US20170086881A1 - Thoracic Access Port Including Foldable Anchor - Google Patents

Thoracic Access Port Including Foldable Anchor Download PDF

Info

Publication number
US20170086881A1
US20170086881A1 US15/376,731 US201615376731A US2017086881A1 US 20170086881 A1 US20170086881 A1 US 20170086881A1 US 201615376731 A US201615376731 A US 201615376731A US 2017086881 A1 US2017086881 A1 US 2017086881A1
Authority
US
United States
Prior art keywords
surgical access
access device
movable element
surgical
insertion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/376,731
Inventor
David Gregory Ahern
Robin Craig Cocker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien LP
Original Assignee
Covidien LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covidien LP filed Critical Covidien LP
Priority to US15/376,731 priority Critical patent/US20170086881A1/en
Assigned to TYCO HEALTHCARE GROUP LP reassignment TYCO HEALTHCARE GROUP LP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COCKER, ROBIN CRAIG, AHERN, DAVID GREGORY
Assigned to COVIDIEN LP reassignment COVIDIEN LP CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: TYCO HEALTHCARE GROUP LP
Publication of US20170086881A1 publication Critical patent/US20170086881A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • A61B17/3423Access ports, e.g. toroid shape introducers for instruments or hands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/0218Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/0293Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors with ring member to support retractor elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • A61B17/3423Access ports, e.g. toroid shape introducers for instruments or hands
    • A61B2017/3427Access ports, e.g. toroid shape introducers for instruments or hands for intercostal space
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B2017/348Means for supporting the trocar against the body or retaining the trocar inside the body
    • A61B2017/3482Means for supporting the trocar against the body or retaining the trocar inside the body inside
    • A61B2017/3484Anchoring means, e.g. spreading-out umbrella-like structure

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Surgical Instruments (AREA)

Abstract

A surgical access device includes a body having a first member and a second member relatively movable between open and closed configurations. Each member is positionable within an opening in tissue to provide access to an interior space of a patient. Each member includes a top surface, a bottom surface, a leading end, and a trailing end. The top surfaces are positioned in close cooperative alignment when the first and second members are in the closed configuration. The trailing ends are positioned in close cooperative alignment when the first and second members are in the open configuration. In the open position, the first and second members define a passage therethrough to permit access to the interior space for passage of a surgical instrument therethrough.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of U.S. patent application Ser. No. 14/835,774 filed Aug. 26, 2015, which is a divisional of U.S. patent application Ser. No. 13/397,896 filed Feb. 16, 2012, now U.S. Pat. No. 9,119,665, which claims the benefit of and priority to U.S. Provisional Patent Application No. 61/454,684, filed Mar. 21, 2011, the entire disclosure of which is incorporated by reference herein.
  • BACKGROUND
  • 1. Technical Field
  • The present disclosure relates generally to devices and techniques for performing surgical procedures. More particularly, the present disclosure relates to an access device for minimally invasive surgery.
  • 2. Background of the Related Art
  • In an effort to reduce trauma and recovery time, many surgical procedures are performed through small openings in the skin, such as an incision or a natural body orifice. For example, these procedures include laparoscopic procedures, which are generally performed within the confines of a patient's abdomen, and thoracic procedures, which are generally performed within a patient's chest cavity.
  • Specific surgical instruments have been developed for use during such minimally invasive surgical procedures. These surgical instruments typically include an elongated shaft with operative structure positioned at a distal end thereof, such as graspers, clip appliers, specimen retrieval bags, etc.
  • During minimally invasive procedures, the clinician creates an opening in the patient's body wall, oftentimes by using an obturator or trocar, and thereafter positions an access assembly within the opening. The access assembly includes a passageway extending therethrough to receive one or more of the above-mentioned surgical instruments for positioning within the internal work site, e.g. the body cavity.
  • During minimally invasive thoracic procedures, an access assembly is generally inserted into a space located between the patient's adjacent ribs that is known as the intercostal space, and then surgical instruments can be inserted into the internal work site through the passageway in the access assembly.
  • In the interests of facilitating visualization, the introduction of certain surgical instruments, and/or the removal of tissue specimens during minimally invasive thoracic procedures, it may be desirable to spread the tissue adjacent the ribs defining the intercostal space and/or the ribs. Additionally, during these procedures, firm, reliable placement of the access assembly is desirable to allow the access assembly to withstand forces that are applied during manipulation of the instrument(s) inserted therethrough. However, reducing patient trauma during the procedure, discomfort during recovery, and the overall recovery time remain issues of importance. Thus, there exists a need for thoracic access ports which minimize post operative patient pain while enabling atraumatic retraction of tissue and which do not restrict access to the body cavity. There also exists a need to facilitate insertion of such thoracic ports into the body cavity.
  • SUMMARY
  • According to one aspect of the present disclosure, a surgical access device is provided which includes a body that includes a first member and a second member. Each member includes a top surface, a bottom surface, a leading end, and a trailing end. The first and second members are relatively movable between open and closed configurations and are positionable within an opening in tissue to provide access to an interior space of a patient. The first and second members in the open configuration define a passage therethrough. The passage is dimensioned to permit access to the interior space of the patient for passage of a surgical instrument therethrough.
  • Preferably, the trailing ends are positioned in close cooperative alignment when the first and second members are in the open configuration and the top surfaces are positioned in close cooperative alignment when the first and second members are in the closed configuration.
  • In some embodiments, in the open configuration, the leading ends of the first and second members are diametrically opposed and the top and bottom surfaces of the first member are substantially aligned with the top and bottom surfaces of the second member along an axis substantially transverse to a central axis defined through the passage. In some embodiments, in the closed configuration, the leading and trailing ends of the first member are substantially aligned with the leading and trailing ends of the second member and the bottom surfaces of the first and second members are disposed in substantially mirrored relation.
  • In some embodiments, one or both of the first and second members include one or more flaps extending into the passage.
  • In some embodiments, one or both of the first and second members define one or more apertures dimensioned to facilitate the positioning of the first and the second members into the open configuration. The apertures can include a first portion and a second portion wherein the first portion is smaller than the second portion. Each of the first and second members can include a surface feature defined along the top surface thereof wherein each respective surface feature can be in contact with the other surface feature when the first and second members are in the closed configuration. One or more of the surface features may include a tapered portion.
  • In some embodiments, a first arm extends from one of the first and second members and a second arm extends from the other of the first and second members. In such embodiments, the first arm can define a channel dimensioned to receive the second arm such that the first arm and the second arm are engaged in close geometric fit when the first and second members are positioned in the open configuration so that the first and second members are secured in the open configuration.
  • In some embodiments, one or more cords may be secured to one or both of the first arm and the second arm wherein when the first and second members are secured in the open configuration, the one or more cords are actuable upon the application of a predetermined amount of force to disengage the first and second arms from a close geometric fit so that the first and second members are no longer secured in the open configuration. An opening may be defined within the first arm and/or the second arm through which the one or more cords may be secured.
  • According to another aspect, a surgical access system is provided and includes a surgical access device and an insertion device. The surgical access device includes a body that includes a first member and a second member. Each member is movable between open and closed configurations and is positionable within an opening in tissue to provide access to an internal space of a patient. The first and second members in the open configuration define a passage therethrough. The passage is dimensioned to permit access to the internal space of a patient for passage of a surgical instrument therethrough.
  • The insertion device includes a housing having a shaft extending from the housing. At least one movable element extends from a distal end of the shaft. An actuator is operably coupled to at least one movable element and is operable to move at least one movable element between first and second positions. The at least one movable element is releasably engageable with at least one of the first and second members of the surgical access device such that movement of at least one movable element between the first and second positions repositions the first and second members of the surgical access device between open and closed configurations when at least one movable element is engaged with at least one of the first and second members of the surgical access device.
  • In some embodiments, the at least one movable element is substantially aligned with a longitudinal axis of the insertion device in the first position and substantially aligned with an axis transverse to the longitudinal axis of the insertion device in the second position.
  • The passage defined through the first and second members in the open configuration may in some embodiments be substantially elliptical and define a plane including major and minor axes. In some embodiments, when the one or more movable elements are positioned in the second position, the one or more movable elements are prevented from crossing the plane defined by a substantially elliptical passage of the surgical access device when the one or more movable elements are not substantially aligned with the major axis defined by the substantially elliptical passage of the surgical access device.
  • In some embodiments, each member includes a top surface, a bottom surface, a leading end, and a trailing end, wherein the top surfaces are positioned in close cooperative alignment when the first and second members are in the closed configuration and the trailing ends are positioned in close cooperative alignment when the first and second members are in the open configuration and in the closed configuration.
  • In some embodiments, the first member and/or the second member of the surgical access device define one or more apertures and the one or more movable elements of the insertion device include one or more protuberances extending therefrom wherein the one or more apertures and the one or more protuberances are releasably engagable with each other. The one or more apertures can have a first portion and a second portion wherein the first portion is smaller than the second portion such that the one or more protuberances of the one or more movable elements are dimensioned to engage the smaller portion of the one or more apertures in a tight geometric fit and the larger portion in a loose geometric fit such that the one or more protuberances remain substantially secured to the smaller portion of the one or more apertures when engaged therewith and are substantially freely movable relative to the larger portion of the one or more apertures when engaged therewith.
  • According to yet another aspect, the present disclosure is directed to a method of accessing an internal surgical work site relative to an intercostal space defined between a patient's ribs. The method includes the step of providing a surgical access device including a body having a first member and a second member, each member including a top surface, a bottom surface, a leading end, and a trailing end. The method includes providing an insertion device including a housing having a shaft extending from the housing, at least one movable element extending from a distal end of the shaft, and an actuator operably coupled to the at least one movable element and operable to move the at least one movable element between first and second positions. The method includes the steps of coupling the at least one movable element to one or both of the first and second members, selectively positioning the first and second members between a closed configuration, where the top surfaces of first and second members are positioned in close cooperative alignment, and an open configuration. The method further includes positioning the first and second members relative to the intercostal space with the insertion device and uncoupling the at least one movable element from at least one of the first and second members.
  • The method may include the step of removing the surgical access device from the intercostal space by pulling one or more cords operably coupled to the surgical access device. The method may include the step of rotating the insertion device after uncoupling the one or more movable elements of the insertion device from the first and second members of the surgical access device in order to permit removal of the insertion device through a passage defined through the first and second members of the surgical access device.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Various exemplary embodiments of the present disclosure are described herein below with reference to the drawings, wherein:
  • FIG. 1 is a perspective view of the inner member of a surgical access assembly in accordance with the present disclosure shown in a closed configuration mounted to an insertion device with the membrane removed for clarity;
  • FIG. 2 is a perspective view of the inner member of the surgical access assembly of FIG. 1 shown in an open configuration on the insertion device with the membrane removed for clarity;
  • FIG. 3 is a front view illustrating a patient's skeletal structure with one embodiment of the presently disclosed surgical access device of the presently disclosed surgical access assembly of FIGS. 1 and 2 positioned within the intercostal space defined between adjacent ribs;
  • FIG. 4 is an enlarged, perspective view of the surgical access device of FIG. 1 shown in the open configuration;
  • FIG. 5 is an enlarged, perspective view of the distal end of the surgical access assembly of FIGS. 1 and 2;
  • FIG. 6 is an enlarged, perspective view of the distal end of the surgical access assembly of FIGS. 1 and 2 shown in the closed configuration;
  • FIG. 7 is an enlarged, partial perspective view of the surgical access device of FIG. 4 shown disposed between open and closed configurations;
  • FIG. 8 is a side, cross-sectional view of the insertion device of the surgical access assembly of FIGS. 1 and 2, the insertion device shown in the closed configuration;
  • FIG. 9 is an enlarged, side, cross-sectional view of the distal end of the insertion device of the surgical access assembly of FIGS. 1 and 2, the distal end of the insertion device shown in the closed configuration;
  • FIGS. 10-12 are progressive views of the insertion device of the presently disclosed surgical access assemblies showing the insertion device being repositioned between open and closed configurations;
  • FIG. 13 is a perspective view of another embodiment of the surgical access device in accordance with the present disclosure;
  • FIG. 14 is a perspective view of the base of the surgical access device of FIG. 13;
  • FIG. 15 is a perspective view of the body of the surgical access device of FIG. 13;
  • FIG. 16 is a front illustrative view of the surgical access device of FIG. 13 shown in the closed configuration;
  • FIG. 17 is front illustrative view of the surgical access device of FIG. 13 shown in the open configuration; and
  • FIG. 18 is a front, perspective view, in partial cross-section of another embodiment of the surgical access device in accordance with the present disclosure.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • Various embodiments of the presently disclosed access assembly, and methods of using the same, will now be described in detail with reference to the drawings wherein like references numerals identify similar or identical elements. In the drawings, and in the following description, the term “proximal” should be understood as referring to the end of the access assembly, or component thereof, that is closer to the clinician during proper use, while the term “distal” should be understood as referring to the end that is farther from the clinician, as is traditional and conventional in the art. Additionally, use of the term “tissue” herein below should be understood to encompass both the patient's ribs, and any surrounding tissues. It should also be understood that the term “minimally invasive procedure” is intended to include surgical procedures through small openings/incisions performed within a confined space such as the thoracic cavity or abdominal cavity.
  • Referring now to the drawings, FIGS. 1-12 illustrate one embodiment of the presently disclosed surgical access assembly that is generally referred to by reference numeral 10, in use for a minimally invasive thoracic surgical procedure. The various components of the surgical access assembly 10 may be formed from any suitable biocompatible material, including, but not limited to, polymeric materials. With particular reference to FIGS. 1-2, the surgical access assembly 10 includes a surgical access device 100 and an insertion device 200. The surgical access device (access port) 100 is depicted as a thoracic access device configured and dimensioned for insertion by the insertion device 200 into the intercostal space “S” (FIG. 3), thereby providing on access port for the insertion of one or more surgical instruments (not shown) therethrough for manipulation within the thoracic cavity “T” (FIG. 3). The intercostal space “S” is located between a patient's adjacent ribs “R” through an opening or incision in tissue. A membrane (not shown in FIGS. 1 and 2) as described below preferably also forms part of the access device 100.
  • With reference to FIGS. 4-7, the surgical access device 100 includes a body 102 that includes a first member 110 and a second member 120. The first member 110 includes a top surface 110 a, a bottom surface 110 b, a leading end (or outer end or edge) 110 c, and a trailing end (or inner end or edge) 110 d. The second member 120 includes a top surface 120 a, a bottom surface 120 b, a leading end (or outer end or edge) 120 c, and a trailing end (or inner end or edge) 120 d. The first and second members 110, 120 are each movable between open (FIGS. 4 and 5) and closed (FIG. 6) configurations and are positionable within the opening in tissue to provide access to the intercostal space “S” (FIG. 3) defined between a patient's adjacent ribs “R” (FIG. 3). As best shown by the arrows “A” and “B” in FIGS. 4-6, one or both of the first and second members 110, 120 may rotate as the first and second members 110, 120 move between the open and closed configurations. For example, each of the first and second members 110, 120 may rotate from between about 45 degrees to about 135 degrees between the open and closed configurations. Other degrees of rotation are also contemplated. As illustrated in FIGS. 5 and 6, each of the first and second members 110, 120 are shown rotating about 90 degrees between the open and closed configurations. The first and second members 110, 120 define a passage 130 therethrough when positioned in the open configuration. The passage 130 is dimensioned to permit access to the intercostal space “S” (FIG. 3) for passage of one or more surgical instruments into an internal work site of a thoracic cavity “T” (FIG. 3). As best shown in FIG. 4, the passage 130 may be substantially rectangular with rounded sides (or considered as substantially elliptical with two substantially parallel straight sides), and define a place including a major axis “M” and a minor axis “N.” The passageway can also be of other shapes.
  • In the open configuration (FIGS. 4 and 5), the leading ends 110 c, 120 c are in substantially spaced relation across the major axis “M” at spaced positions along minor axis “N” as they form outer ends of the device 100. The trailing ends 110 d, 120 d are in substantial abutting mirrored relation across the major axis “M” and at close proximal positions along minor axis “N” as the inner edges are adjacent. Also in the open configuration, the leading ends 110 c, 120 c and the trailing ends 110 d, 120 d are substantially in the same plane, e.g., substantially similarly longitudinally positioned along longitudinal axis “L.” In the closed configuration (FIG. 6), the leading ends 110 c, 120 c and the trailing ends 110 d, 120 d are in closer proximity and preferably in substantial abutting relation across the major axis “M” and in close proximal positions along minor axis “N.” In addition, the leading ends 110 c, 120 c are at spaced longitudinal positions relative to the trailing ends 110 d, 120 d along the longitudinal axis “L” in the closed configuration. Thus, as can be appreciated leading ends 110 c, 120 c are on the exterior sides of the access device 100 in the open configuration shown in FIG. 4 and are moved adjacent one another in the closed configuration of FIG. 6.
  • With continued reference to FIG. 4, the first member 110 may include one or more flaps 112 extending into the passage 130 and the second member 120 may include one or more flaps 122 extending into the passage 130. The flaps 112, 122 may be positioned relative adjacent ribs “R” (FIG. 3). Note that during the surgical procedure, surgical tools might be inserted through the access port and torque applied can result in pressure on and damage to tissues including nerves running along the ribs. The flaps 112, 122 are designed to spread point loads and thus reduce such trauma to the tissue during the procedure.
  • Referring again to FIGS. 4-6, in the open configuration, the leading ends 110 c, 120 c of the first and second members 110, 120 are diametrically opposed and the top and the bottom surfaces 110 a, 110 b of the first member 110 are substantially aligned with the top and bottom surfaces 120 a, 120 b of the second member 120 along an axis substantially transverse to a central axis “X” defined through the passage 130. As best shown in FIG. 5, the central axis “X” may be substantially aligned with a longitudinal axis “L” of the insertion device 200. The trailing ends 110 d, 120 d are positioned in close cooperative alignment when the first and second members 110, 120 are in the open configuration. In the closed (e.g. folded or collapsed) configuration, the leading and trailing ends 110 c, 110 d of the first member 110 are substantially aligned with the leading and trailing ends 120 c, 120 d of the second member 120 and the bottom surfaces 110 b, 120 b of the first and second members 110, 120 are disposed in substantially mirrored relation. The top surfaces 110 a, 120 d are positioned in close cooperative alignment when the first and second members 110, 120 are in the closed configuration. That is, as the device 10 is folded, the top surfaces 110 a, 120 d are folded toward each other to the position of FIG. 6, where the leading ends 110 c, 120 c are moved adjacent one another. Bottom surfaces 120, 120 b then form the outer sides of the device 100.
  • With continued reference to FIG. 4, the first member 110 defines one or more apertures 114 and the second member 120 defines one or more apertures 124. The apertures 114, 124 are dimensioned to facilitate the positioning of the first and the second members 110, 120 into the open configuration. The aperture 114 includes a first portion 114 a and a second portion 114 b. Similarly, the aperture 124 includes a first portion 124 a and a second portion 124 b. The first portions 114 a, 124 a are smaller than the second portions 114 b, 126 a.
  • The first member 110 includes a surface feature 116 defined therealong. The surface feature 116 may include one or more tapered portions 116 a. Similarly, the second member 120 includes a surface feature 126 defined therealong. The surface feature 126 may include one or more tapered portions 126 a. The surface features 116, 126 are in contact with each other when the first and second members 110, 120 are in the closed configuration. The tapered portions 116 a, 126 a of the first and second members 110, 120 may have complementary mating surfaces with at least a portion of the surface feature 116, 126 of the other respective member 110, 120. In this manner, the tapered portions 116 a, 126 enable the surface features 116, 126 to engage each other in close cooperative alignment.
  • As best shown in FIG. 7, a first arm 118 extends from the first member 110. A second arm 128 extends from the second member 120. The first arm 118 defines a channel 118 a dimensioned to receive the second arm 128 such that the first arm 118 and the second arm 128 are engaged in close geometric fit when the first and second members 110, 120 are positioned in the open configuration so that the first and second members 110, 120 are secured in the open configuration. One or more cords 140 may be secured to one or both of the first arm 118 and the second arm 128. When the first and second members 110, 120 are secured in the open configuration, the one or more cords 140 are actuable, upon the application of a predetermined amount of force, to disengage the first and second arms 118, 128 from the close geometric fit so that the first and second members 110, 120 are no longer secured in the open configuration. An opening 118 b may be defined within one or more of the first arm 118 and the second arm 128 through which the one or more cords 140 may be secured.
  • Referring now to FIGS. 8-12, the insertion device 200, which may be disposable, includes a housing 202 having a shaft 204 extending from the housing 202 and a movable assembly 210 at a distal end of shaft 204. A lumen 201 is defined through the housing 202 and the shaft 204. One or more movable elements 210 a, 210 b extend from a distal end of the shaft 204 and are pivotally coupled to the distal end thereof via pins 203. In particular, first and second movable elements 210 a, 210 b may be secured on opposed ends of the distal end of the shaft 204 via pins 203 a, 203 b so that they pivot in opposite directions. An actuator 206 is operably coupled to the movable elements 210 a, 210 b and is operable to move the movable elements 210 a, 210 b between first and second positions. As best illustrated in FIG. 9, the distal end of the actuator 206 may be pivotally connected via pin 203 c to extensions 211 extending from each respective movable element 210 a, 210 b. Extension 211 a of first movable element 210 d enables the first movable element 210 d to rotate about both pins 203 a and pin 203 c when the actuator 206 is longitudinally translated. Similarly, the extension (not shown but identical to extension 211 a and disposed on the opposed side in substantially mirrored relation) of second movable element 210 b enables the second movable element 210 b to rotate about both pins 203 b and pin 203 c when the actuator 206 is longitudinally translated. In this respect, each of the extensions 211 of the first and second movable elements 210 a, 210 b pivots and longitudinally translates, simultaneously, in response to the longitudinal actuation of the actuator 206. In addition, both the extensions 211 of the first and second movable elements 210 a, 210 b also simultaneously longitudinally translate with respect to each other; however, each movable element 210 a, 210 b pivots in opposed direction about pin 203 c with respect to the other, as discussed above. Specifically, movable elements 210 a, 210 b pivot away from one another when being positioned in an open configuration and away from one another when being positioned in a closed configuration.
  • Referring now to FIGS. 4 and 10-12, the movable elements 210 a, 210 b are substantially aligned with a longitudinal axis “L” of the insertion device 200 in the first position and substantially aligned with an axis “Z” that is transverse to the longitudinal axis “L” of the insertion device 200 in the second position. The movable elements 210 a, 210 b of the insertion device 200 are releasably engagable with one or both of the first and second members 110, 120 of the surgical access device 100 such that movement of the movable elements 210 a, 210 b between the first and second positions repositions the first and second members 110, 120 of the surgical access device 100 between open and closed configurations when the movable elements 210 a, 210 b) are engaged with one or both of the first and second members 110, 120 of the surgical access device 100. As best shown in FIG. 5, when the movable elements 210 a, 210 b are positioned in the second position, the movable elements 210 a, 210 b are prevented from crossing the plane defined by the substantially elliptical passage 130 of the surgical access device 100 when the movable elements 210 a, 210 b are not substantially aligned with the major axis “M” (FIG. 4) defined by the substantially elliptical passage 130 of the surgical access device 100.
  • With reference to FIGS. 4-5, the movable elements 210 a, 210 b of the insertion device 200 include one or more protuberances 212 extending therefrom. The apertures 114, 124 of the surgical access device 100 and the protuberances 212 of the insertion device 200 are engagable. The protuberances 212 are dimensioned to engage the smaller first portions 114 a, 124 a of the apertures 114, 124 in a tight geometric fit and the larger second portions 114 b, 124 b in a loose geometric fit such that the one or more protuberances 212 remain substantially secured to the first portions 114 a, 124 a of the apertures 114, 124 when engaged therewith and are substantially freely movable relative to the second portions 114 b, 124 b of the apertures 114, 124 when engaged therewith.
  • With reference now to FIGS. 13-17, an alternative embodiment of the presently disclosed surgical access device will be discussed. The embodiment disclosed herein below is similar to the surgical access device 100 discussed above, and accordingly, will only be discussed to the extent necessary to describe the differences in structure and operation thereof.
  • FIG. 13 illustrates an embodiment of the presently disclosed surgical access device that is identified by the reference numeral 300. The surgical access device 300 includes a base 310 and a body 320 operably couplable to the base 310. As best shown in FIG. 14, the base 310 includes a support 312, a first wing 314 a, and a second wing 314 b. The first and second wings 314 a, 314 b are substantially identical and are secured to opposite ends of the support 312. The first and second wings 314 a, 314 b each include a planar surface 315 on which the body 320 is positioned. The support 312 defines a passage 312 a that is substantially elliptical and defines a major axis “M” and a minor axis “N.” The first and second wings 314 a, 314 b each include first and second elements 316 a, 316 b. The first and second elements 316 a, 316 b are pivotable between a folded condition, where the first and second elements 316 a, 316 b are substantially aligned with a central axis “C” defined through the passage 312 a, and an unfolded condition, where the first and second elements 316 a, 316 b are substantially aligned with minor axis “N,” which is transverse to the central axis “C.” The first and second elements 316 a, 316 b each define a contoured surface 318 a, 318 b. The contoured surfaces 318 a, 318 b are dimensioned to engage complimentary mating surfaces (not shown) defined on the bottom surface of the body 320 of the surgical access device 300 such that pivoting, e.g. folding, of the first and second elements 316 a, 316 b folds the connected body 320 as described below.
  • Referring now to FIG. 15, the body 320 includes a first member 322 and a second member 324. The first member 322 includes a top surface 322 a, a bottom surface 322 b, a leading end 322 c, and a trailing end 322 d. The second member 324 includes a top surface 324 a, a bottom surface 324 b, a leading end 324 c, and a trailing end 324 d. The first and second members 322, 324 are each movable between (open) unfolded (FIG. 17) and (closed) folded (FIG. 16) configurations and are positionable within the opening in tissue to provide access to the intercostal space “T” (FIG. 3) defined between a patient's adjacent ribs “R.” One or both of the first and second members 322, 324 may rotate as the first and second members 322, 324 move between the unfolded and folded configurations. As illustrated in FIGS. 16-17, each of the first and second members 322, 324 are shown rotating about 90 degrees between the unfolded and folded configurations, although other degrees of rotation are also contemplated. As best shown in FIG. 13, the first and second members 322, 324 define a passage 330 therethrough when positioned in the unfolded configuration. The passage 330 is substantially aligned with the passage 312 a when the first and second members 322, 324 are in the unfolded configuration so that passages 312 a and 330 are dimensioned to permit access to the intercostal space “T” (FIG. 3) for passage of one or more surgical instruments into an internal work site. Each passage 312 a and 330 may be substantially rectangular with rounded ends and define a plane including a major axis “M” and a minor axis “N.” Each of the passages 312 a, 330 are substantially similar to passage 130 discussed above. Other shapes of the passage are also contemplated.
  • The access device 300 can be composed of several components to facilitate the use of different material properties in different areas of the device 300. Since the base 310 is designed to flex it can be made of a material such as polypropylene. Since body 320 is attached, e.g. welded or bonded, to a membrane, it is composed of a material that is compatible with the material of the membrane. It is also envisioned that various molding techniques can be utilized to manufacture device 300 to allow different materials to be used in different regions of a component.
  • In the open configuration (FIG. 17), the leading ends (or outer ends) 322 c, 324 c are in substantially spaced relation across the major axis “M” at spaced positions along minor axis “N” and the trailing ends (or inner ends) 322 d, 324 d are in adjacent (or in some embodiments abutting) mirrored relation across the major axis “M” and at close proximal positions along minor axis “N.” Also, in the open configuration, the leading ends 322 c, 324 c and the trailing ends 322 d, 324 d are substantially in the same plane, e.g., substantially similarly longitudinally positioned along longitudinal axis “L.” In the closed configuration (FIG. 16), the leading ends 322 c, 324 c and the trailing ends 322 d, 324 d are in substantial mirrored relation across the major axis “M” and in close proximal positions along minor axis “N.” In addition, the leading ends 322 c, 324 c are at spaced longitudinal positions relative to the trailing ends 322 d, 324 d along the longitudinal axis “L” in the closed configuration.
  • With reference now to FIG. 18, another alternative embodiment of the presently disclosed surgical access device will be discussed. The embodiment disclosed herein below is similar to the surgical access device 100 discussed above, and accordingly, will only be discussed to the extent necessary to describe the differences in structure and operation thereof.
  • FIG. 18 illustrates another embodiment of the presently disclosed surgical access device that is identified by the reference numeral 400. Surgical access device 400 includes a membrane assembly 410 extending from body 102′, which is identical to body 102 of FIG. 1 (except for the membrane attachment). Body 102′ can be inserted into the patient using the insertion device 200 in the same manner body 102 is inserted. The membrane assembly includes a flexible membrane 412 and a ring 414. The flexible membrane 412 includes proximal and distal ends 412 a, 412 b. The distal end 412 b of the flexible member 412 may be coupled to and extend proximally from the internally positioned body 102 of the surgical access device 400. The flexible membrane 412 is generally funnel shaped and protects and isolates tissue surrounding the surgical access device 400 from the passage 130 extending therethrough, thus reducing the risk of tissue damage and/or infection during the surgical procedure. The flexible membrane 412 may be configured for soft tissue retraction and may be of sufficient elasticity to permit retraction of a wide range of tissue thicknesses since there may be a wide range of tissue thicknesses among different patients. Furthermore, the flexible membrane 412 is formed of a material of sufficient strength to prevent accidental tearing and/or puncture by surgical instrumentation inserted through the surgical access device 400. Additionally, the flexible membrane 412 may be made from a bio-compatible material to reduce the incidents of adverse reaction by a patient upon contact with the patient's tissue. Flexible membrane 412 may also be made of a transparent material to allow the surgeon to better visualize the surgical site and surrounding tissue.
  • The continuous ring 414 is coupled to the proximal end 412 a of flexible membrane 412 outside the patient. Ring 414 may be disposed through a loop 416 formed at the proximal end 412 a of flexible membrane 412. Proximal end 412 a of flexible membrane 412 may be folded back onto and adhered to flexible membrane 412 to define loop 416 therebetween, or, alternatively, proximal end 412 a of flexible membrane 412 may be engaged to ring 414 via any other suitable mechanism. Ring 414 may be made from a flexible or a semi-rigid material. The ring 414 may be sufficiently rigid to retain membrane 412 in an open, tensioned configuration, while being somewhat flexible such that ring 414 may be rotated about a circumference thereof to roll, or wind-up flexible membrane 412 therearound, as shown by arrows 420. Thus, as ring 414 is rotated in the direction of arrows 420, membrane 412 is rolled-up around ring 414 and tensioned, thereby flexing the surgical access device 400 further outwardly to retract tissue and/or to expand the passage 130 extending through the surgical access device 400.
  • With continued reference to FIGS. 1-18, use and operation of the presently disclosed surgical access assembly 10 will be discussed during the course of a minimally invasive surgical procedure. While the surgical access assembly 10 will be discussed in the context of a thoracic procedure, it should be appreciated that the following discussion of the surgical access assembly 10 is applicable to other minimally invasive surgical procedures.
  • Initially, the opening is made in the outer tissue wall of the thoracic cavity “T” (FIG. 3). Thereafter, if not already having been coupled to one of the presently disclosed surgical access devices, the insertion device 200 is coupled thereto. As best shown in FIG. 5, the movable elements 210 a, 210 b of the insertion device 200 are coupled to one or both of the first and second members of one of the presently disclosed surgical access devices. In this manner, the protuberances 212 of the movable elements 210 a, 210 b are positioned within the larger second portions 114 b, 124 b of the apertures 114, 124. Then, the movable elements 210 a, 210 b of the insertion device 200 are rotated so that the protuberances 212 couple with the smaller first portions 114 a, 124 a in close geometric fit, whereby the protuberances 212 are substantially secured to the first portions 114 a, 124 a. As such, the insertion device 200 is enabled to reposition the surgical access device between open (FIGS. 2, 13 and 17) and closed (FIGS. 1, 6 and 16) configurations upon the actuation (e.g., longitudinal translation) of the actuator 206. In the closed configuration, the surgical access device is in an approximated position such that the surgical access device assumes a reduced profile defining a smaller transverse dimension than in the open configuration. The reduced transverse dimension facilitates atraumatic insertion and removal of the surgical access device.
  • With the insertion device 200 maintaining the surgical access device in the closed configuration (FIGS. 1 and 6), the clinician, with the insertion device 200, inserts the surgical access device into the opening and positions the surgical access device in the intercostal space between adjacent ribs “R” into desired placement for providing the clinician access to the thoracic cavity “T” (FIG. 3). Specifically, the insertion device 200, with reference to FIGS. 10-12, is actuated via the actuator 206 in order to reposition the surgical access device into the open position so that the surgical access device may be positioned between adjacent ribs “R.”
  • With continued reference to FIGS. 10-12, when actuation is desired, the clinician translates the actuator 206 in the distal direction. The actuator 206 longitudinally translates so that each movable element 210 a, 210 b moves from the closed configuration to the open configuration, whereby the surgical access device coupled thereto also moves from the closed configuration to the open configuration. In order to secure the surgical access device in the open configuration, the actuator 206 is translated to a distal-most position. With particular regard to surgical access device 100, the first and second arms 118, 128 of the first and second members 110, 120 engage in close geometric fit in order to maintain the surgical access device 100 in the open configuration when positioned between the adjacent ribs “R.”
  • Referring now to FIG. 18, in embodiments that include the membrane assembly 410, the flexible membrane 412 may be positioned proximally of the opening so that it protects and isolates the surrounding tissue. In addition, the flexible membrane 412 may be tensioned, e.g., via the ring 414, by pulling the ring 414 or rotating the membrane 412 about the ring 414, to realize the desired positioning. In some embodiments, the ring 414 can be expandable by sliding first and second ring components away from each other to tension the membrane.
  • With reference again to FIG. 5, the insertion device 200 may then be uncoupled from surgical access device in order to permit removal of the insertion device 200. In particular, the one or more movable elements 210 a, 210 b are rotated so that the protuberances 212 move into the second portions 114 b, 124 b, thereby enabling the movable elements 210 a, 210 b to be uncoupled.
  • After uncoupling the movable elements 210 a, 210 b of the insertion device 200 from the surgical access device, the insertion device 200 can then be repositioned into the closed configuration upon the proximal translation of the actuator 206 (FIG. 12). In the closed configuration, the insertion device 200 assumes a reduced profile defining a smaller transverse dimension than in the open configuration. The reduced transverse dimension facilitates atraumatic insertion and removal of the insertion device 200. Once positioned in the closed configuration, the insertion device 200 may be atraumatically removed through the passage of one of the presently disclosed surgical access devices.
  • After removal of the insertion device 200, the clinician carries out the remainder of the surgical procedure by passing one or more surgical instruments through the passage of one of the presently disclosed surgical access devices. However, it should be appreciated that some instruments may be passed through the passage while the insertion device 200 is coupled to the surgical access device.
  • The surgical instrument(s) inserted through one of the presently disclosed surgical access devices may be any surgical instrument(s) configured and dimensioned to pass through one of the passages of the presently disclosed surgical access devices, and adapted to perform a surgical, diagnostic, or other desired procedure. For example, suitable surgical instruments may include an endoscopic apparatus, which perform a variety of functions such as the application of surgical clips or other such fasteners, the cutting of body tissue, and/or specimen retrieval for removing an internal tissue sample.
  • In order to facilitate passage of the surgical instrument(s) into the thoracic cavity “T,” and/or removal of the surgical instrument(s) therefrom, it is envisioned that surgical instrument(s), and or the insertion device 200, and/or any of the presently disclosed surgical access devices, may be partially, or entirely, coated with a biocompatible, lubricous material.
  • Following completed use of the surgical instrument(s), the instrument(s) are withdrawn from the surgical access device. The surgical access device may then be returned to the closed configuration, via reinsertion and coupling of the insertion device 200 as described above. After coupling the insertion device 200 to the surgical access device as described above, the actuator 206 is then proximally translated so that one or more movable elements 210 a, 210 b reposition the surgical access device into the closed configuration for facilitating removal of the surgical access device from between the adjacent ribs “R.” In this respect, the reduced profile of the surgical access device in the closed configuration allows for atraumatic removal of the surgical access device from the intercostal space “S.”
  • Alternatively, the surgical access device may be repositioned into the closed configuration for removal upon the application of a predetermined amount of force to the one or more cords 140 as best illustrated in FIG. 7. The one or more cords 140 impart a force upon the surgical access device that enables the surgical access device to approximate the closed configuration for facilitating removal of the surgical access device from the intercostal space “S.” With particular regard to the surgical access device 100, the predetermined force causes the first and second arms 118, 128 to become disengaged, thereby enabling the first and second members 110, 120 to be repositioned such that they approximate towards the closed configuration for facilitating removal of the surgical access assembly 100 from between the adjacent ribs “R.” In this respect, the reduced profile of the surgical access device 100 in the closed configuration allows for atraumatic removal of the surgical access device 100 from the intercostal space “S.”
  • Persons skilled in the art will understand that the structures and methods specifically described herein and illustrated in the accompanying figures are non-limiting exemplary embodiments, and that the description, disclosure, and figures should be construed merely exemplary of particular embodiments. It is to be understood, therefore, that the present disclosure is not limited to the precise embodiments described, and that various other changes and modifications may be effected by one skilled in the art without departing from the scope or spirit of the disclosure. Additionally, it is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another without departing from the scope of the present disclosure, and that such modifications and variations are also intended to be included within the scope of the present disclosure. Accordingly, the subject matter of the present disclosure is not to be limited by what has been particularly shown and described.

Claims (14)

What is claimed is:
1. A method of accessing an internal surgical work site, comprising:
positioning a surgical access device at least partially within an opening in tissue to provide access to an internal space, the surgical access device including a first member and a second member;
engaging a moveable element of an insertion device with the first member of the surgical access device;
moving the movable element of the insertion device from a first position to a second position to cause at least one of the first member or the second member of the surgical access device to move between a first configuration where the first member and the second member define a passage therebetween, the passage configured to permit access of a surgical instrument to the internal space, and a second configuration where top surfaces of the first member and the second member are positioned in close cooperative alignment, wherein the movable element is substantially aligned with a longitudinal axis defined by a shaft of the insertion device when the movable element is in the first position, and the movable element is substantially aligned with an axis transverse to the longitudinal axis when the movable element is in the second position.
2. The method according to claim 1, wherein moving the movable element from the first position to the second position includes pivoting the movable element with respect to the shaft of the insertion device.
3. The method according to claim 1, further comprising engaging a protuberance of the movable element with an aperture of the first member of the surgical access device.
4. The method according to claim 3, further comprising moving the protuberance from a larger portion of the aperture to a smaller portion of the aperture to help secure the movable member with respect to the first member of the surgical access device.
5. The method according to claim 1, further comprising applying force to a cord secured to at least one of the first member or the second member to allow at least one of the first member or the second member to move toward the second configuration.
6. The method according to claim 1, wherein moving the movable element of the insertion device from the first position to the second position causes at least one of the first member or the second member of the surgical access device to rotate about 90 degrees relative to a central axis defined through the passage.
7. The method according to claim 1, wherein moving the movable element of the insertion device from the first position to the second position causes each of the first member and the second member of the surgical access device to rotate about 90 degrees relative to a central axis defined through the passage.
8. The method according to claim 1, further comprising disengaging the moveable element of the insertion device from the first member of the surgical access device.
9. A method of accessing an internal surgical work site through an intercostal space defined between a patient's ribs comprising:
providing a surgical access device including a body having a first member and a second member, each of the first member and the second member including a top surface, a bottom surface, a leading end, and a trailing end;
providing an insertion device including a housing having a shaft extending from the housing, at least one movable element extending from a distal end of the shaft, and an actuator operably coupled to the at least one movable element and operable to move the at least one movable element between a first position and a second position;
coupling the at least one movable element to at least one of the first member or the second member;
selectively moving the first member and the second member between a closed configuration, where the top surfaces of the first member and the second member are positioned in close cooperative alignment, and an open configuration;
positioning the first member and the second member relative to the intercostal space with the insertion device; and
uncoupling the at least one movable element from at least one of the first member or the second member.
10. The method according to claim 9, further comprising removing the surgical access device from the intercostal space by pulling at least one cord operably coupled to the surgical access device.
11. The method according to claim 9, further comprising rotating the insertion device after uncoupling the at least one movable element of the insertion device from the first member and the second member of the surgical access device in order to permit removal of the insertion device through a passage defined through the first member and the second member of the surgical access device.
12. The method according to claim 9, further comprising engaging a protuberance of the at least one movable element with an aperture of the first member of the surgical access device.
13. The method according to claim 12, further comprising moving the protuberance from a larger portion of the aperture to a smaller portion of the aperture to help secure the at least one movable member with respect to the first member of the surgical access device.
14. The method according to claim 9, further comprising rotating the at least one movable member about 90 degrees relative to a central axis defined through a passage defined through the first and second members of the surgical access device.
US15/376,731 2011-03-21 2016-12-13 Thoracic Access Port Including Foldable Anchor Abandoned US20170086881A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/376,731 US20170086881A1 (en) 2011-03-21 2016-12-13 Thoracic Access Port Including Foldable Anchor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161454684P 2011-03-21 2011-03-21
US13/397,896 US9119665B2 (en) 2011-03-21 2012-02-16 Thoracic access port including foldable anchor
US14/835,774 US9549722B2 (en) 2011-03-21 2015-08-26 Thoracic access port including foldable anchor
US15/376,731 US20170086881A1 (en) 2011-03-21 2016-12-13 Thoracic Access Port Including Foldable Anchor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/835,774 Division US9549722B2 (en) 2011-03-21 2015-08-26 Thoracic access port including foldable anchor

Publications (1)

Publication Number Publication Date
US20170086881A1 true US20170086881A1 (en) 2017-03-30

Family

ID=45888012

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/397,896 Expired - Fee Related US9119665B2 (en) 2011-03-21 2012-02-16 Thoracic access port including foldable anchor
US14/835,774 Expired - Fee Related US9549722B2 (en) 2011-03-21 2015-08-26 Thoracic access port including foldable anchor
US15/376,731 Abandoned US20170086881A1 (en) 2011-03-21 2016-12-13 Thoracic Access Port Including Foldable Anchor

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US13/397,896 Expired - Fee Related US9119665B2 (en) 2011-03-21 2012-02-16 Thoracic access port including foldable anchor
US14/835,774 Expired - Fee Related US9549722B2 (en) 2011-03-21 2015-08-26 Thoracic access port including foldable anchor

Country Status (3)

Country Link
US (3) US9119665B2 (en)
EP (1) EP2502584A1 (en)
CA (1) CA2770670A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9119665B2 (en) 2011-03-21 2015-09-01 Covidien Lp Thoracic access port including foldable anchor
WO2016037153A1 (en) * 2014-09-04 2016-03-10 AtaCor Medical, Inc. Cardiac pacing
US10743960B2 (en) 2014-09-04 2020-08-18 AtaCor Medical, Inc. Cardiac arrhythmia treatment devices and delivery
US10328268B2 (en) 2014-09-04 2019-06-25 AtaCor Medical, Inc. Cardiac pacing
US11097109B2 (en) 2014-11-24 2021-08-24 AtaCor Medical, Inc. Cardiac pacing sensing and control
BR112018010622B1 (en) 2015-11-25 2023-04-11 Talon Medical, LLC FABRIC COUPLING DEVICE AND KIT
WO2020236937A1 (en) * 2019-05-20 2020-11-26 Icahn School Of Medicine At Mount Sinai A system and method for interaction and definition of tool pathways for a robotic cutting tool
CA3141999A1 (en) * 2019-05-29 2020-12-03 AtaCor Medical, Inc. Implantable electrical leads and associated delivery systems
US11666771B2 (en) 2020-05-29 2023-06-06 AtaCor Medical, Inc. Implantable electrical leads and associated delivery systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6488620B1 (en) * 1998-04-13 2002-12-03 Viamedics, Llc Self-seating surgical access device
US20060004261A1 (en) * 2004-06-30 2006-01-05 Ethicon Incorporated Low profile surgical retractor

Family Cites Families (156)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1780912A (en) 1926-12-13 1930-11-11 Henry F Gau Dilator
US1810466A (en) 1928-05-25 1931-06-16 Deutsch Josef Device for giving access to cavities of the animal and human body
US2313164A (en) 1939-11-13 1943-03-09 Walfred A Nelson Self-retaining surgical retractor
US2541516A (en) 1948-05-26 1951-02-13 Harry S Ivory Retractor means for surgical use
US2812758A (en) 1955-07-26 1957-11-12 John C Blumenschein Surgical retractor
US3807393A (en) 1972-03-01 1974-04-30 Donald B Mc Surgical retractor
US3782370A (en) 1972-07-12 1974-01-01 B Mcdonald Surgical retractor
US3965890A (en) 1974-10-18 1976-06-29 William Kohlmann Gauthier Surgical retractor
US4130113A (en) 1976-12-15 1978-12-19 Richards Manufacturing Co., Inc. Retractor
US4156424A (en) 1978-05-01 1979-05-29 Burgin Kermit H Locking adjustable speculum
US4553537A (en) 1983-06-09 1985-11-19 Max Rosenberg Surgical barrier
GB8424436D0 (en) 1984-09-27 1984-10-31 Pratt Int Ltd Burnerd Surgical appliance
US5080088A (en) 1987-11-09 1992-01-14 Minnesota Scientific, Inc. Flexible retractor
US5007900A (en) 1989-10-31 1991-04-16 Applied Medical Technology, Inc. Percutaneous endoscopic gastrostomy device
US5232451A (en) 1989-11-22 1993-08-03 Dexide, Inc. Locking trocar sleeve
US5052374A (en) 1990-08-06 1991-10-01 Alvarez Jacinto Manuel Hernia retractor
US5125396A (en) 1990-10-05 1992-06-30 Ray R Charles Surgical retractor
DE4034705A1 (en) 1990-10-31 1992-05-07 Martin Neumann WOUND CLOSURE
US5169387A (en) 1991-04-03 1992-12-08 Kronner Richard F Method and apparatus for catheterization of a body cavity
US5330501A (en) 1991-05-30 1994-07-19 United States Surgical Corporation Tissue gripping device for use with a cannula and a cannula incorporating the device
US5520610A (en) 1991-05-31 1996-05-28 Giglio; Steven R. Self retaining retractor
US5231974A (en) 1991-05-31 1993-08-03 Giglio Steven R Self retaining retractor
US5571215A (en) 1993-02-22 1996-11-05 Heartport, Inc. Devices and methods for intracardiac procedures
NL9101692A (en) 1991-10-08 1993-05-03 Arnold Cornelis Maria Van Lind CUSHIONAL BODY FOR BELLY OPERATIONS.
ATE175852T1 (en) 1991-11-06 1999-02-15 Inbae Yoon HOLDER FOR SURGICAL INSTRUMENTS
US5269754A (en) 1992-01-31 1993-12-14 Everest Medical Corporation Laparoscopic cholangiogram device
GR930100244A (en) 1992-06-30 1994-02-28 Ethicon Inc Flexible endoscopic surgical port
US5279575A (en) 1992-08-13 1994-01-18 Brigham & Women's Hospital Locking pivotal surgical orifice
GB2275420B (en) 1993-02-22 1996-10-09 David Ramon Gaunt Organ access systems and trocar assemblies
US6161543A (en) 1993-02-22 2000-12-19 Epicor, Inc. Methods of epicardial ablation for creating a lesion around the pulmonary veins
FR2706309B1 (en) 1993-06-17 1995-10-06 Sofamor Instrument for surgical treatment of an intervertebral disc by the anterior route.
US5755661A (en) 1993-06-17 1998-05-26 Schwartzman; Alexander Planar abdominal wall retractor for laparoscopic surgery
US5772583A (en) 1994-01-21 1998-06-30 Wright; John T. M. Sternal retractor with attachments for mitral & tricuspid valve repair
PL315939A1 (en) 1994-02-18 1996-12-09 Gaya Ltd Surgical appliance
US5480410A (en) 1994-03-14 1996-01-02 Advanced Surgical, Inc. Extracorporeal pneumoperitoneum access bubble
US5503617A (en) 1994-07-19 1996-04-02 Jako; Geza J. Retractor and method for direct access endoscopic surgery
US5460170A (en) 1994-08-23 1995-10-24 Hammerslag; Julius G. Adjustable surgical retractor
US5653705A (en) 1994-10-07 1997-08-05 General Surgical Innovations, Inc. Laparoscopic access port for surgical instruments or the hand
US5556385A (en) 1994-12-06 1996-09-17 Corpak, Inc. Improved percutaneous access device
US5888247A (en) 1995-04-10 1999-03-30 Cardiothoracic Systems, Inc Method for coronary artery bypass
US5524644A (en) 1995-06-09 1996-06-11 Medical Creative Technologies, Inc. Incrementally adjustable incision liner and retractor
GB9518888D0 (en) 1995-09-15 1995-11-15 Byrne Phillip O Device and method for transcutaneous surgery
US5755660A (en) 1995-10-31 1998-05-26 Tyagi; Narendra S. Combination surgical retractor, light source, spreader, and suction apparatus
US5776110A (en) 1996-01-26 1998-07-07 United States Surgical Corporation Thoracic port
US5976171A (en) 1996-02-20 1999-11-02 Cardiothoracic Systems, Inc. Access platform for internal mammary dissection
CA2198036C (en) 1996-02-20 2000-12-05 Charles S. Taylor Access platform for internal mammary dissection
CA2197614C (en) 1996-02-20 2002-07-02 Charles S. Taylor Surgical instruments and procedures for stabilizing the beating heart during coronary artery bypass graft surgery
US6814700B1 (en) 1996-03-04 2004-11-09 Heartport, Inc. Soft tissue retractor and method for providing surgical access
US5810721A (en) 1996-03-04 1998-09-22 Heartport, Inc. Soft tissue retractor and method for providing surgical access
US6048309A (en) 1996-03-04 2000-04-11 Heartport, Inc. Soft tissue retractor and delivery device therefor
US6309349B1 (en) 1996-04-10 2001-10-30 Endoscopic Technologies, Inc. Surgical retractor and stabilizing device and method for use
AU2666097A (en) 1996-04-10 1997-10-29 Endoscopic Technologies, Inc. Improving visualization during closed-chest surgery
US6132370A (en) 1996-04-26 2000-10-17 Genzyme Corporation Retractor-mounted coronary stabilizer
US5728103A (en) 1996-08-23 1998-03-17 Applied Medical Technology, Inc. Implantable subcutaneous access device and method of using same
US5788630A (en) * 1996-09-25 1998-08-04 Genzyme Corporation Rib retractor
US5931778A (en) 1996-09-25 1999-08-03 Genzyme Corporation Rib retractor
US5935107A (en) 1996-10-07 1999-08-10 Applied Medical Resources Corporation Apparatus and method for surgically accessing a body cavity
US5875782A (en) 1996-11-14 1999-03-02 Cardiothoracic Systems, Inc. Methods and devices for minimally invasive coronary artery revascularization on a beating heart without cardiopulmonary bypass
US5697891A (en) 1997-01-06 1997-12-16 Vista Medical Technologies, Inc. Surgical retractor with accessory support
US5967972A (en) 1997-03-28 1999-10-19 Kapp Surgical Instrument, Inc. Minimally invasive surgical retractor and method of operation
US6033362A (en) 1997-04-25 2000-03-07 Beth Israel Deaconess Medical Center Surgical retractor and method of use
US6458079B1 (en) 1997-04-25 2002-10-01 Beth Israel Deaconess Medical Center Surgical retractor and method of use
US5906577A (en) 1997-04-30 1999-05-25 University Of Massachusetts Device, surgical access port, and method of retracting an incision into an opening and providing a channel through the incision
US5846193A (en) 1997-05-01 1998-12-08 Wright; John T. M. Midcab retractor
US5957835A (en) 1997-05-16 1999-09-28 Guidant Corporation Apparatus and method for cardiac stabilization and arterial occlusion
US6382211B1 (en) 1997-07-21 2002-05-07 Medical Creative Technologies, Inc. Surgical retractor liner appliance
US5993385A (en) 1997-08-18 1999-11-30 Johnston; Terry Self-aligning side-loading surgical retractor
US6102854A (en) 1997-08-27 2000-08-15 Coroneo Inc. Sternum retractor for performing bypass surgery on a beating heart
US6338712B2 (en) 1997-09-17 2002-01-15 Origin Medsystems, Inc. Device to permit offpump beating heart coronary bypass surgery
US5779629A (en) 1997-10-02 1998-07-14 Hohlen; Robert D. Dual axis retractor
US5879291A (en) 1997-10-08 1999-03-09 Ethicon Endo-Surgery, Inc. Device used with a surgical retractor to elevate body parts
US5846194A (en) 1998-01-23 1998-12-08 Ethicon Endo-Surgery, Inc. Surgical retraction apparatus
US6033425A (en) 1997-11-12 2000-03-07 Genzyme Corporation Lifting rib retractor
WO1999034737A1 (en) 1998-01-05 1999-07-15 Tegementa, L.L.C Distraction device for vertebral disc procedures
US6162172A (en) 1998-01-30 2000-12-19 Edwards Lifesciences Corporation Methods and apparatus for retracting tissue
US6354995B1 (en) 1998-04-24 2002-03-12 Moshe Hoftman Rotational lateral expander device
US5908382A (en) 1998-07-08 1999-06-01 Koros; Tibor B. Minimally invasive retractor for internal mammary artery harvesting
WO2000009017A1 (en) 1998-08-10 2000-02-24 Coroneo, Inc. Surgical suture and associated anchoring mechanism for tissue retraction
AU5275099A (en) 1998-08-17 2000-03-14 Coroneo Inc. Pericardium retraction device for positioning a beating heart
US7559893B2 (en) 1998-12-01 2009-07-14 Atropos Limited Wound retractor device
US7537564B2 (en) 1998-12-01 2009-05-26 Atropos Limited Wound retractor device
ATE308277T1 (en) 1998-12-01 2005-11-15 Atropos Ltd SURGICAL DEVICE FOR RETRACTION AND/OR CLOSING A PITCH
US6024755A (en) 1998-12-11 2000-02-15 Embol-X, Inc. Suture-free clamp and sealing port and methods of use
WO2000042920A1 (en) 1999-01-24 2000-07-27 Genzyme Corporation Surgical retractor and tissue stabilization device having an adjustable sled member
US6500116B1 (en) 1999-01-24 2002-12-31 Genzyme Corporation Surgical retractor having improved blades
US5951467A (en) 1999-03-23 1999-09-14 Applied Medical Technology, Inc. Reconfigurable and self-retaining surgical retractor
US6746396B1 (en) 1999-04-13 2004-06-08 Viamedics, Llc Self-seating surgical access device and method of use
US6231506B1 (en) 1999-05-04 2001-05-15 Cardiothoracic Systems, Inc. Method and apparatus for creating a working opening through an incision
WO2000066008A1 (en) 1999-05-04 2000-11-09 Cardiothoracic Systems, Inc. Surgical instruments for accessing and stabilizing a localized portion of a beating heart
US6283912B1 (en) 1999-05-04 2001-09-04 Cardiothoracic Systems, Inc. Surgical retractor platform blade apparatus
IES990659A2 (en) 1999-07-30 2001-02-21 Gaya Ltd A surgical device
ATE415867T1 (en) 1999-10-14 2008-12-15 Atropos Ltd SURGICAL WOUND RETRACTOR
US7540839B2 (en) 1999-10-14 2009-06-02 Atropos Limited Wound retractor
CA2286929A1 (en) 1999-10-18 2001-04-18 Anthony Paolitto Valve surgery apparatus
DE10001695A1 (en) 2000-01-18 2001-02-08 Dieter Pommerrenig Device for spreading an operation access wound comprises two hinged oval-curved spring strips which are pressable together and insertable into an operation access wound
US6447443B1 (en) 2001-01-13 2002-09-10 Medtronic, Inc. Method for organ positioning and stabilization
US6312377B1 (en) 2000-04-06 2001-11-06 Viamedics, Llc Soft tissue compression shield and method of retracting tissue
WO2001084002A2 (en) 2000-05-03 2001-11-08 The Regents Of The University Of Michigan Attachment mechanism
US6254533B1 (en) 2000-07-07 2001-07-03 Dexterity Surgical, Inc. Retractor assembly and method for surgical procedures
US6599240B2 (en) 2000-12-20 2003-07-29 Genzyme Corporation Segmented arm assembly for use with a surgical retractor and instruments and methods related thereto
US20020099271A1 (en) 2001-01-19 2002-07-25 Knapp Tracey E. Stabilizing device for performing surgical procedures on cardiac tissue
US6616605B2 (en) 2001-02-15 2003-09-09 Genesee Biomedical, Inc. Quadretractor and method of use
US6585643B2 (en) 2001-03-22 2003-07-01 Ethicon, Inc. Heart positioning device and methods
US7144393B2 (en) * 2001-05-15 2006-12-05 Dipoto Gene P Structure for receiving surgical instruments
US6450983B1 (en) 2001-10-03 2002-09-17 Robert D. Rambo O-ring for incrementally adjustable incision liner and retractor
US6958037B2 (en) 2001-10-20 2005-10-25 Applied Medical Resources Corporation Wound retraction apparatus and method
EP2374402B1 (en) 2001-10-20 2012-05-09 Applied Medical Resources Corporation Sealed surgical access device
US7052454B2 (en) 2001-10-20 2006-05-30 Applied Medical Resources Corporation Sealed surgical access device
US6730021B2 (en) 2001-11-07 2004-05-04 Computer Motion, Inc. Tissue spreader with force measurement, force indication or force limitation
US6723044B2 (en) 2002-03-14 2004-04-20 Apple Medical Corporation Abdominal retractor
US7261688B2 (en) 2002-04-05 2007-08-28 Warsaw Orthopedic, Inc. Devices and methods for percutaneous tissue retraction and surgery
AU2003231267A1 (en) 2002-05-03 2004-02-16 Kapp Surgical Instrument, Inc. Surgical retractors and method of operation
US7650887B2 (en) 2002-06-05 2010-01-26 Applied Medical Resources Corporation Wound retractor
US7473222B2 (en) 2002-06-26 2009-01-06 Warsaw Orthopedic, Inc. Instruments and methods for minimally invasive tissue retraction and surgery
US7147599B2 (en) 2002-07-03 2006-12-12 Boss Instruments, Ltd., Inc. Surgical retractor with improved arms
US20060155170A1 (en) 2002-12-13 2006-07-13 Synthes Spine Company, Lp Guided retractor and methods of use
DE10325393B3 (en) 2003-05-28 2005-01-05 Karl Storz Gmbh & Co. Kg retractor
US7226451B2 (en) 2003-08-26 2007-06-05 Shluzas Alan E Minimally invasive access device and method
DE602004018342D1 (en) 2003-08-26 2009-01-22 Zimmer Spine Inc ACCESS SYSTEMS FOR MINIMALLY INVASIVE SURGERY
US7144368B2 (en) 2003-11-26 2006-12-05 Synthes Spine Company, Lp Guided retractor and methods of use
US7344495B2 (en) 2004-01-27 2008-03-18 Arvik Enterprises, Llc Surgical retractor apparatus for use with a surgical port
US7195592B2 (en) 2004-01-27 2007-03-27 Sundaram Ravikumar Surgical retractor apparatus for use with a surgical port
JP2007530128A (en) 2004-03-23 2007-11-01 アトロポス・リミテッド Wound retractor device
AU2005231485B2 (en) 2004-04-05 2010-08-05 Covidien Lp Surgical hand access apparatus
US8857440B2 (en) * 2004-06-22 2014-10-14 DePuy Synthes Products, LLC Devices and methods for protecting tissue at a surgical site
US7270632B2 (en) 2004-09-03 2007-09-18 Santilli Albert N Surgical retractor having lifting capability
WO2006049917A2 (en) 2004-10-29 2006-05-11 Depuy Spine, Inc Expandable ports and methods for minimally invasive surgery
US20060129165A1 (en) 2004-11-24 2006-06-15 Edrich Health Technologies, Inc. Gel based laparoscopic trocar
US20060149137A1 (en) 2005-01-05 2006-07-06 Applied Medical Resources Corporation Easily placeable and removable wound retractor
WO2008144104A1 (en) 2005-05-26 2008-11-27 Alpinespine Llc Minimally traumatic portal
US7566302B2 (en) * 2005-07-28 2009-07-28 Synthes Usa, Llc Expandable access device
EP1752106A1 (en) * 2005-08-11 2007-02-14 Cardio Life Research S.A. Surgical retractor
US7665466B2 (en) 2005-11-14 2010-02-23 Occlutech Gmbh Self-expanding medical occlusion device
WO2010042913A2 (en) 2006-10-06 2010-04-15 Surgiquest, Incorporated Devices for and methods of performing minimally-invasive surgical procedures through a single incision
US20080132766A1 (en) 2006-12-05 2008-06-05 Zimmer Spine, Inc. Surgical Access System And Method Of Using Same
US8152775B2 (en) 2007-10-17 2012-04-10 Tyco Healthcare Group Lp Access port using shape altering anchor
US20090204067A1 (en) 2008-02-07 2009-08-13 Mohamed Saad Abu-Halawa Two-part percutaneous endoscopic intragastric surgery cannula
US8181558B2 (en) 2008-04-24 2012-05-22 Cook Medical Technologies Llc Shaping device
US8262570B2 (en) 2008-05-30 2012-09-11 Pioneer Surgical Technology, Inc. Retraction apparatus and method of use
US20090326469A1 (en) 2008-06-26 2009-12-31 Tyco Healthcare Group Lp Surgical access instrument including a valve with dynamic fluid
US20100168522A1 (en) 2008-10-23 2010-07-01 Thomas Wenchell Surgical access assembly
EP2228014A1 (en) 2009-03-13 2010-09-15 Cardio Life Research S.A. Rib retractor
DE102009014525A1 (en) * 2009-03-13 2010-09-16 Karl Storz Gmbh & Co. Kg Medical instrument for providing access for a minimally invasive procedure
EP2228024B1 (en) 2009-03-13 2014-05-07 Karl Storz GmbH & Co. KG Medical instrument for creating an access point for minimally invasive procedures
DE102009014527A1 (en) 2009-03-13 2010-09-16 Karl Storz Gmbh & Co. Kg Device for splaying access instrument for minimal invasive engagement during laparoscopic surgery, has splaying element movable in one direction, where distal partial body sections laterally splay during movement of splaying element
US20100234690A1 (en) * 2009-03-13 2010-09-16 Cardiolife Research S.A. Rib retractor
US8137267B2 (en) 2009-04-08 2012-03-20 Ethicon Endo-Surgery, Inc. Retractor with flexible sleeve
US20100298646A1 (en) 2009-05-19 2010-11-25 Tyco Healthcare Group Lp Flexible access assembly with reinforced lumen
CN102802545A (en) 2009-05-29 2012-11-28 阿萨卢斯医疗器械有限公司 Laparoscopic access port and port sleeve arrangement
AU2010276239B2 (en) 2009-07-21 2015-08-06 Applied Medical Resources Corporation Surgical access device comprising internal retractor
US8608652B2 (en) * 2009-11-05 2013-12-17 Ethicon Endo-Surgery, Inc. Vaginal entry surgical devices, kit, system, and method
CA2689765A1 (en) 2010-01-04 2011-07-04 Manoj Bhargava Two-piece cannula, a kit comprising a two-piece cannula and an inserter and a method for use thereof
US20110319719A1 (en) 2010-02-12 2011-12-29 O'prey Cormac Thoracic access port
US8961408B2 (en) 2010-08-12 2015-02-24 Covidien Lp Expandable surgical access port
US8597180B2 (en) 2010-08-12 2013-12-03 Covidien Lp Expandable thoracic access port
US9119665B2 (en) 2011-03-21 2015-09-01 Covidien Lp Thoracic access port including foldable anchor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6488620B1 (en) * 1998-04-13 2002-12-03 Viamedics, Llc Self-seating surgical access device
US20060004261A1 (en) * 2004-06-30 2006-01-05 Ethicon Incorporated Low profile surgical retractor

Also Published As

Publication number Publication date
US20120245433A1 (en) 2012-09-27
US9549722B2 (en) 2017-01-24
EP2502584A1 (en) 2012-09-26
US20150366550A1 (en) 2015-12-24
CA2770670A1 (en) 2012-09-21
US9119665B2 (en) 2015-09-01

Similar Documents

Publication Publication Date Title
US9549722B2 (en) Thoracic access port including foldable anchor
US20160302784A1 (en) Expandable thoracic access port
US8540628B2 (en) Expandable thoracic access port
EP2422725A2 (en) Thoracic access port
US10420541B2 (en) Thoracic access port
US8574155B2 (en) Expandable surgical access port
US20150126816A1 (en) Thoracic access assembly
EP2359753B1 (en) Expandable thoracic access port
US20150005584A1 (en) Expandable surgical access port
EP2486882B1 (en) Thoracic access port
EP2535010B1 (en) Thoracic access port

Legal Events

Date Code Title Description
AS Assignment

Owner name: TYCO HEALTHCARE GROUP LP, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AHERN, DAVID GREGORY;COCKER, ROBIN CRAIG;SIGNING DATES FROM 20120228 TO 20120229;REEL/FRAME:040718/0132

Owner name: COVIDIEN LP, MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:TYCO HEALTHCARE GROUP LP;REEL/FRAME:040899/0509

Effective date: 20120928

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION