alloy
US6036720A (en) * 1997-12-15 2000-03-14 Target Therapeutics, Inc. Sheet metal aneurysm neck bridge
US6042605A (en) * 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
US6063070A (en) * 1997-08-05 2000-05-16 Target Therapeutics, Inc. Detachable aneurysm neck bridge (II)
US6066149A (en) * 1997-09-30 2000-05-23 Target Therapeutics, Inc. Mechanical clot treatment device with distal filter
US6066158A (en) * 1996-07-25 2000-05-23 Target Therapeutics, Inc. Mechanical clot encasing and removal wire
WO2000032084A2 (en) * 1998-12-01 2000-06-08 Bio-Mecanica, Inc. External tissue distraction with expanding frames
US6086577A (en) * 1997-08-13 2000-07-11 Scimed Life Systems, Inc. Detachable aneurysm neck bridge (III)
US6090099A (en) * 1996-05-24 2000-07-18 Target Therapeutics, Inc. Multi-layer distal catheter section
US6136014A (en) * 1998-09-01 2000-10-24 Vivant Medical, Inc. Percutaneous tissue removal device
US6139510A (en) * 1994-05-11 2000-10-31 Target Therapeutics Inc. Super elastic alloy guidewire
US6143013A (en) * 1995-04-28 2000-11-07 Target Therapeutics, Inc. High performance braided catheter
US6152912A (en) * 1997-06-10 2000-11-28 Target Therapeutics, Inc. Optimized high performance spiral-wound vascular catheter
US6159187A (en) * 1996-12-06 2000-12-12 Target Therapeutics, Inc. Reinforced catheter with a formable distal tip
WO2001008600A2 (en) 1999-07-28 2001-02-08 Scimed Life Systems, Inc. Nitinol medical devices having variable stifness by heat treatment
US6193708B1 (en) 1997-08-05 2001-02-27 Scimed Life Systems, Inc. Detachable aneurysm neck bridge (I)
WO2001013984A2 (en) 1999-08-24 2001-03-01 Neuron Therapeutics, Inc. Lumbar drainage catheter
US6217566B1 (en) 1997-10-02 2001-04-17 Target Therapeutics, Inc. Peripheral vascular delivery catheter
US6221513B1 (en) * 1998-05-12 2001-04-24 Pacific Coast Technologies, Inc. Methods for hermetically sealing ceramic to metallic surfaces and assemblies incorporating such seals
US6254458B1 (en) * 1998-10-28 2001-07-03 Nitinol Technologies, Inc. Post processing for nitinol coated articles
US6258080B1 (en) 1997-07-01 2001-07-10 Target Therapeutics, Inc. Kink-free spiral-wound catheter
US6280457B1 (en) 1999-06-04 2001-08-28 Scimed Life Systems, Inc. Polymer covered vaso-occlusive devices and methods of producing such devices
US6323461B2 (en) * 1998-05-15 2001-11-27 M.B.A., S.A. Clamps with shape memory
US6322576B1 (en) 1997-08-29 2001-11-27 Target Therapeutics, Inc. Stable coil designs
US6331188B1 (en) 1994-08-31 2001-12-18 Gore Enterprise Holdings, Inc. Exterior supported self-expanding stent-graft
US6352561B1 (en) 1996-12-23 2002-03-05 W. L. Gore & Associates Implant deployment apparatus
US6352553B1 (en) 1995-12-14 2002-03-05 Gore Enterprise Holdings, Inc. Stent-graft deployment apparatus and method
US6422010B1 (en) 2000-06-11 2002-07-23 Nitinol Technologies, Inc. Manufacturing of Nitinol parts and forms
US20020099436A1 (en) * 1996-12-23 2002-07-25 Troy Thornton Kink-resistant bifurcated prosthesis
US20020128647A1 (en) * 1999-08-05 2002-09-12 Ed Roschak Devices for applying energy to tissue
US6451052B1 (en) 1994-05-19 2002-09-17 Scimed Life Systems, Inc. Tissue supporting devices
US6454016B1 (en) 1999-09-02 2002-09-24 Nitinol Technologies, Inc. Nitinol horseshoes
US6471709B1 (en) 1998-10-30 2002-10-29 Vivant Medical, Inc. Expandable ring percutaneous tissue removal device
US6488637B1 (en) 1996-04-30 2002-12-03 Target Therapeutics, Inc. Composite endovascular guidewire
US6500112B1 (en) 1994-03-30 2002-12-31 Brava, Llc Vacuum dome with supporting rim and rim cushion
US6540767B1 (en) 2000-02-08 2003-04-01 Scimed Life Systems, Inc. Recoilable thrombosis filtering device and method
US6548013B2 (en) 2001-01-24 2003-04-15 Scimed Life Systems, Inc. Processing of particulate Ni-Ti alloy to achieve desired shape and properties
US20030137516A1 (en) * 1999-06-11 2003-07-24 Pulse Entertainment, Inc. Three dimensional animation system and method
WO2003072206A2 (en) * 2002-02-21 2003-09-04 Nitinol Technologies, Inc. Nitinol ice blades
US20030171739A1 (en) * 1998-09-04 2003-09-11 Richard Murphy Detachable aneurysm neck bridge
US6648854B1 (en) 1999-05-14 2003-11-18 Scimed Life Systems, Inc. Single lumen balloon-tipped micro catheter with reinforced shaft
US20030216757A1 (en) * 2002-05-20 2003-11-20 Scimed Life Systems, Inc. Foldable vaso-occlusive member
US6663607B2 (en) 1999-07-12 2003-12-16 Scimed Life Systems, Inc. Bioactive aneurysm closure device assembly and kit
US20040002732A1 (en) * 2002-06-27 2004-01-01 Clifford Teoh Stretch-resistant vaso-occlusive assembly with multiple detaching points
US20040015229A1 (en) * 2002-07-22 2004-01-22 Syntheon, Llc Vascular stent with radiopaque markers
US6685620B2 (en) 2001-09-25 2004-02-03 The Foundry Inc. Ventricular infarct assist device and methods for using it
US20040024348A1 (en) * 2001-08-24 2004-02-05 Redding Bruce K. Substance delivery device
US6689120B1 (en) 1999-08-06 2004-02-10 Boston Scientific Scimed, Inc. Reduced profile delivery system
US6715701B1 (en) * 1998-01-15 2004-04-06 Nitinol Technologies, Inc. Liquid jet nozzle
US20040073155A1 (en) * 2000-01-14 2004-04-15 Broncus Technologies, Inc. Methods and devices for maintaining patency of surgically created channels in tissue
US6724203B1 (en) * 1997-10-30 2004-04-20 International Business Machines Corporation Full wafer test configuration using memory metals
US20040098023A1 (en) * 2002-11-15 2004-05-20 Scimed Life Systems, Inc. Embolic device made of nanofibers
US6746461B2 (en) 2000-08-15 2004-06-08 William R. Fry Low-profile, shape-memory surgical occluder
US20040153120A1 (en) * 2003-02-03 2004-08-05 Seifert Paul S. Systems and methods of de-endothelialization
US20040153025A1 (en) * 2003-02-03 2004-08-05 Seifert Paul S. Systems and methods of de-endothelialization
US20040167443A1 (en) * 2003-02-26 2004-08-26 Scimed Life Systems, Inc. Elongated intracorporal medical device
US6783438B2 (en) 2002-04-18 2004-08-31 Ormco Corporation Method of manufacturing an endodontic instrument
US20040168752A1 (en) * 2001-06-11 2004-09-02 Julien Gerald J. Shape memory parts of 60 Nitinol
US20040172107A1 (en) * 2003-02-03 2004-09-02 Fox William Casey System and method for force, displacement, and rate control of shaped memory material implants
US20040204737A1 (en) * 2003-04-11 2004-10-14 Scimed Life Systems, Inc. Embolic filter loop fabricated from composite material
US20040220549A1 (en) * 2003-04-14 2004-11-04 Dittman Jay A. Large diameter delivery catheter/sheath
US20040226211A1 (en) * 2003-05-16 2004-11-18 Ra Brands. L.L.C. Composite receiver for firearms
US20040230178A1 (en) * 2003-05-12 2004-11-18 Show-Mean Wu Cutting balloon catheter with improved pushability
US20040230220A1 (en) * 2003-02-11 2004-11-18 Cook Incorporated Removable vena cava filter
US6824553B1 (en) 1995-04-28 2004-11-30 Target Therapeutics, Inc. High performance braided catheter
US20040243156A1 (en) * 2003-05-29 2004-12-02 Scimed Life Systems, Inc. Cutting balloon catheter with improved balloon configuration
US20040249409A1 (en) * 2003-06-09 2004-12-09 Scimed Life Systems, Inc. Reinforced filter membrane
US20040254450A1 (en) * 2003-05-27 2004-12-16 Scimed Life Systems, Inc. Medical device having segmented construction
US20050027314A1 (en) * 2003-07-30 2005-02-03 Scimed Life Systems, Inc. Self-centering blood clot filter
US20050028097A1 (en) * 2003-07-30 2005-02-03 Xerox Corporation System and method for measuring and quantizing document quality
US20050033225A1 (en) * 2003-08-08 2005-02-10 Scimed Life Systems, Inc. Catheter shaft for regulation of inflation and deflation
US20050038383A1 (en) * 2003-08-14 2005-02-17 Scimed Life Systems, Inc. Catheter having a cutting balloon including multiple cavities or multiple channels
US20050043752A1 (en) * 2001-09-04 2005-02-24 Broncus Technologies, Inc. Methods and devices for maintaining patency of surgically created channels in a body organ
US6860893B2 (en) 1997-08-29 2005-03-01 Boston Scientific Scimed, Inc. Stable coil designs
US20050049690A1 (en) * 2003-08-25 2005-03-03 Scimed Life Systems, Inc. Selective treatment of linear elastic materials to produce localized areas of superelasticity
US20050049523A1 (en) * 2003-08-25 2005-03-03 Scimed Life Systems, Inc. Elongated intra-lumenal medical device
US20050049615A1 (en) * 1999-08-05 2005-03-03 Broncus Technologies, Inc. Methods for treating chronic obstructive pulmonary disease
US20050054951A1 (en) * 2003-09-05 2005-03-10 Scimed Life Systems, Inc. Medical device coil
US20050054950A1 (en) * 2003-09-05 2005-03-10 Scimed Life Systems, Inc. Medical device coil
US20050060044A1 (en) * 1999-08-05 2005-03-17 Ed Roschak Methods and devices for maintaining patency of surgically created channels in a body organ
US20050060042A1 (en) * 2001-09-04 2005-03-17 Broncus Technologies, Inc. Methods and devices for maintaining surgically created channels in a body organ
US20050059963A1 (en) * 2003-09-12 2005-03-17 Scimed Life Systems, Inc. Systems and method for creating transmural lesions
US20050065456A1 (en) * 2003-09-22 2005-03-24 Scimed Life Systems, Inc. Guidewire with reinforcing member
US6878151B2 (en) 2001-09-27 2005-04-12 Scimed Life Systems, Inc. Medical retrieval device
US20050090802A1 (en) * 2003-04-28 2005-04-28 Connors John J.Iii Flexible sheath with varying durometer
US20050090861A1 (en) * 2003-10-27 2005-04-28 Scimed Life Systems, Inc. Vaso-occlusive devices with in-situ stiffening elements
US20050090844A1 (en) * 2003-10-27 2005-04-28 Paracor Surgical, Inc. Long fatigue life nitinol
US20050090856A1 (en) * 2003-10-27 2005-04-28 Scimed Life Systems, Inc. Vasco-occlusive devices with bioactive elements
US20050107783A1 (en) * 1999-08-05 2005-05-19 Broncus Technologies, Inc. Devices for applying energy to tissue
US20050104391A1 (en) * 2003-11-18 2005-05-19 Browne Alan L. Tunable, healable vehicle impact devices
US20050124917A1 (en) * 2003-12-05 2005-06-09 Scimed Life Systems, Inc. Elongated medical device for intracorporal use
US20050137611A1 (en) * 2001-09-04 2005-06-23 Broncus Technologies, Inc. Methods and devices for maintaining surgically created channels in a body organ
US20050137518A1 (en) * 2002-04-19 2005-06-23 Broncus Technologies, Inc. Devices for maintaining surgically created openings
US20050137715A1 (en) * 1999-08-05 2005-06-23 Broncus Technologies, Inc. Methods and devices for maintaining patency of surgically created channels in a body organ
US20050148901A1 (en) * 2003-12-30 2005-07-07 Scimed Life Systems, Inc. Distal assembly for a medical device
US20050149109A1 (en) * 2003-12-23 2005-07-07 Wallace Michael P. Expanding filler coil
US20050172471A1 (en) * 2004-02-09 2005-08-11 Vietmeier Kristopher H. Process method for attaching radio opaque markers to shape memory stent
US20050209683A1 (en) * 2004-03-05 2005-09-22 Kiyoshi Yamauchi Balloon expandable superelastic stent
US20050209674A1 (en) * 2003-09-05 2005-09-22 Kutscher Tuvia D Balloon assembly (V)
US20050228343A1 (en) * 2004-04-08 2005-10-13 Scimed Life Systems, Inc. Cutting balloon catheter and method for blade mounting
US20050245850A1 (en) * 1994-03-30 2005-11-03 Freyre Carlos V Method and apparatus for inhibiting the growth of and shrinking cancerous tumors
US20050251199A1 (en) * 2004-04-16 2005-11-10 Osborne Thomas A Removable vena cava filter with anchoring feature for reduced trauma
US20050267512A1 (en) * 2004-04-16 2005-12-01 Osborne Thomas A Removable vena cava filter for reduced trauma in collapsed configuration
US20050267513A1 (en) * 2004-04-16 2005-12-01 Osborne Thomas A Removable vena cava filter having primary struts for enhanced retrieval and delivery
US20050283095A1 (en) * 2004-06-22 2005-12-22 Scimed Life Systems, Inc. Medical device including actuator
US20050283183A1 (en) * 2004-06-21 2005-12-22 Tri Tran Expanding vaso-occlusive device
US20060014480A1 (en) * 2002-04-18 2006-01-19 Ormco Corporation Method of manufacturing a dental instrument
US20060036281A1 (en) * 2004-05-21 2006-02-16 Micro Therapeutics, Inc. Metallic coils enlaced with biological or biodegradable or synthetic polymers or fibers for embolization of a body cavity
US20060069406A1 (en) * 2004-09-27 2006-03-30 Per Hendriksen Removable vena cava filter comprising struts having axial bends
US20060084965A1 (en) * 2004-10-14 2006-04-20 Scimed Life Systems, Inc. Ablation probe with distal inverted electrode array
US20060100661A1 (en) * 2004-11-09 2006-05-11 Boston Scientific Scimed, Inc. Vaso-occlusive devices comprising complex-shape proximal portion and smaller diameter distal portion
US20060106412A1 (en) * 2004-11-12 2006-05-18 Scimed Life Systems, Inc. Cutting balloon catheter having a segmented blade
US20060106413A1 (en) * 2004-11-12 2006-05-18 Scimed Life Systems, Inc. Cutting balloon catheter having flexible atherotomes
US20060121218A1 (en) * 2004-11-24 2006-06-08 Obara Robert Z Medical devices with highly flexible coated hypotube
US20060129176A1 (en) * 2004-12-10 2006-06-15 Scimed Life Systems, Inc. Catheter having an ultra soft tip and methods for making the same
US20060142755A1 (en) * 2003-05-06 2006-06-29 Boston Scientific Scimed, Inc. Systems and methods for ablation of tissue
US20060155324A1 (en) * 2005-01-12 2006-07-13 Porter Stephen C Vaso-occlusive devices with attached polymer structures
US20060155323A1 (en) * 2005-01-07 2006-07-13 Porter Stephen C Intra-aneurysm devices
US20060155364A1 (en) * 2002-03-26 2006-07-13 Thoratec Corporation Flexible stent and method of making the same
US20060178696A1 (en) * 2005-02-04 2006-08-10 Porter Stephen C Macroporous materials for use in aneurysms
US20060178697A1 (en) * 2005-02-04 2006-08-10 Carr-Brendel Victoria E Vaso-occlusive devices including non-biodegradable biomaterials
US20060184191A1 (en) * 2005-02-11 2006-08-17 Boston Scientific Scimed, Inc. Cutting balloon catheter having increased flexibility regions
US20060199990A1 (en) * 2005-03-07 2006-09-07 Boston Scientific Scimed, Inc. Percutaneous array delivery system
US20060206111A1 (en) * 2005-03-10 2006-09-14 Boston Scientific Scimed, Inc. Medical needles and electrodes with improved bending stiffness
US20060217702A1 (en) * 2005-03-25 2006-09-28 Boston Scientific Scimed, Inc. Ablation probe having a plurality of arrays of electrodes
US20060224179A1 (en) * 2005-04-01 2006-10-05 Nexgen Medical Systems, Incorporated Thrombus removal system and process
US7128736B1 (en) 1998-09-04 2006-10-31 Boston Scientific Scimed, Inc. Detachable aneurysm neck closure patch
US20060280773A1 (en) * 1999-08-05 2006-12-14 Broncus Technologies, Inc. Methods and devices for maintaining patency of surgically created channels in a body organ
US20060280772A1 (en) * 2001-09-04 2006-12-14 Broncus Technologies, Inc. Methods and devices for maintaining surgically created channels in a body organ
US20070005095A1 (en) * 2004-04-16 2007-01-04 Osborne Thomas A Removable vena cava filter having inwardly positioned anchoring hooks in collapsed configuration
US20070073374A1 (en) * 2005-09-29 2007-03-29 Anderl Steven F Endoprostheses including nickel-titanium alloys
US20070078480A1 (en) * 2005-10-04 2007-04-05 Boston Scientific Scimed, Inc. Self-expanding biodegradable or water-soluble vaso-occlusive devices
US20070078479A1 (en) * 2005-10-04 2007-04-05 Boston Scientific Scimed, Inc. Self-expanding vaso-occlusive devices with regulated expansion
US20070119165A1 (en) * 2005-11-30 2007-05-31 The Boeing Company Shape memory alloy linear actuator
US20070142830A1 (en) * 2005-12-21 2007-06-21 Boston Scientific Scimed, Inc. Ablation device with compression balloon
US20070189917A1 (en) * 2003-10-22 2007-08-16 Scimed Life Systems, Inc. Alloy compositions and devices including the compositions
US20070219618A1 (en) * 2006-03-17 2007-09-20 Cully Edward H Endoprosthesis having multiple helically wound flexible framework elements
US20070239194A1 (en) * 2006-04-05 2007-10-11 Boston Scientific Scimed, Inc. Vaso-occlusive devices having expandable fibers
US20070239193A1 (en) * 2006-04-05 2007-10-11 Boston Scientific Scimed, Inc. Stretch-resistant vaso-occlusive devices with distal anchor link
US20080032519A1 (en) * 2006-08-03 2008-02-07 Alps Electric Co., Ltd. Semiconductor device contact resistant to deterioration due to heat and method for manufacturing contact
US20080034610A1 (en) * 2004-07-15 2008-02-14 Flynn Robin L Neck ring cooling
EP1900331A2 (en) 2000-10-18 2008-03-19 Boston Scientific Scimed, Inc. Non-overlapping spherical three-dimensional vaso-occlusive coil
US20080091267A1 (en) * 2006-10-13 2008-04-17 Boston Scientific Scimed, Inc. Medical devices including hardened alloys
US20080097139A1 (en) * 2006-07-14 2008-04-24 Boston Scientific Scimed, Inc. Systems and methods for treating lung tissue
US20080103585A1 (en) * 2004-09-22 2008-05-01 Dendron Gmbh Micro-Spiral Implantation Device
US20080161808A1 (en) * 2006-10-10 2008-07-03 Biomedical Enterprises, Inc. Methods and apparatus for a staple
EP1941845A1 (en) 1995-04-20 2008-07-09 Micrus Endovascular Corporation Anatomically shaped vasoocclusive device and method of making same
US20080188922A1 (en) * 2007-02-05 2008-08-07 Boston Scientific Scimed, Inc. Endoprostheses including metal matrix composite structures
EP1955665A2 (en) 2001-03-30 2008-08-13 Boston Scientific Scimed, Inc. Embolic devices capable of in-situ reinforcement
US20080255553A1 (en) * 2007-04-13 2008-10-16 Boston Scientific Scimed, Inc. Radiofrequency ablation device
US20080287982A1 (en) * 2007-05-16 2008-11-20 Boston Scientific Scimed, Inc. Catheters for electrolytically detachable embolic devices
US20090026278A1 (en) * 2007-07-26 2009-01-29 Dan Latner Systems and methods for using a shape memory alloy to control temperature
US20090062906A1 (en) * 2005-05-23 2009-03-05 Michihide Ozawa Stent with autonomic function
US20090062838A1 (en) * 2007-08-27 2009-03-05 Cook Incorporated Spider device with occlusive barrier
US20090061136A1 (en) * 2007-08-27 2009-03-05 Cook Incorporated Apparatus and method for making a spider occlusion device
US20090062844A1 (en) * 2007-08-27 2009-03-05 Cook Incorporated Spider pfo closure device
US20090062845A1 (en) * 2007-08-27 2009-03-05 Cook Incorporated Barrel occlusion device
US20090068054A1 (en) * 2005-05-23 2009-03-12 Nec Tokin Corporation Ti-Ni-Nb alloy device
US20090105722A1 (en) * 2007-10-17 2009-04-23 Mindframe, Inc. Devices and methods for embolus removal during acute ischemic stroke
US7524318B2 (en) 2004-10-28 2009-04-28 Boston Scientific Scimed, Inc. Ablation probe with flared electrodes
US7524329B2 (en) 2005-02-08 2009-04-28 Wilson-Cook Medical Inc. Self contracting stent
US20090112201A1 (en) * 2007-10-30 2009-04-30 Boston Scientific Scimed, Inc. Radiofrequency ablation device
US20090125053A1 (en) * 2007-11-12 2009-05-14 Mindframe, Inc. Aneurysm neck bridging processes with revascularization systems methods and products thereby
US20090171441A1 (en) * 2007-12-27 2009-07-02 Cook Incorporated Endovascular graft with separately positionable and removable frame units
EP2077090A1 (en) 2000-02-18 2009-07-08 Thomas J. Fogarty Improved device for accurately marking tissue
US20090177261A1 (en) * 2008-01-04 2009-07-09 Boston Scientific Scimed, Inc. Detachment mechanisms for implantable devices
US7566319B2 (en) 2004-04-21 2009-07-28 Boston Scientific Scimed, Inc. Traction balloon
US20090192455A1 (en) * 2008-01-07 2009-07-30 David Ferrera Novel enhanced ptna rapid exchange type of catheter system
US20090198096A1 (en) * 2003-10-27 2009-08-06 Paracor Medical, Inc. Long fatigue life cardiac harness
US20090198153A1 (en) * 2008-01-31 2009-08-06 Shriver Edgar L Steering, piercing, anchoring, distending extravascular guidewire
US20090254111A1 (en) * 2005-04-28 2009-10-08 Hermann Monstadt Device for implanting occlusion spirals comprising an interior securing element
US20090292297A1 (en) * 2008-05-19 2009-11-26 David Ferrere Devices for Restoring Blood Flow and Embolus Removal During Acute Ischemic Stroke
US7625390B2 (en) 2004-04-16 2009-12-01 Cook Incorporated Removable vena cava filter
US20090306701A1 (en) * 2008-06-10 2009-12-10 Boston Scientific Scimed, Inc. Vascular access sheath with integrated return electrode
US20100030246A1 (en) * 2007-02-01 2010-02-04 Dusan Pavcnik Closure Device and Method For Occluding a Bodily Passageway
US20100030259A1 (en) * 2007-02-01 2010-02-04 Dusan Pavcnik Closure Device and Method of Closing a Bodily Opening
US20100063572A1 (en) * 2008-09-09 2010-03-11 Boston Scientific Scimed, Inc. Composite detachment mechanisms
US7708712B2 (en) 2001-09-04 2010-05-04 Broncus Technologies, Inc. Methods and devices for maintaining patency of surgically created channels in a body organ
US20100121350A1 (en) * 2007-04-12 2010-05-13 Greg Mirigian Instantaneous mechanical detachment mechanism for vaso-occlusive devices
US20100121373A1 (en) * 2008-11-10 2010-05-13 Cook Incorporated Removable vena cava filter with improved leg
US20100137898A1 (en) * 2008-12-02 2010-06-03 Boston Scientific Scimed, Inc. Vaso-occlusive devices with attachment assemblies for stretch-resistant members
US20100174309A1 (en) * 2008-05-19 2010-07-08 Mindframe, Inc. Recanalization/revascularization and embolus addressing systems including expandable tip neuro-microcatheter
US20100256600A1 (en) * 2009-04-04 2010-10-07 Ferrera David A Neurovascular otw pta balloon catheter and delivery system
US7815626B1 (en) 1998-06-12 2010-10-19 Target Therapeutics, Inc. Catheter with knit section
US7883474B1 (en) 1993-05-11 2011-02-08 Target Therapeutics, Inc. Composite braided guidewire
WO2011044459A2 (en) 2009-10-09 2011-04-14 Gore Enterprise Holdings, Inc. Bifurcated highly conformable medical device branch access
US20110160763A1 (en) * 2007-10-17 2011-06-30 Mindframe, Inc. Blood flow restoration and thrombus management methods
US20110230908A1 (en) * 2005-04-01 2011-09-22 Nexgen Medical Systems, Inc. Thrombus removal system and process
WO2011119872A1 (en) 2010-03-24 2011-09-29 Nexgen Medical Systems, Inc. Thrombus removal system and process
EP2397107A2 (en) 2005-08-26 2011-12-21 West Hertfordshire Hospitals Nhs Trust Surgical scaffold
WO2012008579A1 (en) 2010-07-15 2012-01-19 国立大学法人東北大学 Highly elastic stent and production method for highly elastic stent
EP2446919A2 (en) 2006-02-14 2012-05-02 C.R. Bard Inc. Coaxial PTA balloon
WO2012136950A1 (en) 2011-04-05 2012-10-11 Northwood Implants Limited Ear scaffold
US8337519B2 (en) 2003-07-10 2012-12-25 Boston Scientific Scimed, Inc. Embolic protection filtering device
US8409167B2 (en) 2004-07-19 2013-04-02 Broncus Medical Inc Devices for delivering substances through an extra-anatomic opening created in an airway
WO2013106694A2 (en) 2012-01-13 2013-07-18 W.L. Gore & Associates, Inc. Occlusion devices and methods of their manufacture and use
US8545514B2 (en) 2008-04-11 2013-10-01 Covidien Lp Monorail neuro-microcatheter for delivery of medical devices to treat stroke, processes and products thereby
US20130304048A1 (en) * 2012-05-13 2013-11-14 Katalyst Surgical, Llc Steerable laser probe
US8585713B2 (en) 2007-10-17 2013-11-19 Covidien Lp Expandable tip assembly for thrombus management
US8603122B2 (en) 2005-04-01 2013-12-10 Nexgen Medical Systems, Incorporated Thrombus removal system and process
US8617205B2 (en) 2007-02-01 2013-12-31 Cook Medical Technologies Llc Closure device
US8679142B2 (en) 2008-02-22 2014-03-25 Covidien Lp Methods and apparatus for flow restoration
US8709176B1 (en) 2010-09-30 2014-04-29 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Prestressing shock resistant mechanical components and mechanisms made from hard, superelastic materials
US8709034B2 (en) 2011-05-13 2014-04-29 Broncus Medical Inc. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
US8808294B2 (en) 2008-09-09 2014-08-19 William Casey Fox Method and apparatus for a multiple transition temperature implant
US9017246B2 (en) 2010-11-19 2015-04-28 Boston Scientific Scimed, Inc. Biliary catheter systems including stabilizing members
US9023074B2 (en) 2010-10-15 2015-05-05 Cook Medical Technologies Llc Multi-stage occlusion devices
US9198687B2 (en) 2007-10-17 2015-12-01 Covidien Lp Acute stroke revascularization/recanalization systems processes and products thereby
US9289215B2 (en) 2007-03-13 2016-03-22 Covidien Lp Implant including a coil and a stretch-resistant member
US9345532B2 (en) 2011-05-13 2016-05-24 Broncus Medical Inc. Methods and devices for ablation of tissue
US9533128B2 (en) 2003-07-18 2017-01-03 Broncus Medical Inc. Devices for maintaining patency of surgically created channels in tissue
US9539087B2 (en) 2010-04-28 2017-01-10 Empire Technology Development Llc Intravitreous self adaptive stent
US20170022691A1 (en) * 2012-09-07 2017-01-26 Kohler Co. Shape memory faucet
US9554942B1 (en) 2011-11-03 2017-01-31 Katalyst Surgical, Llc Steerable laser probe
US9622751B2 (en) 2008-08-06 2017-04-18 Boston Scientific Scimed, Inc. Vaso-occlusive devices with textured surfaces
US9681986B2 (en) 2012-09-12 2017-06-20 Katalyst Surgical, Llc Steerable laser probe
US9757278B2 (en) 2012-09-24 2017-09-12 Katalyst Surgical, Llc Steerable laser probe
US9770364B2 (en) 2012-09-05 2017-09-26 Katalyst Surgical, Llc Steerable laser probe
US9770363B2 (en) 2012-09-11 2017-09-26 Katalyst Surgical, Llc Steerable laser probe
US9775745B2 (en) 2012-05-08 2017-10-03 Katalyst Surgical, Llc Steerable laser probe
US9775744B2 (en) 2012-09-06 2017-10-03 Katalyst Surgical, Llc Steerable laser probe
US9782294B2 (en) 2011-09-17 2017-10-10 Katalyst Surgical, Llc Steerable laser probe
US9782295B2 (en) 2011-10-17 2017-10-10 Katalyst Surgical, Llc Steerable laser probe
US9796159B2 (en) 2011-04-14 2017-10-24 The United States Of America As Represented By The Administrator Of Nasa Electric field activated shape memory polymer composite
US9795510B2 (en) 2012-09-23 2017-10-24 Katalyst Surgical, Llc Steerable laser probe
US9849035B2 (en) 2012-08-14 2017-12-26 Katalyst Surgical, Llc Steerable laser probe
US9855026B2 (en) 2011-12-23 2018-01-02 Katalyst Surgical, Llc Steerable laser probe
US9872731B2 (en) 2011-12-09 2018-01-23 Katalyst Surgical, Llc Steerable laser probe
US9888965B2 (en) 2012-08-10 2018-02-13 Katalyst Surgical, Llc Steerable laser probe
US9925089B2 (en) 2012-05-09 2018-03-27 Katalyst Surgical, Llc Steerable laser probe
US9925090B2 (en) 2012-06-06 2018-03-27 Katalyst Surgical, Llc Steerable laser probe
US10022212B2 (en) 2011-01-13 2018-07-17 Cook Medical Technologies Llc Temporary venous filter with anti-coagulant delivery method
US10052230B2 (en) 2012-05-10 2018-08-21 Katalyst Surgical, Llc Steerable laser probe
US10070923B2 (en) 2012-07-31 2018-09-11 Katalyst Surgical, Llc Steerable laser probe
US10123803B2 (en) 2007-10-17 2018-11-13 Covidien Lp Methods of managing neurovascular obstructions
US10194914B2 (en) 2014-08-14 2019-02-05 W. L. Gore & Associates, Inc. Anastomosis devices
US10245182B2 (en) 2015-11-14 2019-04-02 Katalyst Surgical, Llc Laser probe with replaceable optic fibers
US10272260B2 (en) 2011-11-23 2019-04-30 Broncus Medical Inc. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
USRE47376E1 (en) 2005-04-01 2019-05-07 Nexgen Medical Systems, Incorporated Thrombus removal system and process
US10420460B2 (en) 2016-09-09 2019-09-24 Katalyst Surgical, Llc Illumination probe
US10646113B2 (en) 2016-09-09 2020-05-12 Katalyst Surgical, Llc Illuminated cannula
US10695221B2 (en) 2011-09-02 2020-06-30 Katalyst Surgical, Llc Steerable laser probe
US10695222B2 (en) 2012-10-13 2020-06-30 Katalyst Surgical, Llc Steerable laser probe
US10709504B2 (en) 2016-09-19 2020-07-14 Katalyst Surgical, Llc Curved laser probe with single-use optic fiber
US10722255B2 (en) 2008-12-23 2020-07-28 Covidien Lp Systems and methods for removing obstructive matter from body lumens and treating vascular defects
US20200407615A1 (en) * 2019-06-26 2020-12-31 US. Army Combat Capabilities Development Command, Army Research Laboratory SOLID STATE MARTENSITIC TRANSFORMATION PHASE CHANGE MATERIAL CO'qMPONENTS FOR THERMAL ENERGY STORAGE AND TRANSIENT HEAT TRANSFER SYSTEMS
US10940167B2 (en) 2012-02-10 2021-03-09 Cvdevices, Llc Methods and uses of biological tissues for various stent and other medical applications
US11337714B2 (en) 2007-10-17 2022-05-24 Covidien Lp Restoring blood flow and clot removal during acute ischemic stroke
US11406495B2 (en) 2013-02-11 2022-08-09 Cook Medical Technologies Llc Expandable support frame and medical device
US11524153B2 (en) 2016-10-03 2022-12-13 Queen Mary University Of London Mechanical circulatory support device with axial flow turbomachine optimized for heart failure and cardio-renal syndrome by implantation in the descending aorta
US11679250B2 (en) 2019-06-28 2023-06-20 Theodosios Alexander Removable mechanical circulatory support for short term use
US11813445B2 (en) 2012-11-06 2023-11-14 Queen Mary University Of London Mechanical circulatory support device with centrifugal impeller designed for implantation in the descending aorta
US11890181B2 (en) 2002-07-22 2024-02-06 Tmt Systems, Inc. Percutaneous endovascular apparatus for repair of aneurysms and arterial blockages

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151445A (en) * 1982-02-27 1983-09-08 Tohoku Metal Ind Ltd Titanium-nickel alloy having reversible shape storage effect and its manufacture
DE102013221685A1 (en) * 2013-10-25 2015-04-30 Schaeffler Technologies Gmbh & Co. Kg roller bearing
CN107916352A (en) * 2017-11-17 2018-04-17 攀钢集团攀枝花钢铁研究院有限公司 A kind of method for manufacturing jewellery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (664)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3352650A (en) * 1965-07-19 1967-11-14 Goldstein David Metallic composites
DE1533360B1 (en) * 1965-08-20 1971-01-07 William J Buehler Process for the production of nearly stoechiometric nickel-titanium alloys and their use
US3351463A (en) * 1965-08-20 1967-11-07 Alexander G Rozner High strength nickel-base alloys
US3508914A (en) * 1965-10-07 1970-04-28 Us Navy Methods of forming and purifying nickel-titanium containing alloys
US3403238A (en) * 1966-04-05 1968-09-24 Navy Usa Conversion of heat energy to mechanical energy
US3440997A (en) * 1966-07-11 1969-04-29 Avco Corp Temperature indicating device
DE1558715B2 (en) * 1966-09-09 1972-05-31 Buehler William J ALLOYS WITH MARTENSITIC TRANSITION
US3529958A (en) * 1966-11-04 1970-09-22 Buehler William J Method for the formation of an alloy composed of metals reactive in their elemental form with a melting container
US3483752A (en) * 1967-02-10 1969-12-16 Avco Corp Temperature monitor
US3483748A (en) * 1967-05-05 1969-12-16 Avco Corp Temperature sensing
US3516082A (en) * 1967-06-09 1970-06-02 Roy G Cooper Temperature sensing devices
US3925071A (en) * 1968-05-20 1975-12-09 Chrysler Corp Heat resistant alloys
US3985177A (en) * 1968-12-31 1976-10-12 Buehler William J Method for continuously casting wire or the like
US3684994A (en) * 1969-07-02 1972-08-15 Robertshaw Controls Co Hot wire relay type devices and methods of maintaining or producing such devices
US3676815A (en) * 1969-07-28 1972-07-11 Essex International Inc Thermally sensitive controls for electric circuits
US4035007A (en) * 1970-07-02 1977-07-12 Raychem Corporation Heat recoverable metallic coupling
US3805567A (en) * 1971-09-07 1974-04-23 Raychem Corp Method for cryogenic mandrel expansion
US3727173A (en) * 1971-12-06 1973-04-10 Ibm Zero-insertion force connector
US3971566A (en) * 1972-03-29 1976-07-27 Raychem Corporation Hydraulic sealing member and process
DE2331568A1 (en) * 1972-06-21 1974-01-31 Raychem Corp DEVICE FOR THE TEMPERATURE-DEPENDENT PRODUCTION OF A CONNECTION, IN PARTICULAR AN ELECTRICAL CONNECTION
US4198081A (en) * 1973-10-29 1980-04-15 Raychem Corporation Heat recoverable metallic coupling
US4022519A (en) * 1974-05-14 1977-05-10 Raychem Limited Heat recoverable connection
US4236949A (en) * 1975-08-27 1980-12-02 Raychem Corporation Process for preparing a hermetically sealed assembly
US4006381A (en) * 1975-08-28 1977-02-01 Rca Corporation CRT with thermally-set nitinol getter spring
US5160802A (en) * 1975-09-24 1992-11-03 The United States Of America As Represented By The Secretary Of The Navy Prestressed composite gun tube
US4268329A (en) * 1975-10-31 1981-05-19 Raychem Corporation Process for preparing a hermetically sealed assembly
US4002954A (en) * 1975-12-11 1977-01-11 The United States Of America As Represented By The Secretary Of The Army Trigger circuit
DE2702542A1 (en) * 1976-01-22 1977-07-28 Raychem Corp HEAT RESET, HOLLOW METALLIC COUPLING
DE2748383A1 (en) * 1976-10-29 1978-05-11 Raychem Sa Nv ITEMS THAT CAN BE RECOVERED
DE2900518A1 (en) * 1978-01-09 1979-07-19 Raychem Sa Nv METHOD FOR FORMING A SEALY DIFFERENTIAL JOINT AND FOR CARRYING OUT THE SPECIFIC CLAMP
DE2954743C2 (en) * 1978-01-09 1996-10-31 Raychem Sa Nv Clips for sealing branches from distributor boxes
US4283079A (en) * 1978-03-30 1981-08-11 The United States Of America As Represented By The United States Department Of Energy Ultra high vacuum seal arrangement
US4246687A (en) * 1978-04-04 1981-01-27 N.V. Raychem S.A. Branch-off method
US4242954A (en) * 1978-05-23 1981-01-06 Graham Magnetics Incorporated Calendar roll system
US4197709A (en) * 1978-06-09 1980-04-15 Hochstein Peter A Thermal energy scavenger (stress limiter)
EP0016805A4 (en) * 1978-08-03 1981-02-12 Frederick E Wang Energy conversion system.
EP0016805A1 (en) * 1978-08-03 1980-10-15 Frederick E Wang Energy conversion system.
US4310354A (en) * 1980-01-10 1982-01-12 Special Metals Corporation Process for producing a shape memory effect alloy having a desired transition temperature
DE3007307A1 (en) * 1980-01-18 1981-07-23 BBC AG Brown, Boveri & Cie., Baden, Aargau Detachable shrunk joint - uses shape memory alloy with two=way effect
US4283233A (en) * 1980-03-07 1981-08-11 The United States Of America As Represented By The Secretary Of The Navy Method of modifying the transition temperature range of TiNi base shape memory alloys
US4304613A (en) * 1980-05-12 1981-12-08 The United States Of America As Represented By The Secretary Of The Navy TiNi Base alloy shape memory enhancement through thermal and mechanical processing
US4282033A (en) * 1980-06-16 1981-08-04 The United States Of America As Represented By The Secretary Of The Navy Melting method for high-homogeneity precise-composition nickel-titanium alloys
US4337090A (en) * 1980-09-05 1982-06-29 Raychem Corporation Heat recoverable nickel/titanium alloy with improved stability and machinability
US4466713A (en) * 1980-09-08 1984-08-21 Kabushiki Kaisha Suwa Seikosha Lens holding structure and wire material
US4781606A (en) * 1980-12-12 1988-11-01 Raychem Corporation Wire stripping arrangement
US4621844A (en) * 1982-01-25 1986-11-11 Shell Oil Company Memory metal connector
US4565589A (en) * 1982-03-05 1986-01-21 Raychem Corporation Nickel/titanium/copper shape memory alloy
FR2529657A1 (en) * 1982-07-05 1984-01-06 Nat Nuclear Corp Ltd Method for repairing heat exchanger tubes
US4468076A (en) * 1982-07-23 1984-08-28 Raychem Corporation Array package connector and connector tool
US4559512A (en) * 1983-03-14 1985-12-17 Raychem Corporation Self-protecting and conditioning memory metal actuator
EP0250776A1 (en) 1983-06-30 1988-01-07 RAYCHEM CORPORATION (a Delaware corporation) Method for detecting and obtaining information about changes in variables
US4553393A (en) * 1983-08-26 1985-11-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Memory metal actuator
US4522457A (en) * 1983-10-07 1985-06-11 Raychem Corporation Compliant connecting device with heat-recoverable driver
US4505767A (en) * 1983-10-14 1985-03-19 Raychem Corporation Nickel/titanium/vanadium shape memory alloy
US4619568A (en) * 1983-10-24 1986-10-28 Carstensen Kenneth J Heat recoverable locking device
US4570851A (en) * 1984-05-07 1986-02-18 Cirillo John R Temperature regulating, pressure relief flow valves employing shaped memory alloys
US5088772A (en) * 1984-11-14 1992-02-18 N. V. Raychem S.A. Joining insulated elongate conduit members
US5002716A (en) * 1984-11-14 1991-03-26 Raychem Corporation Joining insulated elongate conduit members
US4679292A (en) * 1985-09-24 1987-07-14 Grumman Aerospace Corporation Method for securing a panel to a structural member
US4813807A (en) * 1985-09-24 1989-03-21 Grumman Aerospace Corporation Memory metal connector for panels
DE3633988A1 (en) * 1985-10-11 1987-04-16 Nippon Musical Instruments Mfg METAL GASKET
FR2589167A1 (en) * 1985-10-28 1987-04-30 Boulanger Catherine Process for obtaining metal objects whose shape changes on heating, and objects obtained by this process
US4720944A (en) * 1986-06-04 1988-01-26 Paul Loicq Suspended ceiling panel retaining system
US4759293A (en) * 1986-06-30 1988-07-26 Davis Jr Thomas O Article using shape-memory alloy to improve and/or control the speed of recovery
US4729799A (en) * 1986-06-30 1988-03-08 United Technologies Corporation Stress relief of single crystal superalloy articles
US4839479A (en) * 1986-06-30 1989-06-13 Davis Jr Thomas O Article using shape-memory alloy to improve and/or control the speed of recovery
DE3736399A1 (en) * 1986-10-31 1988-07-07 Medinvent Sa DEVICE FOR THE TRANSLUMINAL IMPLANTATION
US4872713A (en) * 1987-02-19 1989-10-10 Raychem Corporation Coupling device
US4832382A (en) * 1987-02-19 1989-05-23 Raychem Corporation Coupling device
US4836496A (en) * 1987-08-27 1989-06-06 Johnson Service Company SMF actuator
US4943326A (en) * 1987-10-23 1990-07-24 The Furukawa Electric Co., Ltd. Ornament and method of manufacturing the same
DE3802919A1 (en) * 1988-02-02 1988-08-18 Systemtechnik Gmbh ACTUATING ELEMENT WITH PRE-MOLDED ELEMENT FROM A HEATABLE MEMORY METAL
US4881981A (en) * 1988-04-20 1989-11-21 Johnson Service Company Method for producing a shape memory alloy member having specific physical and mechanical properties
US5176275A (en) * 1989-03-27 1993-01-05 Bowie Stuart S Temperature release containers
US5238004A (en) * 1990-04-10 1993-08-24 Boston Scientific Corporation High elongation linear elastic guidewire
US5114504A (en) * 1990-11-05 1992-05-19 Johnson Service Company High transformation temperature shape memory alloy
US5215145A (en) * 1992-02-14 1993-06-01 Baker Hughes Incorporated Wedge-set sealing flap for use in subterranean wellbores
US5273116A (en) * 1992-02-14 1993-12-28 Baker Hughes Incorporated Firing mechanism for actuating wellbore tools
US5199497A (en) * 1992-02-14 1993-04-06 Baker Hughes Incorporated Shape-memory actuator for use in subterranean wells
US5745210A (en) * 1992-03-10 1998-04-28 Bausch & Lomb Incorporated Integral eyewear frame
US5376001A (en) * 1993-05-10 1994-12-27 Tepper; Harry W. Removable orthodontic appliance
US7883474B1 (en) 1993-05-11 2011-02-08 Target Therapeutics, Inc. Composite braided guidewire
US5772609A (en) * 1993-05-11 1998-06-30 Target Therapeutics, Inc. Guidewire with variable flexibility due to polymeric coatings
US5769796A (en) * 1993-05-11 1998-06-23 Target Therapeutics, Inc. Super-elastic composite guidewire
US5749837A (en) * 1993-05-11 1998-05-12 Target Therapeutics, Inc. Enhanced lubricity guidewire
US6500112B1 (en) 1994-03-30 2002-12-31 Brava, Llc Vacuum dome with supporting rim and rim cushion
US20050245850A1 (en) * 1994-03-30 2005-11-03 Freyre Carlos V Method and apparatus for inhibiting the growth of and shrinking cancerous tumors
US6017362A (en) * 1994-04-01 2000-01-25 Gore Enterprise Holdings, Inc. Folding self-expandable intravascular stent
US6165210A (en) * 1994-04-01 2000-12-26 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
US6001123A (en) * 1994-04-01 1999-12-14 Gore Enterprise Holdings Inc. Folding self-expandable intravascular stent-graft
US5876432A (en) * 1994-04-01 1999-03-02 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
US6139510A (en) * 1994-05-11 2000-10-31 Target Therapeutics Inc. Super elastic alloy guidewire
US5522819A (en) * 1994-05-12 1996-06-04 Target Therapeutics, Inc. Dual coil medical retrieval device
US20030208263A1 (en) * 1994-05-19 2003-11-06 Burmeister Paul H. Tissue supporting devices
US8221491B1 (en) 1994-05-19 2012-07-17 Boston Scientific Scimed, Inc. Tissue supporting devices
US20110184508A2 (en) * 1994-05-19 2011-07-28 Boston Scientific Scimed, Inc. Improved tissue supporting devices
US6451052B1 (en) 1994-05-19 2002-09-17 Scimed Life Systems, Inc. Tissue supporting devices
US5695483A (en) * 1994-06-27 1997-12-09 Target Therapeutics Inc. Kink-free spiral-wound catheter
US5496294A (en) * 1994-07-08 1996-03-05 Target Therapeutics, Inc. Catheter with kink-resistant distal tip
US6331188B1 (en) 1994-08-31 2001-12-18 Gore Enterprise Holdings, Inc. Exterior supported self-expanding stent-graft
US6517570B1 (en) 1994-08-31 2003-02-11 Gore Enterprise Holdings, Inc. Exterior supported self-expanding stent-graft
US8623065B2 (en) 1994-08-31 2014-01-07 W. L. Gore & Associates, Inc. Exterior supported self-expanding stent-graft
US6613072B2 (en) 1994-09-08 2003-09-02 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US20030208260A1 (en) * 1994-09-08 2003-11-06 Lilip Lau Procedures for introducing stents and stent-grafts
US5873906A (en) * 1994-09-08 1999-02-23 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US6015429A (en) * 1994-09-08 2000-01-18 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US5919225A (en) * 1994-09-08 1999-07-06 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US5853400A (en) * 1994-11-10 1998-12-29 Target Therapeutics, Inc. High performance spiral-wound catheter
US5795341A (en) * 1994-11-10 1998-08-18 Target Therapeutics, Inc. High performance spiral-wound catheter
EP0715863A2 (en) 1994-11-10 1996-06-12 Target Therapeutics, Inc. Catheter
US5658264A (en) * 1994-11-10 1997-08-19 Target Therapeutics, Inc. High performance spiral-wound catheter
EP0711532A1 (en) 1994-11-11 1996-05-15 Target Therapeutics, Inc. Delivery device
US5685148A (en) * 1994-11-14 1997-11-11 Landis & Gyr Technology Innovation Ag Drive apparatus
US5827322A (en) * 1994-11-16 1998-10-27 Advanced Cardiovascular Systems, Inc. Shape memory locking mechanism for intravascular stents
US5911731A (en) * 1995-04-20 1999-06-15 Target Therapeutics, Inc. Anatomically shaped vasoocclusive devices
EP1941845A1 (en) 1995-04-20 2008-07-09 Micrus Endovascular Corporation Anatomically shaped vasoocclusive device and method of making same
US6143013A (en) * 1995-04-28 2000-11-07 Target Therapeutics, Inc. High performance braided catheter
US6824553B1 (en) 1995-04-28 2004-11-30 Target Therapeutics, Inc. High performance braided catheter
US5891112A (en) * 1995-04-28 1999-04-06 Target Therapeutics, Inc. High performance superelastic alloy braid reinforced catheter
US20110144625A1 (en) * 1995-05-26 2011-06-16 Target Therapeutics, Inc. Composite Braided Guidewire
US5957948A (en) * 1995-06-06 1999-09-28 Target Therapeutics, Inc. Three dimensional in-filling vaso-occlusive coils
US5749891A (en) * 1995-06-06 1998-05-12 Target Therapeutics, Inc. Multiple layered vaso-occlusive coils
US6033423A (en) * 1995-06-06 2000-03-07 Target Therapeutics, Inc. Multiple layered vaso-occlusive coils
US5624461A (en) * 1995-06-06 1997-04-29 Target Therapeutics, Inc. Three dimensional in-filling vaso-occlusive coils
US6231586B1 (en) 1995-06-06 2001-05-15 Target Therapeutics, Inc. Three dimensional in-filling vaso-occlusive coils
US6193728B1 (en) 1995-06-30 2001-02-27 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils (II)
US6004338A (en) * 1995-06-30 1999-12-21 Target Therapeutics Inc. Stretch resistant vaso-occlusive coils
US6013084A (en) * 1995-06-30 2000-01-11 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils (II)
US5853418A (en) * 1995-06-30 1998-12-29 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils (II)
US5833705A (en) * 1995-06-30 1998-11-10 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils
US5582619A (en) * 1995-06-30 1996-12-10 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils
US6019757A (en) * 1995-07-07 2000-02-01 Target Therapeutics, Inc. Endoluminal electro-occlusion detection apparatus and method
US5743905A (en) * 1995-07-07 1998-04-28 Target Therapeutics, Inc. Partially insulated occlusion device
US5702373A (en) * 1995-08-31 1997-12-30 Target Therapeutics, Inc. Composite super-elastic alloy braid reinforced catheter
US5856631A (en) * 1995-11-20 1999-01-05 Nitinol Technologies, Inc. Gun barrel
US6615702B1 (en) * 1995-11-20 2003-09-09 Nitinol Technologies, Inc. Gun barrel
EP0778037A1 (en) 1995-12-04 1997-06-11 Target Therapeutics, Inc. Braided body balloon catheter
US5906606A (en) * 1995-12-04 1999-05-25 Target Therapuetics, Inc. Braided body balloon catheter
US6520986B2 (en) 1995-12-14 2003-02-18 Gore Enterprise Holdings, Inc. Kink resistant stent-graft
US20030130721A1 (en) * 1995-12-14 2003-07-10 Martin Gerald Ray Kink resistant stent-graft
US8323328B2 (en) 1995-12-14 2012-12-04 W. L. Gore & Associates, Inc. Kink resistant stent-graft
US6042605A (en) * 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
US6361637B2 (en) 1995-12-14 2002-03-26 Gore Enterprise Holdings, Inc. Method of making a kink resistant stent-graft
US6352553B1 (en) 1995-12-14 2002-03-05 Gore Enterprise Holdings, Inc. Stent-graft deployment apparatus and method
US6488637B1 (en) 1996-04-30 2002-12-03 Target Therapeutics, Inc. Composite endovascular guidewire
US5927345A (en) * 1996-04-30 1999-07-27 Target Therapeutics, Inc. Super-elastic alloy braid structure
US6090099A (en) * 1996-05-24 2000-07-18 Target Therapeutics, Inc. Multi-layer distal catheter section
US5782811A (en) * 1996-05-30 1998-07-21 Target Therapeutics, Inc. Kink-resistant braided catheter with distal side holes
US6197014B1 (en) 1996-05-30 2001-03-06 Target Therapeutics, Inc. Kink-resistant braided catheter with distal side holes
US5868754A (en) * 1996-06-12 1999-02-09 Target Therapeutics, Inc. Medical retrieval device
US5972019A (en) * 1996-07-25 1999-10-26 Target Therapeutics, Inc. Mechanical clot treatment device
US6066158A (en) * 1996-07-25 2000-05-23 Target Therapeutics, Inc. Mechanical clot encasing and removal wire
US5827201A (en) * 1996-07-26 1998-10-27 Target Therapeutics, Inc. Micro-braided guidewire
EP0826342A1 (en) 1996-08-30 1998-03-04 Target Therapeutics, Inc. Electrolytically deployable braided vaso-occlusion device
US5964797A (en) * 1996-08-30 1999-10-12 Target Therapeutics, Inc. Electrolytically deployable braided vaso-occlusion device
US5971975A (en) * 1996-10-09 1999-10-26 Target Therapeutics, Inc. Guide catheter with enhanced guidewire tracking
US5787947A (en) * 1996-11-19 1998-08-04 Tetra Laval Holdings & Finance S.A. Flexible nozzle integrated with a transformable wire
US6159187A (en) * 1996-12-06 2000-12-12 Target Therapeutics, Inc. Reinforced catheter with a formable distal tip
US20100145434A1 (en) * 1996-12-23 2010-06-10 Troy Thornton Kink resistant bifurcated prosthesis
US6551350B1 (en) 1996-12-23 2003-04-22 Gore Enterprise Holdings, Inc. Kink resistant bifurcated prosthesis
US20090138066A1 (en) * 1996-12-23 2009-05-28 Leopold Eric W Implant Deployment Apparatus
US7682380B2 (en) 1996-12-23 2010-03-23 Gore Enterprise Holdings, Inc. Kink-resistant bifurcated prosthesis
US20020099436A1 (en) * 1996-12-23 2002-07-25 Troy Thornton Kink-resistant bifurcated prosthesis
US6352561B1 (en) 1996-12-23 2002-03-05 W. L. Gore & Associates Implant deployment apparatus
US5733329A (en) * 1996-12-30 1998-03-31 Target Therapeutics, Inc. Vaso-occlusive coil with conical end
US6024765A (en) * 1996-12-30 2000-02-15 Target Therapeutics, Inc. Vaso-occlusive coil with conical end
US5925061A (en) * 1997-01-13 1999-07-20 Gore Enterprise Holdings, Inc. Low profile vascular stent
US6017323A (en) * 1997-04-08 2000-01-25 Target Therapeutics, Inc. Balloon catheter with distal infusion section
US6152912A (en) * 1997-06-10 2000-11-28 Target Therapeutics, Inc. Optimized high performance spiral-wound vascular catheter
US5951539A (en) * 1997-06-10 1999-09-14 Target Therpeutics, Inc. Optimized high performance multiple coil spiral-wound vascular catheter
US6258080B1 (en) 1997-07-01 2001-07-10 Target Therapeutics, Inc. Kink-free spiral-wound catheter
US6063070A (en) * 1997-08-05 2000-05-16 Target Therapeutics, Inc. Detachable aneurysm neck bridge (II)
US6936055B1 (en) 1997-08-05 2005-08-30 Scime Life Systems, Inc. Detachable aneurysm neck bridge (III)
US6383174B1 (en) 1997-08-05 2002-05-07 Scimed Life Systems, Inc. Detachable aneurysm neck bridge (II)
US6193708B1 (en) 1997-08-05 2001-02-27 Scimed Life Systems, Inc. Detachable aneurysm neck bridge (I)
US6086577A (en) * 1997-08-13 2000-07-11 Scimed Life Systems, Inc. Detachable aneurysm neck bridge (III)
US6860893B2 (en) 1997-08-29 2005-03-01 Boston Scientific Scimed, Inc. Stable coil designs
US6322576B1 (en) 1997-08-29 2001-11-27 Target Therapeutics, Inc. Stable coil designs
US7875050B2 (en) 1997-09-30 2011-01-25 Target Therapeutics, Inc. Mechanical clot treatment device
US6066149A (en) * 1997-09-30 2000-05-23 Target Therapeutics, Inc. Mechanical clot treatment device with distal filter
US6383205B1 (en) 1997-09-30 2002-05-07 Target Therapeutics, Inc. Mechanical clot treatment device with distal filter
US5891114A (en) * 1997-09-30 1999-04-06 Target Therapeutics, Inc. Soft-tip high performance braided catheter
US6165163A (en) * 1997-09-30 2000-12-26 Target Therapeutics, Inc. Soft-tip performance braided catheter
US8486104B2 (en) 1997-09-30 2013-07-16 Stryker Corporation Mechanical clot treatment device with distal filter
US20110082493A1 (en) * 1997-09-30 2011-04-07 Target Therapeutics, Inc. Medical clot treatment device with distal filter
US6217566B1 (en) 1997-10-02 2001-04-17 Target Therapeutics, Inc. Peripheral vascular delivery catheter
US6724203B1 (en) * 1997-10-30 2004-04-20 International Business Machines Corporation Full wafer test configuration using memory metals
US6036720A (en) * 1997-12-15 2000-03-14 Target Therapeutics, Inc. Sheet metal aneurysm neck bridge
US6715701B1 (en) * 1998-01-15 2004-04-06 Nitinol Technologies, Inc. Liquid jet nozzle
US6024907A (en) * 1998-02-02 2000-02-15 Bruce Jagunich Embossing with an endless belt composed of a shape memory alloy
US6221513B1 (en) * 1998-05-12 2001-04-24 Pacific Coast Technologies, Inc. Methods for hermetically sealing ceramic to metallic surfaces and assemblies incorporating such seals
US6323461B2 (en) * 1998-05-15 2001-11-27 M.B.A., S.A. Clamps with shape memory
US7909812B2 (en) 1998-06-11 2011-03-22 Target Therapeutics, Inc. Catheter with composite stiffener
US7104979B2 (en) 1998-06-11 2006-09-12 Target Therapeutics, Inc. Catheter with composite stiffener
US20110172643A1 (en) * 1998-06-11 2011-07-14 Target Therapeutics, Inc. Catheter with Composite Stiffener
US8317772B2 (en) 1998-06-11 2012-11-27 Target Therapeutics, Inc. Catheter with composite stiffener
US20070049903A1 (en) * 1998-06-11 2007-03-01 Target Therapeutics, Inc. Catheter with composite stiffener
US6368316B1 (en) 1998-06-11 2002-04-09 Target Therapeutics, Inc. Catheter with composite stiffener
WO1999064098A1 (en) 1998-06-11 1999-12-16 Boston Scientific Limited Catheter with composite stiffener
US8795255B2 (en) 1998-06-11 2014-08-05 Boston Scientific Scimed, Inc. Catheter with composite stiffener
US8181324B2 (en) 1998-06-12 2012-05-22 Target Therapeutics, Inc. Catheter with knit section
US7815626B1 (en) 1998-06-12 2010-10-19 Target Therapeutics, Inc. Catheter with knit section
US20110024025A1 (en) * 1998-06-12 2011-02-03 Target Therapeutics, Inc. Catheter With Knit Section
US6063104A (en) * 1998-06-24 2000-05-16 Target Therapeutics, Inc. Detachable, varying flexibility, aneurysm neck bridge
US5935148A (en) * 1998-06-24 1999-08-10 Target Therapeutics, Inc. Detachable, varying flexibility, aneurysm neck bridge
US6136014A (en) * 1998-09-01 2000-10-24 Vivant Medical, Inc. Percutaneous tissue removal device
US7713264B2 (en) 1998-09-04 2010-05-11 Boston Scientific Scimed, Inc. Detachable aneurysm neck bridge
US7410482B2 (en) 1998-09-04 2008-08-12 Boston Scientific-Scimed, Inc. Detachable aneurysm neck bridge
US8529556B2 (en) 1998-09-04 2013-09-10 Stryker Corporation Detachable aneurysm neck bridge
US20080281302A1 (en) * 1998-09-04 2008-11-13 Boston Scientific Scimed, Inc. Detachable aneurysm neck bridge
US8449532B2 (en) 1998-09-04 2013-05-28 Stryker Corporation Detachable aneurysm neck bridge
US8267923B2 (en) 1998-09-04 2012-09-18 Stryker Corporation Detachable aneurysm neck bridge
US8372062B2 (en) 1998-09-04 2013-02-12 Stryker Corporation Detachable aneurysm neck bridge
US7128736B1 (en) 1998-09-04 2006-10-31 Boston Scientific Scimed, Inc. Detachable aneurysm neck closure patch
US20030171739A1 (en) * 1998-09-04 2003-09-11 Richard Murphy Detachable aneurysm neck bridge
US20100222804A1 (en) * 1998-09-04 2010-09-02 Boston Scientific Scimed, Inc. Detachable aneurysm neck bridge
US6254458B1 (en) * 1998-10-28 2001-07-03 Nitinol Technologies, Inc. Post processing for nitinol coated articles
US6471709B1 (en) 1998-10-30 2002-10-29 Vivant Medical, Inc. Expandable ring percutaneous tissue removal device
US6641527B2 (en) 1998-12-01 2003-11-04 Brava, Llc Method and apparatus for external tissue distraction with frame having membrane applied with surface tension
WO2000032084A3 (en) * 1998-12-01 2001-02-22 Bio Mecanica Inc External tissue distraction with expanding frames
WO2000032084A2 (en) * 1998-12-01 2000-06-08 Bio-Mecanica, Inc. External tissue distraction with expanding frames
US6699176B1 (en) 1998-12-01 2004-03-02 Brava, Llc External tissue distraction with expanding frames
US6478656B1 (en) 1998-12-01 2002-11-12 Brava, Llc Method and apparatus for expanding soft tissue with shape memory alloys
US6648854B1 (en) 1999-05-14 2003-11-18 Scimed Life Systems, Inc. Single lumen balloon-tipped micro catheter with reinforced shaft
US20050192621A1 (en) * 1999-06-04 2005-09-01 Scimed Life Systems, Inc. Polymer covered vaso-occlusive devices and methods of producing such devices
US7695484B2 (en) 1999-06-04 2010-04-13 Boston Scientific Scimed, Inc. Polymer covered vaso-occlusive devices and methods of producing such devices
US8172862B2 (en) 1999-06-04 2012-05-08 Stryker Corporation Polymer covered vaso-occlusive devices and methods of producing such devices
US20100174301A1 (en) * 1999-06-04 2010-07-08 Boston Scientific Scimed, Inc. Polymer covered vaso-occlusive devices and methods of producing such devices
US6280457B1 (en) 1999-06-04 2001-08-28 Scimed Life Systems, Inc. Polymer covered vaso-occlusive devices and methods of producing such devices
US20020128671A1 (en) * 1999-06-04 2002-09-12 Scimed Life Systems, Inc. Polymer covered vaso-occlusive devices and methods of producing such devices
US20030137516A1 (en) * 1999-06-11 2003-07-24 Pulse Entertainment, Inc. Three dimensional animation system and method
US6663607B2 (en) 1999-07-12 2003-12-16 Scimed Life Systems, Inc. Bioactive aneurysm closure device assembly and kit
US20060100693A1 (en) * 1999-07-28 2006-05-11 Walak Steven E Multi-property nitinol by heart treatment
WO2001008600A2 (en) 1999-07-28 2001-02-08 Scimed Life Systems, Inc. Nitinol medical devices having variable stifness by heat treatment
US6485507B1 (en) 1999-07-28 2002-11-26 Scimed Life Systems Multi-property nitinol by heat treatment
US20030109918A1 (en) * 1999-07-28 2003-06-12 Scimed Life Systems, Inc. Multi-property nitinol by heat treatment
US6997947B2 (en) 1999-07-28 2006-02-14 Boston Scientific Scimed, Inc. Multi-property nitinol by heat treatment
US20060280773A1 (en) * 1999-08-05 2006-12-14 Broncus Technologies, Inc. Methods and devices for maintaining patency of surgically created channels in a body organ
US20020128647A1 (en) * 1999-08-05 2002-09-12 Ed Roschak Devices for applying energy to tissue
US20050049615A1 (en) * 1999-08-05 2005-03-03 Broncus Technologies, Inc. Methods for treating chronic obstructive pulmonary disease
US20050060044A1 (en) * 1999-08-05 2005-03-17 Ed Roschak Methods and devices for maintaining patency of surgically created channels in a body organ
US20060276807A1 (en) * 1999-08-05 2006-12-07 Broncus Technologies, Inc. Methods for treating chronic obstructive pulmonary disease
US7422563B2 (en) 1999-08-05 2008-09-09 Broncus Technologies, Inc. Multifunctional tip catheter for applying energy to tissue and detecting the presence of blood flow
US20050137715A1 (en) * 1999-08-05 2005-06-23 Broncus Technologies, Inc. Methods and devices for maintaining patency of surgically created channels in a body organ
US20050107783A1 (en) * 1999-08-05 2005-05-19 Broncus Technologies, Inc. Devices for applying energy to tissue
US20050096529A1 (en) * 1999-08-05 2005-05-05 Broncus Technologies, Inc. Methods for treating chronic obstructive pulmonary disease
US6689120B1 (en) 1999-08-06 2004-02-10 Boston Scientific Scimed, Inc. Reduced profile delivery system
WO2001013984A2 (en) 1999-08-24 2001-03-01 Neuron Therapeutics, Inc. Lumbar drainage catheter
US6454016B1 (en) 1999-09-02 2002-09-24 Nitinol Technologies, Inc. Nitinol horseshoes
US20040073155A1 (en) * 2000-01-14 2004-04-15 Broncus Technologies, Inc. Methods and devices for maintaining patency of surgically created channels in tissue
US6872217B2 (en) 2000-02-08 2005-03-29 Scimed Life Systems, Inc. Recoilable thrombosis filtering device and method
US20030109897A1 (en) * 2000-02-08 2003-06-12 Scimed Life Systems, Inc. Recoilable thrombosis filtering device and method
US20050131452A1 (en) * 2000-02-08 2005-06-16 Walak Steven E. Recoilable thrombosis filtering device and method
US6540767B1 (en) 2000-02-08 2003-04-01 Scimed Life Systems, Inc. Recoilable thrombosis filtering device and method
EP2077090A1 (en) 2000-02-18 2009-07-08 Thomas J. Fogarty Improved device for accurately marking tissue
EP2298154A2 (en) 2000-02-18 2011-03-23 Fogarty, Thomas J. Improved device for accurately marking tissue
EP2932891A1 (en) 2000-02-18 2015-10-21 Focal Therapeutics, Inc. Improved device for accurately marking tissue
US6422010B1 (en) 2000-06-11 2002-07-23 Nitinol Technologies, Inc. Manufacturing of Nitinol parts and forms
US6746461B2 (en) 2000-08-15 2004-06-08 William R. Fry Low-profile, shape-memory surgical occluder
EP1900331A2 (en) 2000-10-18 2008-03-19 Boston Scientific Scimed, Inc. Non-overlapping spherical three-dimensional vaso-occlusive coil
US6548013B2 (en) 2001-01-24 2003-04-15 Scimed Life Systems, Inc. Processing of particulate Ni-Ti alloy to achieve desired shape and properties
EP1955665A2 (en) 2001-03-30 2008-08-13 Boston Scientific Scimed, Inc. Embolic devices capable of in-situ reinforcement
US20040168752A1 (en) * 2001-06-11 2004-09-02 Julien Gerald J. Shape memory parts of 60 Nitinol
US7005018B2 (en) * 2001-06-11 2006-02-28 Nitinol Technologies, Inc. Shape memory parts of 60 Nitinol
US20040024348A1 (en) * 2001-08-24 2004-02-05 Redding Bruce K. Substance delivery device
US20060280772A1 (en) * 2001-09-04 2006-12-14 Broncus Technologies, Inc. Methods and devices for maintaining surgically created channels in a body organ
US20050060042A1 (en) * 2001-09-04 2005-03-17 Broncus Technologies, Inc. Methods and devices for maintaining surgically created channels in a body organ
US7708712B2 (en) 2001-09-04 2010-05-04 Broncus Technologies, Inc. Methods and devices for maintaining patency of surgically created channels in a body organ
US20050137611A1 (en) * 2001-09-04 2005-06-23 Broncus Technologies, Inc. Methods and devices for maintaining surgically created channels in a body organ
US7462162B2 (en) 2001-09-04 2008-12-09 Broncus Technologies, Inc. Antiproliferative devices for maintaining patency of surgically created channels in a body organ
US20050043752A1 (en) * 2001-09-04 2005-02-24 Broncus Technologies, Inc. Methods and devices for maintaining patency of surgically created channels in a body organ
US20040260144A1 (en) * 2001-09-25 2004-12-23 The Foundry, Inc. Ventricular infarct assist device and methods for using it
US6685620B2 (en) 2001-09-25 2004-02-03 The Foundry Inc. Ventricular infarct assist device and methods for using it
US20090299133A1 (en) * 2001-09-25 2009-12-03 The Foundry, Llc Ventricular infarct assist device and methods for using it
US6878151B2 (en) 2001-09-27 2005-04-12 Scimed Life Systems, Inc. Medical retrieval device
US8047552B2 (en) * 2002-02-21 2011-11-01 Nitinol Technology, Inc. Nitinol ice blades
WO2003072206A2 (en) * 2002-02-21 2003-09-04 Nitinol Technologies, Inc. Nitinol ice blades
US20050082773A1 (en) * 2002-02-21 2005-04-21 Julien Gerald J. Nitinol ice blades
WO2003072206A3 (en) * 2002-02-21 2005-05-12 Nitinol Technologies Inc Nitinol ice blades
US7288111B1 (en) 2002-03-26 2007-10-30 Thoratec Corporation Flexible stent and method of making the same
US20060155364A1 (en) * 2002-03-26 2006-07-13 Thoratec Corporation Flexible stent and method of making the same
US7758629B2 (en) 2002-03-26 2010-07-20 Thoratec Corporation Flexible stent and method of making the same
US6783438B2 (en) 2002-04-18 2004-08-31 Ormco Corporation Method of manufacturing an endodontic instrument
US7779542B2 (en) 2002-04-18 2010-08-24 Ormco Corporation Method of manufacturing a dental instrument
US7207111B2 (en) 2002-04-18 2007-04-24 Ormco Corporation Method of manufacturing an endodontic instrument
US20040171333A1 (en) * 2002-04-18 2004-09-02 Ormco Corporaiton Method of manufacturing an endodontic instrument
US20060014480A1 (en) * 2002-04-18 2006-01-19 Ormco Corporation Method of manufacturing a dental instrument
US20050137518A1 (en) * 2002-04-19 2005-06-23 Broncus Technologies, Inc. Devices for maintaining surgically created openings
US20050137712A1 (en) * 2002-04-19 2005-06-23 Michael Biggs Devices for maintaining surgically created openings
US8308751B2 (en) 2002-05-20 2012-11-13 Stryker Corporation Foldable vaso-occlusive member
US20060116716A1 (en) * 2002-05-20 2006-06-01 Scimed Life Systems, Inc. Foldable vaso-occlusive member
US20030216757A1 (en) * 2002-05-20 2003-11-20 Scimed Life Systems, Inc. Foldable vaso-occlusive member
US7060083B2 (en) 2002-05-20 2006-06-13 Boston Scientific Scimed, Inc. Foldable vaso-occlusive member
EP2478850A2 (en) 2002-05-20 2012-07-25 Stryker Corporation Foldable vasco-occlusive member
US7938845B2 (en) 2002-06-27 2011-05-10 Stryker Corporation Anchor assemblies in stretch-resistant vaso-occlusive coils
US20070112375A1 (en) * 2002-06-27 2007-05-17 Boston Scientific Scimed, Inc. Anchor assemblies in stretch-resistant vaso-occlusive coils
US7485122B2 (en) 2002-06-27 2009-02-03 Boston Scientific Scimed, Inc. Integrated anchor coil in stretch-resistant vaso-occlusive coils
US20110213406A1 (en) * 2002-06-27 2011-09-01 Stryker Corporation Anchor assemblies in stretch-resistant vaso-occlusive coils
US7166122B2 (en) 2002-06-27 2007-01-23 Boston Scientific Scimed, Inc. Anchor assemblies in stretch-resistant vaso-occlusive coils
US20040002732A1 (en) * 2002-06-27 2004-01-01 Clifford Teoh Stretch-resistant vaso-occlusive assembly with multiple detaching points
US20040002733A1 (en) * 2002-06-27 2004-01-01 Clifford Teoh Integrated anchor coil in stretch-resistant vaso-occlusive coils
US20040002731A1 (en) * 2002-06-27 2004-01-01 Nestor Aganon Anchor assemblies in stretch-resistant vaso-occlusive coils
US20040015229A1 (en) * 2002-07-22 2004-01-22 Syntheon, Llc Vascular stent with radiopaque markers
US11890181B2 (en) 2002-07-22 2024-02-06 Tmt Systems, Inc. Percutaneous endovascular apparatus for repair of aneurysms and arterial blockages
US20040098023A1 (en) * 2002-11-15 2004-05-20 Scimed Life Systems, Inc. Embolic device made of nanofibers
US20100222803A1 (en) * 2003-02-03 2010-09-02 Boston Scientific Scimed, Inc. Systems and methods of de-endothelialization
US20040153120A1 (en) * 2003-02-03 2004-08-05 Seifert Paul S. Systems and methods of de-endothelialization
US20040153025A1 (en) * 2003-02-03 2004-08-05 Seifert Paul S. Systems and methods of de-endothelialization
US7744583B2 (en) 2003-02-03 2010-06-29 Boston Scientific Scimed Systems and methods of de-endothelialization
US7240677B2 (en) 2003-02-03 2007-07-10 Biomedical Enterprises, Inc. System and method for force, displacement, and rate control of shaped memory material implants
US20040172107A1 (en) * 2003-02-03 2004-09-02 Fox William Casey System and method for force, displacement, and rate control of shaped memory material implants
US20100160954A1 (en) * 2003-02-11 2010-06-24 Cook Incorporated Removable Vena Cava Filter
US20040230220A1 (en) * 2003-02-11 2004-11-18 Cook Incorporated Removable vena cava filter
US7763045B2 (en) 2003-02-11 2010-07-27 Cook Incorporated Removable vena cava filter
US8246650B2 (en) 2003-02-11 2012-08-21 Cook Medical Technologies Llc Removable vena cava filter
US8222566B2 (en) 2003-02-26 2012-07-17 Boston Scientific Scimed, Inc. Elongated intracorporal medical device
US20040167443A1 (en) * 2003-02-26 2004-08-26 Scimed Life Systems, Inc. Elongated intracorporal medical device
US20070123805A1 (en) * 2003-02-26 2007-05-31 Boston Scientific Scimed, Inc. Elongated intracorporal medical device
US7316656B2 (en) 2003-02-26 2008-01-08 Boston Scientific Scimed, Inc. Elongated intracorporal medical device
US20090222036A1 (en) * 2003-04-11 2009-09-03 Boston Scientific Scimed, Inc. Embolic filter loop fabricated from composite material
US20040204737A1 (en) * 2003-04-11 2004-10-14 Scimed Life Systems, Inc. Embolic filter loop fabricated from composite material
US20100163159A1 (en) * 2003-04-14 2010-07-01 Cook Incorporated Large diameter delivery catheter/sheath
US7704245B2 (en) 2003-04-14 2010-04-27 Cook Incorporated Large diameter delivery catheter/sheath
US20040220549A1 (en) * 2003-04-14 2004-11-04 Dittman Jay A. Large diameter delivery catheter/sheath
US7968038B2 (en) 2003-04-14 2011-06-28 Cook Medical Technologies Llc Large diameter delivery catheter/sheath
US11000670B2 (en) 2003-04-28 2021-05-11 Cook Medical Technologies Llc Flexible sheath with varying durometer
US20050090802A1 (en) * 2003-04-28 2005-04-28 Connors John J.Iii Flexible sheath with varying durometer
US20060142755A1 (en) * 2003-05-06 2006-06-29 Boston Scientific Scimed, Inc. Systems and methods for ablation of tissue
US7892231B2 (en) 2003-05-06 2011-02-22 Boston Scientific Scimed, Inc. Systems and methods for ablation of tissue
US8216229B2 (en) 2003-05-06 2012-07-10 Boston Scientific Scimed, Inc. Systems and methods for ablation of tissue
US20110125147A1 (en) * 2003-05-06 2011-05-26 Boston Scientific Scimed, Inc. Systems and methods for ablation of tissue
US7632288B2 (en) 2003-05-12 2009-12-15 Boston Scientific Scimed, Inc. Cutting balloon catheter with improved pushability
US8617193B2 (en) 2003-05-12 2013-12-31 Boston Scientific Scimed, Inc. Balloon catheter with improved pushability
US20040230178A1 (en) * 2003-05-12 2004-11-18 Show-Mean Wu Cutting balloon catheter with improved pushability
US8172864B2 (en) 2003-05-12 2012-05-08 Boston Scientific Scimed, Inc. Balloon catheter with improved pushability
US20100251535A1 (en) * 2003-05-16 2010-10-07 Ra Brands, L.L.C. Composite receiver for firearms
US20040226211A1 (en) * 2003-05-16 2004-11-18 Ra Brands. L.L.C. Composite receiver for firearms
US7814695B1 (en) 2003-05-16 2010-10-19 Ra Brands, L.L.C. Composite receiver for firearms
US20100286566A1 (en) * 2003-05-27 2010-11-11 Boston Scientific Scimed, Inc. Medical device having segmented construction
US20040254450A1 (en) * 2003-05-27 2004-12-16 Scimed Life Systems, Inc. Medical device having segmented construction
US7758520B2 (en) 2003-05-27 2010-07-20 Boston Scientific Scimed, Inc. Medical device having segmented construction
US8485992B2 (en) 2003-05-27 2013-07-16 Boston Scientific Scimed, Inc. Medical device having segmented construction
US7758604B2 (en) 2003-05-29 2010-07-20 Boston Scientific Scimed, Inc. Cutting balloon catheter with improved balloon configuration
US20040243156A1 (en) * 2003-05-29 2004-12-02 Scimed Life Systems, Inc. Cutting balloon catheter with improved balloon configuration
US20040249409A1 (en) * 2003-06-09 2004-12-09 Scimed Life Systems, Inc. Reinforced filter membrane
US8337519B2 (en) 2003-07-10 2012-12-25 Boston Scientific Scimed, Inc. Embolic protection filtering device
US9533128B2 (en) 2003-07-18 2017-01-03 Broncus Medical Inc. Devices for maintaining patency of surgically created channels in tissue
US20050028097A1 (en) * 2003-07-30 2005-02-03 Xerox Corporation System and method for measuring and quantizing document quality
US7896898B2 (en) 2003-07-30 2011-03-01 Boston Scientific Scimed, Inc. Self-centering blood clot filter
US20050027314A1 (en) * 2003-07-30 2005-02-03 Scimed Life Systems, Inc. Self-centering blood clot filter
US20050033225A1 (en) * 2003-08-08 2005-02-10 Scimed Life Systems, Inc. Catheter shaft for regulation of inflation and deflation
US7780626B2 (en) 2003-08-08 2010-08-24 Boston Scientific Scimed, Inc. Catheter shaft for regulation of inflation and deflation
US7887557B2 (en) 2003-08-14 2011-02-15 Boston Scientific Scimed, Inc. Catheter having a cutting balloon including multiple cavities or multiple channels
US20050038383A1 (en) * 2003-08-14 2005-02-17 Scimed Life Systems, Inc. Catheter having a cutting balloon including multiple cavities or multiple channels
US20050049690A1 (en) * 2003-08-25 2005-03-03 Scimed Life Systems, Inc. Selective treatment of linear elastic materials to produce localized areas of superelasticity
US20050049523A1 (en) * 2003-08-25 2005-03-03 Scimed Life Systems, Inc. Elongated intra-lumenal medical device
US7455737B2 (en) 2003-08-25 2008-11-25 Boston Scientific Scimed, Inc. Selective treatment of linear elastic materials to produce localized areas of superelasticity
US7641621B2 (en) 2003-08-25 2010-01-05 Boston Scientific Scimed, Inc. Elongated intra-lumenal medical device
US20050054950A1 (en) * 2003-09-05 2005-03-10 Scimed Life Systems, Inc. Medical device coil
US20050054951A1 (en) * 2003-09-05 2005-03-10 Scimed Life Systems, Inc. Medical device coil
US20050209674A1 (en) * 2003-09-05 2005-09-22 Kutscher Tuvia D Balloon assembly (V)
US7833175B2 (en) 2003-09-05 2010-11-16 Boston Scientific Scimed, Inc. Medical device coil
US7540845B2 (en) 2003-09-05 2009-06-02 Boston Scientific Scimed, Inc Medical device coil
US20070049925A1 (en) * 2003-09-12 2007-03-01 Boston Scientific Scimed, Inc. Methods for creating transmural lesions
US20050059963A1 (en) * 2003-09-12 2005-03-17 Scimed Life Systems, Inc. Systems and method for creating transmural lesions
US7785273B2 (en) 2003-09-22 2010-08-31 Boston Scientific Scimed, Inc. Guidewire with reinforcing member
US20050065456A1 (en) * 2003-09-22 2005-03-24 Scimed Life Systems, Inc. Guidewire with reinforcing member
US20070189917A1 (en) * 2003-10-22 2007-08-16 Scimed Life Systems, Inc. Alloy compositions and devices including the compositions
US7740798B2 (en) 2003-10-22 2010-06-22 Boston Scientific Scimed, Inc. Alloy compositions and devices including the compositions
US20100145268A1 (en) * 2003-10-22 2010-06-10 Stinson Jonathan S Alloy compositions and devices including the compositions
US7645292B2 (en) 2003-10-27 2010-01-12 Boston Scientific Scimed, Inc. Vaso-occlusive devices with in-situ stiffening elements
US20090198096A1 (en) * 2003-10-27 2009-08-06 Paracor Medical, Inc. Long fatigue life cardiac harness
US20050090844A1 (en) * 2003-10-27 2005-04-28 Paracor Surgical, Inc. Long fatigue life nitinol
US7455738B2 (en) 2003-10-27 2008-11-25 Paracor Medical, Inc. Long fatigue life nitinol
US20050090861A1 (en) * 2003-10-27 2005-04-28 Scimed Life Systems, Inc. Vaso-occlusive devices with in-situ stiffening elements
US20050090856A1 (en) * 2003-10-27 2005-04-28 Scimed Life Systems, Inc. Vasco-occlusive devices with bioactive elements
US20050104391A1 (en) * 2003-11-18 2005-05-19 Browne Alan L. Tunable, healable vehicle impact devices
US7029044B2 (en) 2003-11-18 2006-04-18 General Motors Corporation Tunable, healable vehicle impact devices
US8137292B2 (en) 2003-12-05 2012-03-20 Boston Scientific Scimed, Inc. Elongated medical device for intracorporal use
US20050124917A1 (en) * 2003-12-05 2005-06-09 Scimed Life Systems, Inc. Elongated medical device for intracorporal use
US20080015471A1 (en) * 2003-12-05 2008-01-17 Boston Scientific Scimed, Inc. Elongated medical device for intracorporal use
US7237313B2 (en) 2003-12-05 2007-07-03 Boston Scientific Scimed, Inc. Elongated medical device for intracorporal use
US20050149109A1 (en) * 2003-12-23 2005-07-07 Wallace Michael P. Expanding filler coil
US20050148901A1 (en) * 2003-12-30 2005-07-07 Scimed Life Systems, Inc. Distal assembly for a medical device
US7747314B2 (en) 2003-12-30 2010-06-29 Boston Scientific Scimed, Inc. Distal assembly for a medical device
US20050172471A1 (en) * 2004-02-09 2005-08-11 Vietmeier Kristopher H. Process method for attaching radio opaque markers to shape memory stent
US7243408B2 (en) 2004-02-09 2007-07-17 Boston Scientific Scimed, Inc. Process method for attaching radio opaque markers to shape memory stent
US20050209683A1 (en) * 2004-03-05 2005-09-22 Kiyoshi Yamauchi Balloon expandable superelastic stent
US7658761B2 (en) 2004-03-05 2010-02-09 Nec Tokin Corporation Balloon expandable superelastic stent
US20050228343A1 (en) * 2004-04-08 2005-10-13 Scimed Life Systems, Inc. Cutting balloon catheter and method for blade mounting
US7754047B2 (en) 2004-04-08 2010-07-13 Boston Scientific Scimed, Inc. Cutting balloon catheter and method for blade mounting
US7625390B2 (en) 2004-04-16 2009-12-01 Cook Incorporated Removable vena cava filter
US7972353B2 (en) 2004-04-16 2011-07-05 Cook Medical Technologies Llc Removable vena cava filter with anchoring feature for reduced trauma
US8246651B2 (en) 2004-04-16 2012-08-21 Cook Medical Technologies Llc Removable vena cava filter for reduced trauma in collapsed configuration
US20070005095A1 (en) * 2004-04-16 2007-01-04 Osborne Thomas A Removable vena cava filter having inwardly positioned anchoring hooks in collapsed configuration
US8043322B2 (en) 2004-04-16 2011-10-25 Cook Medical Technologies Llc Removable vena cava filter having inwardly positioned anchoring hooks in collapsed configuration
US20050267512A1 (en) * 2004-04-16 2005-12-01 Osborne Thomas A Removable vena cava filter for reduced trauma in collapsed configuration
US20050251199A1 (en) * 2004-04-16 2005-11-10 Osborne Thomas A Removable vena cava filter with anchoring feature for reduced trauma
US20050267513A1 (en) * 2004-04-16 2005-12-01 Osborne Thomas A Removable vena cava filter having primary struts for enhanced retrieval and delivery
US20100160956A1 (en) * 2004-04-16 2010-06-24 Cook Incorporated Removable vena cava filter for reduced trauma in collapsed configuration
US7699867B2 (en) 2004-04-16 2010-04-20 Cook Incorporated Removable vena cava filter for reduced trauma in collapsed configuration
US7566319B2 (en) 2004-04-21 2009-07-28 Boston Scientific Scimed, Inc. Traction balloon
US8945047B2 (en) 2004-04-21 2015-02-03 Boston Scientific Scimed, Inc. Traction balloon
US20110118777A1 (en) * 2004-05-21 2011-05-19 Micro Therapeutics, Inc. Metallic coils enlaced with fibers for embolization of a body cavity
US7896899B2 (en) 2004-05-21 2011-03-01 Micro Therapeutics, Inc. Metallic coils enlaced with biological or biodegradable or synthetic polymers or fibers for embolization of a body cavity
US20060036281A1 (en) * 2004-05-21 2006-02-16 Micro Therapeutics, Inc. Metallic coils enlaced with biological or biodegradable or synthetic polymers or fibers for embolization of a body cavity
US8267955B2 (en) 2004-05-21 2012-09-18 Tyco Healthcare Group Lp Metallic coils enlaced with fibers for embolization of a body cavity
EP2316355A1 (en) 2004-05-21 2011-05-04 Micro Therapeutics, Inc. Metallic coils enlaced with biological or biodegradable or synthetic polymers or fibers for embolization of a body cavity
US8486101B2 (en) 2004-06-21 2013-07-16 Stryker Corporation Expanding vaso-occlusive device
US20100228278A1 (en) * 2004-06-21 2010-09-09 Boston Scientific Scimed, Inc. Expanding vaso-occlusive device
US20050283183A1 (en) * 2004-06-21 2005-12-22 Tri Tran Expanding vaso-occlusive device
US7749242B2 (en) 2004-06-21 2010-07-06 Boston Scientific Scimed, Inc. Expanding vaso-occlusive device
US8303520B2 (en) 2004-06-22 2012-11-06 Boston Scientific Scimed, Inc. Medical device including actuator
US7416534B2 (en) 2004-06-22 2008-08-26 Boston Scientific Scimed, Inc. Medical device including actuator
US20080319403A1 (en) * 2004-06-22 2008-12-25 Boston Scientific Scimed, Inc. Medical device including actuator
US20050283095A1 (en) * 2004-06-22 2005-12-22 Scimed Life Systems, Inc. Medical device including actuator
US20080034610A1 (en) * 2004-07-15 2008-02-14 Flynn Robin L Neck ring cooling
US11357960B2 (en) 2004-07-19 2022-06-14 Broncus Medical Inc. Devices for delivering substances through an extra-anatomic opening created in an airway
US10369339B2 (en) 2004-07-19 2019-08-06 Broncus Medical Inc. Devices for delivering substances through an extra-anatomic opening created in an airway
US8608724B2 (en) 2004-07-19 2013-12-17 Broncus Medical Inc. Devices for delivering substances through an extra-anatomic opening created in an airway
US8784400B2 (en) 2004-07-19 2014-07-22 Broncus Medical Inc. Devices for delivering substances through an extra-anatomic opening created in an airway
US8409167B2 (en) 2004-07-19 2013-04-02 Broncus Medical Inc Devices for delivering substances through an extra-anatomic opening created in an airway
US9198665B2 (en) 2004-09-22 2015-12-01 Covidien Lp Micro-spiral implantation device
US20080103585A1 (en) * 2004-09-22 2008-05-01 Dendron Gmbh Micro-Spiral Implantation Device
US8845676B2 (en) 2004-09-22 2014-09-30 Micro Therapeutics Micro-spiral implantation device
US8167901B2 (en) 2004-09-27 2012-05-01 Cook Medical Technologies Llc Removable vena cava filter comprising struts having axial bends
US20060069406A1 (en) * 2004-09-27 2006-03-30 Per Hendriksen Removable vena cava filter comprising struts having axial bends
US20070203486A1 (en) * 2004-10-14 2007-08-30 Boston Scientific Scimed, Inc. Ablation probe with distal inverted electrode array
US9144457B2 (en) 2004-10-14 2015-09-29 Boston Scientific Scimed, Inc. Ablation probe with distal inverted electrode array
US8052679B2 (en) 2004-10-14 2011-11-08 Boston Scientific Scimed, Inc. Ablation probe with electrode array and tissue penetrating distal tip electrode
US20060084965A1 (en) * 2004-10-14 2006-04-20 Scimed Life Systems, Inc. Ablation probe with distal inverted electrode array
US7229438B2 (en) 2004-10-14 2007-06-12 Boston Scientific Scimed, Inc. Ablation probe with distal inverted electrode array
US8951250B2 (en) 2004-10-28 2015-02-10 Boston Scientific Scimed, Inc. Ablation probe with flared electrodes
US7524318B2 (en) 2004-10-28 2009-04-28 Boston Scientific Scimed, Inc. Ablation probe with flared electrodes
US20090198232A1 (en) * 2004-10-28 2009-08-06 Boston Scientific Scimed, Inc. Ablation probe with flared electrodes
US9055948B2 (en) 2004-11-09 2015-06-16 Stryker Corporation Vaso-occlusive devices comprising complex-shape proximal portion and smaller diameter distal portion
US20060100661A1 (en) * 2004-11-09 2006-05-11 Boston Scientific Scimed, Inc. Vaso-occlusive devices comprising complex-shape proximal portion and smaller diameter distal portion
US20060106412A1 (en) * 2004-11-12 2006-05-18 Scimed Life Systems, Inc. Cutting balloon catheter having a segmented blade
US9603619B2 (en) 2004-11-12 2017-03-28 Boston Scientific Scimed, Inc. Cutting balloon catheter having flexible atherotomes
US20060106413A1 (en) * 2004-11-12 2006-05-18 Scimed Life Systems, Inc. Cutting balloon catheter having flexible atherotomes
US8038691B2 (en) 2004-11-12 2011-10-18 Boston Scientific Scimed, Inc. Cutting balloon catheter having flexible atherotomes
US8361096B2 (en) 2004-11-12 2013-01-29 Boston Scientific Scimed, Inc. Cutting balloon catheter having flexible atherotomes
US7291158B2 (en) 2004-11-12 2007-11-06 Boston Scientific Scimed, Inc. Cutting balloon catheter having a segmented blade
US9017353B2 (en) 2004-11-12 2015-04-28 Boston Scientific Scimed, Inc. Cutting balloon catheter having flexible atherotomes
US8690903B2 (en) 2004-11-12 2014-04-08 Boston Scientific Scimed, Inc. Cutting balloon catheter having flexible atherotomes
US20060121218A1 (en) * 2004-11-24 2006-06-08 Obara Robert Z Medical devices with highly flexible coated hypotube
US7989042B2 (en) 2004-11-24 2011-08-02 Boston Scientific Scimed, Inc. Medical devices with highly flexible coated hypotube
US20110035927A1 (en) * 2004-12-10 2011-02-17 Boston Scientific Scimed, Inc. Catheter Having an Ultra Soft Tip and Methods for Making the Same
US20060129176A1 (en) * 2004-12-10 2006-06-15 Scimed Life Systems, Inc. Catheter having an ultra soft tip and methods for making the same
US7815599B2 (en) 2004-12-10 2010-10-19 Boston Scientific Scimed, Inc. Catheter having an ultra soft tip and methods for making the same
US8973239B2 (en) 2004-12-10 2015-03-10 Boston Scientific Scimed, Inc. Catheter having an ultra soft tip and methods for making the same
US20060155323A1 (en) * 2005-01-07 2006-07-13 Porter Stephen C Intra-aneurysm devices
US10265075B2 (en) 2005-01-07 2019-04-23 Stryker Corporation Intra-aneurysm devices
US20110213405A1 (en) * 2005-01-12 2011-09-01 Stephen Christopher Porter Vaso-occlusive devices with attached polymer structures
US20060155324A1 (en) * 2005-01-12 2006-07-13 Porter Stephen C Vaso-occlusive devices with attached polymer structures
US20060178697A1 (en) * 2005-02-04 2006-08-10 Carr-Brendel Victoria E Vaso-occlusive devices including non-biodegradable biomaterials
US20060178696A1 (en) * 2005-02-04 2006-08-10 Porter Stephen C Macroporous materials for use in aneurysms
US20060276831A1 (en) * 2005-02-04 2006-12-07 Porter Stephen C Porous materials for use in aneurysms
EP2404559A1 (en) 2005-02-04 2012-01-11 Stryker Corporation Vaso-occlusive devices including non-biodegradable biomaterials
US7524329B2 (en) 2005-02-08 2009-04-28 Wilson-Cook Medical Inc. Self contracting stent
US20060184191A1 (en) * 2005-02-11 2006-08-17 Boston Scientific Scimed, Inc. Cutting balloon catheter having increased flexibility regions
US7993358B2 (en) 2005-02-11 2011-08-09 Boston Scientific Scimed, Inc. Cutting balloon catheter having increased flexibility regions
US7959549B2 (en) 2005-03-07 2011-06-14 Boston Scientific Scimed, Inc. Percutaneous array delivery system
US7695424B2 (en) 2005-03-07 2010-04-13 Boston Scientific Scimed, Inc. Percutaneous array delivery system
US7431687B2 (en) 2005-03-07 2008-10-07 Boston Scientific Scimed, Inc. Percutaneous array delivery system
US20060199990A1 (en) * 2005-03-07 2006-09-07 Boston Scientific Scimed, Inc. Percutaneous array delivery system
US8221412B2 (en) 2005-03-10 2012-07-17 Boston Scientific Scimed, Inc. Medical needles and electrodes with improved bending stiffness
US8366708B2 (en) 2005-03-10 2013-02-05 Boston Scientific Scimed, Inc. Medical needles and electrodes with improved bending stiffness
US20060206111A1 (en) * 2005-03-10 2006-09-14 Boston Scientific Scimed, Inc. Medical needles and electrodes with improved bending stiffness
US20100125250A1 (en) * 2005-03-10 2010-05-20 Boston Scientific Scimed, Inc. Medical needles and electrodes with improved bending stiffness
US7678107B2 (en) 2005-03-10 2010-03-16 Boston Scientific Scimed, Inc. Medical needles and electrodes with improved bending stiffness
US20060217702A1 (en) * 2005-03-25 2006-09-28 Boston Scientific Scimed, Inc. Ablation probe having a plurality of arrays of electrodes
US7670337B2 (en) 2005-03-25 2010-03-02 Boston Scientific Scimed, Inc. Ablation probe having a plurality of arrays of electrodes
US8409195B2 (en) 2005-03-25 2013-04-02 Boston Scientific Scimed, Inc. Ablation probe having a plurality of arrays of electrodes
US8152805B2 (en) 2005-03-25 2012-04-10 Boston Scientific Scimed, Inc. Ablation probe having a plurality of arrays of electrodes
US20100125270A1 (en) * 2005-03-25 2010-05-20 Boston Scientific Scimed, Inc. Ablation probe having a plurality of arrays of electrodes
WO2006104682A1 (en) 2005-03-25 2006-10-05 Boston Scientific Scimed, Inc. Ablation probe having a plurality of arrays of electrodes
US7955345B2 (en) 2005-04-01 2011-06-07 Nexgen Medical Systems, Inc. Thrombus removal system and process
US8449566B2 (en) 2005-04-01 2013-05-28 Nexgen Medical Systems, Inc. Thrombus removal system and process
US8480697B2 (en) 2005-04-01 2013-07-09 Nexgen Medical Systems, Inc. Thrombus removal system and process
US20110230909A1 (en) * 2005-04-01 2011-09-22 Nexgen Medical Systems, Inc. Thrombus removal system and process
USRE47376E1 (en) 2005-04-01 2019-05-07 Nexgen Medical Systems, Incorporated Thrombus removal system and process
US20060224179A1 (en) * 2005-04-01 2006-10-05 Nexgen Medical Systems, Incorporated Thrombus removal system and process
US20110230908A1 (en) * 2005-04-01 2011-09-22 Nexgen Medical Systems, Inc. Thrombus removal system and process
US8603122B2 (en) 2005-04-01 2013-12-10 Nexgen Medical Systems, Incorporated Thrombus removal system and process
US20090254111A1 (en) * 2005-04-28 2009-10-08 Hermann Monstadt Device for implanting occlusion spirals comprising an interior securing element
US20090062906A1 (en) * 2005-05-23 2009-03-05 Michihide Ozawa Stent with autonomic function
US8652199B2 (en) 2005-05-23 2014-02-18 Nec Tokin Corporation Stent with autonomic function
US20090068054A1 (en) * 2005-05-23 2009-03-12 Nec Tokin Corporation Ti-Ni-Nb alloy device
US9205178B2 (en) 2005-05-23 2015-12-08 Nec Tokin Corporation Ti-Ni-Nb alloy device
EP2397107A2 (en) 2005-08-26 2011-12-21 West Hertfordshire Hospitals Nhs Trust Surgical scaffold
US20070073374A1 (en) * 2005-09-29 2007-03-29 Anderl Steven F Endoprostheses including nickel-titanium alloys
US20070078480A1 (en) * 2005-10-04 2007-04-05 Boston Scientific Scimed, Inc. Self-expanding biodegradable or water-soluble vaso-occlusive devices
US20070078479A1 (en) * 2005-10-04 2007-04-05 Boston Scientific Scimed, Inc. Self-expanding vaso-occlusive devices with regulated expansion
US20070119165A1 (en) * 2005-11-30 2007-05-31 The Boeing Company Shape memory alloy linear actuator
US7464548B2 (en) * 2005-11-30 2008-12-16 The Boeing Company Shape memory alloy linear actuator
US7959631B2 (en) 2005-12-21 2011-06-14 Boston Scientific Scimed, Inc. Ablation device with compression balloon
US7704248B2 (en) 2005-12-21 2010-04-27 Boston Scientific Scimed, Inc. Ablation device with compression balloon
US20070142830A1 (en) * 2005-12-21 2007-06-21 Boston Scientific Scimed, Inc. Ablation device with compression balloon
EP2446919A2 (en) 2006-02-14 2012-05-02 C.R. Bard Inc. Coaxial PTA balloon
US20070219618A1 (en) * 2006-03-17 2007-09-20 Cully Edward H Endoprosthesis having multiple helically wound flexible framework elements
US20070239193A1 (en) * 2006-04-05 2007-10-11 Boston Scientific Scimed, Inc. Stretch-resistant vaso-occlusive devices with distal anchor link
US20070239194A1 (en) * 2006-04-05 2007-10-11 Boston Scientific Scimed, Inc. Vaso-occlusive devices having expandable fibers
US20080097139A1 (en) * 2006-07-14 2008-04-24 Boston Scientific Scimed, Inc. Systems and methods for treating lung tissue
US7527505B2 (en) * 2006-08-03 2009-05-05 Alps Electric Co., Ltd. Semiconductor device contact resistant to deterioration due to heat and method for manufacturing contact
US20080032519A1 (en) * 2006-08-03 2008-02-07 Alps Electric Co., Ltd. Semiconductor device contact resistant to deterioration due to heat and method for manufacturing contact
US9913969B2 (en) 2006-10-05 2018-03-13 Broncus Medical Inc. Devices for delivering substances through an extra-anatomic opening created in an airway
US8721646B2 (en) 2006-10-10 2014-05-13 William Casey Fox Methods and apparatus for a staple
US20080161808A1 (en) * 2006-10-10 2008-07-03 Biomedical Enterprises, Inc. Methods and apparatus for a staple
US9451955B2 (en) 2006-10-10 2016-09-27 William Casey Fox Methods and apparatus for a staple
US20080091267A1 (en) * 2006-10-13 2008-04-17 Boston Scientific Scimed, Inc. Medical devices including hardened alloys
US7780798B2 (en) 2006-10-13 2010-08-24 Boston Scientific Scimed, Inc. Medical devices including hardened alloys
US8480707B2 (en) 2007-02-01 2013-07-09 Cook Medical Technologies Llc Closure device and method for occluding a bodily passageway
US20100030246A1 (en) * 2007-02-01 2010-02-04 Dusan Pavcnik Closure Device and Method For Occluding a Bodily Passageway
US20100030259A1 (en) * 2007-02-01 2010-02-04 Dusan Pavcnik Closure Device and Method of Closing a Bodily Opening
US8617205B2 (en) 2007-02-01 2013-12-31 Cook Medical Technologies Llc Closure device
US9332977B2 (en) 2007-02-01 2016-05-10 Cook Medical Technologies Llc Closure device
US9554783B2 (en) 2007-02-01 2017-01-31 Cook Medical Technologies Llc Closure device and method of closing a bodily opening
US7972375B2 (en) 2007-02-05 2011-07-05 Boston Scientific Scimed, Inc. Endoprostheses including metal matrix composite structures
US20080188922A1 (en) * 2007-02-05 2008-08-07 Boston Scientific Scimed, Inc. Endoprostheses including metal matrix composite structures
US9289215B2 (en) 2007-03-13 2016-03-22 Covidien Lp Implant including a coil and a stretch-resistant member
US20100121350A1 (en) * 2007-04-12 2010-05-13 Greg Mirigian Instantaneous mechanical detachment mechanism for vaso-occlusive devices
US8469954B2 (en) 2007-04-13 2013-06-25 Boston Scientific Scimed, Inc. Radiofrequency ablation device
US20080255553A1 (en) * 2007-04-13 2008-10-16 Boston Scientific Scimed, Inc. Radiofrequency ablation device
US8216226B2 (en) 2007-04-13 2012-07-10 Boston Scientific Scimed, Inc. Radiofrequency ablation device
US20080287982A1 (en) * 2007-05-16 2008-11-20 Boston Scientific Scimed, Inc. Catheters for electrolytically detachable embolic devices
US20090026278A1 (en) * 2007-07-26 2009-01-29 Dan Latner Systems and methods for using a shape memory alloy to control temperature
US8308752B2 (en) 2007-08-27 2012-11-13 Cook Medical Technologies Llc Barrel occlusion device
US20090062838A1 (en) * 2007-08-27 2009-03-05 Cook Incorporated Spider device with occlusive barrier
US20090061136A1 (en) * 2007-08-27 2009-03-05 Cook Incorporated Apparatus and method for making a spider occlusion device
US20090062844A1 (en) * 2007-08-27 2009-03-05 Cook Incorporated Spider pfo closure device
US20090062845A1 (en) * 2007-08-27 2009-03-05 Cook Incorporated Barrel occlusion device
US8025495B2 (en) 2007-08-27 2011-09-27 Cook Medical Technologies Llc Apparatus and method for making a spider occlusion device
US8734483B2 (en) 2007-08-27 2014-05-27 Cook Medical Technologies Llc Spider PFO closure device
US20090105722A1 (en) * 2007-10-17 2009-04-23 Mindframe, Inc. Devices and methods for embolus removal during acute ischemic stroke
US10413310B2 (en) 2007-10-17 2019-09-17 Covidien Lp Restoring blood flow and clot removal during acute ischemic stroke
US8574262B2 (en) 2007-10-17 2013-11-05 Covidien Lp Revascularization devices
US11786254B2 (en) 2007-10-17 2023-10-17 Covidien Lp Methods of managing neurovascular obstructions
US10016211B2 (en) 2007-10-17 2018-07-10 Covidien Lp Expandable tip assembly for thrombus management
US11337714B2 (en) 2007-10-17 2022-05-24 Covidien Lp Restoring blood flow and clot removal during acute ischemic stroke
US9198687B2 (en) 2007-10-17 2015-12-01 Covidien Lp Acute stroke revascularization/recanalization systems processes and products thereby
US9387098B2 (en) 2007-10-17 2016-07-12 Covidien Lp Revascularization devices
US8197493B2 (en) 2007-10-17 2012-06-12 Mindframe, Inc. Method for providing progressive therapy for thrombus management
US10835257B2 (en) 2007-10-17 2020-11-17 Covidien Lp Methods of managing neurovascular obstructions
US20110160763A1 (en) * 2007-10-17 2011-06-30 Mindframe, Inc. Blood flow restoration and thrombus management methods
US20110160757A1 (en) * 2007-10-17 2011-06-30 Mindframe, Inc. Expandable tip assembly for thrombus management
US10123803B2 (en) 2007-10-17 2018-11-13 Covidien Lp Methods of managing neurovascular obstructions
US9320532B2 (en) 2007-10-17 2016-04-26 Covidien Lp Expandable tip assembly for thrombus management
US8070791B2 (en) 2007-10-17 2011-12-06 Mindframe, Inc. Multiple layer embolus removal
US8585713B2 (en) 2007-10-17 2013-11-19 Covidien Lp Expandable tip assembly for thrombus management
US8066757B2 (en) 2007-10-17 2011-11-29 Mindframe, Inc. Blood flow restoration and thrombus management methods
US8945143B2 (en) 2007-10-17 2015-02-03 Covidien Lp Expandable tip assembly for thrombus management
US9220522B2 (en) 2007-10-17 2015-12-29 Covidien Lp Embolus removal systems with baskets
US8945172B2 (en) 2007-10-17 2015-02-03 Covidien Lp Devices for restoring blood flow and clot removal during acute ischemic stroke
US20090112201A1 (en) * 2007-10-30 2009-04-30 Boston Scientific Scimed, Inc. Radiofrequency ablation device
US8518037B2 (en) 2007-10-30 2013-08-27 Boston Scientific Scimed, Inc. Radiofrequency ablation device
US8926680B2 (en) 2007-11-12 2015-01-06 Covidien Lp Aneurysm neck bridging processes with revascularization systems methods and products thereby
US20090125053A1 (en) * 2007-11-12 2009-05-14 Mindframe, Inc. Aneurysm neck bridging processes with revascularization systems methods and products thereby
US20090171441A1 (en) * 2007-12-27 2009-07-02 Cook Incorporated Endovascular graft with separately positionable and removable frame units
US8246672B2 (en) 2007-12-27 2012-08-21 Cook Medical Technologies Llc Endovascular graft with separately positionable and removable frame units
US20090177261A1 (en) * 2008-01-04 2009-07-09 Boston Scientific Scimed, Inc. Detachment mechanisms for implantable devices
US20090192455A1 (en) * 2008-01-07 2009-07-30 David Ferrera Novel enhanced ptna rapid exchange type of catheter system
US20090198153A1 (en) * 2008-01-31 2009-08-06 Shriver Edgar L Steering, piercing, anchoring, distending extravascular guidewire
US7713215B2 (en) 2008-01-31 2010-05-11 Shriver Edgar L Steering, piercing, anchoring, distending extravascular guidewire
US8940003B2 (en) 2008-02-22 2015-01-27 Covidien Lp Methods and apparatus for flow restoration
US8679142B2 (en) 2008-02-22 2014-03-25 Covidien Lp Methods and apparatus for flow restoration
US11529156B2 (en) 2008-02-22 2022-12-20 Covidien Lp Methods and apparatus for flow restoration
US9161766B2 (en) 2008-02-22 2015-10-20 Covidien Lp Methods and apparatus for flow restoration
US10456151B2 (en) 2008-02-22 2019-10-29 Covidien Lp Methods and apparatus for flow restoration
US8545514B2 (en) 2008-04-11 2013-10-01 Covidien Lp Monorail neuro-microcatheter for delivery of medical devices to treat stroke, processes and products thereby
US8088140B2 (en) 2008-05-19 2012-01-03 Mindframe, Inc. Blood flow restorative and embolus removal methods
US20090292297A1 (en) * 2008-05-19 2009-11-26 David Ferrere Devices for Restoring Blood Flow and Embolus Removal During Acute Ischemic Stroke
US20100174309A1 (en) * 2008-05-19 2010-07-08 Mindframe, Inc. Recanalization/revascularization and embolus addressing systems including expandable tip neuro-microcatheter
US20090306701A1 (en) * 2008-06-10 2009-12-10 Boston Scientific Scimed, Inc. Vascular access sheath with integrated return electrode
US9622751B2 (en) 2008-08-06 2017-04-18 Boston Scientific Scimed, Inc. Vaso-occlusive devices with textured surfaces
US20100063572A1 (en) * 2008-09-09 2010-03-11 Boston Scientific Scimed, Inc. Composite detachment mechanisms
US8940011B2 (en) 2008-09-09 2015-01-27 Boston Scientific Scimed, Inc. Composite detachment mechanisms
EP2859854A1 (en) 2008-09-09 2015-04-15 Boston Scientific Scimed, Inc. Composite detachment mechanism
US8808294B2 (en) 2008-09-09 2014-08-19 William Casey Fox Method and apparatus for a multiple transition temperature implant
US20100121373A1 (en) * 2008-11-10 2010-05-13 Cook Incorporated Removable vena cava filter with improved leg
US8246648B2 (en) 2008-11-10 2012-08-21 Cook Medical Technologies Llc Removable vena cava filter with improved leg
US20100137898A1 (en) * 2008-12-02 2010-06-03 Boston Scientific Scimed, Inc. Vaso-occlusive devices with attachment assemblies for stretch-resistant members
US10722255B2 (en) 2008-12-23 2020-07-28 Covidien Lp Systems and methods for removing obstructive matter from body lumens and treating vascular defects
US20100256600A1 (en) * 2009-04-04 2010-10-07 Ferrera David A Neurovascular otw pta balloon catheter and delivery system
EP3067014A1 (en) 2009-10-09 2016-09-14 W.L. Gore & Associates, Inc. Bifurcated highly conformable medical device branch access
WO2011044459A2 (en) 2009-10-09 2011-04-14 Gore Enterprise Holdings, Inc. Bifurcated highly conformable medical device branch access
EP3610832A1 (en) 2009-10-09 2020-02-19 W.L. Gore & Associates, Inc. Stent graft
WO2011119872A1 (en) 2010-03-24 2011-09-29 Nexgen Medical Systems, Inc. Thrombus removal system and process
US9539087B2 (en) 2010-04-28 2017-01-10 Empire Technology Development Llc Intravitreous self adaptive stent
WO2012008579A1 (en) 2010-07-15 2012-01-19 国立大学法人東北大学 Highly elastic stent and production method for highly elastic stent
US9480550B2 (en) 2010-07-15 2016-11-01 Clino Ltd. Highly elastic stent and production method for highly elastic stent
US8709176B1 (en) 2010-09-30 2014-04-29 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Prestressing shock resistant mechanical components and mechanisms made from hard, superelastic materials
US9023074B2 (en) 2010-10-15 2015-05-05 Cook Medical Technologies Llc Multi-stage occlusion devices
US9017246B2 (en) 2010-11-19 2015-04-28 Boston Scientific Scimed, Inc. Biliary catheter systems including stabilizing members
US10022212B2 (en) 2011-01-13 2018-07-17 Cook Medical Technologies Llc Temporary venous filter with anti-coagulant delivery method
US9554895B2 (en) 2011-04-05 2017-01-31 Northwood Medical Innovation Limited Ear scaffold
WO2012136950A1 (en) 2011-04-05 2012-10-11 Northwood Implants Limited Ear scaffold
US9796159B2 (en) 2011-04-14 2017-10-24 The United States Of America As Represented By The Administrator Of Nasa Electric field activated shape memory polymer composite
US9421070B2 (en) 2011-05-13 2016-08-23 Broncus Medical Inc. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
US9345532B2 (en) 2011-05-13 2016-05-24 Broncus Medical Inc. Methods and devices for ablation of tissue
US8709034B2 (en) 2011-05-13 2014-04-29 Broncus Medical Inc. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
US8932316B2 (en) 2011-05-13 2015-01-13 Broncus Medical Inc. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
US10631938B2 (en) 2011-05-13 2020-04-28 Broncus Medical Inc. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
US9993306B2 (en) 2011-05-13 2018-06-12 Broncus Medical Inc. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
US9486229B2 (en) 2011-05-13 2016-11-08 Broncus Medical Inc. Methods and devices for excision of tissue
US10695221B2 (en) 2011-09-02 2020-06-30 Katalyst Surgical, Llc Steerable laser probe
US9782294B2 (en) 2011-09-17 2017-10-10 Katalyst Surgical, Llc Steerable laser probe
US10492952B2 (en) 2011-10-17 2019-12-03 Katalyst Surgical, Llc Steerable laser probe
US9782295B2 (en) 2011-10-17 2017-10-10 Katalyst Surgical, Llc Steerable laser probe
US10098786B2 (en) 2011-10-17 2018-10-16 Katalyst Surgical, Llc Steerable laser probe
US9717630B1 (en) 2011-11-03 2017-08-01 Katalyst Surgical, Llc Steerable laser probe
US9554942B1 (en) 2011-11-03 2017-01-31 Katalyst Surgical, Llc Steerable laser probe
US10709609B2 (en) 2011-11-03 2020-07-14 Katalyst Surgical, Llc Steerable laser probe
US9889044B1 (en) 2011-11-03 2018-02-13 Katalyst Surgical, Llc Steerable laser probe
US10272260B2 (en) 2011-11-23 2019-04-30 Broncus Medical Inc. Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall
US9872731B2 (en) 2011-12-09 2018-01-23 Katalyst Surgical, Llc Steerable laser probe
US9855026B2 (en) 2011-12-23 2018-01-02 Katalyst Surgical, Llc Steerable laser probe
US10188373B2 (en) 2011-12-23 2019-01-29 Katalyst Surgical, Llc Steerable laser probe
EP3834748A1 (en) 2012-01-13 2021-06-16 W. L. Gore & Associates Inc Occlusion devices and methods of their manufacture
WO2013106694A2 (en) 2012-01-13 2013-07-18 W.L. Gore & Associates, Inc. Occlusion devices and methods of their manufacture and use
EP3323359A1 (en) 2012-01-13 2018-05-23 W.L. Gore & Associates Inc. Occlusion devices
US10940167B2 (en) 2012-02-10 2021-03-09 Cvdevices, Llc Methods and uses of biological tissues for various stent and other medical applications
US10376315B2 (en) 2012-05-08 2019-08-13 Katalyst Surgical, Llc Steerable laser probe
US9775745B2 (en) 2012-05-08 2017-10-03 Katalyst Surgical, Llc Steerable laser probe
US10245183B2 (en) 2012-05-09 2019-04-02 Katalyst Surgical, Llc Steerable laser probe
US9925089B2 (en) 2012-05-09 2018-03-27 Katalyst Surgical, Llc Steerable laser probe
US10052230B2 (en) 2012-05-10 2018-08-21 Katalyst Surgical, Llc Steerable laser probe
US9549780B2 (en) * 2012-05-13 2017-01-24 Katalyst Surgical, Llc Steerable laser probe
US11234766B2 (en) 2012-05-13 2022-02-01 Gregg D Scheller Steerable laser probe
US10307208B2 (en) 2012-05-13 2019-06-04 Katalyst Surgical, Llc Steerable laser probe
US20130304048A1 (en) * 2012-05-13 2013-11-14 Katalyst Surgical, Llc Steerable laser probe
US9925090B2 (en) 2012-06-06 2018-03-27 Katalyst Surgical, Llc Steerable laser probe
US10070923B2 (en) 2012-07-31 2018-09-11 Katalyst Surgical, Llc Steerable laser probe
US11045254B2 (en) 2012-08-10 2021-06-29 Katalyst Surgical, Llc Steerable laser probe
US10357313B2 (en) 2012-08-10 2019-07-23 Katalyst Surgical, Llc Steerable laser probe
US9888965B2 (en) 2012-08-10 2018-02-13 Katalyst Surgical, Llc Steerable laser probe
US9849035B2 (en) 2012-08-14 2017-12-26 Katalyst Surgical, Llc Steerable laser probe
US10335235B2 (en) 2012-08-14 2019-07-02 Katalyst Surgical, Llc Steerable laser probe
US10076444B2 (en) 2012-09-05 2018-09-18 Katalyst Surgical, Llc Steerable laser probe
US9770364B2 (en) 2012-09-05 2017-09-26 Katalyst Surgical, Llc Steerable laser probe
US10792187B2 (en) 2012-09-06 2020-10-06 Katalyst Surgical, Llc Steerable laser probe
US9901484B1 (en) 2012-09-06 2018-02-27 Katalyst Surgical, Llc Steerable laser probe
US9775744B2 (en) 2012-09-06 2017-10-03 Katalyst Surgical, Llc Steerable laser probe
US20170022691A1 (en) * 2012-09-07 2017-01-26 Kohler Co. Shape memory faucet
US9770363B2 (en) 2012-09-11 2017-09-26 Katalyst Surgical, Llc Steerable laser probe
US10052231B2 (en) 2012-09-12 2018-08-21 Katalyst Surgical, Llc Steerable laser probe
US9681986B2 (en) 2012-09-12 2017-06-20 Katalyst Surgical, Llc Steerable laser probe
US9795510B2 (en) 2012-09-23 2017-10-24 Katalyst Surgical, Llc Steerable laser probe
US10064755B2 (en) 2012-09-23 2018-09-04 Katalyst Surgical, Llc Steerable laser probe
US9757278B2 (en) 2012-09-24 2017-09-12 Katalyst Surgical, Llc Steerable laser probe
US10064754B2 (en) 2012-09-24 2018-09-04 Katalyst Surgical, Llc Steerable laser probe
US10695222B2 (en) 2012-10-13 2020-06-30 Katalyst Surgical, Llc Steerable laser probe
US11813445B2 (en) 2012-11-06 2023-11-14 Queen Mary University Of London Mechanical circulatory support device with centrifugal impeller designed for implantation in the descending aorta
US11406495B2 (en) 2013-02-11 2022-08-09 Cook Medical Technologies Llc Expandable support frame and medical device
US11266411B2 (en) 2014-08-14 2022-03-08 W. L. Gore & Associates, Inc. Anastomosis devices
EP3847972A1 (en) 2014-08-14 2021-07-14 W.L. Gore & Associates Inc Anastomosis devices
US10194914B2 (en) 2014-08-14 2019-02-05 W. L. Gore & Associates, Inc. Anastomosis devices
US10245182B2 (en) 2015-11-14 2019-04-02 Katalyst Surgical, Llc Laser probe with replaceable optic fibers
US10420460B2 (en) 2016-09-09 2019-09-24 Katalyst Surgical, Llc Illumination probe
US10646113B2 (en) 2016-09-09 2020-05-12 Katalyst Surgical, Llc Illuminated cannula
US10709504B2 (en) 2016-09-19 2020-07-14 Katalyst Surgical, Llc Curved laser probe with single-use optic fiber
US11524153B2 (en) 2016-10-03 2022-12-13 Queen Mary University Of London Mechanical circulatory support device with axial flow turbomachine optimized for heart failure and cardio-renal syndrome by implantation in the descending aorta
US20200407615A1 (en) * 2019-06-26 2020-12-31 US. Army Combat Capabilities Development Command, Army Research Laboratory SOLID STATE MARTENSITIC TRANSFORMATION PHASE CHANGE MATERIAL CO'qMPONENTS FOR THERMAL ENERGY STORAGE AND TRANSIENT HEAT TRANSFER SYSTEMS
US11679250B2 (en) 2019-06-28 2023-06-20 Theodosios Alexander Removable mechanical circulatory support for short term use

Also Published As

Publication number Publication date
DK105237C (en) 1966-09-05
GB1020872A (en) 1966-02-23
NL7410044A (en) 1974-10-25
CH433772A (en) 1967-04-15
NL143279B (en) 1974-09-16
AT247623B (en) 1966-06-27

Similar Documents

Publication Publication Date Title
US3174851A (en) Nickel-base alloys
Sure et al. The mechanical properties of grain refined β-cuaini strain-memory alloys
US4337090A (en) Heat recoverable nickel/titanium alloy with improved stability and machinability
Melton Ni-Ti based shape memory alloys
US4565589A (en) Nickel/titanium/copper shape memory alloy
Campbell Elements of metallurgy and engineering alloys
JPWO2006085609A1 (en) Novel Fe-Al alloy and method for producing the same
JP6874246B2 (en) Fe group shape memory alloy material and its manufacturing method
US3157495A (en) Alloy characterized by controlled thermoelasticity at elevated temperatures
Wojcik Properties and heat treatment of high transition temperature Ni-Ti-Hf alloys
Shahmir et al. Effect of Cu on amorphization of a TiNi alloy during HPT and shape memory effect after post‐deformation annealing
Nishida et al. Phase transformations in a Ti50Ni47. 5Fe2. 5 shape memory alloy
US3111405A (en) Aluminum-manganese-iron alloys
Adarsh et al. Influence of microstructure on mechanical and magnetic properties of an Fe-Ni-Co-Al-Ta-B shape memory alloy
Houck Physical and Mechanical Properties of Commercial Molybdenum-Base Alloys
Yuan et al. Transformation behaviors and superelasticity of Ti 50 Ni 48 Fe 2 shape memory alloy subjected to cold-rolling and subsequent annealing
JP2007262582A (en) Superconducting magnetic component
Lee et al. Microstructure and mechanical properties in B-doped Fe-31.9 Ni-9.6 Co-4.7 Ti alloys
JPH02270938A (en) Iron-based shape memorizing alloy and preparation thereof
EP0185452A1 (en) Nickel/titanium/niobium shape memory alloy and article
Aldas et al. DETERMINATION OF THE TRANSFORMATION TEMPERATURES OF AGED AND LOW MANGANESE RATED Cu-Al-Mn SHAPE MEMORY ALLOYS.
US3640704A (en) High-temperature-strength precipitation-hardenable austenitic iron-base alloys
Drennen et al. The development of melting and casting procedures for nitinol nickel-base alloys
Genevray The martensitic transformation in muntz metal
JPH0524983B2 (en)