Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3010513 A
Publication typeGrant
Publication date28 Nov 1961
Filing date12 Jun 1958
Priority date12 Jun 1958
Publication numberUS 3010513 A, US 3010513A, US-A-3010513, US3010513 A, US3010513A
InventorsGerner Robert V
Original AssigneePhillips Petroleum Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Initiation of in situ combustion in carbonaceous stratum
US 3010513 A
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

Nov. 28, 1961 R. v. GERNER 3,010,513

INITIATION OF IN SITU COMBUSTION IN CARBONACEQUS STRATUM 2 SheetsSheet 1 Filed June 12, 1958 1 ifPRODUCTION OVERBURDENI BUSHING MATERIAL j l TAR SAND TAR SAND F/G. FIG. 2

INVENTOR. R.V. GERNER BY mow/w ATTORNEYS Nov. 28, 1961 R. v. GERNER 3,010,513

INITIATION OF IN SITU COMBUSTION IN CARBONACEQUS STRATUM Filed June 12, 1958 2 Sheets-Sheet 2 PRODUCTION TAR SAND BUSHING MATERIAL INVENTOR. R.V.GERNER BY KZ A TTORNEYS United States Patent 3,010,513 INITIATION OF IN SITU COMBUSTION IN CARBONACEOUS STRATUM Robert V. Gerner, Bartlesville, Ok1a., assignor to Phillips Petroleum Company, a corporation of Delaware Filed June 12, 1958, Ser. No. 741,589 7 Claims. (Cl. 166-11) This invention relates to a process or method for initiating in situ combustion in a permeable carbonaceous stratum.

In situ combustion in the recovery of hydrocarbons from underground strata containing carbonaceous material is becoming more prevalent in the petroleum industry. In this technique of production, combustion is initiated in the carbonaceous stratum and the resulting combustion zone is caused to move through the stratum by either inverse or direct air drive whereby the heat of combustion of a substantial proportion of the hydrocarbon in the stratum drives out and, in the case of inverse drive, upgrades a substantial proportion of the unburned hydrocarbon material.

The ignition of carbonaceous material in a stratum around a borehole therein, followed by injection of air through the ignition borehole in the stratum, constitutes a direct air drive process for effecting in situ combustion and recovery of hydrocarbons from the Stratum. In this type of operation the stratum frequently plugs in front of the combustion zone because a heavy viscous liquid bank of hydrocarbon collects in the stratum in advance of the combustion zone which prevents movement of air to the combustion process. To overcome this difficulty and to permit the continued progress of the combustion zone through the stratum, inverse air injection has been resorted to. By this technique, a combustion zone is established around an ignition borehole by any suitable means and air is fed through the stratum to the combustion zone from one or more surrounding boreholes. Most of the techniques utilized are also being applied to the gasification of coal veins.

Whether using a direct'air drive or an inverse air injection in situ combustion process it is first necessary to ignite the carbonaceous stratum around a borehole therein before a combustion front can be caused to move thru the stratum. It has been found diflicult to establish a selfsustaining combustion in many carbonaceous strata and in establishing such a combustion zone certain problems have arisen. One method of initiating combustion heretofore utilized comprises heating the Well bore using downhole equipment, such as an electric or gas-fired heater, to raise the temperature of the stratum around the borehole to the ignition point and contacting the hot stratum with air or other O -containing gas so as to ignite the carbonaceous material in the stratum and thereby establish a combustion zone therein. In operating with this method, tar fluidized by the heating frequency flows into the production well and burns therein thereby overheating and damaging the downhole equipment. In other instances the heating of the Walls of the borehole by conventional means has resulted in sealing off the sand face within the borehole by a combination of fluid tar and back pressure built up in the ignition well by expansion of the air and combustion gases therein. In order to establish a self-sustaining combustion zone which can be moved thru a stratum by inverse air injection the initial combustion zone must be established to a sufficient depth to provide a reasonably large heat reservoir to assure sustained combustion with inverse air flow.

The process of the invention is concerned with a method if initiating self-sustaining in situ combustion in a car bonaceous stratum which avoids the above-mentioned difliculties.

ice

It is accordingly an object of the invention to provide a process for initiating and establishing in situ combustion in a carbonaceous stratum. Another object is to provide a process for initiating combustion in a carbonaceous stratum around a borehole therein which prevents burning of released liquid hydrocarbons in the open borehole. A further object is to avoid sealing the face of an ignition borehole during establishment of in situ combustion in the stratum around the borehole. A further object is to provide a process which establishes a deep and substantial self-sustaining combustion front around an ignition borehole. Other objects of the invention will become apparent upon consideration of the accompanying disclosure.

A broad aspect of the process comprises forming a plurality of fractures in a carbonaceous stratum around a borehole therein, placing within said fractures a mixture of particulate combustible solids and propping material, initiating combustion of said solids and burning same in the fractures so as to heat the adjacent stratum at least to combustion supporting temperature of the carbonaceous material, and injecting air thru the stratum to said borehole to ignite the in-place carbonaceous material and establish in situ combustion therein. The fractures are preferably made in a generally horizontal plane or along the plane of the stratum but they may also be made along generally vertical planes extending radially from the borehole. Fracturing in either manner is conventional in the art for opening up a stratum to greater flow of fluid hydrocarbons into a production borehole. The horizontal fractures in accordance with the invention are positioned at regular intervals in the stratum with from one to two feet of stratum between each pair of fractures. The fractures are filled with a particulate combustible material admixed with a propping agent, such as sand, crushed rock, small ceramic pebbles, etc., conventionally used in propping. Suitable combustion materials comprise particulate coal, charcoal, magnesium, aluminum and any other readily combustible material in the presence of freeoxygen. The use of charcoal in both the fractures and in the well bore packing will be described, but other suitable readily combustible materials may be utilized in lieu thereof.

Another aspect of the invention comprises packing in an ignition borehole a substantial mass of combustible particulate material alone or in admixture with particulate refractory material, or the borehole may be packed with an absorptive bed of solid particles which are absorptive per se or form a bed which absorbs and retains hydrocarbons in liquid form fluidized by the heating process in the Well bore. Here again particulate charcoal, alone, or in admixture with crushed firebrick, coarse sand, crushed rock, porous alumina pebbles, etc., or a bed of these refractory materials without combustible material is packed into the well bore to form an absorptive bed which retains liquid hydrocarbon material driven from the walls of the borehole during the heating thereof.

The combustible solids in the fractures are ignited by any suitable means and air is supplied to the ignited material either by injection thru the ignition borehole or thru boreholes in the stratum closely spaced from the ignition borehole. The combustion of the fuel in the fractures heats the carbonaceous stratum, not only adjacent the borehole wall, but also to a substantial depth of at least several feet from the borehole. As the heating progresses, the ignition temperature of the in-place carbonaceous material is reached and injection of air thru the stratum from surrounding boreholes ignites the carbonaceous material and initiates in situ combustion in the stratum. When the ignition borehole is packed with an absorptive bed of material, heating in the fractures fluidizes and releases inplace carbonaceous material which flows into the absorptive bed of material where it is retained and burned by the injected air, so as to hasten the heating of the stratum and more quickly bring the same to ignition temperature. This prevents burning of the liquid hydrocarbon material in the open borehole and prevents damage to the borehole wall andalso to downhole equipment utilized in the process.

A more complete understanding of the invention may be had by reference to the accompanying schematic drawing of which FIGURE 1 is an elevation in partial section of an arrangement of apparatus and material in an ignition borehole in accordance with one embodiment of the invention; FIGURE 2 is a similar view illustrating another form of apparatus and arrangement for elfecting the invention; and FIGURE 3 is a similar View showing an additional arrangement for effecting the invention.

Referring to FIGURE 1, a carbonaceous stratum such as a tar sand is penetrated by a borehole 12 in which is positioned a casing 14 extending almost to the upper level of stratum v10. A tubing string 16 extends from the .weil head 17 to a lower level in the stratum and is provided with a perforate or slotted section 18, provided with slots 19 on its lower end, substantially co-extensive with stratum 10. A conduit 20 connects with tubing 16 for injection of air or fuel gas as explained hereinafter. A

conduit 21 connects with casing 12 for exhausting gases from the annulus. Borehole 12 is expanded within stratum 10 as at 22, by under-reaming or other method, to provide space for an annular bed of absorptive material 24 around tubing section 18.

Referring to FIGURE 2 a large borehole 12 such as approximately two feet in diameter is drilled thru stratum 1t? and is provided with a casing 14. Regular size casing 26 of about eight inch diameter is positioned axially Within casing 14 and extends to the bottom of stratum 10. The section of casing 26 within stratum 10 is perforated by holes 28 at frequent intervals as shown and an absorptive bed of particulate solids 24 is packed around the perforate section of the casing. Holes 28 are smaller in size than the particulate material in bed 24. Before positioning casing 26 and bed '24 in stratum 10. the stratum is fractured in conventional manner to position fractures 30 at regular intervals thruout the stratum and extending outwardly from the borehole a distance in the range of 10 to 25 feet or more and as each fracture is formed, it is propped and filled with a mixture of particulate combustible solid and propping material. A tubing string 16 extends axially within casing 26 to the upper level of stratum 10 and a conduit 32 connects with casing 26 for injection of air and/ or fuel gas thereto. Conduit 21 connects with casing 12 and the outer annulus.

FIGURE 3 shows an arrangement wherein a borehole 12 is filled with an absorptive bed of particulate material 24 without any axial tubing or casing within the stratum. Here again fractures 30 are filled with a mixture of propping material and particulate combustible solids. Tubing string 16 extends from the well head into the bed of absorptive material or to the upper level thereof. Casing 14 extends from the well head to the top of stratum 10 or thereabouts. Air injection boreholes 36 extend thru the stratum and intersect fractures '30. These air injection boreholes are provided with casing 38 which extends to the upper level of stratum 10 and with tubing 40 extending to a lower level thereof. A heating coil 41, connected to a current source not shown, provides an ignition means.

Operating with the apparatus and arrangement illustrated in FIGURE 1, a bed of charcoal preferably in the form of small briquettes an inch or two in diameter is ignited in any suitable manner as by injecting a mixture of air and gaseous fuel thru tubing 16 and slots 19 into the charcoal mass and igniting the combustible mixture within the mass by a fusee, an electric spark, an electric heating element, or other suitable means (not shown). After ignition of the charcoal, the supply of fuel gas is preferably cut off and the charcoal is burned by injection of air thru tubing section 18 until the whole mass of charcoal is burning by injection of air thru tubing section 18 until the whole mass of charcoal is burning at which time additional air is slowly passed into the charcoal bed from stratum 10 by injection thru one or more surrounding boreholes. As the stratum around borehole 22 is raised substantially in temperature, carbonaceous material is fiuidized therein and passes into the bed of charcoal where it is consumed along with the burning charcoal. During this time, combustion gas is vented thru line 21. As the combustion temperature of stratum :10 is reached, passage of air therethru at an increased rate into borehole 22 ignites the same and establishes in situ combustion therein. After the heating process is well under way and stratum 1t) approaches ignition temperature, the injection of air thru tubing section 18 is preferably terminated and conduit 21 is closed so that tubing 16 can be utilized as an exhaust conduit with combustion products and produced hydrocarbons passing thru slots 19 and into tubing 16 as the combustion front established around borehole 22 is moved outwardly therefrom by the inversely injected air.

If desired, fracturing and burning of fuel in the fractures may be practiced with the arrangement shown in FIGURE 1.

Operation with the arrangement of FIGURE 2 is similar in many respects to that described in FIGURE 1. Ignition of the charcoal or other fuel in bed 24 and in fractures 30 is effected in any suitable manner. One method comprises dropping a substantial mass of burning charcoal on top of bed 24 through the well head by means of a conduit therein (not shown) and injecting air thru lines 21, 32, or 16. .By injecting air thru either conduit 16 or 32 and venting thru conduit 21 the combustion zone migrates from the already ignited charcoal downwardly countercurrently to the flow of air. A preferred. method comprises injecting a combustible premix of fuel gas and air into bed 24 from a ring of surrounding injection boreholes and igniting the mixture as it passes into casing 26 thru perforations 28 by means of a spark, an electric heating element, or a fusee (railroad flare) in conventional manner. The premix burns back thru the charcoal or other solid fuel in bed 24 and in the fractures so as to substantially simultaneously ignite the whole mass of fuel. Thereafter, ignition air is injected thru either conduit 16 or conduit 32 and also thru the surrounding injection boreholes with combustion gas being vented thru line 21. Injection of air thru conduits 16 and 32 serves as a coolant to casing 26 as well as supplying 0 for combustion. As the bed of fuel in the borehole and in the fractures is consumed and the temperature of the adjacent structure reaches the ignition point, injection of air from surrounding boreholes supplies the necessary oxygen for ignition of in-place carbonaceous material thereby starting the in situ combustion process in a deep section of the stratum around borehole 12. During the preheating of the stratum to ignition temperature, hydrocarbon material fluidized in stratum 10 and driven into bed 24 is consumed in the bed along with the solid fuel to aid in the preheating step.

Operation with the arrangement shown in FIGURE 3 comprises igniting the fuel mass in borehole 24 and in fractures 30 as before. One method comprises injecting a combustible premix of propane and air thru tubing 40 in boreholes 36 whereby the combustible mixture passes thru fractures 30 into the bed 24 in borehole 12 and passes either up the annulus or thru tubing 16. By igniting the fuel gas and air mixture by means of igniter 41 as it reaches the upper section of bed 24 the ignited area soon expands thru the bed and thru the fractures so as to initiate combustion in the entire fuel mass. After ignition has been effected, the flow of fuel gas is terminated and the combustion is supported by air injection either thru tubing 16, the annulus surrounding this tubing, or thru tubing 40. In this manner, the combustion of the fuel continues until the temperature of the stratum between borehole 12 and boreholes 36 is raised to ignition temperature at which time the in-place carbonaceous material automatically ignites in the presence of excess air injecte into the stratum.

It is preferable to inject air for the in situ combustion thru tubing 4% thereby establishing combustion in the entire' area between adjacent fractures and between boreholes 12 and boreholes 36. When this has been accomplished, injection of air thru a ring of boreholes more remote from borehole 12 than boreholes 36 is initiated so as to move the combustion zone outwardly toward the injection boreholes. During this phase of the in situ combustion process, produced gases may be vented thru tubing 40, tubing 16, or thru both.

In the arrangement shown in FIGURE 3 injection boreholes 36 are within a few feet of borehole 12 such as 2 to 8 or 10 feet. These boreholes intersect the fractures and there is no danger of blocking of the stratum and shutting off the how of combustion supporting air when utilizing direct injection thru borehole 12; hence, either inverse or direct air injection may be utilized to initiate combustion in the section of stratum comprising the annulus intermediate boreholes 36 and borehole 12. In the arrangement shown in FIGURE 2 or FIGURE 3, bed 24 may be made up entirely of particulate refractory solid material with all of the fuel for the process being provided in fractures 30 supplemented by the hot fluidized tar or other hydrocarbon material driven out of the stratum into the bed of refractory material.

It is to be understood that thermocouples positioned adjacent the wall of the ignition borehole or located at any suitable position within the ignition borehole may be utilized to determine combustion conditions downhole. Pressure sensing means within the production and ignition boreholes are also conventional equipment utilized in this type of process.

I claim:

l. A process for initiating combustion in and producing a permeable carbonaceous stratum which comprises forming a plurality of fractures around an ignition borehole in said stratum extending radially therefrom at least several feet; placing within said fractures to said depth a mixture of particulate combustible solids and propping material; filling said ignition borehole substantially to the top of said stratum with an absorptive bed of particulate solids; injecting combustion-supporting gas into said stratum thru at least one ofiset borehole so as to pass same to said combustible solids; igniting said solids and burning same with said gas so as to heat the adjacent stratum and drive liquid hydrocarbons into said absorptive bed; burning said liquid hydrocarbons in said bed with said injected gas so as to heat the surrounding stratum to combustion supporting temperature whereby sintering of the stratum in the wall of the ignition borehole is avoided; continuing the injection of said gas so as to ignite the surrounding stratum and advance the resulting combustion front generally horizontally thru said stratum toward said injection borehole countercurrently to the flow of gas; and recovering produced hydrocarbons thru said ignition borehole.

2. The process of claim 1 wherein said stratum is fractured horizontally around said borehole at intervals of about 1 to 2 feet.

3. The process of claim 1 wherein air is injected thru a ring of surrounding offset boreholes to sustain the burning of said solids, to ignite the carbonaceous material in said stratum after ignition temperature thereof is reached and to move said combustion front thru said stratum.

4. The process of claim -1 wherein said combustible solid comprises charcoal.

5. The process of claim 4 wherein charcoal is packed into said borehole to form said absorptive bed therein.

6. A process for initiating in situ combustion in a permeable carbonaceous stratum comprising forming a plurality of fractures in said stratum around an ignition borehole therein to a depth of at least several feet; placing within said fractures to said depth a mixture of particulate combustible solids and propping material; packing said borehole with an absorptive bed of particulate solids; burning said combustible solids in said fractures by igniting same and passing air between said ignition borehole and at least one offset borehole spaced within about 2 to 10 feet of said ignition borehole and penetrating said fractures, whereby liquid hydrocarbon flows into said bed and is burned therein and sintering of the stratum adjacent said bed is avoided; continuing the passage of air until said stratum intermediate said boreholes and intermediate said fractures is ignited; and thereafter passing air thru said stratum to the combustion zone from at least one borehole beyond said otfset borehole so as to advance the combustion zone thru said stratum outwardly from the ignition borehole.

7. The process of claim 6 wherein air passing between the boreholes is injected thru a ring of injection boreholes around said ignition borehole including said ofiset borehole; and, after in situ combustion is established, air for advancing the combustion zone is injected thru an outer ring of boreholes.

References ilited in the file of this patent UNITED STATES PATENTS 2,670,047 Mayes et al Feb. 23, 1954 2,818,118 Dixon Dec. 31, 1957 2,734,579 Elkins Feb. 14, 1959 2,901,043 Campion et al Aug. 25, 1-959

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2670047 *22 Apr 194923 Feb 1954Socony Vacuum Oil Co IncMethod of initiating subterranean combustion
US2734579 *28 Jun 195214 Feb 1956 Production from bituminous sands
US2818118 *19 Dec 195531 Dec 1957Phillips Petroleum CoProduction of oil by in situ combustion
US2901043 *29 Jul 195525 Aug 1959Pan American Petroleum CorpHeavy oil recovery
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3072190 *30 Mar 19598 Jan 1963Phillips Petroleum CoIgnition for in situ combustion
US3205946 *12 Mar 196214 Sep 1965Shell Oil CoConsolidation by silica coalescence
US3227211 *17 Dec 19624 Jan 1966Phillips Petroleum CoHeat stimulation of fractured wells
US3417818 *9 Jan 196724 Dec 1968Chevron ResMethod for initiating underground combustion
US3638727 *27 Sep 19681 Feb 1972Texaco IncMethod of treating a subterranean hydrocarbon-bearing formation
US3952802 *11 Dec 197427 Apr 1976In Situ Technology, Inc.Method and apparatus for in situ gasification of coal and the commercial products derived therefrom
US3981362 *17 Mar 197521 Sep 1976Texaco Inc.Fracturing
US4615391 *13 Aug 19847 Oct 1986Tenneco Oil CompanyUsing colloidally sized magnesium particles
US658168424 Apr 200124 Jun 2003Shell Oil CompanyIn Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US658850324 Apr 20018 Jul 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to control product composition
US658850424 Apr 20018 Jul 2003Shell Oil CompanyConversion of hydrocarbons to produce hydrocarbons, hydrogen, and/or novel product streams from underground coal formations; pyrolysis
US659190624 Apr 200115 Jul 2003Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US659190724 Apr 200115 Jul 2003Shell Oil CompanyPyrolysis
US660703324 Apr 200119 Aug 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to produce a condensate
US660957024 Apr 200126 Aug 2003Shell Oil CompanyIn situ thermal processing of a coal formation and ammonia production
US668838724 Apr 200110 Feb 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US669851524 Apr 20012 Mar 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US670201624 Apr 20019 Mar 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US670875824 Apr 200123 Mar 2004Shell Oil CompanyIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US671213524 Apr 200130 Mar 2004Shell Oil CompanyIn situ thermal processing of a coal formation in reducing environment
US671213624 Apr 200130 Mar 2004Shell Oil CompanyProviding heat to the formation; controlling the heat from the heat source such that an average temperature within at least a majority of the selected section of the formation is less than about 375 degrees c.
US671213724 Apr 200130 Mar 2004Shell Oil CompanyHeat exchanging to superimpose heat
US671554624 Apr 20016 Apr 2004Shell Oil CompanyChemical and/or physical properties of hydrocarbon material within a subterranean formation may need to be changed to allow hydrocarbon material to be more easily removed
US671554724 Apr 20016 Apr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US671554824 Apr 20016 Apr 2004Shell Oil CompanyElectrical heaters may be used to heat the subterranean formation by radiation and/or conduction
US671554924 Apr 20016 Apr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US671904724 Apr 200113 Apr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US672242924 Apr 200120 Apr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US672243024 Apr 200120 Apr 2004Shell Oil CompanyIn situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US672243124 Apr 200120 Apr 2004Shell Oil CompanyIn situ thermal processing of hydrocarbons within a relatively permeable formation
US672592024 Apr 200127 Apr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US672592124 Apr 200127 Apr 2004Shell Oil CompanyIn situ thermal processing of a coal formation by controlling a pressure of the formation
US672592824 Apr 200127 Apr 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a distributed combustor
US672939524 Apr 20014 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US672939624 Apr 20014 May 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US672939724 Apr 20014 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US672940124 Apr 20014 May 2004Shell Oil CompanySynthesis gas may be produced from the formation. synthesis gas may be used as a feed stream in an ammonia synthesis process. ammonia may be used as a feed stream in a urea synthesis process.
US673279424 Apr 200111 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US673279524 Apr 200111 May 2004Shell Oil CompanyProviding heat from one or more heat sources to at least one portion of formation; allowing heat to transfer from the one or more heat sources to a selected section of the formation; controlling the heat; producing a mixture from the formation
US673279624 Apr 200111 May 2004Shell Oil CompanyHeating section of formation with heat sources to temperature allowing generation of synthesis gas, providing synthesis gas generating fluid to section, removing synthesis gas generated, repeating for second section, blending for desired ratio
US673621524 Apr 200118 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US673939324 Apr 200125 May 2004Shell Oil CompanyIn situ thermal processing of a coal formation and tuning production
US673939424 Apr 200125 May 2004Shell Oil CompanyProviding heat and a synthesis gas generating fluid to the section to generate synthesis gas
US674258724 Apr 20011 Jun 2004Shell Oil CompanyIn situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US674258824 Apr 20011 Jun 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US674258924 Apr 20011 Jun 2004Shell Oil CompanyIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US674259324 Apr 20011 Jun 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US674583124 Apr 20018 Jun 2004Shell Oil CompanyMixture of hydrocarbons, h2, and/or other formation fluids may be produced from the formation. heat may be applied to the formation to raise a temperature of a portion of the formation to a pyrolysis temperature.
US674583224 Apr 20018 Jun 2004Shell Oil CompanySitu thermal processing of a hydrocarbon containing formation to control product composition
US674583724 Apr 20018 Jun 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US674902124 Apr 200115 Jun 2004Shell Oil CompanyPyrolysis
US675221024 Apr 200122 Jun 2004Shell Oil CompanyIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US675826824 Apr 20016 Jul 2004Shell Oil CompanyHeat exchanging, pyrolysis; monitoring temperature
US676121624 Apr 200113 Jul 2004Shell Oil CompanyPyrolysis temperature
US676388624 Apr 200120 Jul 2004Shell Oil CompanyIn situ thermal processing of a coal formation with carbon dioxide sequestration
US676948324 Apr 20013 Aug 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US676948524 Apr 20013 Aug 2004Shell Oil CompanyIn situ production of synthesis gas from a coal formation through a heat source wellbore
US678962524 Apr 200114 Sep 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US680519524 Apr 200119 Oct 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US682068824 Apr 200123 Nov 2004Shell Oil CompanyHeat exchanging after pyrolyzation to support synthesis gas generation
US686609724 Apr 200115 Mar 2005Shell Oil CompanySuperpositioning of heaters for pyrolysis to form mixture of hydrocarbons and hydrogen; controlling pressure; heat exchanging
US687170724 Apr 200129 Mar 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US687755424 Apr 200112 Apr 2005Shell Oil CompanyPyrolysis
US687755524 Apr 200212 Apr 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation while inhibiting coking
US688063324 Apr 200219 Apr 2005Shell Oil CompanyIncludes shutting-in an in situ treatment process in an oil shale formation may include terminating heating from heat sources providing heat to a portion of the formation; hydrocarbon vapor may be produced
US688063524 Apr 200119 Apr 2005Shell Oil CompanyMethods and systems for production of hydrocarbons, hydrogen, and/or other products from underground coal formations
US688976924 Apr 200110 May 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US689605324 Apr 200124 May 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US690200324 Apr 20017 Jun 2005Shell Oil CompanyAllowing heat to transfer from heaters to a formation selected for heating using a total organic matter weight percentage of > 5% and recirculating hydrogen
US690200424 Apr 20017 Jun 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a movable heating element
US691053624 Apr 200128 Jun 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US691307824 Apr 20015 Jul 2005Shell Oil CompanyIn Situ thermal processing of hydrocarbons within a relatively impermeable formation
US691585024 Apr 200212 Jul 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation having permeable and impermeable sections
US691844224 Apr 200219 Jul 2005Shell Oil CompanyIn situ conversion of hydrocarbons to produce hydrocarbons, hydrogen, and/or novel product streams from underground oil shale formations
US691844324 Apr 200219 Jul 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US692325724 Apr 20022 Aug 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce a condensate
US692325812 Jun 20032 Aug 2005Shell Oil CompanyIn situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US692906724 Apr 200216 Aug 2005Shell Oil CompanyHeat sources with conductive material for in situ thermal processing of an oil shale formation
US693215524 Oct 200223 Aug 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US694856224 Apr 200227 Sep 2005Shell Oil CompanyProduction of a blending agent using an in situ thermal process in a relatively permeable formation
US694856324 Apr 200127 Sep 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US695124724 Apr 20024 Oct 2005Shell Oil CompanyControl the heat exchanging, pyrolyzing hydrocarbons, enhancing oil recovery
US695308724 Apr 200111 Oct 2005Shell Oil CompanyThermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US695976124 Apr 20011 Nov 2005Shell Oil CompanyIn situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US696430024 Apr 200215 Nov 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US696637224 Apr 200122 Nov 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US696637424 Apr 200222 Nov 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation using gas to increase mobility
US696912324 Oct 200229 Nov 2005Shell Oil CompanyUpgrading and mining of coal
US697396724 Apr 200113 Dec 2005Shell Oil Companyhydrocarbons within a coal formation are converted in situ within the formation to yield a mixture of relatively high quality hydrocarbon products, hydrogen, and other products; the coal is heated to to temperatures that allow pyrolysis
US698154824 Apr 20023 Jan 2006Shell Oil Companyheating and pyrolysis of heavy hydrocarbon sections in subterranean wells to produce light hydrocarbons; reduced viscosity improves movement; fluid removal in liquid and/or vapor phase
US699103124 Apr 200131 Jan 2006Shell Oil CompanyIn situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US699103224 Apr 200231 Jan 2006Shell Oil CompanyHeat sources positioned within the formation in a selected pattern raise a temperature of a portion of the formation to a pyrolysis temperature.
US699103324 Apr 200231 Jan 2006Shell Oil CompanyIn situ thermal processing while controlling pressure in an oil shale formation
US699103624 Apr 200231 Jan 2006Shell Oil CompanyThermal processing of a relatively permeable formation
US699104524 Oct 200231 Jan 2006Shell Oil CompanyForming openings in a hydrocarbon containing formation using magnetic tracking
US699416024 Apr 20017 Feb 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US699416124 Apr 20017 Feb 2006Kevin Albert MaherIn situ thermal processing of a coal formation with a selected moisture content
US699416824 Apr 20017 Feb 2006Scott Lee WellingtonIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US699416924 Apr 20027 Feb 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation with a selected property
US699725524 Apr 200114 Feb 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a reducing environment
US699751824 Apr 200214 Feb 2006Shell Oil CompanyIn situ thermal processing and solution mining of an oil shale formation
US700424724 Apr 200228 Feb 2006Shell Oil CompanyConductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US700425124 Apr 200228 Feb 2006Shell Oil CompanyIn situ thermal processing and remediation of an oil shale formation
US701115424 Oct 200214 Mar 2006Shell Oil CompanyIn situ recovery from a kerogen and liquid hydrocarbon containing formation
US701397224 Apr 200221 Mar 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a natural distributed combustor
US701766124 Apr 200128 Mar 2006Shell Oil CompanyProduction of synthesis gas from a coal formation
US703266024 Apr 200225 Apr 2006Shell Oil CompanyIn situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US703658324 Sep 20012 May 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US704039824 Apr 20029 May 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation in a reducing environment
US704039924 Apr 20029 May 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a controlled heating rate
US704040024 Apr 20029 May 2006Shell Oil CompanyIn situ thermal processing of a relatively impermeable formation using an open wellbore
US705180724 Apr 200230 May 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with quality control
US705180824 Oct 200230 May 2006Shell Oil CompanySeismic monitoring of in situ conversion in a hydrocarbon containing formation
US705181124 Apr 200230 May 2006Shell Oil CompanyIn situ thermal processing through an open wellbore in an oil shale formation
US705560024 Apr 20026 Jun 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with controlled production rate
US706314524 Oct 200220 Jun 2006Shell Oil CompanyMethods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US706625424 Oct 200227 Jun 2006Shell Oil CompanyIn situ thermal processing of a tar sands formation
US706625724 Oct 200227 Jun 2006Shell Oil CompanyIn situ recovery from lean and rich zones in a hydrocarbon containing formation
US707357824 Oct 200311 Jul 2006Shell Oil CompanyStaged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US707719824 Oct 200218 Jul 2006Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using barriers
US707719924 Oct 200218 Jul 2006Shell Oil CompanyIn situ thermal processing of an oil reservoir formation
US708646524 Oct 20028 Aug 2006Shell Oil CompanyIn situ production of a blending agent from a hydrocarbon containing formation
US708646824 Apr 20018 Aug 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US709001324 Oct 200215 Aug 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US709694124 Apr 200129 Aug 2006Shell Oil CompanyIn situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US709694224 Apr 200229 Aug 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation while controlling pressure
US709695324 Apr 200129 Aug 2006Shell Oil CompanyIn situ thermal processing of a coal formation using a movable heating element
US710099424 Oct 20025 Sep 2006Shell Oil Companyinjecting a heated fluid into the well bore, producing a second fluid from the formation, conducting an in situ conversion process in the selected section.
US710431924 Oct 200212 Sep 2006Shell Oil CompanyIn situ thermal processing of a heavy oil diatomite formation
US711456624 Oct 20023 Oct 2006Shell Oil CompanyHeat treatment using natural distributed combustor; oxidation of hydrocarbons to generate heat; pyrolysis
US712134124 Oct 200317 Oct 2006Shell Oil CompanyConductor-in-conduit temperature limited heaters
US712134223 Apr 200417 Oct 2006Shell Oil CompanyThermal processes for subsurface formations
US712815324 Oct 200231 Oct 2006Shell Oil CompanyTreatment of a hydrocarbon containing formation after heating
US715617624 Oct 20022 Jan 2007Shell Oil CompanyInstallation and use of removable heaters in a hydrocarbon containing formation
US716561524 Oct 200223 Jan 2007Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US721973424 Oct 200322 May 2007Shell Oil CompanyInhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US722586631 Jan 20065 Jun 2007Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US732036422 Apr 200522 Jan 2008Shell Oil CompanyInhibiting reflux in a heated well of an in situ conversion system
US735387222 Apr 20058 Apr 2008Shell Oil CompanyStart-up of temperature limited heaters using direct current (DC)
US735718022 Apr 200515 Apr 2008Shell Oil CompanyInhibiting effects of sloughing in wellbores
US736058817 Oct 200622 Apr 2008Shell Oil CompanyThermal processes for subsurface formations
US737070422 Apr 200513 May 2008Shell Oil CompanyTriaxial temperature limited heater
US738387722 Apr 200510 Jun 2008Shell Oil CompanyTemperature limited heaters with thermally conductive fluid used to heat subsurface formations
US742491522 Apr 200516 Sep 2008Shell Oil CompanyVacuum pumping of conductor-in-conduit heaters
US743107622 Apr 20057 Oct 2008Shell Oil CompanyTemperature limited heaters using modulated DC power
US743503721 Apr 200614 Oct 2008Shell Oil CompanyLow temperature barriers with heat interceptor wells for in situ processes
US746169123 Jan 20079 Dec 2008Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US748127422 Apr 200527 Jan 2009Shell Oil CompanyTemperature limited heaters with relatively constant current
US749066522 Apr 200517 Feb 2009Shell Oil CompanyVariable frequency temperature limited heaters
US750052821 Apr 200610 Mar 2009Shell Oil CompanyLow temperature barrier wellbores formed using water flushing
US751000022 Apr 200531 Mar 2009Shell Oil CompanyReducing viscosity of oil for production from a hydrocarbon containing formation
US752709421 Apr 20065 May 2009Shell Oil CompanyDouble barrier system for an in situ conversion process
US753371920 Apr 200719 May 2009Shell Oil CompanyWellhead with non-ferromagnetic materials
US754032419 Oct 20072 Jun 2009Shell Oil CompanyHeating hydrocarbon containing formations in a checkerboard pattern staged process
US754687321 Apr 200616 Jun 2009Shell Oil CompanyLow temperature barriers for use with in situ processes
US754947020 Oct 200623 Jun 2009Shell Oil CompanySolution mining and heating by oxidation for treating hydrocarbon containing formations
US755609520 Oct 20067 Jul 2009Shell Oil CompanySolution mining dawsonite from hydrocarbon containing formations with a chelating agent
US755609620 Oct 20067 Jul 2009Shell Oil CompanyVarying heating in dawsonite zones in hydrocarbon containing formations
US755936720 Oct 200614 Jul 2009Shell Oil CompanyTemperature limited heater with a conduit substantially electrically isolated from the formation
US755936820 Oct 200614 Jul 2009Shell Oil CompanySolution mining systems and methods for treating hydrocarbon containing formations
US756270620 Oct 200621 Jul 2009Shell Oil CompanySystems and methods for producing hydrocarbons from tar sands formations
US756270719 Oct 200721 Jul 2009Shell Oil CompanyHeating hydrocarbon containing formations in a line drive staged process
US757505221 Apr 200618 Aug 2009Shell Oil CompanyIn situ conversion process utilizing a closed loop heating system
US757505321 Apr 200618 Aug 2009Shell Oil CompanyLow temperature monitoring system for subsurface barriers
US758158920 Oct 20061 Sep 2009Shell Oil CompanyMethods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US758478920 Oct 20068 Sep 2009Shell Oil CompanyMethods of cracking a crude product to produce additional crude products
US759131020 Oct 200622 Sep 2009Shell Oil CompanyMethods of hydrotreating a liquid stream to remove clogging compounds
US759714720 Apr 20076 Oct 2009Shell Oil CompanyTemperature limited heaters using phase transformation of ferromagnetic material
US760405220 Apr 200720 Oct 2009Shell Oil CompanyCompositions produced using an in situ heat treatment process
US761096220 Apr 20073 Nov 2009Shell Oil CompanyProviding acidic gas to a subterrean formation, such as oil shale, by heating from an electrical heater and injecting through an oil wellbore; one of the acidic acids includes hydrogen sulfide and is introduced at a pressure below the lithostatic pressure of the formation to produce fluids; efficiency
US763168920 Apr 200715 Dec 2009Shell Oil CompanySulfur barrier for use with in situ processes for treating formations
US763169019 Oct 200715 Dec 2009Shell Oil CompanyHeating hydrocarbon containing formations in a spiral startup staged sequence
US763502320 Apr 200722 Dec 2009Shell Oil CompanyTime sequenced heating of multiple layers in a hydrocarbon containing formation
US763502419 Oct 200722 Dec 2009Shell Oil CompanyHeating tar sands formations to visbreaking temperatures
US763502520 Oct 200622 Dec 2009Shell Oil CompanyCogeneration systems and processes for treating hydrocarbon containing formations
US76409807 Apr 20085 Jan 2010Shell Oil CompanyThermal processes for subsurface formations
US764476519 Oct 200712 Jan 2010Shell Oil CompanyHeating tar sands formations while controlling pressure
US767368119 Oct 20079 Mar 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US767378620 Apr 20079 Mar 2010Shell Oil CompanyWelding shield for coupling heaters
US767731019 Oct 200716 Mar 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US767731419 Oct 200716 Mar 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US768164719 Oct 200723 Mar 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US768329620 Apr 200723 Mar 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US770351319 Oct 200727 Apr 2010Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US771717119 Oct 200718 May 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US773094519 Oct 20078 Jun 2010Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US773094619 Oct 20078 Jun 2010Shell Oil CompanyTreating tar sands formations with dolomite
US773094719 Oct 20078 Jun 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US77359351 Jun 200715 Jun 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US778542720 Apr 200731 Aug 2010Shell Oil CompanyChromium, nickel, copper; niobium, iron manganese, nitrogen; nanonitrides; system for heating a subterranean formation;
US779372220 Apr 200714 Sep 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US779822018 Apr 200821 Sep 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US779822131 May 200721 Sep 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US783113421 Apr 20069 Nov 2010Shell Oil CompanyGrouped exposed metal heaters
US783248418 Apr 200816 Nov 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US784140119 Oct 200730 Nov 2010Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US784140818 Apr 200830 Nov 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US784142518 Apr 200830 Nov 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US784541119 Oct 20077 Dec 2010Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US784992218 Apr 200814 Dec 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US786037721 Apr 200628 Dec 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US786638520 Apr 200711 Jan 2011Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US786638613 Oct 200811 Jan 2011Shell Oil Companyproduction of hydrocarbons, hydrogen, and/or other products from various subsurface formations such as hydrocarbon containing formations through use of oxidizing fluids and heat
US786638813 Oct 200811 Jan 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US791235820 Apr 200722 Mar 2011Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US793108618 Apr 200826 Apr 2011Shell Oil CompanyHeating systems for heating subsurface formations
US794219721 Apr 200617 May 2011Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US79422034 Jan 201017 May 2011Shell Oil CompanyThermal processes for subsurface formations
US795045318 Apr 200831 May 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US798686921 Apr 200626 Jul 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US801145113 Oct 20086 Sep 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US802757121 Apr 200627 Sep 2011Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US804261018 Apr 200825 Oct 2011Shell Oil CompanyParallel heater system for subsurface formations
US807084021 Apr 20066 Dec 2011Shell Oil CompanyTreatment of gas from an in situ conversion process
US808381320 Apr 200727 Dec 2011Shell Oil CompanyMethods of producing transportation fuel
US811327213 Oct 200814 Feb 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US814666113 Oct 20083 Apr 2012Shell Oil CompanyCryogenic treatment of gas
US814666913 Oct 20083 Apr 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US81518809 Dec 201010 Apr 2012Shell Oil CompanyMethods of making transportation fuel
US815190710 Apr 200910 Apr 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US816205913 Oct 200824 Apr 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US816240510 Apr 200924 Apr 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US817233510 Apr 20098 May 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US817730510 Apr 200915 May 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US819163028 Apr 20105 Jun 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US819268226 Apr 20105 Jun 2012Shell Oil CompanyHigh strength alloys
US819665813 Oct 200812 Jun 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US82205399 Oct 200917 Jul 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US822416324 Oct 200317 Jul 2012Shell Oil CompanyVariable frequency temperature limited heaters
US822416424 Oct 200317 Jul 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US822416521 Apr 200617 Jul 2012Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US822586621 Jul 201024 Jul 2012Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US823092716 May 201131 Jul 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US823378229 Sep 201031 Jul 2012Shell Oil CompanyGrouped exposed metal heaters
US823873024 Oct 20037 Aug 2012Shell Oil CompanyHigh voltage temperature limited heaters
US824077413 Oct 200814 Aug 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US82565129 Oct 20094 Sep 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US82618329 Oct 200911 Sep 2012Shell Oil CompanyHeating subsurface formations with fluids
US82671709 Oct 200918 Sep 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US82671859 Oct 200918 Sep 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US827245513 Oct 200825 Sep 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US827666113 Oct 20082 Oct 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US82818619 Oct 20099 Oct 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US832768118 Apr 200811 Dec 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US83279329 Apr 201011 Dec 2012Shell Oil CompanyRecovering energy from a subsurface formation
US83533479 Oct 200915 Jan 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US835562322 Apr 200515 Jan 2013Shell Oil CompanyTemperature limited heaters with high power factors
US838181518 Apr 200826 Feb 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US84345559 Apr 20107 May 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US84487079 Apr 201028 May 2013Shell Oil CompanyNon-conducting heater casings
US845935918 Apr 200811 Jun 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US848525211 Jul 201216 Jul 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US853649713 Oct 200817 Sep 2013Shell Oil CompanyMethods for forming long subsurface heaters
US855597131 May 201215 Oct 2013Shell Oil CompanyTreating tar sands formations with dolomite
US856207825 Nov 200922 Oct 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US857903117 May 201112 Nov 2013Shell Oil CompanyThermal processes for subsurface formations
US860609120 Oct 200610 Dec 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US860824926 Apr 201017 Dec 2013Shell Oil CompanyIn situ thermal processing of an oil shale formation
US86278878 Dec 200814 Jan 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US86318668 Apr 201121 Jan 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US863632325 Nov 200928 Jan 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US866217518 Apr 20084 Mar 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US87017688 Apr 201122 Apr 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US87017698 Apr 201122 Apr 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US87398748 Apr 20113 Jun 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US875290410 Apr 200917 Jun 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US878958612 Jul 201329 Jul 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US879139618 Apr 200829 Jul 2014Shell Oil CompanyFloating insulated conductors for heating subsurface formations
US20090159277 *16 Dec 200825 Jun 2009Grant HockingEnhanced Hydrocarbon Recovery by in Situ Combustion of Oil Sand Formations
US20140014342 *10 Jul 201216 Jan 2014Argosy TechnologiesMethod of Treatment and Perforation of Near-Well Zone
WO2002086283A1 *10 Oct 200131 Oct 2002Shell Int ResearchIn-situ combustion for oil recovery
Classifications
U.S. Classification166/259, 166/262
International ClassificationE21B36/02, E21B36/00
Cooperative ClassificationE21B36/02
European ClassificationE21B36/02