US20140130526A1 - Container Device for a Good to be Cooled, and Method for Operating Such Device - Google Patents

Container Device for a Good to be Cooled, and Method for Operating Such Device Download PDF

Info

Publication number
US20140130526A1
US20140130526A1 US14/115,719 US201114115719A US2014130526A1 US 20140130526 A1 US20140130526 A1 US 20140130526A1 US 201114115719 A US201114115719 A US 201114115719A US 2014130526 A1 US2014130526 A1 US 2014130526A1
Authority
US
United States
Prior art keywords
heat
holding space
buffer
good
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/115,719
Inventor
Rene Kerkmans
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PHARMA COOLING BV
Original Assignee
PHARMA COOLING BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PHARMA COOLING BV filed Critical PHARMA COOLING BV
Assigned to PHARMA COOLING B.V. reassignment PHARMA COOLING B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KERKMANS, RENE
Publication of US20140130526A1 publication Critical patent/US20140130526A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/003Transport containers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/16Holders for containers
    • A61J1/165Cooled holders, e.g. for medications, insulin, blood, plasma
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • F25B21/04Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect reversible
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J2200/00General characteristics or adaptations
    • A61J2200/40Heating or cooling means; Combinations thereof
    • A61J2200/42Heating means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J2200/00General characteristics or adaptations
    • A61J2200/40Heating or cooling means; Combinations thereof
    • A61J2200/44Cooling means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J2200/00General characteristics or adaptations
    • A61J2200/70Device provided with specific sensor or indicating means
    • A61J2200/76Device provided with specific sensor or indicating means for fluid level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • F25B2321/0252Removal of heat by liquids or two-phase fluids

Definitions

  • the present invention relates to a container device for a good to be cooled, and method for operating such device. More in particular, the invention relates to a container for shipping medicines, and cooling them during transport. Furthermore, the invention relates to a method for preparing such a container for use.
  • the invention thereto proposes a container device for a good to be cooled, such as a medicine, comprising a closable holding space for the good to be cooled, a heat conductor, adjacent to the holding space, a heat buffer, thermally isolated from an environment of the container device and a heat pump, in thermal contact with the heat conductor, and the heat buffer, and configured for detracting heat from the holding space and transferring the heat to the heat buffer.
  • the holding space may be dimensioned such that it can hold an amount of medicine that is commonly sent as one batch from a producer, such as a pharmacist, to a distributer or a patient. In a practical embodiment, the space may be about 25 times 25 times 25 cm.
  • the holding space can be entered when the container device is opened for inserting a medicine.
  • the holding space is preferably sheltered air-tight from the environment of the container.
  • the heat conductor may be a passive or an active heat conductor
  • the heat buffer may be an active or passive heat buffer.
  • the heat buffer is thermally isolated from the environment of the device, in order to avoid heat exchange with the environment. This way, the device according to the invention does not heat up items, or other devices in its neighbourhood.
  • Another advantage is that the avoidance of heat (and thus also air) exchange is that the risk of pollution or contamination that normally occurs with cooling systems that exchange heat with their environment, is taken away. Opening and closing of the container device may be done under specific controlled or conditioned circumstances, and after that, the device may remain closed until its content is to be used.
  • the heat conductor may be arranged adjacent to the holding space. In fact, the boundaries of the holding space may even at least partly be formed by the heat conductor. However, for hygienic reasons, a separation or shielding may be present.
  • the buffer may comprise a reservoir with a phase change material.
  • a phase change material may have a high heat capacity, and the property that it remains at a fixed temperature, until all materials phase has changed.
  • the phase change most of the time is a change from solid to fluid.
  • the heat buffer having a fixed temperature in a large range of energy absoption is also beneficial for controlling the temperature of the holding space.
  • the (power of the) heat pump is controllable, and the device comprises a controller, for controlling the amount of heat to be distracted from the holding space, en/or the temperature of the holding space.
  • the controller may be equipped with one or more sensors for monitoring the temperature of the holding space, and means for setting a required or desired temperature. These means may be accessible from outside the container device, by means of a control panel, or even remotely. En embodiment wherein the setting is to be entered upon putting the good to be cooled in place is also thinkable.
  • the heat pump comprises a Peltier element.
  • This type of beat pump has no moving parts and is therefore in general relatively robust. Its amount of heat transfer is controllable by means of electric quantities, i.e. a current or a voltage, and it does not require a high power to operate. This makes it especially suitable to be controlled precisely with an electronic controller, without the need of intermediate power switches. A low power consumption is in this case further desirable since external power may not always be available, and a dependency thereon would thus be a risky disadvantage.
  • Peltier heat pump The efficiency of a Peltier heat pump is in general largely dependent on its thermal contact with the bodies it needs to exchange heat with. In designing applications according to the state of the art, using for Peltier elements, this has caused difficulties, since an optimal thermal contact can only be made when these bodies have a surface that encounters the surface of the Peltier element entirely, while this surface has an implicit roughness.
  • both the heat conductor and the heat buffer therefore comprise a fluid, which fluids are in thermal contact with opposite sides of the Peltier element.
  • the use of these fluids ensures a (close to) full contact with the Peltier element, and thus a very efficient heat exchange.
  • This heat exchange can be further improved by providing the heat conductor and/or the heat buffer with a fluid pump, for pumping respective fluids along the surface of the Peltier element.
  • the holding device according to the invention then comprises two independent closed fluid circuits. Pumping the fluids around furthermore increases the efficiency of the heat exchange and enables the controller to respond faster to a measured difference between an actual and a desired temperature in the holding space.
  • the heat buffer Prior to use, or between uses of the device, the heat buffer may need to be cooled. This may be done by exposing the heat buffer to a low temperature, for instance by putting it (together with the rest of the device) in a refrigerator. This may however consume too much time.
  • the controller may be provided with a special-mode for controlling the heat pump to transfer heat in opposite direction, wherein heat is detracted from the heat buffer and delivered to the holding space.
  • Peltier element enables to do so just by changing a direction of electric quantities, such as a current or a voltage. This property may well be used to bring the heat buffer back in an initial condition, in a relatively short time, on electric energy.
  • the controller may be configured for reading a code in or on a good to be cooled, which code indicates a storage-temperature, and for setting the holding space temperature to the storage-temperature.
  • a risk of wrong settings due to human failure is taken away.
  • the controller may be configured for reading an RFID, an optical code such as a bar-code, a magnetic code, or a chip, or any other means that is applied in or on the good.
  • the device may comprise an energy source such as a battery, for providing energy to a heat pump, and/or controller, and/or fluid pump.
  • a battery may for instance be placed at or nearby an outer boundary of the device.
  • the heat buffer may for instance be arranged peripheral to the holding space, separated by the heat conductor and the heat pump. Given a certain volume, components with various temperatures within the container device can be separated maximally, so that undesired heat exchange between these components is minimised.
  • the device may further comprise a housing, enclosing at least the holding space and the heat buffer air tight from an environment of the device.
  • FIG. 1 shows a schematic sectional view of a container device according to the present invention
  • FIG. 2 shows a perspective view of the container device of FIG. 1 ;
  • FIG. 3 shows a perspective view on an embodiment of the container device according to the present invention.
  • FIG. 1 shows a schematic view of a device 1 according to the present invention.
  • the container device 1 comprises a closable holding space 2 for the good to be cooled, a number of heat conductors 3 , adjacent to the holding space 2 and a heat buffer 5 , thermally isolated from an environment of the container device 1 .
  • the device further comprises a number of heat pumps 4 , in thermal contact with the heat conductors 3 , and the heat buffer 5 , and configured for detracting heat from the holding space 2 and transferring the heat to the heat buffer 5 .
  • the heat conductors 3 comprise a fluid, that is pumped around by a fluid pump (not shown), and the heat buffer 5 comprises a phase change material, that is pumped around as well by (another) fluid pump (not shown).
  • the container device comprises a battery 7 , for providing electric energy to a controller 8 , which controls the heat pumps 4 , to the heat pumps 4 , and to the fluid pump(s).
  • the container device shown is very energy efficient. A temperature range between ⁇ 25 and +25 degrees Celcius may be set, and kept constant for 20 to 100, and in particular between 50 and 80 hours. Although 4 heat pumps are shown, an embodiment with a single heat pump can be used.
  • FIG. 2 shows a perspective sectional view of an embodiment of the container device 1 from FIG. 1 .
  • like reference numbers indicate like parts.
  • FIG. 3 shows a perspective view of the container according to the invention.
  • the container device comprises a main part 9 , which comprises the holding space 2 , and a lid 10 , that comprises a projected part 13 , forming a wall of the holding space 2 when the lid and the main part 9 are assembled.
  • the main part 9 comprises multiple sealings 11 , to ensure an air tight closure of the container device, in the assembled state.
  • a good placed in the holding space 2 and heat is distracted from the holding space 2 with the heat pump 4 via the heat conductor 3 , in order to be delivered to the heat buffer 5 .
  • the exact temperature required by the good may be read from a code from the good to be cooled which indicates a desired or prescribed storage temperature.
  • the heat pump is then controlled in such a way that the temperature of the holding space stays within a predetermined bandwidth from the storage temperature of the good.
  • heat may be distracted from the heat buffer by operating the heat pump in opposite direction.

Abstract

The invention relates to a container device (1) for transport of a good to be cooled, such as a medicine, comprising a closable holding space (2) for the good to be cooled, a heat conductor (3), adjacent to the holding space, a heat buffer (5), thermally isolated from an environment of the container device and a heat pump, in thermal contact with the heat conductor, and the heat buffer, and configured for detracting heat from the holding space and transferring the heat to the heat buffer. The invention further relates to a method for transporting a good to be cooled, such as a medicine, comprising placing a good in a holding space of a above described device, distracting heat from the holding space with the heat pump via the heat conductor and delivering the distracted heat by the heat pump to the heat buffer.

Description

  • The present invention relates to a container device for a good to be cooled, and method for operating such device. More in particular, the invention relates to a container for shipping medicines, and cooling them during transport. Furthermore, the invention relates to a method for preparing such a container for use.
  • Certain goods, especially medicines, need to be transported and stored under specific thermal conditions. These conditions may differ for each specific medicine, which makes it often undesired or even impossible to combine transportation of multiple medicines in a common (cooled) container. Moreover, since medicines may need to be transported from the same origin, to multiple destinations, use of a separate container may be desired in order to avoid the necessity to open the containers during transport.
  • It is a goal of the present invention to provide a container for the transport and/or storage of a good to be cooled, which fulfils the above needs, and provides further advantages.
  • The invention thereto proposes a container device for a good to be cooled, such as a medicine, comprising a closable holding space for the good to be cooled, a heat conductor, adjacent to the holding space, a heat buffer, thermally isolated from an environment of the container device and a heat pump, in thermal contact with the heat conductor, and the heat buffer, and configured for detracting heat from the holding space and transferring the heat to the heat buffer.
  • The holding space may be dimensioned such that it can hold an amount of medicine that is commonly sent as one batch from a producer, such as a pharmacist, to a distributer or a patient. In a practical embodiment, the space may be about 25 times 25 times 25 cm. The holding space can be entered when the container device is opened for inserting a medicine. When the container is closed, the holding space is preferably sheltered air-tight from the environment of the container. The heat conductor may be a passive or an active heat conductor, and the heat buffer may be an active or passive heat buffer. The heat buffer is thermally isolated from the environment of the device, in order to avoid heat exchange with the environment. This way, the device according to the invention does not heat up items, or other devices in its neighbourhood. This may for instance be a specific advantage when the device is sent by air cargo, for which special regulations may be applicable. Another advantage is that the avoidance of heat (and thus also air) exchange is that the risk of pollution or contamination that normally occurs with cooling systems that exchange heat with their environment, is taken away. Opening and closing of the container device may be done under specific controlled or conditioned circumstances, and after that, the device may remain closed until its content is to be used.
  • The heat conductor may be arranged adjacent to the holding space. In fact, the boundaries of the holding space may even at least partly be formed by the heat conductor. However, for hygienic reasons, a separation or shielding may be present.
  • In an embodiment, the buffer may comprise a reservoir with a phase change material. Such a material may have a high heat capacity, and the property that it remains at a fixed temperature, until all materials phase has changed. In practice, the phase change most of the time is a change from solid to fluid.
  • The heat buffer having a fixed temperature in a large range of energy absoption, is also beneficial for controlling the temperature of the holding space. In a further embodiment, the (power of the) heat pump is controllable, and the device comprises a controller, for controlling the amount of heat to be distracted from the holding space, en/or the temperature of the holding space.
  • The controller may be equipped with one or more sensors for monitoring the temperature of the holding space, and means for setting a required or desired temperature. These means may be accessible from outside the container device, by means of a control panel, or even remotely. En embodiment wherein the setting is to be entered upon putting the good to be cooled in place is also thinkable.
  • In yet another embodiment, the heat pump comprises a Peltier element. This type of beat pump has no moving parts and is therefore in general relatively robust. Its amount of heat transfer is controllable by means of electric quantities, i.e. a current or a voltage, and it does not require a high power to operate. This makes it especially suitable to be controlled precisely with an electronic controller, without the need of intermediate power switches. A low power consumption is in this case further desirable since external power may not always be available, and a dependency thereon would thus be a risky disadvantage.
  • The efficiency of a Peltier heat pump is in general largely dependent on its thermal contact with the bodies it needs to exchange heat with. In designing applications according to the state of the art, using for Peltier elements, this has caused difficulties, since an optimal thermal contact can only be made when these bodies have a surface that encounters the surface of the Peltier element entirely, while this surface has an implicit roughness.
  • In yet another embodiment according to the invention, both the heat conductor and the heat buffer therefore comprise a fluid, which fluids are in thermal contact with opposite sides of the Peltier element. The use of these fluids ensures a (close to) full contact with the Peltier element, and thus a very efficient heat exchange.
  • This heat exchange can be further improved by providing the heat conductor and/or the heat buffer with a fluid pump, for pumping respective fluids along the surface of the Peltier element. The holding device according to the invention then comprises two independent closed fluid circuits. Pumping the fluids around furthermore increases the efficiency of the heat exchange and enables the controller to respond faster to a measured difference between an actual and a desired temperature in the holding space.
  • Prior to use, or between uses of the device, the heat buffer may need to be cooled. This may be done by exposing the heat buffer to a low temperature, for instance by putting it (together with the rest of the device) in a refrigerator. This may however consume too much time. According to the invention, the controller may be provided with a special-mode for controlling the heat pump to transfer heat in opposite direction, wherein heat is detracted from the heat buffer and delivered to the holding space.
  • The use of a Peltier element enables to do so just by changing a direction of electric quantities, such as a current or a voltage. This property may well be used to bring the heat buffer back in an initial condition, in a relatively short time, on electric energy.
  • As mentioned before, different goods, especially medicines, may require different temperatures. The controller may be configured for reading a code in or on a good to be cooled, which code indicates a storage-temperature, and for setting the holding space temperature to the storage-temperature. Herewith a risk of wrong settings due to human failure is taken away.
  • The controller may be configured for reading an RFID, an optical code such as a bar-code, a magnetic code, or a chip, or any other means that is applied in or on the good.
  • In order to be able to operate autonomously, the device may comprise an energy source such as a battery, for providing energy to a heat pump, and/or controller, and/or fluid pump. Such a battery may for instance be placed at or nearby an outer boundary of the device. In addition, the heat buffer may for instance be arranged peripheral to the holding space, separated by the heat conductor and the heat pump. Given a certain volume, components with various temperatures within the container device can be separated maximally, so that undesired heat exchange between these components is minimised. The device may further comprise a housing, enclosing at least the holding space and the heat buffer air tight from an environment of the device.
  • The device according to the invention will now be elucidated into more detail with reference to the following figures, which serve as an example only, and wherein:
  • FIG. 1 shows a schematic sectional view of a container device according to the present invention;
  • FIG. 2 shows a perspective view of the container device of FIG. 1;
  • FIG. 3 shows a perspective view on an embodiment of the container device according to the present invention.
  • FIG. 1 shows a schematic view of a device 1 according to the present invention. The container device 1 comprises a closable holding space 2 for the good to be cooled, a number of heat conductors 3, adjacent to the holding space 2 and a heat buffer 5, thermally isolated from an environment of the container device 1. The device further comprises a number of heat pumps 4, in thermal contact with the heat conductors 3, and the heat buffer 5, and configured for detracting heat from the holding space 2 and transferring the heat to the heat buffer 5.
  • The heat conductors 3 comprise a fluid, that is pumped around by a fluid pump (not shown), and the heat buffer 5 comprises a phase change material, that is pumped around as well by (another) fluid pump (not shown). The container device comprises a battery 7, for providing electric energy to a controller 8, which controls the heat pumps 4, to the heat pumps 4, and to the fluid pump(s).
  • The container device shown is very energy efficient. A temperature range between −25 and +25 degrees Celcius may be set, and kept constant for 20 to 100, and in particular between 50 and 80 hours. Although 4 heat pumps are shown, an embodiment with a single heat pump can be used.
  • FIG. 2 shows a perspective sectional view of an embodiment of the container device 1 from FIG. 1. In FIGS. 1 and 2, like reference numbers indicate like parts.
  • FIG. 3 shows a perspective view of the container according to the invention. The container device comprises a main part 9, which comprises the holding space 2, and a lid 10, that comprises a projected part 13, forming a wall of the holding space 2 when the lid and the main part 9 are assembled. The main part 9 comprises multiple sealings 11, to ensure an air tight closure of the container device, in the assembled state.
  • In use, a good placed in the holding space 2, and heat is distracted from the holding space 2 with the heat pump 4 via the heat conductor 3, in order to be delivered to the heat buffer 5. The exact temperature required by the good may be read from a code from the good to be cooled which indicates a desired or prescribed storage temperature. The heat pump is then controlled in such a way that the temperature of the holding space stays within a predetermined bandwidth from the storage temperature of the good. In order to prepare the device for use, heat may be distracted from the heat buffer by operating the heat pump in opposite direction.

Claims (15)

1. A container device for transport of a good to be cooled, such as a medicine, comprising:
a closable holding space for the good to be cooled;
a heat conductor, adjacent to the holding space;
a heat buffer, thermally isolated from an environment of the container device;
a heat pump, in thermal contact with the heat conductor, and the heat buffer, and configured for detracting heat from the holding space and transferring the heat to the heat buffer.
2. The device according to claim 1, wherein the buffer comprises a reservoir with phase change material.
3. The device according to claim 1, wherein the heat pump is controllable, and wherein the device comprises a controller, for controlling the amount of heat to be distracted from the holding space, en/or the temperature of the holding space.
4. The device according to claim 1, wherein the heat pump comprises a Peltier element.
5. The device according to claim 4, wherein both the heat conductor and the heat buffer comprise a fluid, which are in thermal contact with opposite sides of the Peltier element.
6. The device according to claim 5, wherein the heat conductor and/or the heat buffer comprises a fluid pump, for pumping respective fluids.
7. The device according to claim 3, wherein the controller comprises a control-mode for controlling the heat pump in opposite direction, wherein heat is detracted from the heat buffer and delivered to the holding space.
8. The device according to claim 3, wherein the controller is configured for reading a code in or on a good to be cooled, which code indicates a storage-temperature, and for setting the holding space temperature to the storage-temperature.
9. The device according to claim 8, wherein the controller is configured for reading an RFID, an optical code such as a barcode, a magnetic code, or a chip.
10. The device according to claim 1, comprising an energy source.
11. The device according to claim 1, wherein the heat buffer is arranged peripheral to the holding space, separated by the heat conductor and the heat pump.
12. The device according to claim 1, comprising a housing, enclosing at least the holding space and the heat buffer air tight from an environment of the device.
13. A method for transporting a good to be cooled, such as a medicine, comprising:
placing a good in a holding space;
extracting heat from the holding space with a heat pump via a heat conductor;
delivering the extracted heat by the heat pump to a heat buffer.
14. The method according to claim 13, comprising:
reading a code from the good to be cooled which indicates a storage temperature;
controlling the heat pump such that the temperature of the holding space stays within a predetermined bandwidth from the storage temperature of the good.
15. The method according to claim 13, further comprising:
extracting heat from the heat buffer by operating the heat pump in an opposite direction.
US14/115,719 2011-05-05 2011-05-05 Container Device for a Good to be Cooled, and Method for Operating Such Device Abandoned US20140130526A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/NL2011/050309 WO2012150859A1 (en) 2011-05-05 2011-05-05 Container device for a good to be cooled, and method for operating such device

Publications (1)

Publication Number Publication Date
US20140130526A1 true US20140130526A1 (en) 2014-05-15

Family

ID=44534569

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/115,719 Abandoned US20140130526A1 (en) 2011-05-05 2011-05-05 Container Device for a Good to be Cooled, and Method for Operating Such Device

Country Status (5)

Country Link
US (1) US20140130526A1 (en)
EP (1) EP2712418B1 (en)
CN (1) CN103827606B (en)
ES (1) ES2627966T3 (en)
WO (1) WO2012150859A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11340005B2 (en) 2016-07-25 2022-05-24 Cold Chain Technologies, Llc Hybrid method and system for transporting and/or storing temperature-sensitive materials
US11608221B2 (en) 2018-06-15 2023-03-21 Cold Chain Technologies, Llc Shipping system for storing and/or transporting temperature-sensitive materials
US11634266B2 (en) 2019-01-17 2023-04-25 Cold Chain Technologies, Llc Thermally insulated shipping system for parcel-sized payload

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2015366B1 (en) 2015-08-28 2017-03-20 Pharma Cooling B V Device for cooled transport and storage of goods and method for operating the device.
CN110388777A (en) * 2019-06-17 2019-10-29 易涛 A kind of portable type heat insulating medicine box

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4821914A (en) * 1988-04-01 1989-04-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Low temperature storage container for transporting perishables to space station
US5029446A (en) * 1989-08-15 1991-07-09 Kabushiki Kaisha B & D Japan Electronic compact refrigerator
US5483799A (en) * 1994-04-29 1996-01-16 Dalto; Michael Temperature regulated specimen transporter
US5603220A (en) * 1995-09-11 1997-02-18 Cool Med L.L.C. Electronically controlled container for storing temperature sensitive material
US5865032A (en) * 1996-07-02 1999-02-02 Emerging Technology Systems, L.L.C. Thermoelectric medicine cooling bag
US6026647A (en) * 1997-02-14 2000-02-22 Igloo Products Corporation Thermoelectric cooler and warmer for food with table top tray
US6209343B1 (en) * 1998-09-29 2001-04-03 Life Science Holdings, Inc. Portable apparatus for storing and/or transporting biological samples, tissues and/or organs
US6308518B1 (en) * 1999-09-28 2001-10-30 Rick C. Hunter Thermal barrier enclosure system
US6481213B2 (en) * 2000-10-13 2002-11-19 Instatherm Company Personal thermal comfort system using thermal storage
US20030070436A1 (en) * 2001-10-16 2003-04-17 Brian Wood Super-coolable composition having long-duration phase change capability, process for preparation of same, process for super-cooling same and articles comprising same
US6601394B2 (en) * 1999-12-29 2003-08-05 Jordan B. Tatter Storage condition controller
US8215835B2 (en) * 2007-12-11 2012-07-10 Tokitae Llc Temperature-stabilized medicinal storage systems

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4823554A (en) * 1987-04-22 1989-04-25 Leonard Trachtenberg Vehicle thermoelectric cooling and heating food and drink appliance
CN2162629Y (en) * 1993-05-07 1994-04-20 福建福日家用电器集团公司 Semi-conductor refrigeration vaccine box
FR2723181A1 (en) * 1994-07-28 1996-02-02 Comat Sa Controlled temperature container in portable case
JPH09113121A (en) * 1995-10-23 1997-05-02 Matsushita Electric Works Ltd Cold/heat reserving storage
WO2002037195A2 (en) * 2000-11-02 2002-05-10 Tellurex Corporation Temperature-controlled storage system
US8677767B2 (en) * 2008-01-28 2014-03-25 Tayfun Ilercil Thermo-electric heat pump systems
CN101382371A (en) * 2008-04-11 2009-03-11 深圳市益酷科技有限公司 Semiconductor field operation medical refrigerator

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4821914A (en) * 1988-04-01 1989-04-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Low temperature storage container for transporting perishables to space station
US5029446A (en) * 1989-08-15 1991-07-09 Kabushiki Kaisha B & D Japan Electronic compact refrigerator
US5483799A (en) * 1994-04-29 1996-01-16 Dalto; Michael Temperature regulated specimen transporter
US5603220A (en) * 1995-09-11 1997-02-18 Cool Med L.L.C. Electronically controlled container for storing temperature sensitive material
US5865032A (en) * 1996-07-02 1999-02-02 Emerging Technology Systems, L.L.C. Thermoelectric medicine cooling bag
US6026647A (en) * 1997-02-14 2000-02-22 Igloo Products Corporation Thermoelectric cooler and warmer for food with table top tray
US6209343B1 (en) * 1998-09-29 2001-04-03 Life Science Holdings, Inc. Portable apparatus for storing and/or transporting biological samples, tissues and/or organs
US6308518B1 (en) * 1999-09-28 2001-10-30 Rick C. Hunter Thermal barrier enclosure system
US6601394B2 (en) * 1999-12-29 2003-08-05 Jordan B. Tatter Storage condition controller
US6481213B2 (en) * 2000-10-13 2002-11-19 Instatherm Company Personal thermal comfort system using thermal storage
US20030070436A1 (en) * 2001-10-16 2003-04-17 Brian Wood Super-coolable composition having long-duration phase change capability, process for preparation of same, process for super-cooling same and articles comprising same
US8215835B2 (en) * 2007-12-11 2012-07-10 Tokitae Llc Temperature-stabilized medicinal storage systems

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11340005B2 (en) 2016-07-25 2022-05-24 Cold Chain Technologies, Llc Hybrid method and system for transporting and/or storing temperature-sensitive materials
US11608221B2 (en) 2018-06-15 2023-03-21 Cold Chain Technologies, Llc Shipping system for storing and/or transporting temperature-sensitive materials
US11634266B2 (en) 2019-01-17 2023-04-25 Cold Chain Technologies, Llc Thermally insulated shipping system for parcel-sized payload

Also Published As

Publication number Publication date
EP2712418B1 (en) 2017-03-29
CN103827606B (en) 2016-05-11
CN103827606A (en) 2014-05-28
EP2712418A1 (en) 2014-04-02
ES2627966T3 (en) 2017-08-01
WO2012150859A1 (en) 2012-11-08

Similar Documents

Publication Publication Date Title
US11466919B2 (en) Portable cooler
US11162716B2 (en) Portable cooler
EP2712418B1 (en) Container device for a good to be cooled, and method for operating such device
US11927382B2 (en) Portable cooler with active temperature control
CN105705890B (en) Portable temperature control container
US10775091B2 (en) Energy efficient biological freezer with vial management system
JP6221149B2 (en) Method for preconditioning a latent heat storage element
WO2015125790A1 (en) Temperature-regulated transport box
WO2015159139A1 (en) Robotic pickup point for order fulfillment system
WO2019163434A1 (en) Environmental control system and method for operating same
CN107406024B (en) Gull wing door type dangerous material storage appts
US11668508B2 (en) Portable cooler
KR20190059000A (en) Monitoring using near field communication type sensor
EP3144202A1 (en) Mobile device for distributing goods and assembly comprising it
US20230324098A1 (en) Cooled container and method for distributing cooled items
EP3450886A1 (en) Cooling device for cooling a storage space of a cooling container and a respective cooling container
JP2021094218A (en) Auxiliary cooler and auxiliary cooling system
US20190241348A1 (en) Conservation insulated container and/or transportation of perishable or heat sensitive products

Legal Events

Date Code Title Description
AS Assignment

Owner name: PHARMA COOLING B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KERKMANS, RENE;REEL/FRAME:032041/0263

Effective date: 20140107

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION