US2659003A - Antenna mountable in small spaces - Google Patents

Antenna mountable in small spaces Download PDF

Info

Publication number
US2659003A
US2659003A US665990A US66599046A US2659003A US 2659003 A US2659003 A US 2659003A US 665990 A US665990 A US 665990A US 66599046 A US66599046 A US 66599046A US 2659003 A US2659003 A US 2659003A
Authority
US
United States
Prior art keywords
antenna
plates
transmission line
parallel
stub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US665990A
Inventor
Dorne Arthur
Lazarus David
Herbert P Minot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US665990A priority Critical patent/US2659003A/en
Application granted granted Critical
Publication of US2659003A publication Critical patent/US2659003A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/18Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/286Adaptation for use in or on aircraft, missiles, satellites, or balloons substantially flush mounted with the skin of the craft

Definitions

  • This invention relates to electrical apparatus and more particularly to improvements in antennas.
  • An ob ect of the present invention is to provide an antenna system having a relatively small radiating aperture and adapted to be mounted within th confines of a curved metallic surface.
  • a further object of the present invention is to provide such an antenna system with fairly broad radiation patterns in both horizontal and vertical planes.
  • a further object of the present invention is to effectively match said antenna system to its feed line.
  • the present invention may best be classified as a radiator of high frequency electromagnetic energy. It is constructed as a fairly short section of parallel plate transmission line which is shortcircuited at one end. Disposed within the waveguide space of this transmission line is an antenna stub.
  • the term stub denotes a radiating element having an effective electrical length of a quarter wavelength'or less and mounted above a reflecting plane.
  • This antenna stub is capacitively loaded in order to increase its electrical length and to more closed match its radiation resistance to the characteristic impedance of its feed line. By means of this capacitive loading, the overall size of the antenna system is greatly reduced.
  • the parallel plate transmission line may be shaped to conform with the outline of a curved surface such as the leading edge of thewing-or the wing tip of an airplane, and the entire antenna system may be completely inclosed within the confines of the aircraft wing surface is such a manner as to not disturb the streamlined surface of that member.
  • FIG. 1 is a broken-away isometric view of one embodiment of the present invention
  • Fig. 1(a) is a simplified top view of Fig. 1, drawn to a reduced scale; 7
  • FIG. 2 is a simplified top View of another em- N. Y., David Lazarus, ert P. Minot, Belmont, United States of Amerbodiment of the present invention which utilizes a slightly different form of capacitive loading;
  • numerals I l and I I desi nate two substantially parallel con ucting p ates which in e ect form a sect on of arallel plate transmission line.
  • a conductin ha k p ate I2 is disposed substantially perpendicu arly to parallel plates I l and II and terminates the transm ssion l ne f rmed by pl tes III and II at one end thereof. The ed es of plates Ill and.
  • I II may be sha ed to co form to a curve s rf ce such as the leadin e ge of the wing or the ateral wing t p of an aircraft.
  • D ose w th n the waveguide space formed by ates I".
  • I I and I! is a conical antenna stub I3 (hest s n in Fi 1(a)) having a capacitive loa n element I4.
  • Capa itive loadin eleme t I A s h sh wn as a U-sha ed stove pi e member but other cana d.- tive loading means may be used if desired.
  • the antenna stub I3 is fed by a coaxial line I6 having its inner conductor I'I electrically connected to stub I 3 and its outer conductor I8 electrically connected to conducting plate III.
  • Fig. 1(a) shows a sim lified top view of Fig. 1 drawn to a reduced scale, and is included to more clearly illustrate the use of alternate ty es of antenna stubs and capacitive loading means.
  • a cone antenna I9 re laces the antenna, stub I3 and ca acitive loading element I4 of Fig. 1(a).
  • cal antenna stub I3 is utilized instead of antenna stub I3 of Fig. 1(a).
  • the capacitive loading is effected by a conducting plate I 4'.
  • patterns are. broad and. symmetrical in both horizontal and vertical planes.
  • Such an antenna system may readily be built within the confines of a curved surface having: a radius of the order of an eighth wavelength. Because of its shape and small size, it mayreact ily be placed within the leading edge oithe wing or the lateral wing tip of an. aircraft, where other types of antennas would notv bepractical. The choice between the two locations would in: general be determined by the desired polarization of the emitted radiation. The polarization will be parallel to the axis of the conical stubs. For horizontal polarization theantenna system would generally be: mounted. within the leading, edge of the aircraft wing. with. the curved edges. of plates HT and' N conforming to the curved surface of the leading edge.
  • the antenna system For vertical polarization the antenna system would generally be turned on its side and mounted in the wing, tip of. the aircraft; However, in the majority of applications the antenna system may be" mounted in the position" shown or; turned on its side in either the leading edge of the: aircraft. wing or inthewing tip, allowing the attainment of the desired direction of polarization in either location.
  • a radiator of high frequency electromagnetic energy including two conducting plates lying wholly in substantially parallel planes, a third conducting'pl'ate disposed substantially perpendicularly to and connecting said parallel plates at one end thereof, said parallel plates being insulated from one another except for the connection of said third plate, said plates defining therebetween a transmission line, a conical antenna stub disposed within said transmission line and having its axissubstantially perpendicular to said parallel plates, said antenna stub having a length less than a quarter the length of the operating wave, capacitive loading means being electrically connected to said antenna stub for increasing the electrical length thereof, and a coaxial line external to said transmission line, the center conductor of said coaxial line being electrically connected to said antenna stub and the outer conductor being electrically connected to said conducting plates.
  • said feeding means comprising a conical radiating conductor oriented in the space between said parallel plates to feed said plates with high frequency electromagnetic energy inthe transmission line mode, and an additional conductor connected to said radiating conductor and capacitatively coupled to said parallel plates for increasing the effective electrical length of said electrical conductor.

Description

Nov. 10, 1953 A. DORNE ETAL Filed April 50, 1946 FlG.l
FIG. 3
iNVENTORS DAVID LAZARUS HERBERT R MINOT ATTORNEY Patented Nov. 10, 1953 ANTENNA MOUNTABLE IN SMALL SPACES Arthur Dorne, Mineola,
Chicago, Ill., and Herb Mass, assignors to the ma as represented by the Secretary of War Application April 30, 1946, Serial No. 665,990
Claims.
This invention relates to electrical apparatus and more particularly to improvements in antennas.
In the design of antennas for aircraft installations, it is desired to minimize wind resistance. Previous antenna designs have in general required a substantially hemispherical radiating aperture. Streamlined antenna stubs (one-half of a dipole above a reflecting plane) and various specal antennas generally mounted within a blister (hemispherical projection) on the aircraft have been used. Such designs usually cannot be mounted within the confines of the aircraft surfaces and require some external projection on the surface of the aircraft. This difficulty is associated principally with the large radiating aperture required.
An ob ect of the present invention is to provide an antenna system having a relatively small radiating aperture and adapted to be mounted within th confines of a curved metallic surface.
A further object of the present invention is to provide such an antenna system with fairly broad radiation patterns in both horizontal and vertical planes.
A further object of the present invention is to effectively match said antenna system to its feed line.
Other objects and advantages of the invention will be apparent during the course of the following description.
The present invention may best be classified as a radiator of high frequency electromagnetic energy. It is constructed as a fairly short section of parallel plate transmission line which is shortcircuited at one end. Disposed within the waveguide space of this transmission line is an antenna stub. The term stub denotes a radiating element having an effective electrical length of a quarter wavelength'or less and mounted above a reflecting plane. This antenna stub is capacitively loaded in order to increase its electrical length and to more closed match its radiation resistance to the characteristic impedance of its feed line. By means of this capacitive loading, the overall size of the antenna system is greatly reduced. The parallel plate transmission line may be shaped to conform with the outline of a curved surface such as the leading edge of thewing-or the wing tip of an airplane, and the entire antenna system may be completely inclosed within the confines of the aircraft wing surface is such a manner as to not disturb the streamlined surface of that member.
In the accompanying drawing forming a part of this'specification Fig. 1 is a broken-away isometric view of one embodiment of the present invention;
Fig. 1(a) is a simplified top view of Fig. 1, drawn to a reduced scale; 7
- Fig. 2 is a simplified top View of another em- N. Y., David Lazarus, ert P. Minot, Belmont, United States of Amerbodiment of the present invention which utilizes a slightly different form of capacitive loading; and
Fig. 3 is a simplified to view of a third embodiment of the present invention which utilizes still another method of capacitive loading.
In Fi 1. wherein is shown one poss ble embodiment of the resent invent on. numerals I l and I I desi nate two substantially parallel con ucting p ates which in e ect form a sect on of arallel plate transmission line. A conductin ha k p ate I2 is disposed substantially perpendicu arly to parallel plates I l and II and terminates the transm ssion l ne f rmed by pl tes III and II at one end thereof. The ed es of plates Ill and. II may be sha ed to co form to a curve s rf ce such as the leadin e ge of the wing or the ateral wing t p of an aircraft. D ose w th n the waveguide space formed by ates I". I I and I! is a conical antenna stub I3 (hest s n in Fi 1(a)) having a capacitive loa n element I4. Capa itive loadin eleme t I A s h sh wn as a U-sha ed stove pi e member but other cana d.- tive loading means may be used if desired. he ca citive lo ding element I4 s su ported. maintained ri idlv with respect to the plates by means of insulating su ports I5 w ch ext nd between end closure plates on c pac t ve loading element I4 and the back plate I2. The antenna stub I3 is fed by a coaxial line I6 having its inner conductor I'I electrically connected to stub I 3 and its outer conductor I8 electrically connected to conducting plate III.
Fig. 1(a) shows a sim lified top view of Fig. 1 drawn to a reduced scale, and is included to more clearly illustrate the use of alternate ty es of antenna stubs and capacitive loading means. In Fig. 2 a cone antenna I9 re laces the antenna, stub I3 and ca acitive loading element I4 of Fig. 1(a). cal antenna stub I3 is utilized instead of antenna stub I3 of Fig. 1(a). The capacitive loading is effected by a conducting plate I 4'.
The waveguide formed by plates III, II and I2 is the actual radiator of electromagnetic ener y.- Electromagnetic waves may be set u in this waveguide space by a capacity-loaded antennastub; This exciting antenna may be the conical antenna stub I3 and capacitive loading element I4, the cone antenna I9, or the conical antenna stub I3, and capacitive loading plate I 4'. The capacitive loading serves to increase the electrical lengths of the antenna stub and to more effectively match it to the coaxial line IS. The polarization of the radiated electromagnetic energy is parallel to the axis of the antenna stub (i. e. to the axis of the cone) and the parallel plates I 0 and I I propagate electromagnetic energy therebetween in the transmission line mode. These radiators are fairly broad-band and the In Fig. 3 a somewhat enlarged c0ni-.
radiation, patterns are. broad and. symmetrical in both horizontal and vertical planes.
Such an antenna system may readily be built within the confines of a curved surface having: a radius of the order of an eighth wavelength. Because of its shape and small size, it mayreact ily be placed within the leading edge oithe wing or the lateral wing tip of an. aircraft, where other types of antennas would notv bepractical. The choice between the two locations would in: general be determined by the desired polarization of the emitted radiation. The polarization will be parallel to the axis of the conical stubs. For horizontal polarization theantenna system would generally be: mounted. within the leading, edge of the aircraft wing. with. the curved edges. of plates HT and' N conforming to the curved surface of the leading edge. For vertical polarization the antenna system would generally be turned on its side and mounted in the wing, tip of. the aircraft; However, in the majority of applications the antenna system may be" mounted in the position" shown or; turned on its side in either the leading edge of the: aircraft. wing or inthewing tip, allowing the attainment of the desired direction of polarization in either location.
While the present invention has been described emphasizing its particular applicability for aircraft installation, the invention is not limited thereto, and maybe applied as well in other install'ations which permit its use.
It will be apparent that there may be deviations from the invention as described which still fall fairly within the spirit and scope of the invention.
What is claimed is:
1. A radiator of high frequency electromagnetic energy including two conducting plates lying wholly in substantially parallel planes, a third conducting'pl'ate disposed substantially perpendicularly to and connecting said parallel plates at one end thereof, said parallel plates being insulated from one another except for the connection of said third plate, said plates defining therebetween a transmission line, a conical antenna stub disposed within said transmission line and having its axissubstantially perpendicular to said parallel plates, said antenna stub having a length less than a quarter the length of the operating wave, capacitive loading means being electrically connected to said antenna stub for increasing the electrical length thereof, and a coaxial line external to said transmission line, the center conductor of said coaxial line being electrically connected to said antenna stub and the outer conductor being electrically connected to said conducting plates.
2. A radiator of high frequency electromagnetic energy including two conducting plates lying wholly in substantially parallel planes, a third conducting plate disposedsubstantially perpendieularly to. and. connecting said parallel plates at one. end thereof, said parallel plates. being insulated from one another except for the connection of said third plate, said plates defining. therebetween a transmission. line, a 001182119- tenna disposed within-said transmission line, and a coaxial line: external to said transmission line extending through; oneof said parallel lates andhaving its inner conductor electrically connected to said cone antenna and its outer conductor electrically connected to said one: parallel plate.
3; A high. frequency radiator adaptedfor '4 mounting; in a small space; comprising a pair of plates. lying; wholly in. substantially parallel planes to form a transmission line, a conducting plate mounted perpendicular to said parallel plates and short-circuiting said parallel plates at oneend, said parallel plates being insulated from one. another. except for the connection of said; perpendicular plate, said plates being shaped at the-end remotefrom said one end to fit in the space. in. which said radiator is to be mounted, a conical stub antenna mounted in the space between said parallel plates and oriented to feed high. frequency energy to said parallel plates in the transmission line mode, a coaxial line extending, through one of. said parallel plates and having, anouter conductor connected to said one .parallel plate and an inner conductorconnect'ed to said. antenna for feeding the high frequency energy. thereto,.and a conductor connected to said antenna and capacitivel'y coupled to said parallel plates for increasing the electricallength of said antenna.
4. A high frequency radiator'comprising asection of. transmission line composed of two conductive plates lying wholly in substantially parallel planes, said transmission line being shortcircuited at one end by another conductive plate lying wholly in a plane perpendicular to saidconductive plates and opened on all other sides, means coupled to said line for feeding high frequency electromagnetic energy thereto in the transmission line mode, said feeding means including a radiating conductor mounted in the space between said parallel plates of said transmission line. and means capacitatively coupling said. radiating conductor and said. transmission line.
5. A high frequency radiator comprising three conductive plates, two of said plates lying wholly in. substantially parallel planes, the third one of said plates being mounted transversely to said parallel plates and lying wholly ina plane substantially perpendicular thereto and short-circuiti'ng said parallel plates at one end thereof, said parallel plates being insulated from one another except at said short-circuited end and forming a transmission line open circuited at the end remote from said one end for radiating energy from said remote end, means coupled to said transmission lineforfeeding high frequency electromagnetic energy thereto in. the transmission line mode, said feeding means comprising a conical radiating conductor oriented in the space between said parallel plates to feed said plates with high frequency electromagnetic energy inthe transmission line mode, and an additional conductor connected to said radiating conductor and capacitatively coupled to said parallel plates for increasing the effective electrical length of said electrical conductor.
ARTHUR DORNE. DAVID LAZARUS. HERBERT P. MINOT.
References Cited in the tile of this patent UNITED STATES PATENTS Number: Name Date 2,218,741 Buschbeck Oct. 22, 1940 2,253,501 Barrow Aug; 26, 1941 2,255,042 Barrow Sept. 9, 1941 2,275,646 Peterson Mar. 10, 1942 2,368,663 Kandoian Feb. 6, 1945 2,423,150 Lindenblad July 1, 1947 2,433,368 Johnson et'al. Dec. 30, 1947 2,539,680 Wehner Jan130, 1951
US665990A 1946-04-30 1946-04-30 Antenna mountable in small spaces Expired - Lifetime US2659003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US665990A US2659003A (en) 1946-04-30 1946-04-30 Antenna mountable in small spaces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US665990A US2659003A (en) 1946-04-30 1946-04-30 Antenna mountable in small spaces

Publications (1)

Publication Number Publication Date
US2659003A true US2659003A (en) 1953-11-10

Family

ID=24672366

Family Applications (1)

Application Number Title Priority Date Filing Date
US665990A Expired - Lifetime US2659003A (en) 1946-04-30 1946-04-30 Antenna mountable in small spaces

Country Status (1)

Country Link
US (1) US2659003A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2715453A (en) * 1952-06-21 1955-08-16 Air Filters Company Air filter unit
US4147912A (en) * 1977-02-07 1979-04-03 Roper Corporation Shaped antenna for energy distribution in a microwave cooking cavity
US4819003A (en) * 1984-03-24 1989-04-04 Naohisa Goto Flat circular unidirectional microwave antenna
US4821040A (en) * 1986-12-23 1989-04-11 Ball Corporation Circular microstrip vehicular rf antenna
US5010349A (en) * 1989-04-12 1991-04-23 Nissan Motor Company, Ltd. Plane patch antenna

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2218741A (en) * 1938-05-24 1940-10-22 Telefunken Gmbh Antenna for broad frequency bands
US2253501A (en) * 1937-09-10 1941-08-26 Research Corp Resonant antenna system
US2255042A (en) * 1939-01-03 1941-09-09 Research Corp Electromagnetic horn
US2275646A (en) * 1939-07-18 1942-03-10 Rca Corp Antenna
US2368663A (en) * 1943-05-15 1945-02-06 Standard Telephones Cables Ltd Broad band antenna
US2423150A (en) * 1943-12-10 1947-07-01 Rca Corp Lobe switching antenna
US2433368A (en) * 1942-03-31 1947-12-30 Sperry Gyroscope Co Inc Wave guide construction
US2539680A (en) * 1945-11-26 1951-01-30 Rca Corp Ultra high frequency antenna

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2253501A (en) * 1937-09-10 1941-08-26 Research Corp Resonant antenna system
US2218741A (en) * 1938-05-24 1940-10-22 Telefunken Gmbh Antenna for broad frequency bands
US2255042A (en) * 1939-01-03 1941-09-09 Research Corp Electromagnetic horn
US2275646A (en) * 1939-07-18 1942-03-10 Rca Corp Antenna
US2433368A (en) * 1942-03-31 1947-12-30 Sperry Gyroscope Co Inc Wave guide construction
US2368663A (en) * 1943-05-15 1945-02-06 Standard Telephones Cables Ltd Broad band antenna
US2423150A (en) * 1943-12-10 1947-07-01 Rca Corp Lobe switching antenna
US2539680A (en) * 1945-11-26 1951-01-30 Rca Corp Ultra high frequency antenna

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2715453A (en) * 1952-06-21 1955-08-16 Air Filters Company Air filter unit
US4147912A (en) * 1977-02-07 1979-04-03 Roper Corporation Shaped antenna for energy distribution in a microwave cooking cavity
US4819003A (en) * 1984-03-24 1989-04-04 Naohisa Goto Flat circular unidirectional microwave antenna
US4821040A (en) * 1986-12-23 1989-04-11 Ball Corporation Circular microstrip vehicular rf antenna
US5010349A (en) * 1989-04-12 1991-04-23 Nissan Motor Company, Ltd. Plane patch antenna

Similar Documents

Publication Publication Date Title
US4125839A (en) Dual diagonally fed electric microstrip dipole antennas
US3239838A (en) Dipole antenna mounted in open-faced resonant cavity
US3568204A (en) Multimode antenna feed system having a plurality of tracking elements mounted symmetrically about the inner walls and at the aperture end of a scalar horn
US3633210A (en) Unbalanced conical spiral antenna
US2275646A (en) Antenna
US2611869A (en) Aerial system
JP2017098782A (en) Antenna device
US2820965A (en) Dual polarization antenna
US4078237A (en) Offset FED magnetic microstrip dipole antenna
US2972147A (en) Circularly polarized slot antenna
US2659003A (en) Antenna mountable in small spaces
US2946055A (en) Parasitic dipole slot antenna
US2597144A (en) Electromagnetic wave control structure
US2661422A (en) Slotted antenna system
US2895134A (en) Directional antenna systems
US2944258A (en) Dual-ridge antenna
US2659002A (en) Split truncated cone-antenna
Foudazi et al. Mutual coupling in aperture-coupled patch antennas fed by orthogonal SIW line
US2635189A (en) Wave guide antenna with bisectional radiator
US2452767A (en) Broad-band antenna
US2570824A (en) Wide band antenna
US3943520A (en) Nose cone capacitively tuned wedge antenna
Kumar et al. SIW resonator fed horn mounted compact DRA with enhanced gain for multiband applications
US2934761A (en) Aircraft antenna system
US3447158A (en) Low profile aircraft antenna with dielectric reflector to reduce destructive interference