US20140303507A1 - External defibrillator with power and battery sharing capabilities with a pod - Google Patents

External defibrillator with power and battery sharing capabilities with a pod Download PDF

Info

Publication number
US20140303507A1
US20140303507A1 US14/310,841 US201414310841A US2014303507A1 US 20140303507 A1 US20140303507 A1 US 20140303507A1 US 201414310841 A US201414310841 A US 201414310841A US 2014303507 A1 US2014303507 A1 US 2014303507A1
Authority
US
United States
Prior art keywords
pod
base
battery
patient
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/310,841
Inventor
James S. Neumiller
Thomas J. McGrath
Rockland W. Nordness
John C. Daynes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Physio Control Inc
Original Assignee
Physio Control Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2004/012421 external-priority patent/WO2004093979A1/en
Priority claimed from PCT/US2004/042376 external-priority patent/WO2005058416A1/en
Application filed by Physio Control Inc filed Critical Physio Control Inc
Priority to US14/310,841 priority Critical patent/US20140303507A1/en
Assigned to PHYSIO-CONTROL, INC. reassignment PHYSIO-CONTROL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DAYNES, JOHN C., MCGRATH, THOMAS J., NEUMILLER, JAMES S., NORDNESS, ROCKLAND W.
Publication of US20140303507A1 publication Critical patent/US20140303507A1/en
Assigned to CITIBANK, N.A., AS COLLATERAL AGENT reassignment CITIBANK, N.A., AS COLLATERAL AGENT FIRST LIEN SECURITY AGREEMENT Assignors: PHYSIO-CONTROL INTERNATIONAL, INC., PHYSIO-CONTROL, INC.
Assigned to CITIBANK, N.A., AS COLLATERAL AGENT reassignment CITIBANK, N.A., AS COLLATERAL AGENT SECOND LIEN SECURITY AGREEMENT Assignors: PHYSIO-CONTROL INTERNATIONAL, INC., PHYSIO-CONTROL, INC.
Assigned to CITIBANK, N.A., AS COLLATERAL AGENT reassignment CITIBANK, N.A., AS COLLATERAL AGENT ABL SECURITY AGREEMENT Assignors: PHYSIO-CONTROL INTERNATIONAL, INC., PHYSIO-CONTROL, INC.
Assigned to PHYSIO-CONTROL INTERNATIONAL, INC., PHYSIO-CONTROL, INC. reassignment PHYSIO-CONTROL INTERNATIONAL, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITIBANK, N.A.
Assigned to PHYSIO-CONTROL, INC., PHYSIO-CONTROL INTERNATIONAL, INC. reassignment PHYSIO-CONTROL, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITIBANK, N.A.
Assigned to PHYSIO-CONTROL, INC., PHYSIO-CONTROL INTERNATIONAL, INC. reassignment PHYSIO-CONTROL, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITIBANK, N.A.
Priority to US15/829,660 priority patent/US20180214705A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3904External heart defibrillators [EHD]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02405Determining heart rate variability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/083Measuring rate of metabolism by using breath test, e.g. measuring rate of oxygen consumption
    • A61B5/0836Measuring rate of CO2 production
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/37Monitoring; Protecting
    • A61N1/3702Physiological parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3925Monitoring; Protecting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3968Constructional arrangements, e.g. casings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3975Power supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3987Heart defibrillators characterised by the timing or triggering of the shock
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3993User interfaces for automatic external defibrillators
    • H02J7/0054
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/0215Measuring pressure in heart or blood vessels by means inserted into the body

Abstract

A modular external defibrillator system in embodiments of the teachings may include one or more of the following features: (a) a base containing a defibrillator module to deliver a defibrillation shock to a patient, (b) a patient parameter monitoring pod connectable to a patient via patient lead cables to collect patient data, the patient data including at least one patient vital sign, (c) a power supply sharing link between the base and the pod, the pod receiving power from the base via the power sharing link, the pod being operable to collect patient data without receiving power from the base, and (d) an external battery charger, the battery charger interrogating the batteries to determine battery information used for battery charging, the battery information including at least one of charging voltage, charging current, and charge time.

Description

    CROSS REFERENCE TO RELATED PATENT APPLICATIONS
  • This application is a continuation of co-pending U.S. patent application Ser. No. 10/583,175, filed on Nov. 1, 2007, which is a National Stage Entry of International PCT Application No. US2004/042376 titled “AN EXTERNAL DEFIBRILLATOR WITH POWER AND BATTERY SHARING CAPABILITIES WITH A POD,” filed on Dec. 17, 2004, which claims priority to International PCT Application No. US2004/012421 titled “Defibrillator/Monitor System Having a Pod with Leads Capable of Wirelessly Communicating,” filed on Apr. 22, 2004, which claims benefit of U.S. Provisional Application No. 60/464,860 titled “System of POD with leads and defibrillator monitor communicating wirelessly with each other,” filed Apr. 22, 2003, and to U.S. Provisional Application Ser. No. 60/530,151 titled “Defibrillator/Monitor System Having a Pod with Leads Capable of Wirelessly Communicating,” filed on Dec. 17, 2003, which are hereby incorporated by reference in their entirety.
  • This disclosure is related to the following co-pending application entitled “DEFIBRILLATOR PATIENT MONITORING POD,” U.S. Publication No. 2008/0221397, filed 17 Dec. 2004, and U.S. Pat. No. 7,957,798 entitled “DEFIBRILLATOR/MONITOR SYSTEM HAVING A POD WITH LEADS CAPABLE OF WIRELESSLY COMMUNICATING,” filed 17 Dec. 2004 and issued 6 Jun. 2011, which are hereby incorporated by reference in their entirety and not admitted as prior art with respect to the present disclosure by its mention in this section.
  • TECHNICAL FIELD
  • The invention relates to medical devices, and in particular, to defibrillation/monitor systems having a detachable pod with leads.
  • BACKGROUND
  • Each day thousands of Americans are victims of cardiac emergencies. Cardiac emergencies typically strike without warning, oftentimes striking people with no history of heart disease. The most common cardiac emergency is sudden cardiac arrest (“SCA”). It is estimated more than 1000 people per day are victims of SCA in the United States alone.
  • SCA occurs when the heart stops pumping blood. Usually SCA is due to abnormal electrical activity in the heart, resulting in an abnormal rhythm (arrhythmia). One such abnormal rhythm, ventricular fibrillation (VF), is caused by abnormal and very fast electrical activity in the heart. During VF the heart cannot pump blood effectively. Because blood may no longer be pumping effectively during VF, the chances of surviving decreases with time after the onset of the emergency. Brain damage can occur after the brain is deprived of oxygen for four to six minutes.
  • Applying an electric shock to the patient's heart through the use of a defibrillator treats VF. The shock clears the heart of the abnormal electrical activity (in a process called “defibrillation”) by depolarizing a critical mass of myocardial cells to allow spontaneous organized myocardial depolarization to resume.
  • Cardiac arrest is a life-threatening medical condition that may be treated with external defibrillation. External defibrillation includes applying electrodes to the patient's chest and delivering an electric shock to the patient to depolarize the patient's heart and restore normal sinus rhythm. The chance a patient's heart can be successfully defibrillated increases significantly if a defibrillation pulse is applied quickly.
  • In a scenario where a paramedic is responding to an emergency call with a non-specific patient condition, for example, there has been a car accident. The paramedic will typically carry his or her own defibrillator/monitor, a gurney, and drug box, and other supplies considered essential. If, perhaps, the car has driven off an embankment, the paramedic will have a long distance to run with all this equipment. This slows the response time to a call where someone may be bleeding to death. Smaller lighter equipment is always demanded by paramedics to save them time and effort, and allow them to get to the scene earlier. For just this reason, some paramedics will opt to carry only an AED (Automatic External Defibrillator) to the scene, and move the patient into the ambulance as quickly as possible, where other, more advanced monitoring equipment is available. In some countries, this approach has been incorporated into standard operating protocols, where the ambulance carries both ALS (advanced life support) equipment (which typically would include a multi-parameter monitor and defibrillator) and an AED. This approach, while effectively giving the user the choice of equipment to carry, forces the paramedic to learn two different defibrillators. The approach also forces the paramedics to possibly transfer the patient from one machine to the other once in the ambulance. It also adds costs to the ambulance service and potentially causes lost data between the two defibrillators for critical minutes, which may negatively impact the ability of EP Lab (Electro-Physiology Lab) doctors to determine the original cardiac condition.
  • Previous attempts to address the issue of product weight have done so by creating a manual defibrillator that separates from a patient monitor, or an AED, which separates from a single-channel patient monitor, or a manual defibrillator/pacemaker that separates from a 12-lead ECG monitor. These products suffer from limitations by the present standards, such as: limited capture of patient data, limited ability to monitor all necessary patient vital signs, and possible unreliability due to the nature of the electrical contacts between the two devices (e.g., dirt, mud; and damage to the case which could affect alignment of electrical contacts, thus preventing full functionality of the (devices when mated).
  • Another problem arises when hospital personnel want to charge the batteries of the defibrillator/monitor, but don't want to have to place the unit in a docking station in order to charge the batteries. There also arises the issue of patient confidentiality, such as recently raised by the Federal HIPAA (Health Insurance Portability and Accountability Act) regulations, when identical looking patient monitors are accidentally swapped by users.
  • SUMMARY
  • A modular external defibrillator system in embodiments of the teachings may include one or more of the following features: (a) a base containing a defibrillator module to deliver a defibrillation shock to a patient, (b) a patient parameter monitoring pod connectable to a patient via patient lead cables to collect patient data, the patient data including at least one patient vital sign, (c) a power supply sharing link between the base and the pod, the pod receiving power from the base via the power sharing link, the pod being operable to collect patient data without receiving power from the base, and (d) an external battery charger, the battery charger interrogating the batteries to determine battery information used for battery charging, the battery information including at least one of charging voltage, charging current, and charge time.
  • A modular external defibrillator system in embodiments of the teachings may include one or more of the following features: (a) a base containing a defibrillator module to deliver a defibrillation shock to a patient, (b) a patient parameter monitoring pod connectable to a patient via patient lead cables to collect patient data, the patient data including at least one patient vital sign, and (c) a power communications link between the base and the pod, the pod receiving power-on command signaling from the base via the power communications link, the pod being operable to power-on to a condition where the pod may collect patient data after receiving the power-on command signaling, the pod being operable to power-on without receiving the power-on command signaling.
  • A modular external defibrillator system in embodiments of the teachings may include one or more of the following features: (a) a base containing a defibrillator module to deliver a defibrillation shock to a patient, (b) a patient parameter monitoring pod connectable to a patient via patient lead cables to collect patient data, the patient data including at least one patient vital sign, the. pod containing a battery operable to supply power for pod operation, (c) a battery power communications link between the base and the pod, the battery power communications link transferring pod battery information, the battery information including at least one of battery usage; battery charge status, battery charging information;
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a pictorial representation of an external defibrillator having a patient module with a defibrillator/monitor in an embodiment of the present teachings;
  • FIG. 2 is an upper level pictorial representation of a patient module pod in an embodiment of the present teachings;
  • FIG. 3 is an upper level pictorial representation of a defibrillator/monitor base in an embodiment of the present teachings;
  • FIG. 4 is a schematic view of a patient module pod in an embodiment of the present teachings;
  • FIG. 5 is a schematic view of a defibrillator/monitor base in an embodiment of the present teachings;
  • FIG. 6 is a pictorial display of a patient module pod and a defibrillator/monitor base in a power sharing embodiment of the present invention;
  • FIG. 7 is a schematic view of a defibrillator/monitor base providing battery charging control of a patient module pod in an embodiment of the present invention;
  • FIG. 8 is a schematic view of a defibrillator/monitor base battery charging scheme in an embodiment of the present invention;
  • FIG. 9 is a pictorial representation of a mating assembly having a tethered connector in an embodiment of the present teachings;
  • FIG. 10 is a pictorial representation of a mating assembly having a tethered connector in an embodiment of the present teachings.
  • DETAILED DESCRIPTION
  • The following discussion is presented to enable a person skilled in the art to make and use the present teachings. Various modifications to the illustrated embodiments will be readily apparent to those skilled in the art, and the generic principles herein may be applied to other embodiments and applications without departing from the present teachings. Thus, the present teachings are not intended to be limited to embodiments shown, but are to be accorded the widest scope consistent with the principles and features disclosed herein. The following detailed description is to be read with reference to the figures, in which like elements in different figures have like reference numerals. The figures, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the present teachings. Skilled artisans will recognize the examples provided herein have many useful alternatives and fall within the scope of the present teachings.
  • With reference to FIG. 1, a pictorial representation of an external defibrillator having a patient module with a defibrillator/monitor in an embodiment of the present teachings is shown. External defibrillator 10 is comprised of two components patient module (pod) 12 and defibrillator/monitor (base) 14, which communicate patient data (e.g., vital signs) and share common replaceable battery technology. Pod 12 generally rests within base 14, generally in the back of base 14. The operator, during an emergency, has the option of carrying base 14 with pod 12 attached or simply carrying pod 12 to the emergency site. Since pod 12 is smaller and lighter than base 14, generally it will be easier for the operator to simply carry pod 12. By carrying pod 12, the operator is free to carry more ALS equipment and not be slowed by the heavier and more awkward base 14.
  • Pod 12 connects to a patient via several leads 6, 8, 9, 11, and 19 in order to measure the patient's vital signs. Pod 12 communicates the patient's vital signs either wirelessly or via an electrical connection to defibrillator monitor 14. The patient data or vital signs collected may include 3, 4, and 5 lead ECG readings, 12 lead ECG readings, non-invasive blood pressure (NIBP), pulse oximeter data, capnography data, invasive blood pressure, body temperature, C02 levels, and additional patient monitoring functions. Additionally, pod 12 may include a small display 82 (shown in FIG. 4) replicating some or all of the information such as waveforms, numerical data, and vital signs being transmitted to base 14.
  • Base 14 includes a therapy module 56 (FIG. 3) and therapy cables. Therapy module 56 has the capability to provide therapeutic functions such as pacing, defibrillation, or synchronous cardioversion without attaching another monitor/defibrillator to the patient. The therapy cables typically include patient paddles or electrodes that attach between the patient and base 14 in order to deliver the therapy to the patient. Since pod 12 connects to the patient and transmits vital signs to base 14, then base 14 need not also have patient monitoring cables. Accordingly, paramedic mobility and ease of use are greatly increased. Therapy module 56 in base 14 may be configurable in either an ALS mode or an AED mode. The ALS mode includes a multi-parameter monitoring capability and all of the defibrillator therapy delivery capability. Additionally base unit 14 may be just an AED.
  • With reference to FIG. 2, an upper level pictorial representation of a patient module in an embodiment of the present teachings is shown. Generally, pod 12 uses replaceable or rechargeable batteries 16 for power and comprises any combination of the following features: 3, 4, and 5 lead ECG inputs 18, 12 lead ECG inputs 20, non-invasive blood pressure (NIBP) input 22, pulse oximeter input 24, capnography input (not shown), invasive blood pressure input 26, temperature input 28, C02 input 30, additional patient monitoring functions, transceiver 32 to transmit any or all real time patient data to base 14. Transceiver 32 can be a wireless BlueTooth module commercially available from TDK, however, transceiver 32 can be any transceiver such as WiFi (802.11), Wireless WAN (CDMA, GSM, GPRS, UTMS, etc.), or a wired Fire-Wire (IEEE 1394) without departing from the spirit of the present teachings. Additionally, pod 12 may include a patient parameter display 33 replicating some or all of the information such as waveforms, numerical data, and vital signs being transmitted to base 14. Additionally, pod 12 includes some means by which it can be attached to base 14 for the purpose of carrying base 14 to an emergency scene as is discussed in PCT Application Serial No. US04/12421. Additionally, pod 12 may have a feature allowing it to be easily secured to a gurney or hospital bed as is discussed in a patent application entitled “DEFIBRILLATOR PATIENT MONITORING POD,” U.S. Publication No. 2008/0221397, filed Dec. 17, 2004, herein incorporated by reference in its entirety.
  • With reference to FIG. 3, an upper level pictorial representation of a defibrillator/monitor in an embodiment of the present teachings is shown. Base 14 uses a replaceable or rechargeable battery 50 for power. Batteries 16 and 50 are generally similar in battery chemistry, electrical, and mechanical features to permit the interchangeability between batteries 16 and 50. Batteries 16 and 50 can be a Li Ion battery providing 16 volts and 3.8 amps, however, most any type of battery can be used without departing from the spirit of the invention. Additionally, base 14 comprises a display 52 sufficient to show current and historical patient data, a transceiver (similar to transceiver 32 [not shown]) to send acquired patient data onto a receiving station or third party data receiver, a module 56 to synchronize shocks and pacing pulses to the patient's intrinsic rhythm from data acquired by a pod 12, an error checking and de-multiplexing module 54 receiving and processing data received from pod 12, and a data interpretation module 58 which analyzes data acquired by pod 12 and makes certain interpretive statements on the patient's cardiac or respiratory condition, displays vital sign trends, and provides additional functions found in ALS monitoring products.
  • With reference to FIG. 4, a schematic view of a patient monitor in an embodiment of the present teachings is shown. As discussed above, pod 12 can be powered from a removable/rechargeable battery 60. Power module 62 processes the incoming power into appropriate power levels for each of the internal components. Power module 62 routes the pod's power supply through main power and data bus 64 to system controller module 66, patient parameter module 68, and operator interface module 70. As discussed above, pod 12 can be used wirelessly, however, it is helpful if pod 12 is directly connected through a tethered cable 46 or through attachment to a connector to utilize the speed of data bus 64.
  • With reference to FIGS. 9 and 10, a pictorial representation of a mating assembly having a tethered connector in an embodiment of the present teachings is shown. In this embodiment, a pod similar to 12 rests within slot 40 and connects to base-to-pod connector 42, which allows base 14 and a pod to communicate with each other. Base-to-pod connector 42 rests freely within connector cavity 44, which allows connector cable 46 to retractably exit and enter base 14. Tethered cable 46 allows a pod to mate with and rest within base 14 or mate with base 14 when not docked within slot 40. It is sometimes helpful that base 14 communicate with a pod through tethered cable 46 since communications through a direct connection is generally faster. This is the case in the present embodiment as base 14 is equipped with a high-speed bus, such as a USB bus, which provides quick communication of information between a pod and base 14. Base 14 is also able to automatically detect when tethered cable 46 is plugged in so direct communications can be established immediately. A direct communication between a pod and base 14 can be established. This automatic establishment of direct communication between a pod and base 14 includes when a pod is docked within base 14 and a connection is made between a pod and base 14 through connector 42.
  • Generally base 14 and a pod communicate wirelessly to assist in preventing the tangling of cables, which can occur between a patient and base 14, particularly when transporting patients. Tethered cable 46 provides a system for use when the wireless link between pod 12 and base 14 fails for whatever reason or when precise signal synchronization demands a wired connection. Tethered cable 46 also provides the added advantage in that the user cannot lose cable 46 because it is tethered to base 14. Wireless links can impose a delay in communication between a pod and base 14 longer than may be experienced with a cable. When communications between base 14 and a pod require a faster response time (such as application of synchronous cardioversion or pacing where information from a pod must be transmitted to base 14), the user is advised of the need to plug cable 46 into the pod or attach pod 12 to base 14. The user is provided a user interface message to inform them of the need to attach cable 46.
  • With reference again to FIG. 4, system controller module 66 controls interaction of all the pod's modules through data bus 64 and interaction with base 14 through a wired connection, such as tethered cable 46 or wireless (e.g., IrDA, RF, etc.) communication link 72 which would be transmitted by transceiver 32. System controller module 66 has the ability to encrypt data communicated over the wireless links to meet HIPAA requirements for the protection of patient data. There can be a single encryption key for all bases and pods. However, it is contemplated there could be a user defined encryption key that can be set at the base by an operator. Patient parameter module 68 monitors functions such as invasive blood pressure, patient's temperature, and inputs from the pod leads. Module 68 further collects inputs from EtC02 module 74, NIBP module 76, and SpO2 module 78 through OEM module 80. Patient parameter module 68 takes all of these inputs and processes them for display and can route only a limited number of inputs to small LCD display module 82 through operator interface module 70. Patient Parameter Module 68 also has the ability to perform interpretation of clinical data and can make certain interpretive statements about the patient's condition (e.g., cardiac or respiratory health). Power module 62 provides on/off control to the pod, utilizing the removable battery 60 as the power source. Operator Interface module 70 allows the operator to primarily interact with pod 12; however, it is contemplated that operator could use the module 70 to interact with base 14 as well.
  • With reference to FIG. 5, a schematic view of a defibrillator/monitor in an embodiment of the present teachings is shown. Base 14 is powered by a removable/rechargeable battery 84, which provides power to power module 86. Alternatively, base 14 could be powered by AC power supply 88 or DC power supply 93. Power module 86 processes the incoming power into appropriate powered levels for each of the internal components.
  • Power module 86 also routes the base's power supply through main power and data bus 90 to interconnect module 92, system controller module 94, therapy module 96, and operator interface module 98. Interconnect module 92 is utilized to detect how pod 12 is connected to base 14 (wirelessly, docked, or tethered cable). When pod 12 is docked or tethered to base 14, interconnect module 92 can route the power provided from power module 86 to the pod 12. Additionally interconnect module 92, in conjunction with system controller 94, store all of the information about the associations that have been established between the base 12 and pod 14. Similar to system controller module 66 (in FIG. 4), system controller module 94 controls all interaction of all of the base's modules through data bus 90 and interaction with pod 12 through wired or wireless connection communication link 72 or through data bus 90 if pod 12 is connected to base 14. System controller module 94 and interconnect module 92 have the ability to encrypt data communicated over the wireless links to meet HIP AA requirements for the protection of patient data. Therapy module 96 synchronizes shocks and pacing pulses to the patient's intrinsic rhythm from data acquired from pod 12. Module 96 administers shocks from voltages via the defibrillation cap 100 and, in turn, administers pacing pulses to a patient. Operator interface module 98 allows the operator to primarily interact with base 14; however, it is contemplated that the operator could use the module 98 to interact with pod 12 as well. For example, patient demographic data (e.g., age, sex, height, weight) could be entered at the base 14, and communicated to the pod 12 for use in interpretive algorithms performed in system controller 66 within pod 12. LCD module 102 allows the operator to view a patient's monitored parameters. Finally, the operator has the option to print out patient information on a printer 104 (e.g., a 100 mm strip chart printer).
  • With reference to FIGS. 6 and 7, a display of a patient module and a defibrillator/monitor in a power-sharing embodiment of the present invention is shown. In the present embodiment, and as stated above, both pod 212 and base 210 have separate but interchangeable batteries (not shown). In a preferred embodiment base 210 has 2 batteries each of which is interchangeable with the pod's battery. Generally, the extra battery is needed to provide the necessary energy for defibrillation therapy as well as providing energy to pod 212 when necessary as will be discussed in more detail below. Generally, upon power up both base 210 and pod 212 power up on their respective batteries. Moreover, pod 212 will remain on its own battery power in order to conserve the base's battery so base 210 will be able to provide defibrillation therapy to a patient when it is needed. In this situation the pod does not draw any power from power bus 245. As discussed above, base 210 will quickly establish communications with pod 212 to determine if pod 212 is docked in station 216, tethered by cable 214, or is remote using wireless communications as is discussed in U.S. Pat. No. 7,957,798 entitled “DEFIBRILLATOR/MONITOR SYSTEM HAVING A POD WITH LEADS CAP ABLE OF WIRELESSLY COMMUNICATING” filed Dec. 17, 2004 and issued Jun. 6, 2011 herein incorporated by reference in its entirety. If pod 212 is docked or tethered, base 210 may communicate to pod 212 whether base 210 is connected to an external power source 218, detectable by the presence of power on power bus 287 (FIG. 8). External power source 218 could be an AC or DC power source or even an AC or DC power supply. If base 210 is connected to external power source 218, the base would communicate to pod 212 to quit using its own battery and instead receive external power through base 210 by way of power bus 245. If base 210 is not connected to external power source 218, then pod 212 will remain using the energy of its own battery until it reaches a “low power” state. Upon reaching the lower power state, pod 212 will request a power transfer from base 210 through cable 214. Upon the request, base 210 will transfer power through cable 214 unless base 210 has reached a low power state. If base 210 has reached a low power state, then base 210 will initiate an alarm informing the user that base 210 must be connected to external power source 218 or base 210 and pod 212 batteries must be replaced. It is contemplated there could be more than one tethered cable, such as one cable providing patient and/or pod data and another cable providing power without departing from the spirit of the invention. It is further contemplated the low power state for the base would be a power state above which a defibrillation therapy could successfully be provided to a patient. It is further contemplated that while the base and pod were both operating on battery power, if the base were to encounter a low power state on its batteries while the pod had not encountered a low power state on its battery that power could be shared from the pod battery to the base through power bus 245. It is further contemplated that the pod could be powered solely from the base through the availability of power on power bus 245 without pod battery 226 being present within the pod. It is further contemplated if the pod is remote from the base and communicating wirelessly and experienced a low power state, the pod would then sound an alarm and/or illuminate a visible indicator (e.g., LED or message on a display located on the pod) to the user informing the user the pod must be connected via the tethered cable or the pod must be docked so it can power share with the base. In an alternate embodiment, the low power state would be communicated wirelessly to the base whereby the base would sound an alarm and/or illuminate a visible indicator to the user informing the user the pod must be connected via the tethered cable or the pod must be docked so it can power share with the base. It is further contemplated that if the pod battery is easily replaced by the user, the low power state indication would prompt the user to replace the pod battery with a more full charged battery.
  • Generally, battery-charging control is maintained by a power module (not shown in FIG. 6) located in base 210. The power module is able to determine when a battery needs charging, how long the charging will take, and how much energy it will take to charge the battery. In the case of a regular “dumb” battery, the determination for these items can be made through examination of battery characteristics such as battery voltage, change in voltage, change m charge current drawn by the battery, and change in battery temperature. In an embodiment, the batteries in pod 212 and base 210 are “smart” batteries. The power module is able to communicate with smart batteries 222, 224, and 226 through communication multiplexer 240 and communication buses 230, 231, and 233 and provide the module with several variables providing the battery's status, such as energy level, whether the battery is in use presently, the battery's use over a time period, etc. It is of note pod 212 does not necessarily have to have a power module comparable to the power module in base 210. Instead of duplicating the circuitry of the power module in base 210, pod 212 contains power-multiplexing circuitry, which allows pod 212 to interrogate its smart battery and relay this information to the power module or it allows the pod's smart battery to directly communicate with the power module. The power module would then directly interrogate the pod's smart battery and retrieve the necessary information for charging. Further, the power module is isolated from the rest of the base circuitry so it can charge the batteries even when base 210 is turned off. This reduces the amount of circuitry needing power during the charging process, thus conserving energy and increasing circuit reliability for the circuitry that is not powered on during the charging process.
  • With reference again to FIG. 7, a schematic view of a defibrillator/monitor providing battery charging control of a patient module in an embodiment of the present invention is shown. When docked or connected by a tethered cable, base 220 establishes several connections to pod 228 through communication bus 230, battery charging bus 246, and power bus 245. Power bus 245 provides power to pod 228 through base 220 when base 220 is connected to an external power source or when pod 228 is in a “low power” state. In the present embodiment, base 220 is able to control the charging of batteries 222, 224, and 226 located within pod 228. As discussed above, communication bus 230 and charging bus 246 allow base 220 to charge batteries 222, 224, and 226 and thus allows for only one power module 232 (similar to power module 86), which remains in base 220, thus reducing the amount of circuitry needed. If base 220 is connected to an external power source, power is transferred to base 220 through battery lines 234 and 236 via an external or internal power supply. Power microprocessor 238 is continually interrogating batteries 222, 224, and 226 through communication multiplexer 240, to obtain vital battery information such as voltage and current parameters, battery's charge level, and a battery serial number. Microprocessor 238 then determines, which two of three batteries 222, 224, and 226 requiring charging based upon the interrogated battery information. Since base 220 has two independent power lines 234 and 236, base 220 is able to charge two of the three batteries 222, 224, and 226 simultaneously. For example, module 232 could charge batteries 222 and 224, or 222 and 226, or 224 and 226 at the same time. Generally, batteries 222 and 224 are charged first so base 220 is quickly provided with the energy to provide defibrillation therapy. It is further contemplated any one of batteries 222, 224, and 226 could be charged by themselves. It is further contemplated all three batteries 222, 224, and 226 could be charged together without departing from the spirit of the invention.
  • Once processor 238 determines which two batteries need charging, power is routed through a switching matrix comprised of switches 242 and 244 to batteries 222 or 224 or through battery charger bus 246 to battery 226. Processor 238 controls which batteries will be charged through power multiplexer 239, which controls the switching matrix. Once a battery is fully charged, processor 238 then routes the power to the third and remaining battery in need of charging. When batteries 222, 224, and 226 are all fully charged, switches 242 and 244 are opened and the incoming power continues to power base 220 and pod 228 through power bus 245. It is further contemplated that switches 242 and 244 would not be needed if the battery charging power provided through battery charger buses 234 and 236 were to be placed in an “off power” state that would not significantly load the batteries 242 and 244 when charging power is not needed.
  • When pod 228 is being used in a wireless mode, communication bus 248 is engaged by power processor 249 to route battery 226 information via signal processor 250. Once the power processor 249 routes the information to signal processor 250, the signal processor 250 processes the battery information and transmits all battery 226 information to base 220. It is fully contemplated processors 238 and 249 could be any type of processor including a microcontroller or an ASIC (Application Specific Integrated Circuit) without departing from the spirit of the invention. Further, signal processor 250 can be any type of signal processor known to those with skill in the art. Base 220 uses the battery information to monitor the charge on battery 226 and displays this information on a monitor (not shown) as a fuel gauge, which is discussed in more detail below, so the user can easily monitor the status of the pod's battery 226. Base 220 also uses this information to initiate an alarm on base 220 and/or pod 228 to alert the user the pod's battery 226 is depleted and pod 228 needs to be connected via a cable to base 220 or pod 228 needs to be docked with base 220 so battery 226 can be charged. Generally, pod 228 is turned off when it is charging. However buses 246 and 230 remain open so pod 228 battery 226 can be recharged and be interrogated by base 220 to monitor the charging process. It is further contemplated that pod battery charging can occur when the pod is operating and is powered by the base power through power bus 245.
  • With reference once again to FIG. 7, in an another embodiment there is a power on and power off interaction between base 220 and pod 228. If base 220 and pod 228 are in electrical contact either through a tethered cable or through pod 228 being docked with base 220, a user could press an on/off button (not shown) on base 220 powering up base 220 and a signal would be sent from system control module 300 on system bus 302 to pod 228 instructing pod 228 to power up. If the user then desired to power down base 220, they would then press the on/off button on base 220 powering down base 220 and a signal would be sent from system control module 300 on system bus 302 to pod 228 instructing pod 228 to power down. In an alternative embodiment. pod 228 would be able to detect base 220 had powered up by power being transferred across bus 245 and then pod 228 would power up itself. Upon power up of base 220, system control module 300 establishes the initial condition of base 220 and pod 228 and coordinates communication of all modules. The control module 300 then confirms with processor 250 through control bus 302 the pod's power situation (e.g., pod 228 is running off battery 226 or is receiving power from base 220 through power bus 245) and the pod's current power management.
  • Similar to base 220, pod 228 has an on/off button 225 where a user can press the button and turn pod 228 on or off. If pod 228 is docked with base 220 and pod 228 is powered up, pod 228 will begin to interrogate communications with base 220. If, after a period of minutes, pod 228 cannot establish communications with base 220, then pod 228 would assume powering up was inadvertent and turn itself off to conserve battery power. In another embodiment, the user would be able to power up base 220 from pod 228 similar to powering up pod 228 from base 220 discussed above. Pod 228 can also be powered up from base 220 in a wireless mode. If pod 228 is remote from base 220 and a user powers up base 220, base 220 will determine pod 228 is not directly connected to base 220 and then transmit an RF signature which when received by pod 228 would power up pod 228. In addition, pod 228 could be powered down from base 220 as long as pod 228 is within transmitting range of base 220. If communications between pod 228 and base 220 is lost, pod 228 will try to reestablish communications for a pre-determined amount of time. If pod 228 is unable to reestablish communications with base 220, then pod 228 will power itself down to conserve battery power. However, if pod 228 came back within communication range of base 220, then the RF signature from base 220 would power up pod 228 and base 220 would begin reestablishing communications. It is further contemplated that the pod and base could swap roles in the previously described wireless on/off descriptions without departing from the spirit of the invention.
  • With reference to FIG. 8, a schematic view of a defibrillator/monitor battery-charging scheme in an embodiment of the present invention is shown. External adapter 262 provides battery-charging circuitry for charging batteries 264 and 266 located within base 260. External adapter 262 can be a docking station or an adaptor. In this embodiment, the battery charging circuitry has been removed from base 260 to reduce the cost of base 262 and to make base 262 lighter. External adapter 262 can receive power input from an AC source 268 or a DC source 270 or both; however, both are not necessarily needed together to stay within the spirit of the invention. If AC source 268 is utilized, the power is first filtered through AC filter 272 and then converted to 10-16V DC by converter 274. This voltage can then be routed to power module 276 where it is used to power base 260 and routed to boost converter 280, which converts the power to 20V which is provided to battery charging circuits 282 and 284. If DC source 270 is utilized, the power is filtered by DC filter 278 and routed to power module 276 where it is used to power base 260 and boost converter 280 which converts the power to 20V which is provided to battery charging circuits 282 and 284.
  • Communications bus 285 provides communication with power processor 286, a pod battery (not shown) through multiplexer 288. Bus 285 further provides communication with power processor 286 and battery chargers 282 and 284 through bus multiplexer 290. Generally, bus 285 is an Inter-IC bus, however, it is fully contemplated bus 285 could be any type of bus know to those with skill in the art without departing from the spirit of the invention. Through communication bus 285 power processor 286 provides chargers 282 and 284 with the proper charging parameters, such as proper voltage, current, and charge time, based upon information interrogated from batteries 264 and 266. Battery chargers 282 and 284 then use this charging parameter information to provide the correct charging voltage and current to power module 276, which then routes this power to batteries 264 and 266 through battery circuit boards 292 and 294. Therefore bus 285 allows processor 286 to parametrically control the charging of batteries 282 and 284. This allows for the use of varying types of batteries as well as algorithms, which might change over time due to technology changes. It is further contemplated that the distribution of battery charging, power control, and power switching functions could be redistributed among the docking station, base, and pod without departing from the spirit of the invention. It is further contemplated that the power and battery charging buses could be combined into a single bus without departing from the spirit of the invention. It is further contemplated that the power on/off control signal 302 between the base 220 and pod 228 and communication bus 230 can be combined into a single bus without departing from the spirit of the invention. It is further contemplated that the power and communication buses could be combined into a single bus without departing from the spirit of the invention. In an alternate embodiment, the smart battery information could be communicated from the pod battery 226 to the pod power controller 249 and then communicated to the base power processor 238 via the communication bus 230.
  • Thus, embodiments of the AN EXTERNAL DEFIBRILLATOR WITH POWER AND BATTERY SHARING CAPABILITIES WITH A POD are disclosed. One skilled in the art will appreciate that the present teachings can be practiced with embodiments other than those disclosed. The disclosed embodiments are presented for purposes of illustration and not limitation, and the present teachings are limited only by the claims that follow.

Claims (20)

What is claimed is:
1. A monitoring system, comprising:
a portable base including a base battery;
a patient parameter monitoring pod including a pod battery, the patient parameter monitoring pod configured to receive patient data, the patient data including at least one patient vital sign, and the patient parameter monitoring pod is operable to collect patient data without receiving power from the portable base; and
a power supply sharing link between the portable base and the patient parameter monitoring pod, wherein the portable base includes a power module configured to determine a pod battery charge condition and a base battery charge condition, and the power supply sharing link is configured to share power between the pod battery and the base battery based on the patient parameter monitoring pod battery charge condition and the base battery charge condition.
2. The monitoring system of claim 1, wherein the portable base is configured to share power with the pod battery in response to the power module determining the base battery charge condition is a low charge condition.
3. The monitoring system of claim 1, wherein the patient parameter monitoring pod is configured to share power with the base battery in response to the power module determining the pod battery charge condition is a low charge condition.
4. The monitoring system of claim 1, further comprising a defibrillator module configured to provide at least one of pacing, defibrillation, and cardioversion.
5. The monitoring system of claim 1, wherein the patient monitoring pod is structured to operate when detached from the portable base and when mounted on the portable base.
6. The monitoring system of claim 5, wherein the patient monitoring pod communicates wirelessly with the portable base when detached from the portable base.
7. The monitoring system of claim 1, wherein each of the portable base and the patient parameter monitoring pod includes a display.
8. A monitoring system, comprising:
a portable base including a base battery;
a patient parameter monitoring pod including a pod battery, the patient parameter monitoring pod configured to connect to a patient and to receive patient data, the patient data including at least one patient vital sign; and
a power supply sharing link between the portable base and the patient parameter monitoring pod, the power supply sharing link configured to share power between the base battery and the pod battery when the patient monitoring pod is connected to the portable base.
9. The monitoring system of claim 8, wherein the portable base is configured to share power with the pod battery in response to a power module determining a base battery charge condition is a low charge condition.
10. The monitoring system of claim 8, wherein the patient parameter monitoring pod is configured to share power with the base battery in response to a power module determining a pod battery charge condition is a low charge condition.
11. The monitoring system of claim 8, the portable base further includes a defibrillator module configured to provide at least one of pacing, defibrillation, and cardioversion.
12. The monitoring system of claim 8, wherein the patient parameter monitoring pod is structured to operate when detached from the portable base and when mounted on the portable base.
13. The monitoring system of claim 8, wherein the patient parameter monitoring pod communicates wirelessly with the portable base when detached from the portable base.
14. The monitoring system of claim 8, the portable base further includes a printer.
15. The monitoring system of claim 8, wherein the patient parameter monitoring pod includes a transmitter configured to transmit a signal based on the patient data to a receiver located in the portable base.
16. The monitoring system of claim 8, wherein each of the portable base and the patient parameter monitoring pod includes a display.
17. A method for power sharing between a portable base having a base battery and a patient parameter monitoring pod having a pod battery, comprising:
electrically connecting the portable base and the patient parameter monitoring pod;
determining a charge condition of a base battery;
determining a charge condition of a pod battery; and
sharing electrical energy between the portable base and the patient parameter monitoring pod based on the charge condition of at least one of the base battery and the pod battery.
18. The method of claim 17, wherein sharing electrical energy between the portable base and the patient parameter monitoring pod comprises sharing the electrical energy from the base battery to the pod battery based on a determined low charge condition of the pod battery or sharing the electrical energy from the pod battery to the base battery based on a determined low charge condition of the base battery.
19. The method of claim 17, further comprising communicating wirelessly between the portable base and the patient parameter monitoring pod.
20. The method of claim 17, wherein sharing electrical energy between the portable base and the patient parameter monitoring pod is based on the charge condition of both the base battery and pod battery.
US14/310,841 2003-12-17 2014-06-20 External defibrillator with power and battery sharing capabilities with a pod Abandoned US20140303507A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/310,841 US20140303507A1 (en) 2003-12-17 2014-06-20 External defibrillator with power and battery sharing capabilities with a pod
US15/829,660 US20180214705A1 (en) 2003-12-17 2017-12-01 External defibrillator with power and battery sharing capabilities with a pod

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US53015103P 2003-12-17 2003-12-17
USPCT/US04/12421 2004-04-22
PCT/US2004/012421 WO2004093979A1 (en) 2003-04-22 2004-04-22 Defibrillator/monitor system having a pod with leads capable of wirelessly communicating
PCT/US2004/042376 WO2005058416A1 (en) 2003-12-17 2004-12-17 An external defibrillator with power and battery sharing capabilities with a pod
US58317507A 2007-11-01 2007-11-01
US14/310,841 US20140303507A1 (en) 2003-12-17 2014-06-20 External defibrillator with power and battery sharing capabilities with a pod

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
US10/583,175 Continuation US8788038B2 (en) 2003-12-17 2004-12-17 External defibrillator with power and battery sharing capabilities with a pod
PCT/US2004/042376 Continuation WO2005058416A1 (en) 2003-12-17 2004-12-17 An external defibrillator with power and battery sharing capabilities with a pod
US58317507A Continuation 2003-12-17 2007-11-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/829,660 Continuation US20180214705A1 (en) 2003-12-17 2017-12-01 External defibrillator with power and battery sharing capabilities with a pod

Publications (1)

Publication Number Publication Date
US20140303507A1 true US20140303507A1 (en) 2014-10-09

Family

ID=39244733

Family Applications (7)

Application Number Title Priority Date Filing Date
US10/583,209 Active 2027-04-18 US7957798B2 (en) 2003-12-17 2004-12-17 Defibrillator/monitor system having a pod with leads capable of wirelessly communicating
US13/103,783 Active 2028-03-14 US8738128B2 (en) 2003-12-17 2011-05-09 Defibrillator/monitor system having a pod with leads capable of wirelessly communicating
US13/965,667 Active US8880168B2 (en) 2003-12-17 2013-08-13 Defibrillator/monitor system having a pod with leads capable of wirelessly communicating
US14/310,841 Abandoned US20140303507A1 (en) 2003-12-17 2014-06-20 External defibrillator with power and battery sharing capabilities with a pod
US14/498,735 Active US9439572B2 (en) 2003-12-17 2014-09-26 Defibrillator/monitor system having a pod with leads capable of wirelessly communicating
US15/245,450 Active US10124184B2 (en) 2003-12-17 2016-08-24 Defibrillator/monitor system having a pod with leads capable of wirelessly communicating
US15/829,660 Abandoned US20180214705A1 (en) 2003-12-17 2017-12-01 External defibrillator with power and battery sharing capabilities with a pod

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US10/583,209 Active 2027-04-18 US7957798B2 (en) 2003-12-17 2004-12-17 Defibrillator/monitor system having a pod with leads capable of wirelessly communicating
US13/103,783 Active 2028-03-14 US8738128B2 (en) 2003-12-17 2011-05-09 Defibrillator/monitor system having a pod with leads capable of wirelessly communicating
US13/965,667 Active US8880168B2 (en) 2003-12-17 2013-08-13 Defibrillator/monitor system having a pod with leads capable of wirelessly communicating

Family Applications After (3)

Application Number Title Priority Date Filing Date
US14/498,735 Active US9439572B2 (en) 2003-12-17 2014-09-26 Defibrillator/monitor system having a pod with leads capable of wirelessly communicating
US15/245,450 Active US10124184B2 (en) 2003-12-17 2016-08-24 Defibrillator/monitor system having a pod with leads capable of wirelessly communicating
US15/829,660 Abandoned US20180214705A1 (en) 2003-12-17 2017-12-01 External defibrillator with power and battery sharing capabilities with a pod

Country Status (1)

Country Link
US (7) US7957798B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170337737A1 (en) * 2016-05-17 2017-11-23 Occipital, Inc. Self-contained mixed reality head mounted display
EP3215003A4 (en) * 2014-11-07 2018-08-22 Welch Allyn, Inc. Medical device
US10737105B2 (en) 2017-10-02 2020-08-11 Avive Solutions, Inc. Modular defibrillator architecture
US11865352B2 (en) 2020-09-30 2024-01-09 Zoll Medical Corporation Remote monitoring devices and related methods and systems with audible AED signal listening

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10413742B2 (en) 2008-03-05 2019-09-17 Physio-Control, Inc. Defibrillator patient monitoring pod
US7957798B2 (en) 2003-12-17 2011-06-07 Physio-Control, Inc. Defibrillator/monitor system having a pod with leads capable of wirelessly communicating
US8600491B2 (en) * 2003-12-17 2013-12-03 Physio-Control, Inc. Defibrillator patient monitoring pod
WO2005058417A1 (en) * 2003-12-17 2005-06-30 Medtronic Physio-Control Corp. Defibrillator/monitor system having a pod with leads capable of wirelessly communicating
EP1596538A1 (en) * 2004-05-10 2005-11-16 Sony Ericsson Mobile Communications AB Method and device for bluetooth pairing
US9008766B2 (en) 2008-06-02 2015-04-14 Physio-Control, Inc. Medical device adjusting operation when used with non-authenticated patient parameter collecting accessory
US8890702B2 (en) * 2010-11-01 2014-11-18 Physio-Control, Inc. Defibrillator delivering audible prompts to earpiece
US20130197430A1 (en) * 2010-11-15 2013-08-01 Lloyd Olson Monitoring and delivery system for supplying patient with controlled dosage of substance reversal agent
FR2977961A1 (en) * 2011-07-12 2013-01-18 Finsecur DEFIBRILLATOR IDENTIFICATION METHOD AND DEFIBRILLATOR IDENTIFICATION DEVICE
CN102974035B (en) * 2011-09-06 2015-04-08 深圳迈瑞生物医疗电子股份有限公司 External defibrillator and expander and defibrillating monitoring system thereof
AU2013216802B2 (en) 2012-02-08 2018-07-12 Easyg Llc ECG system with multi mode electrode units
US10182723B2 (en) 2012-02-08 2019-01-22 Easyg Llc Electrode units for sensing physiological electrical activity
US9713493B2 (en) * 2012-04-30 2017-07-25 Covidien Lp Method of switching energy modality on a cordless RF device
US8929980B2 (en) 2012-05-03 2015-01-06 Physio-Control, Inc. External defibrillator electrode, method and system for reducing ECG artifact
US9289621B2 (en) 2012-05-08 2016-03-22 Physio-Control, Inc. Defibrillator network system
US8827890B2 (en) * 2012-05-17 2014-09-09 Thoratec Corporation Touch screen interface and infrared communication system integrated into a battery
US10303852B2 (en) 2012-07-02 2019-05-28 Physio-Control, Inc. Decision support tool for use with a medical monitor-defibrillator
US10099063B2 (en) * 2012-07-02 2018-10-16 Physio-Control, Inc. Medical monitor-defibrillator with defibrillator and data operations processors
US9026147B2 (en) 2012-09-24 2015-05-05 Physio-Control, Inc. Defibrillator location tracking device
US9282911B2 (en) 2012-11-27 2016-03-15 Physio-Control, Inc. Linear display of ECG signals
RU2686189C2 (en) * 2012-12-18 2019-04-24 Конинклейке Филипс Н.В. Combination of defibrillator data with patient's monitor
US9916436B2 (en) 2014-10-24 2018-03-13 Physio-Control, Inc. Intelligent accessories for medical devices
US20160119165A1 (en) * 2014-10-27 2016-04-28 Netsnapper Technologies Sarl Methods and systems to manage network connections
US10296836B1 (en) * 2015-03-31 2019-05-21 Palo Alto Networks, Inc. Data blaming
US10500404B2 (en) * 2015-04-16 2019-12-10 Physio-Control, Inc. Universally adaptable module for defibrillator monitors
US10321836B2 (en) 2015-11-30 2019-06-18 Physio-Control, Inc. Context scores to enhance accuracy of ECG readings
WO2018136135A1 (en) 2017-01-18 2018-07-26 Physio-Control, Inc. Non-invasive blood pressure measurement using ultrasound
AU2018258475A1 (en) 2017-04-25 2019-12-12 Mendology, Inc. Touch measurement apparatus and method of use
US11413005B2 (en) 2017-08-14 2022-08-16 Stryker Corporation Constitutive equation for non-invasive blood pressure measurement systems and methods
US11357415B2 (en) 2017-10-27 2022-06-14 Stryker Corporation Light-based non-invasive blood pressure systems and methods
WO2020055676A1 (en) 2018-09-14 2020-03-19 Avive Solutions, Inc. Responder network
US11138855B2 (en) 2018-09-14 2021-10-05 Avive Solutions, Inc. Responder network
US11210919B2 (en) 2018-09-14 2021-12-28 Avive Solutions, Inc. Real time defibrillator incident data
US11645899B2 (en) 2018-09-14 2023-05-09 Avive Solutions, Inc. Responder network
US11640755B2 (en) 2018-09-14 2023-05-02 Avive Solutions, Inc. Real time defibrillator incident data
US10957178B2 (en) 2018-09-14 2021-03-23 Avive Solutions, Inc. Responder network
US11490855B2 (en) 2019-12-27 2022-11-08 Physio-Control, LLC Methods and systems for monitoring and delivering therapy to a patient including a detachable adaptor for a monitor module
US11869338B1 (en) 2020-10-19 2024-01-09 Avive Solutions, Inc. User preferences in responder network responder selection
CN115212459B (en) * 2022-07-07 2023-05-16 中国人民解放军总医院第一医学中心 Wearable automatic external defibrillator, system and equipment based on intelligent terminal

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3865101A (en) * 1974-05-01 1975-02-11 Datascope Corp Portable and separable heart monitor and heart defibrillator apparatus
US5565759A (en) * 1994-12-15 1996-10-15 Intel Corporation Smart battery providing battery life and recharge time prediction
US5814089A (en) * 1996-12-18 1998-09-29 Medtronic, Inc. Leadless multisite implantable stimulus and diagnostic system
US5914585A (en) * 1996-02-20 1999-06-22 Norand Corporation Power sharing in computing systems with a plurality of electronic devices
US6188407B1 (en) * 1998-03-04 2001-02-13 Critikon Company, Llc Reconfigurable user interface for modular patient monitor
US20030088275A1 (en) * 2001-04-16 2003-05-08 Palmer Michael J. Portable patient monitor with defibrillator/pacemaker interface and battery power management

Family Cites Families (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3724455A (en) * 1970-06-02 1973-04-03 P Unger Cardiac warning device
US4096856A (en) * 1976-09-03 1978-06-27 Physio-Control Corporation Portable electronic physiological instrument having separable first and second components, and improved mechanical connector therefor
US4635639A (en) 1985-01-08 1987-01-13 Physio-Control Corporation Modular physiological instrument
US5012411A (en) 1985-07-23 1991-04-30 Charles J. Policastro Apparatus for monitoring, storing and transmitting detected physiological information
US4916439A (en) 1987-01-05 1990-04-10 Eac Technologies Corp. Remote display arrangement for appliances
US5078134A (en) 1988-04-25 1992-01-07 Lifecor, Inc. Portable device for sensing cardiac function and automatically delivering electrical therapy
US5105821A (en) * 1989-07-18 1992-04-21 Reyes Rey S Interface cable for connecting bedside electrocardiograph monitor to portable defibrillator/electrocardiograph machine
GB9010455D0 (en) 1990-05-10 1990-07-04 Bodymedic Limited Heart beat monitoring
US5311449A (en) 1991-03-25 1994-05-10 Angeion Corporation Sterilizable hand-held programmer/interrogator
US5321837A (en) 1991-10-11 1994-06-14 International Business Machines Corporation Event handling mechanism having a process and an action association process
ATE166734T1 (en) * 1992-12-11 1998-06-15 Siemens Medical Systems Inc DOCKING STATION FOR PATIENT MONITORING SYSTEM
US5685314A (en) * 1992-12-11 1997-11-11 Siemens Medical Systems, Inc. Auxiliary docking station for a patient monitoring system
US5879374A (en) 1993-05-18 1999-03-09 Heartstream, Inc. External defibrillator with automatic self-testing prior to use
US5470343A (en) * 1994-06-10 1995-11-28 Zmd Corporation Detachable power supply for supplying external power to a portable defibrillator
US5549115A (en) 1994-09-28 1996-08-27 Heartstream, Inc. Method and apparatus for gathering event data using a removable data storage medium and clock
US6047207A (en) 1994-09-28 2000-04-04 Heartstream, Inc. Method of using a measuring instrument and data gathering system
US5787155A (en) 1994-11-04 1998-07-28 Physio-Control Corporation Priority line switching system
US5549659A (en) 1994-11-04 1996-08-27 Physio-Control Corporation Communication interface for transmitting and receiving serial data between medical instruments
US5593426A (en) 1994-12-07 1997-01-14 Heartstream, Inc. Defibrillator system using multiple external defibrillators and a communications network
US5724985A (en) 1995-08-02 1998-03-10 Pacesetter, Inc. User interface for an implantable medical device using an integrated digitizer display screen
US5715823A (en) 1996-02-27 1998-02-10 Atlantis Diagnostics International, L.L.C. Ultrasonic diagnostic imaging system with universal access to diagnostic information and images
US5683423A (en) 1996-03-14 1997-11-04 Hewlett-Packard Company Defibrillator and method for storing selected segments of audio data
US5716380A (en) 1996-04-15 1998-02-10 Physio-Control Corporation Common therapy/data port for a portable defibrillator
US5999493A (en) 1996-05-13 1999-12-07 Survivalink Corporation Synchronization method and apparatus for isolated clock system
US5836993A (en) 1996-05-16 1998-11-17 Heartstream, Inc. Electrotherapy device control system and method
US5749902A (en) 1996-05-22 1998-05-12 Survivalink Corporation Recorded data correction method and apparatus for isolated clock systems
US5680863A (en) 1996-05-30 1997-10-28 Acuson Corporation Flexible ultrasonic transducers and related systems
US6111505A (en) 1996-07-03 2000-08-29 Fred N. Gratzon Security system
US6134468A (en) * 1996-12-31 2000-10-17 Agilent Technologies, Inc. Method and apparatus for reducing defibrillation energy
US6102856A (en) 1997-02-12 2000-08-15 Groff; Clarence P Wearable vital sign monitoring system
US5950632A (en) 1997-03-03 1999-09-14 Motorola, Inc. Medical communication apparatus, system, and method
US6148233A (en) 1997-03-07 2000-11-14 Cardiac Science, Inc. Defibrillation system having segmented electrodes
US6668192B1 (en) 1997-04-08 2003-12-23 Cardiac Science, Inc. Automated external defibrilator with the ability to store rescue information
US5857967A (en) 1997-07-09 1999-01-12 Hewlett-Packard Company Universally accessible healthcare devices with on the fly generation of HTML files
US5921938A (en) 1997-10-09 1999-07-13 Physio-Control Manufacturing Corporation System and method for adjusting time associated with medical event data
US6144922A (en) 1997-10-31 2000-11-07 Mercury Diagnostics, Incorporated Analyte concentration information collection and communication system
US5929601A (en) 1997-12-22 1999-07-27 Lifecor, Inc. Battery management apparatus for portable electronic devices
EP0864293B1 (en) 1997-12-22 1999-08-04 Hewlett-Packard Company Telemetry system, in particular for medical purposes
US6223077B1 (en) * 1998-01-26 2001-04-24 Physio-Control Manufacturing Corporation Automatic power switching in a defibrillator
US6157313A (en) 1998-02-19 2000-12-05 Motorola Method and apparatus utilizing a multifunction remote appliance sensor
US6024699A (en) 1998-03-13 2000-02-15 Healthware Corporation Systems, methods and computer program products for monitoring, diagnosing and treating medical conditions of remotely located patients
US6321113B1 (en) 1998-03-31 2001-11-20 Survivalink Corporation Automatic external defibrillator first responder and clinical data outcome management system
US6057758A (en) 1998-05-20 2000-05-02 Hewlett-Packard Company Handheld clinical terminal
USD414869S (en) 1998-06-03 1999-10-05 Medtronic Physio-Control Manufacturing Corp. Defibrillator with retractable hooks
US6594634B1 (en) 1998-09-14 2003-07-15 Medtronic Physio-Control Corp. Method and apparatus for reporting emergency incidents
US6141584A (en) 1998-09-30 2000-10-31 Agilent Technologies, Inc. Defibrillator with wireless communications
US6275737B1 (en) 1998-10-14 2001-08-14 Advanced Bionics Corporation Transcutaneous transmission pouch
US6422669B1 (en) 1998-11-09 2002-07-23 Koninklijke Philips Electronics N.V. Carrying case for defibrillator
US6334070B1 (en) 1998-11-20 2001-12-25 Medtronic Physio-Control Manufacturing Corp. Visual and aural user interface for an automated external defibrillator
US6201992B1 (en) 1999-04-01 2001-03-13 Agilent Technologies, Inc. Defibrillator interface capable of generating video images
US6336900B1 (en) 1999-04-12 2002-01-08 Agilent Technologies, Inc. Home hub for reporting patient health parameters
WO2000070889A1 (en) 1999-05-14 2000-11-23 Medtronic Physio-Control Manufacturing Corp. Method and apparatus for remote wireless communication with a medical device
US6301501B1 (en) 1999-06-17 2001-10-09 Robert D. Kolder Protective defibrillator storage device with alarm signal
US6323782B1 (en) 1999-06-21 2001-11-27 Freight Locker, Inc. Unattended item delivery system
DE19930256A1 (en) 1999-06-25 2000-12-28 Biotronik Mess & Therapieg Near and far field telemetry implant
US6370428B1 (en) 1999-08-11 2002-04-09 David E. Snyder Method for configuring a defibrillator
DE60030752T2 (en) 1999-09-21 2007-09-06 Honeywell HomMed LLC, Brookfield HOME PATIENT MONITORING SYSTEM
US6771172B1 (en) 1999-11-11 2004-08-03 General Electric Company Portable patient monitor with alarm light integrated into handle
US6377223B1 (en) 1999-11-11 2002-04-23 Ge Medical Systems Information Technologies, Inc. Portable patient monitor with antenna integrated into handle
US7060031B2 (en) 1999-12-17 2006-06-13 Medtronic, Inc. Method and apparatus for remotely programming implantable medical devices
US6873268B2 (en) 2000-01-21 2005-03-29 Medtronic Minimed, Inc. Microprocessor controlled ambulatory medical apparatus with hand held communication device
NZ520461A (en) 2000-02-14 2005-03-24 First Opinion Corp Automated diagnostic system and method
US7006865B1 (en) 2000-03-09 2006-02-28 Cardiac Science Inc. Automatic defibrillator module for integration with standard patient monitoring equipment
US6441747B1 (en) * 2000-04-18 2002-08-27 Motorola, Inc. Wireless system protocol for telemetry monitoring
US9183351B2 (en) 2000-05-30 2015-11-10 Vladimir Shusterman Mobile system with network-distributed data processing for biomedical applications
US6754526B2 (en) 2000-11-13 2004-06-22 Medtronic Physio-Control Corp Defibrillator with a multiple-mode interface
US6493581B2 (en) 2000-12-28 2002-12-10 Koninklijke Philips Electronics N.V. System and method for rapid recruitment of widely distributed easily operated automatic external defibrillators
US20020103508A1 (en) 2001-01-29 2002-08-01 Prabodh Mathur Remotely operated defibrillator
SE0100284D0 (en) 2001-01-31 2001-01-31 St Jude Medical Medical communication system
US20020116033A1 (en) * 2001-02-20 2002-08-22 Wilson Greatbatch Controllable, wearable MRI-compatible cardiac pacemaker with pulse carrying photonic catheter and VOO functionality
US20020116034A1 (en) * 2001-02-20 2002-08-22 Victor Miller Controllable, wearable MRI-compatible pacemaker with power carrying photonic catheter and VOO functionality
US20020116028A1 (en) * 2001-02-20 2002-08-22 Wilson Greatbatch MRI-compatible pacemaker with pulse carrying photonic catheter providing VOO functionality
US6580945B2 (en) 2001-03-20 2003-06-17 Koninklijke Philips Electronics N.V. Defibrillator using low impedance high capacitance double layer capacitor
USD455492S1 (en) 2001-05-02 2002-04-09 Medtronic Physio-Control Manufacturing Corp. Portable external defibrillator
US6616620B2 (en) 2001-05-25 2003-09-09 Revivant Corporation CPR assist device with pressure bladder feedback
US20030050538A1 (en) 2001-05-29 2003-03-13 Morteza Naghavi System and method for medical observation system located away from a hospital
US20030028219A1 (en) * 2001-07-20 2003-02-06 Powers Daniel J. Modular medical device, base unit and module thereof, and automated external defibrillator (AED), methods for assembling and using the AED
US6747556B2 (en) 2001-07-31 2004-06-08 Medtronic Physio-Control Corp. Method and system for locating a portable medical device
US6714817B2 (en) 2001-08-31 2004-03-30 Medtronic Physio-Control Manufacturing Corp. Hard paddle for an external defibrillator
US6727814B2 (en) 2001-09-24 2004-04-27 Medtronic Physio-Control Manufacturing Corp. System, method and apparatus for sensing and communicating status information from a portable medical device
US7162306B2 (en) 2001-11-19 2007-01-09 Medtronic Physio - Control Corp. Internal medical device communication bus
US6957102B2 (en) 2001-12-10 2005-10-18 Medtronic Emergency Response Systems, Inc. Enhanced interface for a medical device and a terminal
US6865418B2 (en) 2002-03-04 2005-03-08 Medtronic Physio-Control Corp. Docking station for defibrillator
US7120488B2 (en) 2002-05-07 2006-10-10 Medtronic Physio-Control Manufacturing Corp. Therapy-delivering portable medical device capable of triggering and communicating with an alarm system
US6978181B1 (en) * 2002-05-24 2005-12-20 Pacesetter, Inc. Inter-programmer communication among programmers of implantable medical devices
US20050288571A1 (en) 2002-08-20 2005-12-29 Welch Allyn, Inc. Mobile medical workstation
US20040049233A1 (en) * 2002-09-11 2004-03-11 Edwards D. Craig Medical device status information system
US20040096808A1 (en) 2002-11-20 2004-05-20 Price Amy J. Communication assist device
KR20040046071A (en) 2002-11-26 2004-06-05 삼성전자주식회사 Method for displaying antenna-ba of terminal
US20040122476A1 (en) 2002-12-24 2004-06-24 Peter Wung Emergency medical devices with multiple displays
US20040204743A1 (en) 2003-01-14 2004-10-14 Mcgrath Thomas J. Remotely operating external medical devices
US20040162586A1 (en) * 2003-02-18 2004-08-19 Covey Kevin K. Defibrillator electrodes with identification tags
US7110825B2 (en) 2003-03-03 2006-09-19 Lumenis Ltd. Method, a system, and a device for detecting and for reducing energy leakage from an energy treatment devices
WO2004093979A1 (en) 2003-04-22 2004-11-04 Medtronic Physio-Control Corp. Defibrillator/monitor system having a pod with leads capable of wirelessly communicating
US20060142808A1 (en) * 2003-04-22 2006-06-29 Christopher Pearce Defibrillator/monitor system having a pod with leads capable of wirelessly communicating
US7570994B2 (en) 2003-04-25 2009-08-04 Medtronic Physio-Control Corp. Apparatus and method for maintaining a defibrillator battery charge and optionally communicating
US8014859B2 (en) 2003-10-02 2011-09-06 Defibtech, Llc External defibrillator enclosure with accessory storage slot
CN1871610A (en) * 2003-11-12 2006-11-29 德雷格医疗系统股份有限公司 Healthcare processing device and display system
US8600491B2 (en) * 2003-12-17 2013-12-03 Physio-Control, Inc. Defibrillator patient monitoring pod
US7957798B2 (en) 2003-12-17 2011-06-07 Physio-Control, Inc. Defibrillator/monitor system having a pod with leads capable of wirelessly communicating
WO2005058417A1 (en) 2003-12-17 2005-06-30 Medtronic Physio-Control Corp. Defibrillator/monitor system having a pod with leads capable of wirelessly communicating
US7672720B2 (en) 2004-09-24 2010-03-02 Roger Lee Heath Resuscitation and life support system, method and apparatus
US20060149321A1 (en) 2004-12-30 2006-07-06 Merry Randy L Medical device information system
US7510526B2 (en) 2004-12-30 2009-03-31 Medtronic Emergency Response Systems, Inc. Medical device information system
US20060173498A1 (en) 2005-01-31 2006-08-03 Isabelle Banville Communication between an external defibrillator and an implantable medical device
US20070213775A1 (en) 2005-07-19 2007-09-13 Koninklijke Philips Electronics N.V. External Defibrillator With Pre-Cpr-Ecg Based Defibrillating Shock
US20080221930A1 (en) 2007-03-09 2008-09-11 Spacelabs Medical, Inc. Health data collection tool
US20090089078A1 (en) 2007-09-28 2009-04-02 Great-Circle Technologies, Inc. Bundling of automated work flow
US8520978B2 (en) 2007-10-31 2013-08-27 Mckesson Technologies Inc. Methods, computer program products, apparatuses, and systems for facilitating viewing and manipulation of an image on a client device
US8054177B2 (en) 2007-12-04 2011-11-08 Avaya Inc. Systems and methods for facilitating a first response mission at an incident scene using patient monitoring
US7728548B2 (en) 2008-06-02 2010-06-01 Physio-Control, Inc. Defibrillator battery authentication system
US20100114236A1 (en) 2008-10-31 2010-05-06 Pacesetter Inc. Hybrid battery system with bioelectric cell for implantable cardiac therapy device
US20100131482A1 (en) 2008-11-26 2010-05-27 General Electric Company Adaptive user interface systems and methods for healthcare applications
US20100185547A1 (en) 2009-01-16 2010-07-22 Scholar David A Project planning system
US8154246B1 (en) 2009-01-30 2012-04-10 Comverge, Inc. Method and system for charging of electric vehicles according to user defined prices and price off-sets
US8594784B2 (en) 2009-02-20 2013-11-26 Babric Life Science Innovations, Llc. Kits and methods for retrofitting and adapting common notebooks, laptop computers, and tablets, to enable each to be used as an automated external defibrillator (AED), and as a manual defibrillator
US9168386B2 (en) 2009-02-20 2015-10-27 Comptolife, Llc Adaptation of the common notebook, laptop computer, netbook and tablet PC computer to enable each to be used as an automated external defibrillator (AED) to treat victims of sudden cardiac arrest
US20110295078A1 (en) 2009-07-21 2011-12-01 Reid C Shane Systems and methods for collection, organization and display of ems information
US20110172550A1 (en) 2009-07-21 2011-07-14 Michael Scott Martin Uspa: systems and methods for ems device communication interface
US20110153343A1 (en) 2009-12-22 2011-06-23 Carefusion 303, Inc. Adaptable medical workflow system
USD658296S1 (en) 2009-12-28 2012-04-24 Koninklijke Philips Electronics N.V. Defibrillator
EP2556472B1 (en) 2010-04-09 2019-07-10 Zoll Medical Corporation Systems and methods for ems device communications interface
US9020235B2 (en) 2010-05-21 2015-04-28 Siemens Medical Solutions Usa, Inc. Systems and methods for viewing and analyzing anatomical structures
USD649644S1 (en) 2010-07-01 2011-11-29 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Defibrillator
JP5944916B2 (en) 2010-11-11 2016-07-05 ゾール メディカル コーポレイションZOLL Medical Corporation Instrument panel of acute care treatment system
USD683857S1 (en) 2010-11-15 2013-06-04 Nihon Kohden Corporation Defibrillator
US20120239428A1 (en) 2011-02-21 2012-09-20 Alan Ferris James Architecture for a content driven clinical information system
CA2830550A1 (en) 2011-03-18 2012-09-27 The Cleveland Clinic Foundation Clinical decision support system
US20130093829A1 (en) 2011-09-27 2013-04-18 Allied Minds Devices Llc Instruct-or
WO2013056194A1 (en) 2011-10-14 2013-04-18 Zoll Medical Corporation Automated delivery of medical device support software
US9289621B2 (en) 2012-05-08 2016-03-22 Physio-Control, Inc. Defibrillator network system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3865101A (en) * 1974-05-01 1975-02-11 Datascope Corp Portable and separable heart monitor and heart defibrillator apparatus
US5565759A (en) * 1994-12-15 1996-10-15 Intel Corporation Smart battery providing battery life and recharge time prediction
US5914585A (en) * 1996-02-20 1999-06-22 Norand Corporation Power sharing in computing systems with a plurality of electronic devices
US5814089A (en) * 1996-12-18 1998-09-29 Medtronic, Inc. Leadless multisite implantable stimulus and diagnostic system
US6188407B1 (en) * 1998-03-04 2001-02-13 Critikon Company, Llc Reconfigurable user interface for modular patient monitor
US20030088275A1 (en) * 2001-04-16 2003-05-08 Palmer Michael J. Portable patient monitor with defibrillator/pacemaker interface and battery power management

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3215003A4 (en) * 2014-11-07 2018-08-22 Welch Allyn, Inc. Medical device
US10405758B2 (en) 2014-11-07 2019-09-10 Welch Allyn, Inc. Carrier assembly for blood pressure module
US20170337737A1 (en) * 2016-05-17 2017-11-23 Occipital, Inc. Self-contained mixed reality head mounted display
US10502363B2 (en) * 2016-05-17 2019-12-10 Occipital, Inc. Self-contained mixed reality head mounted display
US10737105B2 (en) 2017-10-02 2020-08-11 Avive Solutions, Inc. Modular defibrillator architecture
US10773091B2 (en) 2017-10-02 2020-09-15 Avive Solutions, Inc. Modular defibrillator architecture
US11077311B2 (en) 2017-10-02 2021-08-03 Avive Solutions, Inc. Modular defibrillator architecture
US11097121B2 (en) 2017-10-02 2021-08-24 Avive Solutions, Inc. Modular defibrillator architecture
US11691021B2 (en) 2017-10-02 2023-07-04 Avive Solutions, Inc. Modular defibrillator architecture
US11865352B2 (en) 2020-09-30 2024-01-09 Zoll Medical Corporation Remote monitoring devices and related methods and systems with audible AED signal listening

Also Published As

Publication number Publication date
US20080077185A1 (en) 2008-03-27
US20160361556A1 (en) 2016-12-15
US20110208259A1 (en) 2011-08-25
US7957798B2 (en) 2011-06-07
US8738128B2 (en) 2014-05-27
US20150018894A1 (en) 2015-01-15
US20180214705A1 (en) 2018-08-02
US8880168B2 (en) 2014-11-04
US20130331899A1 (en) 2013-12-12
US9439572B2 (en) 2016-09-13
US10124184B2 (en) 2018-11-13

Similar Documents

Publication Publication Date Title
US20180214705A1 (en) External defibrillator with power and battery sharing capabilities with a pod
US8788038B2 (en) External defibrillator with power and battery sharing capabilities with a pod
US20060142808A1 (en) Defibrillator/monitor system having a pod with leads capable of wirelessly communicating
US6591135B2 (en) Portable patient monitor with defibrillator/pacemaker interface and battery power management
US9636513B2 (en) Defibrillator device
US20020103508A1 (en) Remotely operated defibrillator
CN1283327C (en) Four contact identification defibrillator electrode system
US8600491B2 (en) Defibrillator patient monitoring pod
US20200016421A1 (en) Defibrillator patient monitoring pod
US11013931B2 (en) Modular medical system for patient monitoring and electrical therapy delivery
US11266847B2 (en) Multi-function portable automated external defibrillator
CN105457165B (en) Defibrillation shock device
EP1617896B1 (en) Defibrillator/monitor system having a pod with leads capable of wirelessly communicating
US9393402B2 (en) Electrode tray with integrated connector and storage for wires
US20220193432A1 (en) Battery Management for Medical Device
WO2023108042A1 (en) Automated external defibrillator
CN114515385A (en) Control method of defibrillation apparatus, defibrillation apparatus and storage medium
CN113922487A (en) Uninterrupted medical rescue equipment
CN116616785A (en) Heart treatment system and electrocardio monitoring data acquisition method
CN113730812A (en) Medical defibrillator
CN107281642A (en) A kind of defibuillator

Legal Events

Date Code Title Description
AS Assignment

Owner name: PHYSIO-CONTROL, INC., WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NEUMILLER, JAMES S.;MCGRATH, THOMAS J.;NORDNESS, ROCKLAND W.;AND OTHERS;REEL/FRAME:033151/0477

Effective date: 20100107

AS Assignment

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK

Free format text: FIRST LIEN SECURITY AGREEMENT;ASSIGNORS:PHYSIO-CONTROL, INC.;PHYSIO-CONTROL INTERNATIONAL, INC.;REEL/FRAME:037532/0828

Effective date: 20150605

AS Assignment

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK

Free format text: SECOND LIEN SECURITY AGREEMENT;ASSIGNORS:PHYSIO-CONTROL, INC.;PHYSIO-CONTROL INTERNATIONAL, INC.;REEL/FRAME:037559/0601

Effective date: 20150605

AS Assignment

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK

Free format text: ABL SECURITY AGREEMENT;ASSIGNORS:PHYSIO-CONTROL, INC.;PHYSIO-CONTROL INTERNATIONAL, INC.;REEL/FRAME:037564/0902

Effective date: 20150605

AS Assignment

Owner name: PHYSIO-CONTROL, INC., WASHINGTON

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:038378/0001

Effective date: 20160405

Owner name: PHYSIO-CONTROL INTERNATIONAL, INC., WASHINGTON

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:038378/0001

Effective date: 20160405

Owner name: PHYSIO-CONTROL, INC., WASHINGTON

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:038378/0028

Effective date: 20160405

Owner name: PHYSIO-CONTROL INTERNATIONAL, INC., WASHINGTON

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:038379/0001

Effective date: 20160405

Owner name: PHYSIO-CONTROL, INC., WASHINGTON

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:038379/0001

Effective date: 20160405

Owner name: PHYSIO-CONTROL INTERNATIONAL, INC., WASHINGTON

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:038378/0028

Effective date: 20160405

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION