US20150295375A1 - Rotatable power center for a work surface - Google Patents

Rotatable power center for a work surface Download PDF

Info

Publication number
US20150295375A1
US20150295375A1 US14/686,884 US201514686884A US2015295375A1 US 20150295375 A1 US20150295375 A1 US 20150295375A1 US 201514686884 A US201514686884 A US 201514686884A US 2015295375 A1 US2015295375 A1 US 2015295375A1
Authority
US
United States
Prior art keywords
inner housing
use position
power center
portions
rotatable power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/686,884
Other versions
US9312653B2 (en
Inventor
Norman R. Byrne
Marc A. Mitchell
Randell E. Pate
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Byrne Electrical Specialists Inc
Original Assignee
Norman R. Byrne
Marc A. Mitchell
Randell E. Pate
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Norman R. Byrne, Marc A. Mitchell, Randell E. Pate filed Critical Norman R. Byrne
Priority to US14/686,884 priority Critical patent/US9312653B2/en
Assigned to BYRNE ELECTRICAL SPECIALISTS, INC. reassignment BYRNE ELECTRICAL SPECIALISTS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BYRNE, NORMAN R., MITCHELL, MARC A., PATE, RANDELL E.
Assigned to BYRNE, NORMAN R. reassignment BYRNE, NORMAN R. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BYRNE ELECTRICAL SPECIALISTS, INC.
Publication of US20150295375A1 publication Critical patent/US20150295375A1/en
Priority to US15/095,672 priority patent/US9601860B2/en
Application granted granted Critical
Publication of US9312653B2 publication Critical patent/US9312653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/44Means for preventing access to live contacts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/02Internal fittings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/20External fittings
    • B65D25/24External fittings for spacing bases of containers from supporting surfaces, e.g. legs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/6608Structural association with built-in electrical component with built-in single component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R27/00Coupling parts adapted for co-operation with two or more dissimilar counterparts
    • H01R27/02Coupling parts adapted for co-operation with two or more dissimilar counterparts for simultaneous co-operation with two or more dissimilar counterparts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R35/00Flexible or turnable line connectors, i.e. the rotation angle being limited
    • H01R35/04Turnable line connectors with limited rotation angle with frictional contact members

Definitions

  • the present invention relates to electrical power and/or data outlets or receptacles and, more particularly, to devices housing electrical outlets and receptacles for making them accessible at or along a work surface, such as a table or desk.
  • Electrical power outlets and/or electronic data outlets are commonly provided at work surfaces for use by persons located at or near the work surface. In some cases, it is desirable to provide selective access to electrical and/or data outlets so that users have the option of limiting or preclude access to the outlets, such as when the outlets are not needed, or for aesthetic reasons.
  • the present invention provides a rotatable power center for a work surface, that is repositionable between a use position in which electrical and/or data outlets are accessible at, along, or near the work surface, and a non-use position in which the outlets are not accessible.
  • users of the work surface can determine whether their particular needs would be better served by having access to the outlets, or by repositioning the power center to block that access and, optionally, to instead expose a smooth surface or other surface that does not include such outlets.
  • the power center is readily repositioned by releasing a latch or catch and rotating the power center to the desired orientation, whereupon another latch or catch may engage and inhibit further rotation until later being manually released.
  • a rotatable power center for a work surface includes a stationary outer housing, a rotatable inner housing, and at least one electrical or data receptacle.
  • the stationary outer housing is mountable at an opening formed in a work surface, and defines an upper opening with a pair of pivot elements disposed on opposite sides of the outer housing.
  • the rotatable inner housing is coupled to the outer housing and is alternately positionable between a use position and a non-use position.
  • the inner housing includes a first inner housing portion having a first surface that is located in the upper opening of the outer housing when the inner housing is in the use position.
  • the inner housing further includes a second inner housing portion having a second surface that is located in the upper opening of the outer housing when the inner housing is in the non-use position.
  • the electrical or data receptacle is mounted in the rotatable inner housing and has a receptacle opening that is generally accessible at or near the first surface of the inner housing.
  • the first inner housing portion has a pair of mounting element portions that cooperate with another pair of mounting element portions of the second inner housing portion to form a pair of mounting elements on opposite sides of the inner housing when the first and second inner housing portions are assembled together.
  • a spindle cap is disposed over each of the mounting elements to thereby secure the first and second pairs of mounting element portions together, which also secures the first and second inner housing portions together.
  • the spindle caps When the spindle caps cover and secure the respective mounting elements of the inner housing, the spindle caps engage respective ones of the pivot elements of the outer housing.
  • the rotatable inner housing is rotatably supported by the outer housing via engagement of the spindle caps with the pivot elements.
  • a latch release at each of the first and second surfaces is operable to secure the inner housing at the use position or the non-use position.
  • rotatable power center includes an outer housing with a pivot element and a detent-engaging element, and a pivotable inner housing that is supported at the pivot and detent-engaging elements.
  • the outer housing is configured for mounting to a work surface, and has an upper opening and a sidewall that extends downwardly below the upper opening.
  • the pivot and detent-engaging elements are each disposed along the sidewall of the outer housing.
  • the pivotable inner housing is coupled to the outer housing and is alternately positionable between a use position and a non-use position.
  • the inner housing has first and second surfaces, the first being configured to support an electrical or electronic data outlet and positioned in the upper opening when the inner housing is in the use position.
  • the second surface is positioned in the upper opening when the inner housing is in the non-use position.
  • the mounting element is positioned along a side of the inner housing.
  • a spindle or spindle cap is provided at the inner housing and is configured to engage the pivot element.
  • the spindle or spindle cap includes a detent element that is configured to be engaged by the detent-engaging element when the pivotable inner housing is at the use position or the non-use position.
  • the rotatable inner housing is pivotably supported by the outer housing via engagement of the spindle or spindle cap with the pivot element.
  • the rotatable power center of the present invention is rotatably or pivotably positionable between a use position in which one or more electrical or data outlets are accessible along a work surface, and a non-use position in which the electrical or data outlets are not accessible.
  • the rotatable power center may provide a generally planar surface that lacks outlets and/or other features.
  • FIG. 1 is a top perspective view of a rotatable power center in accordance with the present invention, shown in a non-use position and spaced above a mounting collar;
  • FIG. 2 is another top perspective view of the rotatable power center of FIG. 1 , shown in a use position and with a power supply cord attached thereto;
  • FIG. 3 is a bottom perspective view of the rotatable power center of FIG. 2 ;
  • FIG. 4 is an exploded view depicting two assembly steps of a latch mechanism of the rotatable power center
  • FIG. 5 is another top perspective view of the rotatable power center of FIG. 1 , depicting a first step prior to rotating the power center to a use position;
  • FIG. 6 is another top perspective view of the rotatable power center of FIG. 5 , showing the power center after rotating to the use position;
  • FIG. 7 is an inverted front elevation of the rotatable power center in the use position
  • FIG. 8 is top plan view of the rotatable power center of FIG. 7 ;
  • FIG. 9 is a right side elevation of the rotatable power center of FIG. 7 ;
  • FIG. 10 is an rear elevation of the rotatable power center of FIG. 7 ;
  • FIG. 11 is left side elevation of the rotatable power center of FIG. 7 ;
  • FIG. 12 is bottom plan view of the rotatable power center of FIG. 7 ;
  • FIG. 13 is another top plan view of the rotatable power center of FIG. 7 ;
  • FIG. 14 is a side sectional elevation taken along section line XIV-XIV in FIG. 13 ;
  • FIG. 15 is a side sectional elevation taken along section line XV-XV in FIG. 13 ;
  • FIG. 16 is an exploded bottom perspective view of the rotatable power center
  • FIG. 17 is an exploded top perspective view of the rotatable power center
  • FIG. 18 is a top perspective view of another rotatable power center in accordance with the present invention, shown in a use position and taken from a front-left side thereof;
  • FIG. 19 is another top perspective view of the rotatable power center of FIG. 18 , taken from a front-right side thereof;
  • FIG. 20 is a bottom perspective view of the rotatable power center of FIG. 18 , taken from the right side thereof;
  • FIG. 21 is another bottom perspective view of the rotatable power center of FIG. 20 , with an outer portion cut away to show internal structure;
  • FIG. 22 is an exploded top perspective view of the rotatable power center of FIG. 18 ;
  • FIG. 23 is an exploded bottom perspective view of the rotatable power center of FIG. 18 ;
  • FIGS. 24A , 25 A and 26 A are top perspective views of the rotatable power center of FIG. 18 , depicting three rotational positions from use position to non-use position;
  • FIGS. 24B , 25 B and 26 B are side elevations, including enlarged regions to show detail, generally corresponding to FIGS. 24A , 25 A and 26 A, respectively;
  • FIG. 27 is a top plan view of the rotatable power center of FIG. 18 ;
  • FIG. 28 is a bottom plan view of the rotatable power center
  • FIG. 29 is a left side elevation of the rotatable power center
  • FIG. 30 is a right side elevation of the rotatable power center
  • FIG. 31 is a front elevation of the rotatable power center.
  • FIG. 32 is a rear elevation of the rotatable power center.
  • a rotatable power center 10 ( FIGS. 1-3 and 5 - 17 ) is configured for mounting to a work surface such as a table, desk, wall, or the like.
  • Power center 10 includes a stationary outer housing 12 , a rotatable inner housing 14 , and at least one electrical or data receptacle 16 .
  • the stationary outer housing 12 is mountable at an opening formed in a work surface, and defines an upper opening 18 and also a pair of pivot elements in the form of holes 20 ( FIGS. 1 , 16 , and 17 ) that are disposed on opposite sides of the outer housing 12 .
  • the rotatable inner housing 14 is coupled to the outer housing 12 and is alternately positionable between a use position ( FIGS. 2 , 3 , and 6 - 15 ) and a non-use position ( FIGS. 1 and 5 ).
  • Inner housing 14 includes a first inner housing portion 14 a having a first surface 22 a that is located in the upper opening 18 of the outer housing 12 when the inner housing 14 is in the use position of FIGS. 2 , 3 and 6 - 15 .
  • the inner housing 14 further includes a second inner housing portion 14 b having a second surface 22 b that is located in the upper opening 18 of the outer housing 12 when the inner housing 14 is in the non-use position of FIGS. 1 and 5 .
  • the electrical or data receptacles 16 are mounted in the rotatable inner housing 14 , and in the illustrated embodiment, are mounted in respective openings 24 formed or established in first surface 22 a of first inner housing portion 14 a ( FIGS. 16 and 17 ).
  • Each receptacle 16 defines at least one receptacle opening 26 ( FIG. 13 ) through which electrical contacts are made accessible to a plug (not shown) such as would be associated with an electrical consumer or an electronic data device.
  • the first inner housing portion 14 a has a pair of mounting element portions generally in the form of half-cylinders 28 a made up of a plurality of fingers or projections generally arranged in a half-cylinder shape (shown), or that may be solid half-cylinders.
  • Half-cylinders 28 a cooperate with another pair of mounting element portions in the form of half-cylinders 28 b , of the second inner housing portion 14 b , to form a pair of mounting elements on opposite sides of the inner housing 14 when the first and second inner housing portions 14 a , 14 b are assembled together.
  • a spindle cap 30 is disposed over adjacent or mated pairs of the mounting elements 28 a , 28 b to thereby secure the first and second pairs of mounting element portions 28 a , 28 b together ( FIGS. 1-3 , 5 - 7 , 9 and 11 ), which in turn also secures the first and second inner housing portions 14 a , 14 b together.
  • the spindle caps 30 cover and secure the respective mounting elements of the inner housing 14
  • the spindle 30 caps engage respective ones of the pivot elements (holes 20 ) of the outer housing 12 , such as shown in FIGS. 1-3 , 5 - 7 , 9 and 11 .
  • the rotatable inner housing 14 is thus rotatably supportable by the outer housing 12 via engagement of the spindle caps 30 with the holes 20 formed in sidewalls of outer housing 12 .
  • a coil spring or other biasing member may be positioned between respective inner surfaces of mounting element portions 28 a , 28 b and an interior 30 a of each spindle cap 30 , to bias the spindle caps outwardly into engagement with respective holes 20 .
  • Such an arrangement would also facilitate removal of the inner housing 14 from outer housing 12 by permitting spindle caps 30 to be readily depressed inwardly to disengage holes 20 .
  • Each of the first and second inner housing portions 14 a , 14 b includes a respective latch release mechanism 32 ( FIGS. 4 , 16 and 17 ) disposed in respective ones of the first surface 22 a and the second surface 22 b .
  • Each latch release mechanism 32 includes a movable latch member 34 with a thumb-release 34 a that is received in one of oblong slots 36 , which are formed in respective ones of the first and second surfaces 22 a , 22 b .
  • Distal or base portions 34 b of the latch members 34 are received in a latch opening 38 ( FIGS. 3 and 14 ) that is defined between an upper flange or bezel 40 and a sidewall 42 of the outer housing 12 .
  • Latch members 34 are spring-biased toward the engaging position (shown) by springs 35 arranged along a latch slider 37 ( FIGS. 4 , 16 and 17 ).
  • the latch member 34 associated with whichever surface 22 a or 22 b is positioned in upper opening 18 is operable to secure the inner housing 14 in the use position or the non-use position by engaging an underside of upper flange 40 , such as shown in FIG. 14 .
  • the receptacles 16 include high voltage AC power receptacles 16 a , such as 110V or 220V receptacles, and low voltage DC power receptacles 16 b , such as 5V to 12V DC power receptacles including USB-style receptacles 16 b ( FIGS. 13-15 and 17 ).
  • the inner housing 14 may include an electrical transformer 44 ( FIGS. 15-17 ) that is operable to receive high voltage AC power from a power input (e.g. an AC power cord 46 , as shown in FIGS. 2 and 3 ) and that directs low voltage DC power to the low voltage DC electrical receptacle 16 b.
  • Upper flange 40 of outer housing 12 defines the upper opening 18 , and is configured to rest atop or along a work surface such as a table or desk, although it is envisioned that rotatable power center 10 could also be mounted in substantially any opening formed in a partition wall, a solid or raised floor, a ceiling, or the like, without departing from the spirit and scope of the present invention.
  • Sidewalls 42 are partial-cylindrical in shape and extend downwardly from the upper flange 40 . Sidewalls 42 are configured to extend at least partially into an opening formed in the work surface. The sidewalls 42 extend down to a threaded generally cylindrical lower portion 48 that is configured to receive a threaded collar 50 ( FIGS. 1 , 16 and 17 ) for securing the outer housing 12 to the work surface at the opening formed in the work surface.
  • second surface 22 b of the inner housing's second portion 14 b is substantially planar and substantially precludes access to the electrical outlets 16 when the inner housing is in the non-use position.
  • second surface 22 b may be marked with indicia, or may be partially or substantially made up of a soft surface such as felt, cork, rubber, or the like.
  • the first inner housing portion 14 a and the second inner housing portion 14 b define respective projection halves 52 that are aligned when the inner housing portions 14 a , 14 b are aligned ( FIGS. 2 , 3 , 10 and 15 ), and which are configured to receive a securing collar 54 to further secure the housing portions 14 a , 14 b together, in cooperation with spindle caps 30 .
  • Projection halves 52 are received in a recess region 56 formed in cylindrical lower portion 48 of outer housing 12 when inner housing 14 is in the use position, such as shown in FIGS. 2 , 3 and 10 .
  • Projection halves 52 may also serve to limit or prevent inner housing from rotating to a position that would expose surfaces of the inner housing 14 other than the first and second surfaces 22 a , 22 b , including an area 58 where a power cord 46 exits through an opening 62 fitted with a rubber strain relief 64 , such as shown in FIGS. 3 , 10 - 12 , 14 , 16 and 17 .
  • another rotatable power center 110 includes a stationary outer housing 112 and a rotatable or pivotable inner housing 114 including a first inner housing portion 114 a and a second inner housing portion 14 b ( FIGS. 22 and 23 ).
  • Various components and surfaces of power center 110 that are substantially similar or generally correspond to components and surfaces of power center 10 are given like numerals by the addition of 100 , such that the components and surfaces of power center 110 may be understood with reference to the above discussion, with the following description addressing only the main differing features of power center 110 . Minor differences include, for example, the use of a separate strain relief mount 165 that secures strain relief 164 to second inner housing portion 114 b .
  • Outer housing 112 includes an upper flange or bezel 140 and a generally cylindrical threaded lower portion 148 that are substantially the same or identical to the corresponding components of power center 10 , but with a pair of sidewalls 142 that differ in the shape and configuration of pivot elements 120 as compared to pivot elements 20 .
  • Pivot elements 120 are formed as generally circular holes for receiving respective spindle caps 130 , but each hole has two pairs of slots, including inboard slots 166 a and outboard slots 166 b , extending generally upwardly toward upper flange 140 such as shown in FIGS. 18-21 , 24 B, 25 B, 26 B, 29 and 30 .
  • a detent-engaging element in the form of a resilient projection 168 is defined between each adjacent pair of slots 166 a , 166 b .
  • Projection 168 has a base or proximal region 168 a near upper flange 140 , and a distal free tip portion 168 b that is biased inwardly toward and into pivot element or opening 120 , so that tip portions 168 b engage an outer surface 170 of spindle cap 130 when the spindle cap is inserted into opening 120 .
  • the spindle cap's outer surface 170 includes or defines three detents 172 a - c that are grooves or depressions oriented longitudinally and evenly spaced circumferentially apart from one another around outer surface 170 ( FIGS. 20-23 ). With three detents 172 a - c it will be appreciated that even spacing yields approximately 120 -degree spacing of each detent from the adjacent detents.
  • the two detent-engaging projections 168 corresponding to each pivot element opening 120 are aligned so that their tip portions 168 b are spaced circumferentially apart by approximately 120-degrees along pivot element opening 120 .
  • tip portions 168 b engage two of detents 172 a - c to retain inner housing 114 in either of the use position or the non-use position.
  • the tip portions 168 b disengage their respective detents 172 a - c when sufficient force is applied by a user to first surface 122 a or second surface 122 b (whichever is exposed at upper opening 118 ) to overcome the retention force of tip portions 168 b acting on the engaged detents.
  • tip portions 168 b slide along outer surface 170 of the spindle cap 130 ( FIGS. 25A and 25B ) until the next detents 172 a - c are engaged ( FIGS.
  • Spindle caps 130 have interiors 130 a in which two radial walls 174 extend inwardly from opposite directions to engage respective slots 176 defined between adjacent fingers or projections 178 of half-cylindrical mounting elements 128 a , 128 b ( FIGS. 22 and 23 ). This engagement allows spindle caps 130 to turn with inner housing 114 relative to outer housing 112 and projections 168 .
  • spindle caps 30 , 130 are shown as separate elements from inner housing 114 , it will be appreciated that an inner housing may be used which incorporates spindles that serve a similar function of pivotably coupling the inner housing to the outer housing 112 , particularly if the spindles are not also used to secure two inner housing portions together.
  • spindles could be integrally or unitarily formed with an inner housing or inner housing portion.
  • detents and detent-engaging elements or surfaces may be formed in any desired number and in different locations and/or spacing, including inside of spindle caps or the like.
  • a single spindle or spindle cap could be used to secure a pivotable or rotatable inner housing to an outer housing, without need for a second spindle or spindle cap on the other side, provided that the single pivot is structurally designed to handle increased bending moments that would be inherent with a single-side mounting arrangement.
  • the rotatable power and/or data center of the present invention provides selective access to electrical and/or data outlets at, along, or near are work surface and, in the illustrated embodiments, is adapted for installation at an opening formed or established in a work surface, wall, floor, ceiling, or the like.
  • users of the work surface can choose whether to have access to the outlets, or whether to rotate the center so that only a non-electrical surface is visible along the work surface.
  • the power center is readily repositioned by releasing a latch or catch, or by overcoming a detent feature by the application of sufficient force in a desired direction, and rotating the power center to the desired orientation.

Landscapes

  • Connector Housings Or Holding Contact Members (AREA)
  • Casings For Electric Apparatus (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

A rotatable power center is configured for installation along a work surface or the like, and includes an outer housing and a pivotable inner housing having one or more electrical or data outlets. The inner housing is positionable between a use position in which the outlets are accessible along the work surface, and a non-use position in which the outlets are generally not accessible. The outer housing defines an upper opening through which different surfaces of the inner housing are exposed or accessible, depending on the inner housing position. Spindles or spindle caps are used to pivotable mount the inner housing to the outer housing, and may also serve to secure two inner housing pieces together. A separate latch may be provided to secure the inner housing at the use or non-use position. Optionally, a detent arrangement holds the inner housing at the use or non-use position.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • The present application claims the benefit of U.S. provisional application Ser. No. 61/980,041, filed Apr. 15, 2014, which is hereby incorporated by reference in its entirety.
  • FIELD OF THE INVENTION
  • The present invention relates to electrical power and/or data outlets or receptacles and, more particularly, to devices housing electrical outlets and receptacles for making them accessible at or along a work surface, such as a table or desk.
  • BACKGROUND OF THE INVENTION
  • Electrical power outlets and/or electronic data outlets are commonly provided at work surfaces for use by persons located at or near the work surface. In some cases, it is desirable to provide selective access to electrical and/or data outlets so that users have the option of limiting or preclude access to the outlets, such as when the outlets are not needed, or for aesthetic reasons.
  • SUMMARY OF THE INVENTION
  • The present invention provides a rotatable power center for a work surface, that is repositionable between a use position in which electrical and/or data outlets are accessible at, along, or near the work surface, and a non-use position in which the outlets are not accessible. In this way, users of the work surface can determine whether their particular needs would be better served by having access to the outlets, or by repositioning the power center to block that access and, optionally, to instead expose a smooth surface or other surface that does not include such outlets. The power center is readily repositioned by releasing a latch or catch and rotating the power center to the desired orientation, whereupon another latch or catch may engage and inhibit further rotation until later being manually released.
  • According to one form of the present invention, a rotatable power center for a work surface includes a stationary outer housing, a rotatable inner housing, and at least one electrical or data receptacle. The stationary outer housing is mountable at an opening formed in a work surface, and defines an upper opening with a pair of pivot elements disposed on opposite sides of the outer housing. The rotatable inner housing is coupled to the outer housing and is alternately positionable between a use position and a non-use position. The inner housing includes a first inner housing portion having a first surface that is located in the upper opening of the outer housing when the inner housing is in the use position. The inner housing further includes a second inner housing portion having a second surface that is located in the upper opening of the outer housing when the inner housing is in the non-use position. The electrical or data receptacle is mounted in the rotatable inner housing and has a receptacle opening that is generally accessible at or near the first surface of the inner housing. The first inner housing portion has a pair of mounting element portions that cooperate with another pair of mounting element portions of the second inner housing portion to form a pair of mounting elements on opposite sides of the inner housing when the first and second inner housing portions are assembled together. A spindle cap is disposed over each of the mounting elements to thereby secure the first and second pairs of mounting element portions together, which also secures the first and second inner housing portions together. When the spindle caps cover and secure the respective mounting elements of the inner housing, the spindle caps engage respective ones of the pivot elements of the outer housing. The rotatable inner housing is rotatably supported by the outer housing via engagement of the spindle caps with the pivot elements.
  • According to one aspect, a latch release at each of the first and second surfaces is operable to secure the inner housing at the use position or the non-use position.
  • According to another form of the present invention, rotatable power center includes an outer housing with a pivot element and a detent-engaging element, and a pivotable inner housing that is supported at the pivot and detent-engaging elements. The outer housing is configured for mounting to a work surface, and has an upper opening and a sidewall that extends downwardly below the upper opening. The pivot and detent-engaging elements are each disposed along the sidewall of the outer housing. The pivotable inner housing is coupled to the outer housing and is alternately positionable between a use position and a non-use position. The inner housing has first and second surfaces, the first being configured to support an electrical or electronic data outlet and positioned in the upper opening when the inner housing is in the use position. The second surface is positioned in the upper opening when the inner housing is in the non-use position. The mounting element is positioned along a side of the inner housing. A spindle or spindle cap is provided at the inner housing and is configured to engage the pivot element. The spindle or spindle cap includes a detent element that is configured to be engaged by the detent-engaging element when the pivotable inner housing is at the use position or the non-use position. The rotatable inner housing is pivotably supported by the outer housing via engagement of the spindle or spindle cap with the pivot element.
  • Thus, the rotatable power center of the present invention is rotatably or pivotably positionable between a use position in which one or more electrical or data outlets are accessible along a work surface, and a non-use position in which the electrical or data outlets are not accessible. When the electrical or data outlets are not made accessible at the work surface, the rotatable power center may provide a generally planar surface that lacks outlets and/or other features.
  • These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a top perspective view of a rotatable power center in accordance with the present invention, shown in a non-use position and spaced above a mounting collar;
  • FIG. 2 is another top perspective view of the rotatable power center of FIG. 1, shown in a use position and with a power supply cord attached thereto;
  • FIG. 3 is a bottom perspective view of the rotatable power center of FIG. 2;
  • FIG. 4 is an exploded view depicting two assembly steps of a latch mechanism of the rotatable power center;
  • FIG. 5 is another top perspective view of the rotatable power center of FIG. 1, depicting a first step prior to rotating the power center to a use position;
  • FIG. 6 is another top perspective view of the rotatable power center of FIG. 5, showing the power center after rotating to the use position;
  • FIG. 7 is an inverted front elevation of the rotatable power center in the use position;
  • FIG. 8 is top plan view of the rotatable power center of FIG. 7;
  • FIG. 9 is a right side elevation of the rotatable power center of FIG. 7;
  • FIG. 10 is an rear elevation of the rotatable power center of FIG. 7;
  • FIG. 11 is left side elevation of the rotatable power center of FIG. 7;
  • FIG. 12 is bottom plan view of the rotatable power center of FIG. 7;
  • FIG. 13 is another top plan view of the rotatable power center of FIG. 7;
  • FIG. 14 is a side sectional elevation taken along section line XIV-XIV in FIG. 13;
  • FIG. 15 is a side sectional elevation taken along section line XV-XV in FIG. 13;
  • FIG. 16 is an exploded bottom perspective view of the rotatable power center;
  • FIG. 17 is an exploded top perspective view of the rotatable power center;
  • FIG. 18 is a top perspective view of another rotatable power center in accordance with the present invention, shown in a use position and taken from a front-left side thereof;
  • FIG. 19 is another top perspective view of the rotatable power center of FIG. 18, taken from a front-right side thereof;
  • FIG. 20 is a bottom perspective view of the rotatable power center of FIG. 18, taken from the right side thereof;
  • FIG. 21 is another bottom perspective view of the rotatable power center of FIG. 20, with an outer portion cut away to show internal structure;
  • FIG. 22 is an exploded top perspective view of the rotatable power center of FIG. 18;
  • FIG. 23 is an exploded bottom perspective view of the rotatable power center of FIG. 18;
  • FIGS. 24A, 25A and 26A are top perspective views of the rotatable power center of FIG. 18, depicting three rotational positions from use position to non-use position;
  • FIGS. 24B, 25B and 26B are side elevations, including enlarged regions to show detail, generally corresponding to FIGS. 24A, 25A and 26A, respectively;
  • FIG. 27 is a top plan view of the rotatable power center of FIG. 18;
  • FIG. 28 is a bottom plan view of the rotatable power center;
  • FIG. 29 is a left side elevation of the rotatable power center;
  • FIG. 30 is a right side elevation of the rotatable power center;
  • FIG. 31 is a front elevation of the rotatable power center; and
  • FIG. 32 is a rear elevation of the rotatable power center.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring now to the drawings and the illustrative embodiment depicted therein, a rotatable power center 10 (FIGS. 1-3 and 5-17) is configured for mounting to a work surface such as a table, desk, wall, or the like. Power center 10 includes a stationary outer housing 12, a rotatable inner housing 14, and at least one electrical or data receptacle 16. The stationary outer housing 12 is mountable at an opening formed in a work surface, and defines an upper opening 18 and also a pair of pivot elements in the form of holes 20 (FIGS. 1, 16, and 17) that are disposed on opposite sides of the outer housing 12. The rotatable inner housing 14 is coupled to the outer housing 12 and is alternately positionable between a use position (FIGS. 2, 3, and 6-15) and a non-use position (FIGS. 1 and 5).
  • Inner housing 14 includes a first inner housing portion 14 a having a first surface 22 a that is located in the upper opening 18 of the outer housing 12 when the inner housing 14 is in the use position of FIGS. 2, 3 and 6-15. The inner housing 14 further includes a second inner housing portion 14 b having a second surface 22 b that is located in the upper opening 18 of the outer housing 12 when the inner housing 14 is in the non-use position of FIGS. 1 and 5. The electrical or data receptacles 16 are mounted in the rotatable inner housing 14, and in the illustrated embodiment, are mounted in respective openings 24 formed or established in first surface 22 a of first inner housing portion 14 a (FIGS. 16 and 17). Each receptacle 16 defines at least one receptacle opening 26 (FIG. 13) through which electrical contacts are made accessible to a plug (not shown) such as would be associated with an electrical consumer or an electronic data device.
  • As shown in FIGS. 16 and 17, the first inner housing portion 14 a has a pair of mounting element portions generally in the form of half-cylinders 28 a made up of a plurality of fingers or projections generally arranged in a half-cylinder shape (shown), or that may be solid half-cylinders. Half-cylinders 28 a cooperate with another pair of mounting element portions in the form of half-cylinders 28 b, of the second inner housing portion 14 b, to form a pair of mounting elements on opposite sides of the inner housing 14 when the first and second inner housing portions 14 a, 14 b are assembled together. A spindle cap 30 is disposed over adjacent or mated pairs of the mounting elements 28 a, 28 b to thereby secure the first and second pairs of mounting element portions 28 a, 28 b together (FIGS. 1-3, 5-7, 9 and 11), which in turn also secures the first and second inner housing portions 14 a, 14 b together. When the spindle caps 30 cover and secure the respective mounting elements of the inner housing 14, the spindle 30 caps engage respective ones of the pivot elements (holes 20) of the outer housing 12, such as shown in FIGS. 1-3, 5-7, 9 and 11. The rotatable inner housing 14 is thus rotatably supportable by the outer housing 12 via engagement of the spindle caps 30 with the holes 20 formed in sidewalls of outer housing 12. Optionally, a coil spring or other biasing member may be positioned between respective inner surfaces of mounting element portions 28 a, 28 b and an interior 30 a of each spindle cap 30, to bias the spindle caps outwardly into engagement with respective holes 20. Such an arrangement would also facilitate removal of the inner housing 14 from outer housing 12 by permitting spindle caps 30 to be readily depressed inwardly to disengage holes 20.
  • Each of the first and second inner housing portions 14 a, 14 b includes a respective latch release mechanism 32 (FIGS. 4, 16 and 17) disposed in respective ones of the first surface 22 a and the second surface 22 b. Each latch release mechanism 32 includes a movable latch member 34 with a thumb-release 34 a that is received in one of oblong slots 36, which are formed in respective ones of the first and second surfaces 22 a, 22 b. Distal or base portions 34 b of the latch members 34 are received in a latch opening 38 (FIGS. 3 and 14) that is defined between an upper flange or bezel 40 and a sidewall 42 of the outer housing 12. Latch members 34 are spring-biased toward the engaging position (shown) by springs 35 arranged along a latch slider 37 (FIGS. 4, 16 and 17). The latch member 34 associated with whichever surface 22 a or 22 b is positioned in upper opening 18 is operable to secure the inner housing 14 in the use position or the non-use position by engaging an underside of upper flange 40, such as shown in FIG. 14.
  • Optionally, the receptacles 16 include high voltage AC power receptacles 16 a, such as 110V or 220V receptacles, and low voltage DC power receptacles 16 b, such as 5V to 12V DC power receptacles including USB-style receptacles 16 b (FIGS. 13-15 and 17). When low voltage DC power receptacles 16 b are provided, the inner housing 14 may include an electrical transformer 44 (FIGS. 15-17) that is operable to receive high voltage AC power from a power input (e.g. an AC power cord 46, as shown in FIGS. 2 and 3) and that directs low voltage DC power to the low voltage DC electrical receptacle 16 b.
  • Upper flange 40 of outer housing 12 defines the upper opening 18, and is configured to rest atop or along a work surface such as a table or desk, although it is envisioned that rotatable power center 10 could also be mounted in substantially any opening formed in a partition wall, a solid or raised floor, a ceiling, or the like, without departing from the spirit and scope of the present invention. Sidewalls 42 are partial-cylindrical in shape and extend downwardly from the upper flange 40. Sidewalls 42 are configured to extend at least partially into an opening formed in the work surface. The sidewalls 42 extend down to a threaded generally cylindrical lower portion 48 that is configured to receive a threaded collar 50 (FIGS. 1, 16 and 17) for securing the outer housing 12 to the work surface at the opening formed in the work surface.
  • Referring to FIGS. 1 and 5, second surface 22 b of the inner housing's second portion 14 b is substantially planar and substantially precludes access to the electrical outlets 16 when the inner housing is in the non-use position. Optionally, second surface 22 b may be marked with indicia, or may be partially or substantially made up of a soft surface such as felt, cork, rubber, or the like.
  • The first inner housing portion 14 a and the second inner housing portion 14 b define respective projection halves 52 that are aligned when the inner housing portions 14 a, 14 b are aligned (FIGS. 2, 3, 10 and 15), and which are configured to receive a securing collar 54 to further secure the housing portions 14 a, 14 b together, in cooperation with spindle caps 30. Projection halves 52 are received in a recess region 56 formed in cylindrical lower portion 48 of outer housing 12 when inner housing 14 is in the use position, such as shown in FIGS. 2, 3 and 10. Projection halves 52 may also serve to limit or prevent inner housing from rotating to a position that would expose surfaces of the inner housing 14 other than the first and second surfaces 22 a, 22 b, including an area 58 where a power cord 46 exits through an opening 62 fitted with a rubber strain relief 64, such as shown in FIGS. 3, 10-12, 14, 16 and 17.
  • Optionally, and with reference to FIGS. 18-31, another rotatable power center 110 includes a stationary outer housing 112 and a rotatable or pivotable inner housing 114 including a first inner housing portion 114 a and a second inner housing portion 14 b (FIGS. 22 and 23). Various components and surfaces of power center 110 that are substantially similar or generally correspond to components and surfaces of power center 10 are given like numerals by the addition of 100, such that the components and surfaces of power center 110 may be understood with reference to the above discussion, with the following description addressing only the main differing features of power center 110. Minor differences include, for example, the use of a separate strain relief mount 165 that secures strain relief 164 to second inner housing portion 114 b. Outer housing 112 includes an upper flange or bezel 140 and a generally cylindrical threaded lower portion 148 that are substantially the same or identical to the corresponding components of power center 10, but with a pair of sidewalls 142 that differ in the shape and configuration of pivot elements 120 as compared to pivot elements 20.
  • Pivot elements 120 are formed as generally circular holes for receiving respective spindle caps 130, but each hole has two pairs of slots, including inboard slots 166 a and outboard slots 166 b, extending generally upwardly toward upper flange 140 such as shown in FIGS. 18-21, 24B, 25B, 26B, 29 and 30. As best shown in FIGS. 24B, 25B, 26B, a detent-engaging element in the form of a resilient projection 168 is defined between each adjacent pair of slots 166 a, 166 b. Projection 168 has a base or proximal region 168 a near upper flange 140, and a distal free tip portion 168 b that is biased inwardly toward and into pivot element or opening 120, so that tip portions 168 b engage an outer surface 170 of spindle cap 130 when the spindle cap is inserted into opening 120.
  • The spindle cap's outer surface 170 includes or defines three detents 172 a-c that are grooves or depressions oriented longitudinally and evenly spaced circumferentially apart from one another around outer surface 170 (FIGS. 20-23). With three detents 172 a-c it will be appreciated that even spacing yields approximately 120-degree spacing of each detent from the adjacent detents. In the illustrated embodiment, the two detent-engaging projections 168 corresponding to each pivot element opening 120 are aligned so that their tip portions 168 b are spaced circumferentially apart by approximately 120-degrees along pivot element opening 120. This allows the two tip portions 168 b to engage respective ones of the three detents 172 a-c when inner housing 114 is in the use position of FIGS. 18-21, 24A, 24B, and 27-32 (where a first detent 172 a and a second detent 172 b are so engaged), and also when the inner housing 114 is in the non-use position of FIGS. 26A and 26B (where second detent 172 b and a third detent 172 c are so engaged).
  • Accordingly, two tip portions 168 b engage two of detents 172 a-c to retain inner housing 114 in either of the use position or the non-use position. The tip portions 168 b disengage their respective detents 172 a-c when sufficient force is applied by a user to first surface 122 a or second surface 122 b (whichever is exposed at upper opening 118) to overcome the retention force of tip portions 168 b acting on the engaged detents. When sufficient force is applied, such as shown in FIGS. 24A-26B, tip portions 168 b slide along outer surface 170 of the spindle cap 130 (FIGS. 25A and 25B) until the next detents 172 a-c are engaged (FIGS. 26A and 26B). Spindle caps 130 have interiors 130 a in which two radial walls 174 extend inwardly from opposite directions to engage respective slots 176 defined between adjacent fingers or projections 178 of half-cylindrical mounting elements 128 a, 128 b (FIGS. 22 and 23). This engagement allows spindle caps 130 to turn with inner housing 114 relative to outer housing 112 and projections 168.
  • Although spindle caps 30, 130 are shown as separate elements from inner housing 114, it will be appreciated that an inner housing may be used which incorporates spindles that serve a similar function of pivotably coupling the inner housing to the outer housing 112, particularly if the spindles are not also used to secure two inner housing portions together. For example, such spindles could be integrally or unitarily formed with an inner housing or inner housing portion. It will further be appreciated that, when a detent arrangement is used such as described above, detents and detent-engaging elements or surfaces may be formed in any desired number and in different locations and/or spacing, including inside of spindle caps or the like. It is also envisioned that a single spindle or spindle cap could be used to secure a pivotable or rotatable inner housing to an outer housing, without need for a second spindle or spindle cap on the other side, provided that the single pivot is structurally designed to handle increased bending moments that would be inherent with a single-side mounting arrangement.
  • Accordingly, the rotatable power and/or data center of the present invention provides selective access to electrical and/or data outlets at, along, or near are work surface and, in the illustrated embodiments, is adapted for installation at an opening formed or established in a work surface, wall, floor, ceiling, or the like.. In this way, users of the work surface can choose whether to have access to the outlets, or whether to rotate the center so that only a non-electrical surface is visible along the work surface. The power center is readily repositioned by releasing a latch or catch, or by overcoming a detent feature by the application of sufficient force in a desired direction, and rotating the power center to the desired orientation.
  • Changes and modifications in the specifically-described embodiments may be carried out without departing from the principles of the present invention, which is intended to be limited only by the scope of the appended claims as interpreted according to the principles of patent law including the doctrine of equivalents.

Claims (20)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A rotatable power center for a work surface, said power center comprising:
an outer housing configured for mounting to a work surface, said outer housing defining an upper opening and comprising at least one pivot element disposed along a side of said outer housing;
a pivotable inner housing coupled to said outer housing and alternately positionable between a use position and a non-use position, said inner housing comprising first and second inner housing portions;
said first inner housing portion having a first surface that is positioned in said upper opening of said outer housing when said inner housing is in said use position, wherein said first surface is configured to support at least one electrical or data receptacle;
said second inner housing portion having a second surface that is positioned in said upper opening of said outer housing when said inner housing is in said non-use position;
said first inner housing portion comprising a first mounting element portion and said second inner housing portion comprising a second mounting element portion, wherein said first and second mounting element portions cooperate to form a mounting element along a side of said inner housing when said first and second inner housing portions are assembled together; and
a spindle cap disposed over said mounting element, said spindle cap configured to secure said first and second mounting element portions together to thereby secure said first and second inner housing portions together;
wherein said rotatable inner housing is pivotably supported by said outer housing via engagement of said spindle cap with said pivot element.
2. The rotatable power center of claim 1, wherein each of said first and second mounting element portions is half cylindrical in shape.
3. The rotatable power center of claim 1, wherein each of said first and second mounting element portions comprises two or more projections in a half-cylindrical arrangement.
4. The rotatable power center of claim 1, further comprising a latch release disposed in each of said first surface and said second surface, wherein distal portions of said latch releases are receivable in a latch opening defined by said outer housing and are operable to selectively secure said inner housing in one of said use position and said non-use position.
5. The rotatable power center of claim 1, further comprising at least one electrical or data receptacle mounted in an opening formed in said first surface, wherein said at least one electrical or data receptacle comprises a receptacle opening accessible at said first surface.
6. The rotatable power center of claim 5, wherein said at least one electrical or data receptacle comprises a low voltage DC electrical receptacle.
7. The rotatable power center of claim 6, further comprising an electrical transformer disposed in said inner housing, wherein said electrical transformer is configured to receive high voltage AC power from a power input and to direct low voltage DC power to said low voltage DC electrical receptacle.
8. The rotatable power center of claim 7, wherein said at least one electrical or data receptacle further comprises a high voltage AC electrical receptacle configured to receive the high voltage AC power from the power input.
9. The rotatable power center of claim 1, wherein said outer housing comprises an upper flange that defines said upper opening and is configured to rest atop the work surface, and wherein said sidewall extends downwardly from said upper flange and is configured to extend into an opening formed in the work surface.
10. The rotatable power center of claim 9, wherein said sidewall comprises a threaded lower portion configured to extend fully through the work surface and to receive a threaded collar for securing said outer housing to the work surface at the opening formed therein.
11. The rotatable power center of claim 1, wherein said spindle cap is configured to rotate with said inner housing relative to said outer housing, wherein said spindle cap comprises a detent element and said outer housing comprises a detent-engaging element configured to selectively engage said detent element when said pivotable inner housing is at one of said use position and a non-use position.
12. The rotatable power center of claim 11, wherein said detent element comprises a depression formed in an outer circumferential surface of said spindle cap, and said detent-engaging element comprises a projection that is selectively received in said depression.
13. The rotatable power center of claim 12, wherein said projection comprises a resilient member having a free tip portion for engaging said depression.
14. The rotatable power center of claim 12, wherein said spindle cap comprises at least two of said depressions in circumferentially spaced arrangement, wherein a first of said depressions is engaged by said detent-engaging element in said use position and a second of said depressions is engaged by said detent-engaging element in said non-use position.
15. The rotatable power center of claim 14, wherein said spindle cap comprises three of said depressions circumferentially spaced evenly apart from one another, wherein said detent-engaging element comprises two of said projections, and wherein said projections each engage respective ones of said depressions in each of said use position and said non-use position.
16. The rotatable power center of claim 1, comprising a pair of said pivot elements arranged on opposite sides of said outer housing, and a pair of said spindle caps configured to engage respective ones of said pivot elements, wherein said first inner housing portion comprises a pair of first mounting element portions and said second inner housing portion comprises a pair of said second mounting element portions, wherein said first mounting element portions cooperate with said second mounting element portions to form a pair of said mounting elements at opposite sides of said inner housing when said first and second inner housing portions are assembled together.
17. The rotatable power center of claim 16, wherein said first and second inner housing portions comprise respective projections extending outwardly from outer surfaces of said housing portions between said mounting elements, and wherein a securing collar is disposed around said projections to secure said projections together, whereby said first and second inner housing portions are coupled together by said spindle caps and said securing collar.
18. A rotatable power center for a work surface, said power center comprising:
an outer housing configured for mounting to a work surface, said outer housing defining an upper opening and comprising a sidewall extending downwardly below said upper opening;
a pivot element and a detent-engaging element each disposed along said sidewall;
a pivotable inner housing coupled to said outer housing and alternately positionable between a use position and a non-use position, said inner housing having first and second surfaces, wherein said first surface is configured to support an electrical or electronic data outlet and is positioned in said upper opening when said inner housing is in said use position, and said second surface is positioned in said upper opening when said inner housing is in said non-use position; and
a spindle along said inner housing and configured to engage said pivot element, said spindle comprising a detent element configured to be engaged by said detent-engaging element when said pivotable inner housing is at one of said use position and a non-use position;
wherein said rotatable inner housing is pivotably supported by said outer housing via engagement of said spindle with said pivot element.
19. The rotatable power center of claim 18, wherein said spindle comprises three of said detent elements spaced circumferentially apart from one another, and wherein said detent-engaging element comprises a pair of resilient projections with respective tips that are simultaneously received by respective ones of said detent elements when said pivotable inner housing is at either said use position or said non-use position.
20. The rotatable power center of claim 19, wherein:
said pivotable inner housing comprises first and second inner housing portions;
said first inner housing portion includes said first surface and said second inner housing portion includes said second surface;
said first inner housing portion includes a pair of first mounting element portions and said second inner housing portion includes a pair of second mounting element portions;
said first and second mounting element portions cooperate to form a pair of mounting elements at opposite sides of said inner housing when said first and second inner housing portions are assembled together; and
said spindle comprises a pair of spindle caps that are disposed over respective ones of said mounting elements to thereby secure respective ones of said first and second mounting element portions together and to thereby secure said first and second inner housing portions together.
US14/686,884 2014-04-15 2015-04-15 Rotatable power center for a work surface Active US9312653B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/686,884 US9312653B2 (en) 2014-04-15 2015-04-15 Rotatable power center for a work surface
US15/095,672 US9601860B2 (en) 2014-04-15 2016-04-11 Rotatable power center for a work surface

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461980041P 2014-04-15 2014-04-15
US14/686,884 US9312653B2 (en) 2014-04-15 2015-04-15 Rotatable power center for a work surface

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/095,672 Continuation US9601860B2 (en) 2014-04-15 2016-04-11 Rotatable power center for a work surface

Publications (2)

Publication Number Publication Date
US20150295375A1 true US20150295375A1 (en) 2015-10-15
US9312653B2 US9312653B2 (en) 2016-04-12

Family

ID=54265857

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/686,884 Active US9312653B2 (en) 2014-04-15 2015-04-15 Rotatable power center for a work surface
US15/095,672 Active US9601860B2 (en) 2014-04-15 2016-04-11 Rotatable power center for a work surface

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/095,672 Active US9601860B2 (en) 2014-04-15 2016-04-11 Rotatable power center for a work surface

Country Status (3)

Country Link
US (2) US9312653B2 (en)
CA (3) CA2888023C (en)
MX (2) MX349904B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9312653B2 (en) * 2014-04-15 2016-04-12 Norman R. Byrne Rotatable power center for a work surface
US20160294128A1 (en) * 2015-03-31 2016-10-06 Norman R. Byrne Grommet-mount electrical power unit assembly
US10583787B1 (en) * 2018-10-23 2020-03-10 Ford Global Technologies, Llc Vehicle retainer solution
EP3876363A1 (en) * 2020-03-03 2021-09-08 Legrand France Rotary accessory for power socket
USD953270S1 (en) * 2017-12-06 2022-05-31 Premier Manufacturing Group, Inc. Grommet assembly having electrical power receptacles for use with a work surface

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017002177A1 (en) * 2015-06-29 2017-01-05 トリニティ株式会社 Rotary contact device for portable terminal or the like and desk lamp
US9960524B2 (en) * 2016-02-16 2018-05-01 Sigma Electric Manufacturing Corporation Slim line while in use cover and methods for making and using the same
MX2017005611A (en) 2016-05-02 2018-08-20 Norman R Byrne Worksurface-mounted wireless charging grommet.
WO2018067616A1 (en) 2016-10-04 2018-04-12 Roys Curtis Alan Electrical wall receptacle, led module, and lamp system
MX2019000870A (en) 2018-01-24 2019-11-11 R Byrne Norman Electrical power and data unit.

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144290A (en) * 1988-10-31 1992-09-01 Kabushiki Kaisha Toshiba Display unit attachment device
US6028267A (en) * 1997-04-15 2000-02-22 Byrne; Norman R. Rotatable power center system
US6185103B1 (en) * 1998-09-03 2001-02-06 Fujitsu Limited Releasable disk drive for electronic devices
US6999695B2 (en) * 2003-03-10 2006-02-14 Kabushiki Kaisha Toshiba Image forming apparatus having interface terminals
US7296775B2 (en) * 2005-07-26 2007-11-20 Mayer Peter L Continuously rotatable electronic-device organizer
US7364443B1 (en) * 2005-10-17 2008-04-29 Mcginnis Glenn M Retractable electrical power outlet device
US20080123894A1 (en) * 2006-06-27 2008-05-29 Chen-Chi Lu Expandable speaker apparatus
US7407392B2 (en) * 2006-11-29 2008-08-05 Doug Mockett & Company, Inc. Power and data station
US7679901B2 (en) * 2008-01-09 2010-03-16 Quanta Computer Inc. I/O device and electronic device having the same
US20100124849A1 (en) * 2008-11-17 2010-05-20 Sigma Electric Manufacturing Corporation Electrical Box
US7999419B2 (en) * 2008-03-20 2011-08-16 Thomas & Betts International, Inc. While-in-use electrical box that shuts power off to the device when cover is open
US8007295B2 (en) * 2010-01-20 2011-08-30 Powertech Industrial Co., Ltd. Rotatable and concealable electrical power receptacle
US8323040B2 (en) * 2008-09-05 2012-12-04 Apple Inc. Docking station with moveable connector for hand-held electronic device
US20130027856A1 (en) * 2011-07-27 2013-01-31 Tzu-Wei Tai Electronic apparatus with rotation function
US8690590B2 (en) * 2007-06-11 2014-04-08 Norman R. Byrne Power and data component mounted on a movable carriage and a movable cover with a damper
US8784130B2 (en) * 2012-11-06 2014-07-22 Solarcity Corporation Supply side backfeed meter socket adapter
US8854828B2 (en) * 2011-09-01 2014-10-07 Wistron Corporation Connecting module and mechanism using the same
US8986022B2 (en) * 2012-06-20 2015-03-24 Thomas & Betts International, Llc Pivoting face receptacle
US9019721B2 (en) * 2012-02-06 2015-04-28 Wistron Corporation Connection port module and an electronic device incorporating the same
US9110102B2 (en) * 2013-03-07 2015-08-18 Schweitzer Engineering Laboratories, Inc. Electrical test switch

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3622684A (en) 1970-10-15 1971-11-23 Cole & Co Inc C W Rotatable floor receptacle mounting unit
US5230552A (en) * 1991-06-06 1993-07-27 Steelcase Inc. Worksurface utilities module
JPH0630517A (en) 1991-11-18 1994-02-04 Setsuyou Kogyo Kk Floor receptacle
JPH0630515A (en) 1991-11-18 1994-02-04 Setsuyou Kogyo Kk Floor receptacle
JPH0630516A (en) 1991-11-18 1994-02-04 Setsuyou Kogyo Kk Floor receptacle
JPH0698442A (en) 1991-11-18 1994-04-08 Setsuyou Kogyo Kk Floor receptacle
US5276279A (en) 1992-02-03 1994-01-04 The Whitaker Corporation Surface mount outlet
US5545848A (en) 1993-10-25 1996-08-13 Lin; Hsin-Yi Cassette splitter for television antenna signals
US5709156A (en) 1995-06-07 1998-01-20 Krueger International, Inc. Flip-up electrical and communications device for use in combination with a worksurface
US6127630A (en) * 1995-07-21 2000-10-03 Mckenzie; James P. Recessible electrical receptable
FR2746931B1 (en) 1996-03-29 1998-06-19 Soc D Fabrication Ind Et Mecan CONNECTION DEVICE, PARTICULARLY FOR AN FIBER OPTIC NETWORK
US5967836A (en) 1997-06-26 1999-10-19 Bailey; Ronald I. Swivel electrical receptacle
US6024599A (en) * 1998-01-07 2000-02-15 Doug Mockett & Company, Inc. Power and communications grommet
CA2263062C (en) 1998-12-03 2006-04-11 Gordon S. Almond Flush mounted flip top telecommunication and electrical station for board room tables
US6362987B1 (en) * 2000-12-27 2002-03-26 John Yurek Wall mounted electrical outlet receptacle for providing low voltage DC current
US6300570B1 (en) * 2001-01-05 2001-10-09 Li-Chun Lai Portable multi-outlet assembly with a turnable eave
US6548755B2 (en) 2001-08-21 2003-04-15 Formosa Electronic Industries Inc. Power supply adapter with foldable plug
US6695643B2 (en) 2001-11-28 2004-02-24 Wen-Chang Wu Lamp shaft of a do-it -yourself lamp
JP2003226346A (en) 2001-11-30 2003-08-12 Yazaki Corp Waterproof structure of electronic component accommodation box
TW563954U (en) 2002-05-09 2003-11-21 Yue-Yun Huang Cable storage box with serial connection
US6743978B2 (en) 2002-09-17 2004-06-01 Wen-Chang Wu Wire connection box with rapidly-assembled lamp rod
US6979209B2 (en) 2003-01-29 2005-12-27 Krueger International, Inc. Biased utility receptacle assembly
US7183501B2 (en) * 2004-03-30 2007-02-27 The Wiremold Company Recessed poke-thru fitting
US6969800B1 (en) 2004-08-11 2005-11-29 Hsueh-Shu Liao Hub concealed by tabletop
US7109417B1 (en) 2005-04-18 2006-09-19 Fci, Inc. Roll over audio visual control center
US7806723B2 (en) * 2007-01-05 2010-10-05 Belkin International, Inc. Electrical grommet device
US8021172B2 (en) 2007-07-24 2011-09-20 Pulse Design, Inc. Rotary receptacle assembly
CN201113093Y (en) 2007-07-24 2008-09-10 东莞市邦正实业投资有限公司 Multifunctional socket
CN201118055Y (en) 2007-10-13 2008-09-17 东莞欧陆电子有限公司 Multi-specification plug/socket power converter
CN102222850A (en) 2010-04-14 2011-10-19 鸿富锦精密工业(深圳)有限公司 Multi-jack socket and power strip
US8475186B1 (en) * 2010-10-13 2013-07-02 Viable, Inc. Guest connector assembly
US9024211B2 (en) * 2012-06-07 2015-05-05 Doug Mockett & Company, Inc. Power and communications grommet
US8993891B2 (en) * 2012-06-28 2015-03-31 Thomas & Betts International, Inc. Lift and pivot grommet
CA2888023C (en) * 2014-04-15 2019-09-24 Norman R. Byrne Rotatable power center for a work surface
US9257799B2 (en) * 2014-06-10 2016-02-09 Ford Global Technologies, Llc Vehicle electronic connector hub

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144290A (en) * 1988-10-31 1992-09-01 Kabushiki Kaisha Toshiba Display unit attachment device
US6028267A (en) * 1997-04-15 2000-02-22 Byrne; Norman R. Rotatable power center system
US6185103B1 (en) * 1998-09-03 2001-02-06 Fujitsu Limited Releasable disk drive for electronic devices
US6999695B2 (en) * 2003-03-10 2006-02-14 Kabushiki Kaisha Toshiba Image forming apparatus having interface terminals
US7296775B2 (en) * 2005-07-26 2007-11-20 Mayer Peter L Continuously rotatable electronic-device organizer
US7364443B1 (en) * 2005-10-17 2008-04-29 Mcginnis Glenn M Retractable electrical power outlet device
US20080123894A1 (en) * 2006-06-27 2008-05-29 Chen-Chi Lu Expandable speaker apparatus
US7407392B2 (en) * 2006-11-29 2008-08-05 Doug Mockett & Company, Inc. Power and data station
US8690590B2 (en) * 2007-06-11 2014-04-08 Norman R. Byrne Power and data component mounted on a movable carriage and a movable cover with a damper
US7679901B2 (en) * 2008-01-09 2010-03-16 Quanta Computer Inc. I/O device and electronic device having the same
US7999419B2 (en) * 2008-03-20 2011-08-16 Thomas & Betts International, Inc. While-in-use electrical box that shuts power off to the device when cover is open
US8323040B2 (en) * 2008-09-05 2012-12-04 Apple Inc. Docking station with moveable connector for hand-held electronic device
US20100124849A1 (en) * 2008-11-17 2010-05-20 Sigma Electric Manufacturing Corporation Electrical Box
US8007295B2 (en) * 2010-01-20 2011-08-30 Powertech Industrial Co., Ltd. Rotatable and concealable electrical power receptacle
US20130027856A1 (en) * 2011-07-27 2013-01-31 Tzu-Wei Tai Electronic apparatus with rotation function
US8854828B2 (en) * 2011-09-01 2014-10-07 Wistron Corporation Connecting module and mechanism using the same
US9019721B2 (en) * 2012-02-06 2015-04-28 Wistron Corporation Connection port module and an electronic device incorporating the same
US8986022B2 (en) * 2012-06-20 2015-03-24 Thomas & Betts International, Llc Pivoting face receptacle
US8784130B2 (en) * 2012-11-06 2014-07-22 Solarcity Corporation Supply side backfeed meter socket adapter
US9110102B2 (en) * 2013-03-07 2015-08-18 Schweitzer Engineering Laboratories, Inc. Electrical test switch

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9312653B2 (en) * 2014-04-15 2016-04-12 Norman R. Byrne Rotatable power center for a work surface
US9601860B2 (en) 2014-04-15 2017-03-21 Norman R. Byrne Rotatable power center for a work surface
US20160294128A1 (en) * 2015-03-31 2016-10-06 Norman R. Byrne Grommet-mount electrical power unit assembly
US9748709B2 (en) * 2015-03-31 2017-08-29 Norman R. Byrne Grommet-mount electrical power unit assembly
USD953270S1 (en) * 2017-12-06 2022-05-31 Premier Manufacturing Group, Inc. Grommet assembly having electrical power receptacles for use with a work surface
US10583787B1 (en) * 2018-10-23 2020-03-10 Ford Global Technologies, Llc Vehicle retainer solution
EP3876363A1 (en) * 2020-03-03 2021-09-08 Legrand France Rotary accessory for power socket
FR3107993A1 (en) * 2020-03-03 2021-09-10 Legrand France Rotary electrical outlet accessory

Also Published As

Publication number Publication date
CA3052165C (en) 2019-12-17
US20160226178A1 (en) 2016-08-04
CA3052172C (en) 2020-03-24
CA2888023C (en) 2019-09-24
US9312653B2 (en) 2016-04-12
MX349904B (en) 2017-08-18
US9601860B2 (en) 2017-03-21
MX2015004727A (en) 2015-11-16
CA3052172A1 (en) 2015-10-15
CA2888023A1 (en) 2015-10-15
CA3052165A1 (en) 2015-10-15
MX342262B (en) 2016-09-23

Similar Documents

Publication Publication Date Title
US9601860B2 (en) Rotatable power center for a work surface
US7458541B1 (en) Tissue roll holder
US5234251A (en) Seat arm attachment
US6532624B1 (en) Brake caster
US6750410B2 (en) Electric outlet with rotatable receptacles
US20170104297A1 (en) USB Lamp Base
US6234812B1 (en) Retractable power and communication outlet arrangements
US20110132634A1 (en) Outlet cover with integral support structure
JP3215706U (en) Rotating multi outlet
US20200063911A1 (en) Desktop display stand base and its application to a desktop display stand assembly thereof
WO2015073776A1 (en) Swivel base for a training aid
USD502687S1 (en) Protective combination plate and removable cover with lower cord access for receptacle and electrical plugs connected thereto
US20080184591A1 (en) Shoe cover with replaceable skidproof components
CN104146536A (en) Rotatable storage rack
CN207897009U (en) A kind of finger ring holder and the mobile phone shell with the holder
US7623024B2 (en) Adjustable door chime with interchangeable parts
KR101557052B1 (en) Deodorizing container for desk
CN203255081U (en) Tablet computer cup groove type vehicle-mounted support
JP2016052839A (en) stopper
CN111486632B (en) Refrigerator with a door
CN217987327U (en) Lid assembly and have its cooking utensil
JP2018075049A (en) table
CN213155264U (en) Cup sleeve and cup
JP3164430U (en) Rotating frying pan handle
KR200379371Y1 (en) Support Apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: BYRNE, NORMAN R., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BYRNE ELECTRICAL SPECIALISTS, INC.;REEL/FRAME:035801/0230

Effective date: 20150605

Owner name: BYRNE ELECTRICAL SPECIALISTS, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BYRNE, NORMAN R.;MITCHELL, MARC A.;PATE, RANDELL E.;SIGNING DATES FROM 20150604 TO 20150605;REEL/FRAME:035801/0223

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8