Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS2974937 A
Publication typeGrant
Publication date14 Mar 1961
Filing date3 Nov 1958
Priority date3 Nov 1958
Publication numberUS 2974937 A, US 2974937A, US-A-2974937, US2974937 A, US2974937A
InventorsKiel Othar M
Original AssigneeJersey Prod Res Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Petroleum recovery from carbonaceous formations
US 2974937 A
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

March 14, 1961 o. M. KIEL 2,974,937

PETROLEUM RECOVERY FROM CARBONACEOUS FORMATIONS Filed NOV. 5, 1958 PRODUCED S OIL SHALE HOT GASESVK INJECTED Orhor M. Kiel lnveniop By M Q. Attorney United States Patent O PETROLEUM RECOVERY FROM CARBONACEOUS FORMATIONS Othar M. Kiel, Tulsa, Okla., assignor to Jersey Production Research Company, a corporation of Delaware Filed Nov. 3, 1958, Ser. No. 771,435

2 Claims. c1. 262-3) This invention relates to a method for recovering petroleum oil from earthen formations containing hydrocarbons. The invention is specifically adapted to the production of petroleum from subterranean formations of low permeability and those formations in which the petroleum oil is closely bound to the formation material.

Large reserves of crude oil in the form of shale oil are potentially available in large deposits in both this country and abroad. Present methods of recovering this oil have rendered shale oil as a source of additional oil completely infeasible from the present economic viewpoint. It is known in the art that the conventional methods of obtaining petroleum oil from oil shale usually involve the minfrom such retorts then must be disposed of. Even though potential recovery of the oil may approximate 25-75 gallons per ton of shale processed, the aggregate m-imng and processing costs impose such aneconomic burden that shale oil is not at present a commercially feasible source of supply for petroleum.

Accordingly, it is an objective of the present invention to provide an oil recovery method wherein crude oil is readily recovered from oil bearing sub-strata. More specifically, this invention is a process for the in situ dissooiation of petroleum oil within oil shale deposits whereby the petroleum is readily removed and high recovery of oil in place is obtained. It is especially an object of the invention to provide a method for petroleum recovery which is rapid and efiicient. These and related objects of this invention will become more apparent from the ensumg description.

In the operation according to this invention, petroleum oil is separated from oil-bearing shale so that its recovery is readily realized. The first step in the process lies in providing a direct application of heat to an exposed surface of virgin strata. The heat and the application thereof are always applied directly to the surface of untreated strata. Treated strata or an oil-bearing formation is caused to disintegrate and fall away from the untreated oil-bearing formation. That is, the process may be called a selfstoping process which leaves a continuous face of virgin oil shale available for the application of heat to extract the oil therefrom. More particularly, the invention accomplishes in situ decomposition of the oil shale and induces the separation of the oil from the strata in a manner which permits the oil to be produced by a practical thermal activated oil recovery method.

In the process 'of this invention, oil shaleis heated in situ at a temperature above 600 F. and generally withr I expansion of the oil and its dissociation from the stratum the stratum to disintegrate. Thus the earthen 2,974,937. Patented Mar. 14, 1961 ICC 2 material contained in the stratum will separate and fall away from the oil-bearing formation. This leaves a fresh oil-bearing surface exposed to the hot gases.- 7

The process of this invention may be controlled in various ways. In general, the rate of injection of the hot gases may be readily adjusted and controlled by simply regulating the flow and temperature of hot gases onto the face of the shale deposit containing oil. High volumes of high temperature gases will tend to accelerate the rate of production; and, conversely, low volumes and temperatures will tend to retard the process.

In carrying out the present process, drifts or tunnels are made into an oil-containing shale wherein conduits 'or tubing containing perforations are placed along the base of an oil stratum. Well bores laterally spaced from an entrance of the drifts are also drilled as necessary. Tubing which has been placed along the base of the oil shale terminates at these well bores, with oil being produced through these boreholes. Tubing or pipes which are placed along the base of the oil strata are perforated along their lengths to disperse the hot gases onto the face of an oil shale. Further, drifts through which this perforated pipe or tubing is placed are made of sufficient size so that as the oil in the roof is extracted, the roof will stope or fall into the drift, exposing new formations t be treated. The invention may be better understood by reference to the attached figures which schematically depict the em-. bodiment of the invention contemplated to illustrate the best mode of carrying out the invention. a

Figure 1 illustrates a vertical crosssection through an oil-bearing stratum; and

iF-lglllB 2 illustrates avertical cross-section across Figure 1 along the lines I I'II and'further depicts steps in installation of the apparatus and operation of 'this'oilproducing process.

With reference to the drawings, especially to Figure 1,

the numeral 1' designates an oil-bearing formation above which is a relatively non oil-bearing impervious shale stratum 2 and below which is another relatively impervious stratum 3. Further, this deposit is shown outcrop material in a conventional manner. The casing placed in.

this manner leaves a borehole within the oil stratum which is completely uncased and will allow unrestricted flow of vapor from theupper part of the drift into the borehole.

As in conventional oil field practice, the casing may also be extended through the oil-bearing formation and, after being sealed in place, perforated by conventional means whereby produced fluid will pass through the perforations into the borehole to be produced to the surface. By using this technique of placing the casing and then per forating the casing at desired points, control of the production points for fluids from the formation may be effected.

As beforementioned, drifts or tunnels 12 are made into the oil-bearing stratum 1. These tunnels are directed to terminate at the well bore 10. Tubing 11 is then placed in the tunnel, the tubing containing perforations 14 and a pipe cap 16. A cap 15-which fits snugly around tubing 11is placed against the outcropping face of strata 1 and 3. Although not shown, cap 15 may be made of a size to extend over the outcropping face of the shale to seal on both formations 2 and 3 as well as caps of laterally spaced drifts preventing escape of gases therefrom. In the usual 3 case such a large cap is not necessary as oil shale is essentially impermeable to flow of fluids.

To better describe installation of the equipment and the operation of the process in this invention, attention is now directed to Figure 2. First referring to the portion of the figure above letter A, it can be seen that the producing well has been drilled to the top of stratum 3. A drift or tunnel 12 has been completed to the base of this production well 10. Now referring to the figure above the letter B, it can be seen that perforated tubing 11 has been placed in the tunnel 12. Thence looking at the drawing above the letter C, hot gases are being injected through tubing 11. Stoping or disintegration of the shale has started. The stoped shale is shown in the bottom of the drift 12 and is designated by numeral 20. Then on this same figure the illustration above the letter D shows the tunnel or drift 12 becoming larger, and more stoped formation material 20 gathering in this drift. Although material 20 is not shown in Figure 2 to cover tubing 11, it will do so except for perforations 14.

The 'stoped material falling from the roofs of the tunnels or drifts serves as direction batfies for the hot gases. That is, the stoped material falls around the upwardly directed hot gas jets which are injected from the perfora- "tions in the pipe. This stoped material will cover the tubing 11 between perforations 14 but not the perforations themselves, as the force of the upwardly directed hot gases will direct material 28 away from the perforations. There is adequate space for the spent shale in the drifts without covering perforations 14, since for each volume of oil shale that is treated 15 to 50 percent of shale oil will be removed leaving from 85 to 50 percent spent shale. These percentages correspond to the recoveries of oil from oil shale described earlier. The spent shale falling around perforations 14 will form baffles to direct the hot gases upward. These stoped material battles thus direct the hot gases onto the face of the shale and -.prevent the hot gas bypassing from the perforations of the pipe directly through the drift to a production well.

As'may be noted, the surface equipment which would normally be employed for producing and injecting the hot gases as well as the separation equipment for separating the injected gas from the produced oil vapors are not shown. Such equipment would be conventional, and its inclusion here is not considered essential for the purposes of this description.

The underground or in-place separation of the earthen material from the oil as carried out in accordance with the instant process reduces the large mining, crushing, and retorting costs involved in the methods presently used at the earths surface.

While the foregoing description has been directed toward an embodiment of the invention which is considered to constitute the best mode of carrying out the invention, it will be recognized that numerous modifications, additions, and subtractions may be made to the illustrated embodiment without departing from the spirit or scope of this invention.

The invention claimed is:

l. A method for producing oil from a stratum of oil shale comprising driving a drift along the lower portion of the stratum and placing a perforated conduit therein which is capped at its inner end, said drift terminating at a substantially vertical hole drilled from the ground surface, passing hot gases through the conduit toward said borehole at a temperature above 600 F. to vaporize at least a portion of the oil within the shale whereby stoping of the stratum occurs, and recovering oil from said borehole.

2. A method for producing oil from oil-bearing shale formation which :comprises driving a drift at the base of a formation and placing a perforated conduit therein, said drift terminating at a substantially vertical borehole drilled from the ground surface, passing hot gases at a temperature above 600 F. through the perforated conduit to the face of the oil-bearing shale so as to vaporize oil from said shale whereby said shale will stope into the drift leaving virgin oil-bearing shale continuously eX- posed to the hotgases, and producing oil fromv said borehole.

References (Jited in the file of this patent UNITED STATES PATENTS 2,813,583 Marx et al Nov. 19, 1957 2,876,838 Williams Mar. 10, 1959 FOREIGN PATENTS 164,551 Australia Aug. 11, 1955

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2813583 *6 Dec 195419 Nov 1957Phillips Petroleum CoProcess for recovery of petroleum from sands and shale
US2876838 *23 May 195610 Mar 1959Jersey Prod Res CoSecondary recovery process
AU164551B * Title not available
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3241611 *10 Apr 196322 Mar 1966Equity Oil CompanyRecovery of petroleum products from oil shale
US3358756 *12 Mar 196519 Dec 1967Shell Oil CoMethod for in situ recovery of solid or semi-solid petroleum deposits
US3362751 *28 Feb 19669 Jan 1968Tinlin WilliamMethod and system for recovering shale oil and gas
US3468376 *10 Feb 196723 Sep 1969Mobil Oil CorpThermal conversion of oil shale into recoverable hydrocarbons
US3601193 *2 Apr 196824 Aug 1971Cities Service Oil CoIn situ retorting of oil shale
US3838738 *4 May 19731 Oct 1974Allen JMethod for recovering petroleum from viscous petroleum containing formations including tar sands
US3986557 *6 Jun 197519 Oct 1976Atlantic Richfield CompanyProduction of bitumen from tar sands
US4007788 *6 Jun 197515 Feb 1977Atlantic Richfield CompanyReducing viscosity with heated fluid
US4158638 *27 Mar 197819 Jun 1979Gulf Research & Development CompanyRecovery of oil from oil shale
US4384613 *24 Oct 198024 May 1983Terra Tek, Inc.Heating without combustion
US4384614 *11 May 198124 May 1983Justheim Pertroleum CompanyMethod of retorting oil shale by velocity flow of super-heated air
US4446921 *16 Mar 19828 May 1984Fried. Krupp Gesellschaft Mit Beschrankter HaftungTreatment with supercritical gas
US4501326 *17 Jan 198326 Feb 1985Gulf Canada LimitedIn-situ recovery of viscous hydrocarbonaceous crude oil
US4856587 *27 Oct 198815 Aug 1989Nielson Jay PRecovery of oil from oil-bearing formation by continually flowing pressurized heated gas through channel alongside matrix
US4878539 *2 Aug 19887 Nov 1989Anders Energy CorporationMethod and system for maintaining and producing horizontal well bores
US658168424 Apr 200124 Jun 2003Shell Oil CompanyIn Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US658850424 Apr 20018 Jul 2003Shell Oil CompanyConversion of hydrocarbons to produce hydrocarbons, hydrogen, and/or novel product streams from underground coal formations; pyrolysis
US659190624 Apr 200115 Jul 2003Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US659190724 Apr 200115 Jul 2003Shell Oil CompanyPyrolysis
US660703324 Apr 200119 Aug 2003Shell Oil CompanyIn Situ thermal processing of a coal formation to produce a condensate
US660957024 Apr 200126 Aug 2003Shell Oil CompanyIn situ thermal processing of a coal formation and ammonia production
US668838724 Apr 200110 Feb 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US669851524 Apr 20012 Mar 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US670201624 Apr 20019 Mar 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US670875824 Apr 200123 Mar 2004Shell Oil CompanyIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US671213524 Apr 200130 Mar 2004Shell Oil CompanyIn situ thermal processing of a coal formation in reducing environment
US671213624 Apr 200130 Mar 2004Shell Oil CompanyProviding heat to the formation; controlling the heat from the heat source such that an average temperature within at least a majority of the selected section of the formation is less than about 375 degrees c.
US671213724 Apr 200130 Mar 2004Shell Oil CompanyHeat exchanging to superimpose heat
US671554624 Apr 20016 Apr 2004Shell Oil CompanyChemical and/or physical properties of hydrocarbon material within a subterranean formation may need to be changed to allow hydrocarbon material to be more easily removed
US671554724 Apr 20016 Apr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US671554824 Apr 20016 Apr 2004Shell Oil CompanyElectrical heaters may be used to heat the subterranean formation by radiation and/or conduction
US671554924 Apr 20016 Apr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US671904724 Apr 200113 Apr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US672242924 Apr 200120 Apr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US672243024 Apr 200120 Apr 2004Shell Oil CompanyIn situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US672243124 Apr 200120 Apr 2004Shell Oil CompanyIn situ thermal processing of hydrocarbons within a relatively permeable formation
US672592024 Apr 200127 Apr 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US672592124 Apr 200127 Apr 2004Shell Oil CompanyIn situ thermal processing of a coal formation by controlling a pressure of the formation
US672592824 Apr 200127 Apr 2004Shell Oil CompanyIn situ thermal processing of a coal formation using a distributed combustor
US672939524 Apr 20014 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US672939624 Apr 20014 May 2004Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US672939724 Apr 20014 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US672940124 Apr 20014 May 2004Shell Oil CompanySynthesis gas may be produced from the formation. synthesis gas may be used as a feed stream in an ammonia synthesis process. ammonia may be used as a feed stream in a urea synthesis process.
US673279424 Apr 200111 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US673279524 Apr 200111 May 2004Shell Oil CompanyProviding heat from one or more heat sources to at least one portion of formation; allowing heat to transfer from the one or more heat sources to a selected section of the formation; controlling the heat; producing a mixture from the formation
US673279624 Apr 200111 May 2004Shell Oil CompanyHeating section of formation with heat sources to temperature allowing generation of synthesis gas, providing synthesis gas generating fluid to section, removing synthesis gas generated, repeating for second section, blending for desired ratio
US673621524 Apr 200118 May 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US673939324 Apr 200125 May 2004Shell Oil CompanyIn situ thermal processing of a coal formation and tuning production
US673939424 Apr 200125 May 2004Shell Oil CompanyProviding heat and a synthesis gas generating fluid to the section to generate synthesis gas
US674258724 Apr 20011 Jun 2004Shell Oil CompanyIn situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US674258824 Apr 20011 Jun 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US674258924 Apr 20011 Jun 2004Shell Oil CompanyIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US674259324 Apr 20011 Jun 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US674583124 Apr 20018 Jun 2004Shell Oil CompanyMixture of hydrocarbons, h2, and/or other formation fluids may be produced from the formation. heat may be applied to the formation to raise a temperature of a portion of the formation to a pyrolysis temperature.
US674583224 Apr 20018 Jun 2004Shell Oil CompanySitu thermal processing of a hydrocarbon containing formation to control product composition
US674583724 Apr 20018 Jun 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US674902124 Apr 200115 Jun 2004Shell Oil CompanyPyrolysis
US675221024 Apr 200122 Jun 2004Shell Oil CompanyIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US675826824 Apr 20016 Jul 2004Shell Oil CompanyHeat exchanging, pyrolysis; monitoring temperature
US676121624 Apr 200113 Jul 2004Shell Oil CompanyPyrolysis temperature
US676388624 Apr 200120 Jul 2004Shell Oil CompanyIn situ thermal processing of a coal formation with carbon dioxide sequestration
US676948324 Apr 20013 Aug 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US676948524 Apr 20013 Aug 2004Shell Oil CompanyIn situ production of synthesis gas from a coal formation through a heat source wellbore
US678962524 Apr 200114 Sep 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
US680519524 Apr 200119 Oct 2004Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US682068824 Apr 200123 Nov 2004Shell Oil CompanyHeat exchanging after pyrolyzation to support synthesis gas generation
US686609724 Apr 200115 Mar 2005Shell Oil CompanySuperpositioning of heaters for pyrolysis to form mixture of hydrocarbons and hydrogen; controlling pressure; heat exchanging
US687170724 Apr 200129 Mar 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US687755424 Apr 200112 Apr 2005Shell Oil CompanyPyrolysis
US687755524 Apr 200212 Apr 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation while inhibiting coking
US688063324 Apr 200219 Apr 2005Shell Oil CompanyIncludes shutting-in an in situ treatment process in an oil shale formation may include terminating heating from heat sources providing heat to a portion of the formation; hydrocarbon vapor may be produced
US688063524 Apr 200119 Apr 2005Shell Oil CompanyMethods and systems for production of hydrocarbons, hydrogen, and/or other products from underground coal formations
US688976924 Apr 200110 May 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US689605324 Apr 200124 May 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US690200324 Apr 20017 Jun 2005Shell Oil CompanyAllowing heat to transfer from heaters to a formation selected for heating using a total organic matter weight percentage of > 5% and recirculating hydrogen
US690200424 Apr 20017 Jun 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a movable heating element
US691053624 Apr 200128 Jun 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US691307824 Apr 20015 Jul 2005Shell Oil CompanyIn Situ thermal processing of hydrocarbons within a relatively impermeable formation
US691585024 Apr 200212 Jul 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation having permeable and impermeable sections
US691844224 Apr 200219 Jul 2005Shell Oil CompanyIn situ conversion of hydrocarbons to produce hydrocarbons, hydrogen, and/or novel product streams from underground oil shale formations
US691844324 Apr 200219 Jul 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US692325724 Apr 20022 Aug 2005Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce a condensate
US692325812 Jun 20032 Aug 2005Shell Oil CompanyIn situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US692906724 Apr 200216 Aug 2005Shell Oil CompanyHeat sources with conductive material for in situ thermal processing of an oil shale formation
US693215524 Oct 200223 Aug 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US694856224 Apr 200227 Sep 2005Shell Oil CompanyProduction of a blending agent using an in situ thermal process in a relatively permeable formation
US694856324 Apr 200127 Sep 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US695124724 Apr 20024 Oct 2005Shell Oil CompanyControl the heat exchanging, pyrolyzing hydrocarbons, enhancing oil recovery
US695308724 Apr 200111 Oct 2005Shell Oil CompanyThermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US695976124 Apr 20011 Nov 2005Shell Oil CompanyIn situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US696430024 Apr 200215 Nov 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US696637224 Apr 200122 Nov 2005Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US696637424 Apr 200222 Nov 2005Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation using gas to increase mobility
US696912324 Oct 200229 Nov 2005Shell Oil CompanyUpgrading and mining of coal
US697396724 Apr 200113 Dec 2005Shell Oil Companyhydrocarbons within a coal formation are converted in situ within the formation to yield a mixture of relatively high quality hydrocarbon products, hydrogen, and other products; the coal is heated to to temperatures that allow pyrolysis
US698154824 Apr 20023 Jan 2006Shell Oil Companyheating and pyrolysis of heavy hydrocarbon sections in subterranean wells to produce light hydrocarbons; reduced viscosity improves movement; fluid removal in liquid and/or vapor phase
US699103124 Apr 200131 Jan 2006Shell Oil CompanyIn situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US699103224 Apr 200231 Jan 2006Shell Oil CompanyHeat sources positioned within the formation in a selected pattern raise a temperature of a portion of the formation to a pyrolysis temperature.
US699103324 Apr 200231 Jan 2006Shell Oil CompanyIn situ thermal processing while controlling pressure in an oil shale formation
US699103624 Apr 200231 Jan 2006Shell Oil CompanyThermal processing of a relatively permeable formation
US699104524 Oct 200231 Jan 2006Shell Oil CompanyForming openings in a hydrocarbon containing formation using magnetic tracking
US699416024 Apr 20017 Feb 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US699416124 Apr 20017 Feb 2006Kevin Albert MaherIn situ thermal processing of a coal formation with a selected moisture content
US6994168 *24 Apr 20017 Feb 2006Scott Lee WellingtonIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US699416924 Apr 20027 Feb 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation with a selected property
US699725524 Apr 200114 Feb 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a reducing environment
US699751824 Apr 200214 Feb 2006Shell Oil CompanyIn situ thermal processing and solution mining of an oil shale formation
US700424724 Apr 200228 Feb 2006Shell Oil CompanyConductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US700425124 Apr 200228 Feb 2006Shell Oil CompanyIn situ thermal processing and remediation of an oil shale formation
US701115424 Oct 200214 Mar 2006Shell Oil CompanyIn situ recovery from a kerogen and liquid hydrocarbon containing formation
US701397224 Apr 200221 Mar 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a natural distributed combustor
US701766124 Apr 200128 Mar 2006Shell Oil CompanyProduction of synthesis gas from a coal formation
US7032660 *24 Apr 200225 Apr 2006Shell Oil CompanyIn situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US703658324 Sep 20012 May 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US704039824 Apr 20029 May 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation in a reducing environment
US704039924 Apr 20029 May 2006Shell Oil CompanyIn situ thermal processing of an oil shale formation using a controlled heating rate
US704040024 Apr 20029 May 2006Shell Oil CompanyIn situ thermal processing of a relatively impermeable formation using an open wellbore
US705180724 Apr 200230 May 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with quality control
US705180824 Oct 200230 May 2006Shell Oil CompanySeismic monitoring of in situ conversion in a hydrocarbon containing formation
US705181124 Apr 200230 May 2006Shell Oil CompanyIn situ thermal processing through an open wellbore in an oil shale formation
US705560024 Apr 20026 Jun 2006Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with controlled production rate
US706314524 Oct 200220 Jun 2006Shell Oil CompanyMethods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US706625424 Oct 200227 Jun 2006Shell Oil CompanyIn situ thermal processing of a tar sands formation
US706625724 Oct 200227 Jun 2006Shell Oil CompanyIn situ recovery from lean and rich zones in a hydrocarbon containing formation
US707357824 Oct 200311 Jul 2006Shell Oil CompanyStaged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US707719824 Oct 200218 Jul 2006Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using barriers
US707719924 Oct 200218 Jul 2006Shell Oil CompanyIn situ thermal processing of an oil reservoir formation
US708646524 Oct 20028 Aug 2006Shell Oil CompanyIn situ production of a blending agent from a hydrocarbon containing formation
US708646824 Apr 20018 Aug 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US709001324 Oct 200215 Aug 2006Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US709694124 Apr 200129 Aug 2006Shell Oil CompanyIn situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US709694224 Apr 200229 Aug 2006Shell Oil CompanyIn situ thermal processing of a relatively permeable formation while controlling pressure
US709695324 Apr 200129 Aug 2006Shell Oil CompanyIn situ thermal processing of a coal formation using a movable heating element
US710099424 Oct 20025 Sep 2006Shell Oil Companyinjecting a heated fluid into the well bore, producing a second fluid from the formation, conducting an in situ conversion process in the selected section.
US710431924 Oct 200212 Sep 2006Shell Oil CompanyIn situ thermal processing of a heavy oil diatomite formation
US711456624 Oct 20023 Oct 2006Shell Oil CompanyHeat treatment using natural distributed combustor; oxidation of hydrocarbons to generate heat; pyrolysis
US712134124 Oct 200317 Oct 2006Shell Oil CompanyConductor-in-conduit temperature limited heaters
US712134223 Apr 200417 Oct 2006Shell Oil CompanyThermal processes for subsurface formations
US712815324 Oct 200231 Oct 2006Shell Oil CompanyTreatment of a hydrocarbon containing formation after heating
US715617624 Oct 20022 Jan 2007Shell Oil CompanyInstallation and use of removable heaters in a hydrocarbon containing formation
US716561524 Oct 200223 Jan 2007Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US721973424 Oct 200322 May 2007Shell Oil CompanyInhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US722586631 Jan 20065 Jun 2007Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US732036422 Apr 200522 Jan 2008Shell Oil CompanyInhibiting reflux in a heated well of an in situ conversion system
US735387222 Apr 20058 Apr 2008Shell Oil CompanyStart-up of temperature limited heaters using direct current (DC)
US735718022 Apr 200515 Apr 2008Shell Oil CompanyInhibiting effects of sloughing in wellbores
US736058817 Oct 200622 Apr 2008Shell Oil CompanyThermal processes for subsurface formations
US737070422 Apr 200513 May 2008Shell Oil CompanyTriaxial temperature limited heater
US738387722 Apr 200510 Jun 2008Shell Oil CompanyTemperature limited heaters with thermally conductive fluid used to heat subsurface formations
US742491522 Apr 200516 Sep 2008Shell Oil CompanyVacuum pumping of conductor-in-conduit heaters
US743107622 Apr 20057 Oct 2008Shell Oil CompanyTemperature limited heaters using modulated DC power
US743503721 Apr 200614 Oct 2008Shell Oil CompanyLow temperature barriers with heat interceptor wells for in situ processes
US744160330 Jul 200428 Oct 2008Exxonmobil Upstream Research CompanyHydrocarbon recovery from impermeable oil shales
US746169123 Jan 20079 Dec 2008Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US748127422 Apr 200527 Jan 2009Shell Oil CompanyTemperature limited heaters with relatively constant current
US749066522 Apr 200517 Feb 2009Shell Oil CompanyVariable frequency temperature limited heaters
US750052821 Apr 200610 Mar 2009Shell Oil CompanyLow temperature barrier wellbores formed using water flushing
US751000022 Apr 200531 Mar 2009Shell Oil CompanyReducing viscosity of oil for production from a hydrocarbon containing formation
US752709421 Apr 20065 May 2009Shell Oil CompanyDouble barrier system for an in situ conversion process
US753371920 Apr 200719 May 2009Shell Oil CompanyWellhead with non-ferromagnetic materials
US754032419 Oct 20072 Jun 2009Shell Oil CompanyHeating hydrocarbon containing formations in a checkerboard pattern staged process
US754687321 Apr 200616 Jun 2009Shell Oil CompanyLow temperature barriers for use with in situ processes
US754947020 Oct 200623 Jun 2009Shell Oil CompanySolution mining and heating by oxidation for treating hydrocarbon containing formations
US755609520 Oct 20067 Jul 2009Shell Oil CompanySolution mining dawsonite from hydrocarbon containing formations with a chelating agent
US755609620 Oct 20067 Jul 2009Shell Oil CompanyVarying heating in dawsonite zones in hydrocarbon containing formations
US755936720 Oct 200614 Jul 2009Shell Oil CompanyTemperature limited heater with a conduit substantially electrically isolated from the formation
US755936820 Oct 200614 Jul 2009Shell Oil CompanySolution mining systems and methods for treating hydrocarbon containing formations
US756270620 Oct 200621 Jul 2009Shell Oil CompanySystems and methods for producing hydrocarbons from tar sands formations
US756270719 Oct 200721 Jul 2009Shell Oil CompanyHeating hydrocarbon containing formations in a line drive staged process
US757505221 Apr 200618 Aug 2009Shell Oil CompanyIn situ conversion process utilizing a closed loop heating system
US757505321 Apr 200618 Aug 2009Shell Oil CompanyLow temperature monitoring system for subsurface barriers
US758158920 Oct 20061 Sep 2009Shell Oil CompanyMethods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US758478920 Oct 20068 Sep 2009Shell Oil CompanyMethods of cracking a crude product to produce additional crude products
US759131020 Oct 200622 Sep 2009Shell Oil CompanyMethods of hydrotreating a liquid stream to remove clogging compounds
US759714720 Apr 20076 Oct 2009Shell Oil CompanyTemperature limited heaters using phase transformation of ferromagnetic material
US760405220 Apr 200720 Oct 2009Shell Oil CompanyCompositions produced using an in situ heat treatment process
US761096220 Apr 20073 Nov 2009Shell Oil CompanyProviding acidic gas to a subterrean formation, such as oil shale, by heating from an electrical heater and injecting through an oil wellbore; one of the acidic acids includes hydrogen sulfide and is introduced at a pressure below the lithostatic pressure of the formation to produce fluids; efficiency
US763168920 Apr 200715 Dec 2009Shell Oil CompanySulfur barrier for use with in situ processes for treating formations
US763169019 Oct 200715 Dec 2009Shell Oil CompanyHeating hydrocarbon containing formations in a spiral startup staged sequence
US763502320 Apr 200722 Dec 2009Shell Oil CompanyTime sequenced heating of multiple layers in a hydrocarbon containing formation
US763502419 Oct 200722 Dec 2009Shell Oil CompanyHeating tar sands formations to visbreaking temperatures
US763502520 Oct 200622 Dec 2009Shell Oil CompanyCogeneration systems and processes for treating hydrocarbon containing formations
US76409807 Apr 20085 Jan 2010Shell Oil CompanyThermal processes for subsurface formations
US764476519 Oct 200712 Jan 2010Shell Oil CompanyHeating tar sands formations while controlling pressure
US767368119 Oct 20079 Mar 2010Shell Oil CompanyTreating tar sands formations with karsted zones
US767378620 Apr 20079 Mar 2010Shell Oil CompanyWelding shield for coupling heaters
US767731019 Oct 200716 Mar 2010Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US767731419 Oct 200716 Mar 2010Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US768164719 Oct 200723 Mar 2010Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US768329620 Apr 200723 Mar 2010Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US770351319 Oct 200727 Apr 2010Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US771717119 Oct 200718 May 2010Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US773094519 Oct 20078 Jun 2010Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US773094619 Oct 20078 Jun 2010Shell Oil CompanyTreating tar sands formations with dolomite
US773094719 Oct 20078 Jun 2010Shell Oil CompanyCreating fluid injectivity in tar sands formations
US77359351 Jun 200715 Jun 2010Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US778542720 Apr 200731 Aug 2010Shell Oil CompanyChromium, nickel, copper; niobium, iron manganese, nitrogen; nanonitrides; system for heating a subterranean formation;
US779372220 Apr 200714 Sep 2010Shell Oil CompanyNon-ferromagnetic overburden casing
US779822018 Apr 200821 Sep 2010Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US779822131 May 200721 Sep 2010Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US783113421 Apr 20069 Nov 2010Shell Oil CompanyGrouped exposed metal heaters
US783248418 Apr 200816 Nov 2010Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US784140119 Oct 200730 Nov 2010Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US784140818 Apr 200830 Nov 2010Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US784142518 Apr 200830 Nov 2010Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US784541119 Oct 20077 Dec 2010Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US784992218 Apr 200814 Dec 2010Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US785705615 Oct 200828 Dec 2010Exxonmobil Upstream Research CompanyHydrocarbon recovery from impermeable oil shales using sets of fluid-heated fractures
US786037721 Apr 200628 Dec 2010Shell Oil CompanySubsurface connection methods for subsurface heaters
US786638520 Apr 200711 Jan 2011Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US786638613 Oct 200811 Jan 2011Shell Oil Companyproduction of hydrocarbons, hydrogen, and/or other products from various subsurface formations such as hydrocarbon containing formations through use of oxidizing fluids and heat
US786638813 Oct 200811 Jan 2011Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US791235820 Apr 200722 Mar 2011Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US793108618 Apr 200826 Apr 2011Shell Oil CompanyHeating systems for heating subsurface formations
US794219721 Apr 200617 May 2011Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US79422034 Jan 201017 May 2011Shell Oil CompanyThermal processes for subsurface formations
US795045318 Apr 200831 May 2011Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US798686921 Apr 200626 Jul 2011Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US801145113 Oct 20086 Sep 2011Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US802757121 Apr 200627 Sep 2011Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US804261018 Apr 200825 Oct 2011Shell Oil CompanyParallel heater system for subsurface formations
US807084021 Apr 20066 Dec 2011Shell Oil CompanyTreatment of gas from an in situ conversion process
US808299514 Nov 200827 Dec 2011Exxonmobil Upstream Research CompanyOptimization of untreated oil shale geometry to control subsidence
US808381320 Apr 200727 Dec 2011Shell Oil CompanyMethods of producing transportation fuel
US80874607 Mar 20083 Jan 2012Exxonmobil Upstream Research CompanyGranular electrical connections for in situ formation heating
US810453715 Dec 200931 Jan 2012Exxonmobil Upstream Research CompanyMethod of developing subsurface freeze zone
US811327213 Oct 200814 Feb 2012Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US812295518 Apr 200828 Feb 2012Exxonmobil Upstream Research CompanyDownhole burners for in situ conversion of organic-rich rock formations
US814666113 Oct 20083 Apr 2012Shell Oil CompanyCryogenic treatment of gas
US814666421 May 20083 Apr 2012Exxonmobil Upstream Research CompanyUtilization of low BTU gas generated during in situ heating of organic-rich rock
US814666913 Oct 20083 Apr 2012Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US815187718 Apr 200810 Apr 2012Exxonmobil Upstream Research CompanyDownhole burner wells for in situ conversion of organic-rich rock formations
US81518809 Dec 201010 Apr 2012Shell Oil CompanyMethods of making transportation fuel
US815188410 Oct 200710 Apr 2012Exxonmobil Upstream Research CompanyCombined development of oil shale by in situ heating with a deeper hydrocarbon resource
US815190710 Apr 200910 Apr 2012Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US816205913 Oct 200824 Apr 2012Shell Oil CompanyInduction heaters used to heat subsurface formations
US816240510 Apr 200924 Apr 2012Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US817233510 Apr 20098 May 2012Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US817730510 Apr 200915 May 2012Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US819163028 Apr 20105 Jun 2012Shell Oil CompanyCreating fluid injectivity in tar sands formations
US819268226 Apr 20105 Jun 2012Shell Oil CompanyHigh strength alloys
US819665813 Oct 200812 Jun 2012Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US82205399 Oct 200917 Jul 2012Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US822416324 Oct 200317 Jul 2012Shell Oil CompanyVariable frequency temperature limited heaters
US822416424 Oct 200317 Jul 2012Shell Oil CompanyInsulated conductor temperature limited heaters
US822416521 Apr 200617 Jul 2012Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US822586621 Jul 201024 Jul 2012Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US823092716 May 201131 Jul 2012Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US823092917 Mar 200931 Jul 2012Exxonmobil Upstream Research CompanyMethods of producing hydrocarbons for substantially constant composition gas generation
US823378229 Sep 201031 Jul 2012Shell Oil CompanyGrouped exposed metal heaters
US823873024 Oct 20037 Aug 2012Shell Oil CompanyHigh voltage temperature limited heaters
US824077413 Oct 200814 Aug 2012Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US82565129 Oct 20094 Sep 2012Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US826182311 May 201111 Sep 2012Hill Gilman AIntegrated in situ retorting and refining of oil shale
US82618329 Oct 200911 Sep 2012Shell Oil CompanyHeating subsurface formations with fluids
US82671709 Oct 200918 Sep 2012Shell Oil CompanyOffset barrier wells in subsurface formations
US82671859 Oct 200918 Sep 2012Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US827245513 Oct 200825 Sep 2012Shell Oil CompanyMethods for forming wellbores in heated formations
US827666113 Oct 20082 Oct 2012Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US82818619 Oct 20099 Oct 2012Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US832768118 Apr 200811 Dec 2012Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US83279329 Apr 201011 Dec 2012Shell Oil CompanyRecovering energy from a subsurface formation
US83533479 Oct 200915 Jan 2013Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US835562322 Apr 200515 Jan 2013Shell Oil CompanyTemperature limited heaters with high power factors
US838181518 Apr 200826 Feb 2013Shell Oil CompanyProduction from multiple zones of a tar sands formation
US84345559 Apr 20107 May 2013Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US84487079 Apr 201028 May 2013Shell Oil CompanyNon-conducting heater casings
US845935918 Apr 200811 Jun 2013Shell Oil CompanyTreating nahcolite containing formations and saline zones
US848525211 Jul 201216 Jul 2013Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US853649713 Oct 200817 Sep 2013Shell Oil CompanyMethods for forming long subsurface heaters
US854002021 Apr 201024 Sep 2013Exxonmobil Upstream Research CompanyConverting organic matter from a subterranean formation into producible hydrocarbons by controlling production operations based on availability of one or more production resources
US855597131 May 201215 Oct 2013Shell Oil CompanyTreating tar sands formations with dolomite
US856207825 Nov 200922 Oct 2013Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US857903117 May 201112 Nov 2013Shell Oil CompanyThermal processes for subsurface formations
US859635510 Dec 20103 Dec 2013Exxonmobil Upstream Research CompanyOptimized well spacing for in situ shale oil development
US860609120 Oct 200610 Dec 2013Shell Oil CompanySubsurface heaters with low sulfidation rates
US860824926 Apr 201017 Dec 2013Shell Oil CompanyIn situ thermal processing of an oil shale formation
US86162797 Jan 201031 Dec 2013Exxonmobil Upstream Research CompanyWater treatment following shale oil production by in situ heating
US861628017 Jun 201131 Dec 2013Exxonmobil Upstream Research CompanyWellbore mechanical integrity for in situ pyrolysis
US862212717 Jun 20117 Jan 2014Exxonmobil Upstream Research CompanyOlefin reduction for in situ pyrolysis oil generation
US86221337 Mar 20087 Jan 2014Exxonmobil Upstream Research CompanyResistive heater for in situ formation heating
US86278878 Dec 200814 Jan 2014Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US86318668 Apr 201121 Jan 2014Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US863632325 Nov 200928 Jan 2014Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US864115011 Dec 20094 Feb 2014Exxonmobil Upstream Research CompanyIn situ co-development of oil shale with mineral recovery
US866217518 Apr 20084 Mar 2014Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US87017688 Apr 201122 Apr 2014Shell Oil CompanyMethods for treating hydrocarbon formations
US87017698 Apr 201122 Apr 2014Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US87398748 Apr 20113 Jun 2014Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US875290410 Apr 200917 Jun 2014Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US877028419 Apr 20138 Jul 2014Exxonmobil Upstream Research CompanySystems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US20110017455 *19 Jul 201027 Jan 2011Conocophillips CompanyHydrocarbon recovery method
DE1245290B *19 Jan 196627 Jul 1967Equity Oil CompanyVerfahren zur Gewinnung von Erdoel aus OElschiefer
Classifications
U.S. Classification299/2, 299/6, 166/272.7
International ClassificationE21B43/16, E21B43/24
Cooperative ClassificationE21B43/24
European ClassificationE21B43/24