US20130233760A1 - Shock and vibration dampening device - Google Patents

Shock and vibration dampening device Download PDF

Info

Publication number
US20130233760A1
US20130233760A1 US13/607,500 US201213607500A US2013233760A1 US 20130233760 A1 US20130233760 A1 US 20130233760A1 US 201213607500 A US201213607500 A US 201213607500A US 2013233760 A1 US2013233760 A1 US 2013233760A1
Authority
US
United States
Prior art keywords
side wall
dampening device
outer side
bottom walls
dampening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/607,500
Inventor
Benjamin F. Polando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/607,500 priority Critical patent/US20130233760A1/en
Priority to PCT/US2012/054504 priority patent/WO2013036954A1/en
Publication of US20130233760A1 publication Critical patent/US20130233760A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/02Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/44Applications of resilient shock-absorbing materials, e.g. foamed plastics material, honeycomb material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D19/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D19/0004Rigid pallets without side walls
    • B65D19/0006Rigid pallets without side walls the load supporting surface being made of a single element
    • B65D19/0008Rigid pallets without side walls the load supporting surface being made of a single element forming a continuous plane contact surface
    • B65D19/001Rigid pallets without side walls the load supporting surface being made of a single element forming a continuous plane contact surface the base surface being made of a single element
    • B65D19/0012Rigid pallets without side walls the load supporting surface being made of a single element forming a continuous plane contact surface the base surface being made of a single element forming a continuous plane contact surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D19/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D19/0004Rigid pallets without side walls
    • B65D19/0006Rigid pallets without side walls the load supporting surface being made of a single element
    • B65D19/0008Rigid pallets without side walls the load supporting surface being made of a single element forming a continuous plane contact surface
    • B65D19/002Rigid pallets without side walls the load supporting surface being made of a single element forming a continuous plane contact surface the base surface being made of more than one element
    • B65D19/0024Rigid pallets without side walls the load supporting surface being made of a single element forming a continuous plane contact surface the base surface being made of more than one element forming discontinuous or non-planar contact surfaces
    • B65D19/0028Rigid pallets without side walls the load supporting surface being made of a single element forming a continuous plane contact surface the base surface being made of more than one element forming discontinuous or non-planar contact surfaces and each contact surface having a discrete foot-like shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/02Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage
    • B65D81/05Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents
    • B65D81/053Corner, edge or end protectors
    • B65D81/055Protectors contacting three surfaces of the packaged article, e.g. three-sided edge protectors
    • B65D81/056Protectors contacting three surfaces of the packaged article, e.g. three-sided edge protectors the surfaces being generally perpendicular to each other, e.g. three-sided corner protectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00009Materials
    • B65D2519/00084Materials for the non-integral separating spacer
    • B65D2519/00104Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00263Overall construction of the pallet
    • B65D2519/00273Overall construction of the pallet made of more than one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00263Overall construction of the pallet
    • B65D2519/00278Overall construction of the pallet the load supporting surface and the base surface being identical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00283Overall construction of the load supporting surface
    • B65D2519/00288Overall construction of the load supporting surface made of one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00313Overall construction of the base surface
    • B65D2519/00318Overall construction of the base surface made of one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00313Overall construction of the base surface
    • B65D2519/00323Overall construction of the base surface made of more than one piece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00313Overall construction of the base surface
    • B65D2519/00328Overall construction of the base surface shape of the contact surface of the base
    • B65D2519/00338Overall construction of the base surface shape of the contact surface of the base contact surface having a discrete foot-like shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00313Overall construction of the base surface
    • B65D2519/00328Overall construction of the base surface shape of the contact surface of the base
    • B65D2519/00343Overall construction of the base surface shape of the contact surface of the base contact surface being substantially in the form of a panel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00258Overall construction
    • B65D2519/00368Overall construction of the non-integral separating spacer
    • B65D2519/00378Overall construction of the non-integral separating spacer whereby at least one spacer is made of two or more pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00547Connections
    • B65D2519/00552Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer
    • B65D2519/00572Structures connecting the constitutive elements of the pallet to each other, i.e. load supporting surface, base surface and/or separate spacer with separate auxiliary element, e.g. screws, nails, bayonets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2519/00Pallets or like platforms, with or without side walls, for supporting loads to be lifted or lowered
    • B65D2519/00004Details relating to pallets
    • B65D2519/00736Details
    • B65D2519/0086Protection against environmental hazards, e.g. humidity, bacteria, fire

Definitions

  • the present invention relates to storage and shipping containers, and more particularly to shock and vibration dampening devices for such containers.
  • Fragile articles require special packaging when stored and/or shipped inside shipping containers.
  • Conventional container packaging used to protect such articles includes paper, nuggets of expanded foam, preformed polystyrene foam or beads, etc.
  • the packaging absorbs and dissipates shocks and vibrations impinging the shipping container to minimize the shocks and vibrations experienced by the fragile article's).
  • unitary packaging structures have been developed that are made of flexible polymeric materials to allow shocks to dissipate through flexing of the structure walls. Examples of such unitary structures can be found in U.S. Pat. Nos. 5,226,543, 5,385,232, 5,515,976, and 5,799,796.
  • these solutions must be custom made for each fragile article. Moreover, all these solutions fail to protect shipping containers from external shocks and vibrations, and instead attempt to absorb such shocks/vibrations inside the shipping container.
  • many fragile articles are shipped or stored on pallets, which lack walls to contain packaging materials.
  • a dampening device includes opposing top and bottom walls, an annular inner side wall extending between the top and bottom walls, and an annular outer side wall extending between the top and bottom walls and around the annular inner side wall wherein at least one portion of the outer side wall has an outwardly protruding convex cross sectional shape.
  • the inner and outer side walls are formed of a resilient material that flexes as the top and bottom walls are compressed toward each other.
  • a dampening assembly includes a bracket having a first member extending in a first plane, a second member extending in a second plane, and a third member extending in a third plane.
  • the second and third members are connected to or extend from the first member, and the first, second and third planes are orthogonal to each other.
  • First, second and third dampening devices are mounted to the first, second and third members, respectively.
  • Each of the first, second and third dampening devices includes opposing top and bottom walls, an annular inner side wall extending between the top and bottom walls, and an annular outer side wall extending between the top and bottom walls and around the annular inner side wall. At least one portion of the outer side wall has an outwardly protruding convex cross sectional shape.
  • the inner and outer side walls are formed of a resilient material that flexes as the top and bottom walls are compressed toward each other.
  • a dampening device includes opposing top and bottom walls, a coil spring extending between the top and bottom walls, and an annular outer side wall extending between the top and bottom walls and around the coil spring, wherein at least a portion of the outer side wall has an outwardly protruding convex cross sectional shape.
  • the outer side wall is formed of a resilient material that flexes as the top and bottom walls are compressed toward each other.
  • FIG. 1 is a side cross section view of an embodiment of the dampening device.
  • FIG. 2 is a side cross section view of an embodiment of the dampening device.
  • FIG. 3 is a side cross section view of an embodiment of the dampening device.
  • FIG. 4 is a side cross section view of an embodiment of the dampening device.
  • FIG. 5 is a side cross section view of an embodiment of the dampening device.
  • FIG. 6 is a side cross section view of an embodiment of the dampening device.
  • FIG. 7 is a side cross section view of an embodiment of the dampening device.
  • FIG. 8 is a side cross section view of an embodiment of the dampening device.
  • FIG. 9 is a side cross section view of an embodiment of the dampening device.
  • FIG. 10 is a side cross section view of an embodiment of the dampening device.
  • FIG. 11 is a side cross section view of art embodiment of the dampening device.
  • FIG. 12 is a side cross section view of an embodiment of the dampening device.
  • FIG. 13 is a side cross section view of an embodiment of the dampening device.
  • FIG. 14 is a side cross section view of an embodiment of the dampening device.
  • FIG. 15 is a side cross section view of an embodiment of the dampening device.
  • FIG. 16 is a side cross section view of an embodiment of the damp device.
  • FIG. 17 is a side cross section view of an embodiment of the dampening device.
  • FIG. 18 is a side cross section view of an embodiment of the dampening device.
  • FIG. 19 is a side cross section view of an embodiment of the dampening device.
  • FIG. 20 is a side cross section view of an embodiment of the dampening device.
  • FIG. 21 is a side cross section view of an embodiment of the dampening device.
  • FIG. 22 is a side cross section view of an embodiment of the dampening device.
  • FIG. 23 is a side cross section view of an embodiment of the dampening device.
  • FIG. 24 is a side cross section view of an embodiment of the dampening device.
  • FIG. 25 is a perspective view of an implementation of the dampening devices.
  • FIG. 26 is a perspective view of an assembly of the dampening devices.
  • FIG. 27 is a perspective view of an assembly of the dampening devices.
  • the present invention is a dampening device for protecting shipping and storage containers and/or pallets from shocks and vibrations.
  • a first embodiment of the dampening device 10 is illustrated in FIG. 1 , and includes an annular outer side wall 12 surrounding an annular inner side wall 14 . Both side walls 12 / 14 extend between a top wall 16 and bottom wall 18 .
  • the outer side wall 12 has an outwardly protruding convex cross sectional shape, while the inner side wall 14 has a cylindrical shape (i.e. a rectangular cross sectional shape).
  • the bottom wall 18 rests on, and is preferably bolted to, a support panel 20 (e.g.
  • Threaded holes 24 and 30 preferably include a nut (e.g. a t-nut) mounted in a hole passing through the respective wall.
  • Dampening device 10 is made of a resilient material that allows outer and inner side walls 12 / 14 to flex and absorb energy from shocks and vibrations.
  • suitable materials include polymeric material such as rubber, low-density or linear low density polyethylene, high density polyethylene, polyester, polypropylene, the family of polyolefin resins, vinyl acetate split or spun into synthetic fibers or modified to take on the elastic properties of a rubber or to produce a number of copolymers, fiberboard, molded fiber, molded urethane, molded ethylene, molded styrene, and/or ecology friendly materials such as corn starch or maze starch.
  • Low density poly ethylene has been determined to work exceedingly well.
  • the dampening device 10 can be made by molding two halves separately and attaching them together.
  • Inner side wall 14 can be integrally formed with top/bottom walls 16 / 18 , or formed separately and assembled together (and held in place by annular ridges 32 extending inwardly from top and bottom walls 16 / 18 ).
  • two concentric side walls of different cross sectional size and/or shape provide superior shock and vibration dampening (both vertical and horizontal components) between top and bottom walls 16 / 18 , while at the same time supporting the weight of the floating panel 26 with the desired flexure of the outer/inner side walls 12 / 14 in a static state (under the weight of the supported floating panel 26 without shocks and vibrations).
  • damping device 10 compresses under the weight and shock of a load, the curved outer side wall 12 flexes, with portions of the outer side wall 12 closest to the floating panel 26 and support panel 20 engaging therewith as device 10 compresses to provide increased resilient support and dampening.
  • the increase in resilient support and dampening is gradual with the compression of the device 10 because of the convex shape of the outer side wall 12 .
  • the majority of the weight is supported by the inner side wall 14 , which can flex inwardly or outwardly under heavy loads.
  • the dimensions and materials can be tailored to provide the desired dampening and load requirements (e.g. vibration dampening up to 300 Hz, shock dampening up to 25 g's, shock dampening up to certain drop heights, total load support up to two tons, etc.).
  • the outer and inner side walls 12 / 14 can have equal or different thicknesses. Additional dampening features can be added as needed. For example, FIG.
  • FIG. 2 illustrates the addition of a spiral-shaped channel 34 along inner side wall 14 , and a spring 36 engaged with the channel and top/bottom walls 16 / 18 for providing additional elastic force and dampening between top and bottom walls 16 / 18 (in addition to the elastic force and dampening provided by inner and outer side walls 14 / 12 ).
  • FIGS. 3 and 4 are alternate embodiments of FIGS. 1 and 2 , respectively, where the inner side wall 14 has an outwardly projecting convex cross sectional shape instead of a cylindrical shape, which is easier to flex and compress for lighter loads (i.e. provides less compression strength).
  • both the inner and outer side walls 14 / 12 flex outwardly to absorb the weight of the load as well shocks and vibrations to the load.
  • Changing the radius of curvature of inner and/or outer side walls 14 / 12 changes the resiliency of the overall device 10 .
  • a spring 38 can additionally be provided inside of inner side wall 14 (and extending between top and bottom walls 16 / 18 ), as illustrated in FIG. 5 , FIGS. 6 and 7 are alternate embodiments of FIGS. 1 and 2 , respectively, where the inner side wall 14 has a conical shape (i.e. with a smaller lateral dimension at the top wall 16 than at the bottom wall 18 ) to direct the direction of flex and affect the overall resiliency of the device 10 .
  • FIG. 8 is an alternate embodiment of FIG. 1 , where the inner side wall 14 has a double conical shape, with two conical portions 14 a , and 14 b with the wider ends meeting each other and the narrower ends disposed at the top/bottom walls 16 / 18 (le, reverse hour glass).
  • the point at which the two conical portions 14 a / 14 b meet provides a point of flexure 15 at which the diameter of inner side wall 14 expands as the dampening device 10 is compressed.
  • Point of flexure 15 is an abrupt angle change in the direction of the wall, which will exhibit a reduced resistance to flexing (i.e. flex more readily) compared to curved or straight portions of the wall. Therefore, the angled portions 14 a / 14 b of inner side wall 14 will flex easier about the point of flexure 15 compared to the straight portions of inner side wall 14 .
  • FIG. 9 is an alternate embodiment of FIG. 1 , where the inner side wall 14 has a double arcuate cross sectional shape, with inwardly curved concave portions 14 c and 14 d extending from the top and bottom wall 16 / 18 respectively, and meeting together to provide a point of flexure 15 .
  • Increased compression resistance can be achieved if the dimensions of the inner/outer side walls 14 / 12 are such that point of flexure 15 of inner side wall 14 contacts the outer side wall 12 during the compression of device 10 .
  • FIG. 10 is an alternate embodiment of FIG. 1 , where the inner side wall 14 is replaced with spring 38 .
  • FIGS. 11-12 are alternate embodiments of FIGS. 3 and 6 , where the cross section of the outer side wall 12 includes a straight portion 12 a .
  • a straight wall portion will be harder to flex than a curved wall portion, providing more compression strength.
  • the cross sectional straight portion 12 a reduces the amount of the outer side wall 12 that is curved (which is what flexes more during compression, shock and vibration), and thus increases the resilience of the outer side wall 12 for heavier loads.
  • FIG. 13 is an alternate embodiment of FIG. 5 , where the inner side wall 14 has a double conical shape (see FIG. 8 ) and the cross section of the outer side wall 12 includes a straight portion 12 a.
  • FIG. 14 is an alternate embodiment of FIG. 3 , where outer side wall 12 has a double arcuate cross sectional shape, with inwardly curved concave portions 12 c and 12 d extending from the top and bottom walls 16 / 18 respectively, and meeting together to provide a point of flexure 15 .
  • the point of flexure 15 in outer side wall 12 reduces the compression strength for the outer side wall 12 without affecting the compression strength for the inner side wall 14 .
  • FIG. 15 is an alternate embodiment of FIG. 9 , where outer side wall 12 has a triple arcuate cross sectional shape, with outwardly curved convex portions 12 e and 12 f and an inwardly curved concave portion 12 g therebetween.
  • the outer side wall 12 includes two points of flexure 15
  • the inner side wall 14 includes a single point of flexure 15 .
  • the center portions of inner and outer walls 14 / 12 flex in opposite directions as device 10 is compresses.
  • Point of flexure 15 of inner side wall 14 can abut inwardly moving concave portion 12 g of outer side wall 12 , to provide increased compression strength and resistance should device 10 be compressed beyond a predetermined amount.
  • FIG. 16 is an alternate embodiment of FIG. 6 , where outer side wall 12 includes flat portion 12 , and the bottom wall 18 is shaped as a ring with an opening 40 exposing the inner surface of inner side wall 14 .
  • FIG. 17 is an alternate embodiment of FIG. 16 , where the top wall 16 is flat and extends further away from the threaded hole 30 , and the curved portion of outer side wall 12 is smaller. This configuration gives the dampening device 10 a greater compression strength for larger loads.
  • FIG. 18 illustrates the mounting of the embodiment of FIG. 16 between the floating panel 26 and support panel 20 , with both a bolt 42 and spring 44 extending through opening 40 .
  • FIG. 19 illustrates an alternate mounting shown in FIG. 18 , where the bolt 42 extends through opening 40 , but spring 44 extends along that portion of the bolt 42 outside of opening 40 . Screws 46 can be used to secure the ring shaped bottom wall 18 to the support panel 20 , as illustrated in FIG. 20 .
  • Fasteners 48 can be used to removably engage with one or more tabs 50 formed on bottom wall 18 to removably secure bottom wall 18 to support panel 20 , as illustrated in FIGS. 21-22 .
  • Fasteners can be stand alone, or formed within a continuous ring, and attached to support panel 20 via screws 46 .
  • Fasteners 48 can be configured with holes or slots such that the bottom wall 18 is secured to fasteners 48 by rotating device 10 to engage tabs 50 into holes/slots of fasteners 48 , and bottom wall 18 is released from fasteners by rotating device 10 in the opposite direction to free tabs 50 from fasteners 48 .
  • FIG. 23 is an alternate embodiment to FIG. 16 , wherein dimples 52 are formed in both the inner and outer side walls 14 / 12 . Those portions of the side walls containing dimples 52 are more flexible than other portions of the walls.
  • the sizes, numbers and shapes of dimples can be varied to provide varying degrees of flexing characteristics, as illustrated in FIG. 24 , to meet the dampening requirements of the fragile article being protected.
  • Dimples 52 can be spot dimples (e.g. small discrete deformations in the wall in which it is formed) or elongated dimples (e.g. annular deformations that extend all the way around the wall in which it is formed).
  • FIG. 25 illustrates the implementation of dampening device 10 .
  • multiple dampening devices 10 can be disposed between support panel 20 and floating panel 26 .
  • dampening devices 10 can be disposed underneath support panel 20 (or underneath any panel that supports the weight of the fragile articles).
  • FIG. 25 illustrates the use of dampening devices 10 in a nested fashion, where they are disposed both between panels 20 and 26 , as well as underneath panel 20 for placement on the floor, to absorb shocks both externally and internally to the support panel 20 .
  • FIG. 26 illustrates a bracket 54 that includes a horizontal member 54 a and two orthogonal vertical members 54 b and 54 c (i.e. each member 54 a / 54 b / 54 c extending in a different plane with all three planes orthogonal to each other).
  • a dampening device 10 is mounted to each member 54 a / 54 b / 54 c .
  • the bracket 54 supports the corner of a floating panel, and cushions that corner from shocks and vibrations in the vertical direction and both orthogonal horizontal directions.
  • Multiple brackets 54 can be integrally formed together, and extend along all four side corners of a container 56 , as illustrated in FIG. 27 , to position three devices 10 on each of three sides of a corner, for two adjacent corners.

Abstract

A dampening device that includes opposing top and bottom walls, an annular inner side wall extending between the top and bottom walls, and an annular outer side wall extending between the top and bottom walls and around the annular inner side wall. At least one portion of the outer side wall has an outwardly protruding convex cross sectional shape. The inner and outer side walls are formed of a resilient material that flexes as the top and bottom walls are compressed toward each other.

Description

    RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Application No. 61/532,815, filed Sep. 9, 2011, and which is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to storage and shipping containers, and more particularly to shock and vibration dampening devices for such containers.
  • BACKGROUND OF THE INVENTION
  • Fragile articles require special packaging when stored and/or shipped inside shipping containers. Conventional container packaging used to protect such articles includes paper, nuggets of expanded foam, preformed polystyrene foam or beads, etc. Ideally, the packaging absorbs and dissipates shocks and vibrations impinging the shipping container to minimize the shocks and vibrations experienced by the fragile article's).
  • Conventional container packaging materials have proved inadequate to meet the more stringent shock and vibration absorption requirements for modem articles of commerce. In order to satisfy such requirements, large volumes of conventional container packaging is required around the article. Voluminous packaging materials are expensive and take up excessive warehouse space before use and trash/recycling space after use. Further, larger shipping containers are necessitated by the voluminous container packaging, which are more expensive to purchase and to ship. The shock/vibration dissipation performance of paper, nugget and bead packaging materials can depend in large part on how the user actually packages the particular article(s). If a particular conventional container packaging is deemed to provide inadequate shock/vibration protection, there is no predictable way to modify such packaging material to meet such shock/vibration dissipation requirements, except for adding more packaging material and increasing the shipping container size.
  • More recently, unitary packaging structures have been developed that are made of flexible polymeric materials to allow shocks to dissipate through flexing of the structure walls. Examples of such unitary structures can be found in U.S. Pat. Nos. 5,226,543, 5,385,232, 5,515,976, and 5,799,796. However, these solutions must be custom made for each fragile article. Moreover, all these solutions fail to protect shipping containers from external shocks and vibrations, and instead attempt to absorb such shocks/vibrations inside the shipping container. Lastly, many fragile articles are shipped or stored on pallets, which lack walls to contain packaging materials.
  • There is a need for a dampening device that protects storage and/or shipping containers, pallets, etc. from shocks and vibrations using minimal storage space before and after use, and which uses minimal packaging material to reduce cost and shipping weight.
  • BRIEF SUMMARY OF THE INVENTION
  • A dampening device includes opposing top and bottom walls, an annular inner side wall extending between the top and bottom walls, and an annular outer side wall extending between the top and bottom walls and around the annular inner side wall wherein at least one portion of the outer side wall has an outwardly protruding convex cross sectional shape. The inner and outer side walls are formed of a resilient material that flexes as the top and bottom walls are compressed toward each other.
  • A dampening assembly includes a bracket having a first member extending in a first plane, a second member extending in a second plane, and a third member extending in a third plane. The second and third members are connected to or extend from the first member, and the first, second and third planes are orthogonal to each other. First, second and third dampening devices are mounted to the first, second and third members, respectively. Each of the first, second and third dampening devices includes opposing top and bottom walls, an annular inner side wall extending between the top and bottom walls, and an annular outer side wall extending between the top and bottom walls and around the annular inner side wall. At least one portion of the outer side wall has an outwardly protruding convex cross sectional shape. The inner and outer side walls are formed of a resilient material that flexes as the top and bottom walls are compressed toward each other.
  • A dampening device includes opposing top and bottom walls, a coil spring extending between the top and bottom walls, and an annular outer side wall extending between the top and bottom walls and around the coil spring, wherein at least a portion of the outer side wall has an outwardly protruding convex cross sectional shape. The outer side wall is formed of a resilient material that flexes as the top and bottom walls are compressed toward each other.
  • Other objects and features of the present invention will become apparent by a review of the specification, claims and appended figures.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a side cross section view of an embodiment of the dampening device.
  • FIG. 2 is a side cross section view of an embodiment of the dampening device.
  • FIG. 3 is a side cross section view of an embodiment of the dampening device.
  • FIG. 4 is a side cross section view of an embodiment of the dampening device.
  • FIG. 5 is a side cross section view of an embodiment of the dampening device.
  • FIG. 6 is a side cross section view of an embodiment of the dampening device.
  • FIG. 7 is a side cross section view of an embodiment of the dampening device.
  • FIG. 8 is a side cross section view of an embodiment of the dampening device.
  • FIG. 9 is a side cross section view of an embodiment of the dampening device.
  • FIG. 10 is a side cross section view of an embodiment of the dampening device.
  • FIG. 11 is a side cross section view of art embodiment of the dampening device.
  • FIG. 12 is a side cross section view of an embodiment of the dampening device.
  • FIG. 13 is a side cross section view of an embodiment of the dampening device.
  • FIG. 14 is a side cross section view of an embodiment of the dampening device.
  • FIG. 15 is a side cross section view of an embodiment of the dampening device.
  • FIG. 16 is a side cross section view of an embodiment of the damp device.
  • FIG. 17 is a side cross section view of an embodiment of the dampening device.
  • FIG. 18 is a side cross section view of an embodiment of the dampening device.
  • FIG. 19 is a side cross section view of an embodiment of the dampening device.
  • FIG. 20 is a side cross section view of an embodiment of the dampening device.
  • FIG. 21 is a side cross section view of an embodiment of the dampening device.
  • FIG. 22 is a side cross section view of an embodiment of the dampening device.
  • FIG. 23 is a side cross section view of an embodiment of the dampening device.
  • FIG. 24 is a side cross section view of an embodiment of the dampening device.
  • FIG. 25 is a perspective view of an implementation of the dampening devices.
  • FIG. 26 is a perspective view of an assembly of the dampening devices.
  • FIG. 27 is a perspective view of an assembly of the dampening devices.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention is a dampening device for protecting shipping and storage containers and/or pallets from shocks and vibrations. A first embodiment of the dampening device 10 is illustrated in FIG. 1, and includes an annular outer side wall 12 surrounding an annular inner side wall 14. Both side walls 12/14 extend between a top wall 16 and bottom wall 18. The outer side wall 12 has an outwardly protruding convex cross sectional shape, while the inner side wall 14 has a cylindrical shape (i.e. a rectangular cross sectional shape). The bottom wall 18 rests on, and is preferably bolted to, a support panel 20 (e.g. such as the deck of a pallet or other support structure) by a bolt 22 engaged with the support panel 20 and a threaded hole 24 in bottom wall 18. The top wall 16 supports, and is preferably bolted to, a floating panel 26 (i.e. the bottom of the shipping and/or storage container, or other structure, which supports the fragile article(s) being protected) by a bolt 28 engaged with the floating panel 26 and a threaded hole 30 in top wall 16. Threaded holes 24 and 30 preferably include a nut (e.g. a t-nut) mounted in a hole passing through the respective wall.
  • Dampening device 10 is made of a resilient material that allows outer and inner side walls 12/14 to flex and absorb energy from shocks and vibrations. Examples of suitable materials include polymeric material such as rubber, low-density or linear low density polyethylene, high density polyethylene, polyester, polypropylene, the family of polyolefin resins, vinyl acetate split or spun into synthetic fibers or modified to take on the elastic properties of a rubber or to produce a number of copolymers, fiberboard, molded fiber, molded urethane, molded ethylene, molded styrene, and/or ecology friendly materials such as corn starch or maze starch. Low density poly ethylene has been determined to work exceedingly well. The dampening device 10 can be made by molding two halves separately and attaching them together. Inner side wall 14 can be integrally formed with top/bottom walls 16/18, or formed separately and assembled together (and held in place by annular ridges 32 extending inwardly from top and bottom walls 16/18).
  • It has been discovered that two concentric side walls of different cross sectional size and/or shape provide superior shock and vibration dampening (both vertical and horizontal components) between top and bottom walls 16/18, while at the same time supporting the weight of the floating panel 26 with the desired flexure of the outer/inner side walls 12/14 in a static state (under the weight of the supported floating panel 26 without shocks and vibrations). As damping device 10 compresses under the weight and shock of a load, the curved outer side wall 12 flexes, with portions of the outer side wall 12 closest to the floating panel 26 and support panel 20 engaging therewith as device 10 compresses to provide increased resilient support and dampening. The increase in resilient support and dampening is gradual with the compression of the device 10 because of the convex shape of the outer side wall 12. The majority of the weight is supported by the inner side wall 14, which can flex inwardly or outwardly under heavy loads. The dimensions and materials can be tailored to provide the desired dampening and load requirements (e.g. vibration dampening up to 300 Hz, shock dampening up to 25 g's, shock dampening up to certain drop heights, total load support up to two tons, etc.). For example, the outer and inner side walls 12/14 can have equal or different thicknesses. Additional dampening features can be added as needed. For example, FIG. 2 illustrates the addition of a spiral-shaped channel 34 along inner side wall 14, and a spring 36 engaged with the channel and top/bottom walls 16/18 for providing additional elastic force and dampening between top and bottom walls 16/18 (in addition to the elastic force and dampening provided by inner and outer side walls 14/12).
  • The shapes of outer and/or inner side walls 12/14 can be tailored to meet the desired dampening and load requirements. For example, FIGS. 3 and 4 are alternate embodiments of FIGS. 1 and 2, respectively, where the inner side wall 14 has an outwardly projecting convex cross sectional shape instead of a cylindrical shape, which is easier to flex and compress for lighter loads (i.e. provides less compression strength). With this configuration, under load conditions that compress the dampening device 10, both the inner and outer side walls 14/12 flex outwardly to absorb the weight of the load as well shocks and vibrations to the load. Changing the radius of curvature of inner and/or outer side walls 14/12 changes the resiliency of the overall device 10. A spring 38 can additionally be provided inside of inner side wall 14 (and extending between top and bottom walls 16/18), as illustrated in FIG. 5, FIGS. 6 and 7 are alternate embodiments of FIGS. 1 and 2, respectively, where the inner side wall 14 has a conical shape (i.e. with a smaller lateral dimension at the top wall 16 than at the bottom wall 18) to direct the direction of flex and affect the overall resiliency of the device 10.
  • FIG. 8 is an alternate embodiment of FIG. 1, where the inner side wall 14 has a double conical shape, with two conical portions 14 a, and 14 b with the wider ends meeting each other and the narrower ends disposed at the top/bottom walls 16/18 (le, reverse hour glass). The point at which the two conical portions 14 a/14 b meet provides a point of flexure 15 at which the diameter of inner side wall 14 expands as the dampening device 10 is compressed. Point of flexure 15 is an abrupt angle change in the direction of the wall, which will exhibit a reduced resistance to flexing (i.e. flex more readily) compared to curved or straight portions of the wall. Therefore, the angled portions 14 a/14 b of inner side wall 14 will flex easier about the point of flexure 15 compared to the straight portions of inner side wall 14.
  • FIG. 9 is an alternate embodiment of FIG. 1, where the inner side wall 14 has a double arcuate cross sectional shape, with inwardly curved concave portions 14 c and 14 d extending from the top and bottom wall 16/18 respectively, and meeting together to provide a point of flexure 15. Increased compression resistance can be achieved if the dimensions of the inner/outer side walls 14/12 are such that point of flexure 15 of inner side wall 14 contacts the outer side wall 12 during the compression of device 10.
  • FIG. 10 is an alternate embodiment of FIG. 1, where the inner side wall 14 is replaced with spring 38.
  • FIGS. 11-12 are alternate embodiments of FIGS. 3 and 6, where the cross section of the outer side wall 12 includes a straight portion 12 a. A straight wall portion will be harder to flex than a curved wall portion, providing more compression strength. The cross sectional straight portion 12 a reduces the amount of the outer side wall 12 that is curved (which is what flexes more during compression, shock and vibration), and thus increases the resilience of the outer side wall 12 for heavier loads. FIG. 13 is an alternate embodiment of FIG. 5, where the inner side wall 14 has a double conical shape (see FIG. 8) and the cross section of the outer side wall 12 includes a straight portion 12 a.
  • FIG. 14 is an alternate embodiment of FIG. 3, where outer side wall 12 has a double arcuate cross sectional shape, with inwardly curved concave portions 12 c and 12 d extending from the top and bottom walls 16/18 respectively, and meeting together to provide a point of flexure 15. The point of flexure 15 in outer side wall 12 reduces the compression strength for the outer side wall 12 without affecting the compression strength for the inner side wall 14.
  • FIG. 15 is an alternate embodiment of FIG. 9, where outer side wall 12 has a triple arcuate cross sectional shape, with outwardly curved convex portions 12 e and 12 f and an inwardly curved concave portion 12 g therebetween. In this configuration, the outer side wall 12 includes two points of flexure 15, and the inner side wall 14 includes a single point of flexure 15. The center portions of inner and outer walls 14/12 flex in opposite directions as device 10 is compresses. Point of flexure 15 of inner side wall 14 can abut inwardly moving concave portion 12 g of outer side wall 12, to provide increased compression strength and resistance should device 10 be compressed beyond a predetermined amount.
  • FIG. 16 is an alternate embodiment of FIG. 6, where outer side wall 12 includes flat portion 12, and the bottom wall 18 is shaped as a ring with an opening 40 exposing the inner surface of inner side wall 14. FIG. 17 is an alternate embodiment of FIG. 16, where the top wall 16 is flat and extends further away from the threaded hole 30, and the curved portion of outer side wall 12 is smaller. This configuration gives the dampening device 10 a greater compression strength for larger loads. FIG. 18 illustrates the mounting of the embodiment of FIG. 16 between the floating panel 26 and support panel 20, with both a bolt 42 and spring 44 extending through opening 40. FIG. 19 illustrates an alternate mounting shown in FIG. 18, where the bolt 42 extends through opening 40, but spring 44 extends along that portion of the bolt 42 outside of opening 40. Screws 46 can be used to secure the ring shaped bottom wall 18 to the support panel 20, as illustrated in FIG. 20.
  • Fasteners 48 can be used to removably engage with one or more tabs 50 formed on bottom wall 18 to removably secure bottom wall 18 to support panel 20, as illustrated in FIGS. 21-22. Fasteners can be stand alone, or formed within a continuous ring, and attached to support panel 20 via screws 46. Fasteners 48 can be configured with holes or slots such that the bottom wall 18 is secured to fasteners 48 by rotating device 10 to engage tabs 50 into holes/slots of fasteners 48, and bottom wall 18 is released from fasteners by rotating device 10 in the opposite direction to free tabs 50 from fasteners 48.
  • The flexing characteristics of inner and outer side walls 14/12 in any of the embodiments described herein can be optimized by selectively including dimples that form small points of flexure that increase the flexibility of select portions of each wall. For example, FIG. 23 is an alternate embodiment to FIG. 16, wherein dimples 52 are formed in both the inner and outer side walls 14/12. Those portions of the side walls containing dimples 52 are more flexible than other portions of the walls. The sizes, numbers and shapes of dimples can be varied to provide varying degrees of flexing characteristics, as illustrated in FIG. 24, to meet the dampening requirements of the fragile article being protected. Dimples 52 can be spot dimples (e.g. small discrete deformations in the wall in which it is formed) or elongated dimples (e.g. annular deformations that extend all the way around the wall in which it is formed).
  • FIG. 25 illustrates the implementation of dampening device 10. Specifically, multiple dampening devices 10 can be disposed between support panel 20 and floating panel 26. Alternately and/or additionally, dampening devices 10 can be disposed underneath support panel 20 (or underneath any panel that supports the weight of the fragile articles). FIG. 25 illustrates the use of dampening devices 10 in a nested fashion, where they are disposed both between panels 20 and 26, as well as underneath panel 20 for placement on the floor, to absorb shocks both externally and internally to the support panel 20.
  • FIG. 26 illustrates a bracket 54 that includes a horizontal member 54 a and two orthogonal vertical members 54 b and 54 c (i.e. each member 54 a/54 b/54 c extending in a different plane with all three planes orthogonal to each other). A dampening device 10 is mounted to each member 54 a/54 b/54 c. The bracket 54 supports the corner of a floating panel, and cushions that corner from shocks and vibrations in the vertical direction and both orthogonal horizontal directions. Multiple brackets 54 can be integrally formed together, and extend along all four side corners of a container 56, as illustrated in FIG. 27, to position three devices 10 on each of three sides of a corner, for two adjacent corners.
  • The various shapes, points of flexure, and combinations thereof and of the various subcomponents of the device 10, dictate the effective spring constant and dampening effect for each element and the dampening device 10 as a whole.
  • It is to be understood that the present invention is not limited to the embodiment(s) described above and illustrated herein, but encompasses any and all variations falling within the scope of the appended claims. For example, references to the present invention herein are not intended to limit the scope of any claim or claim term, but instead merely make reference to one or more features that may be covered by one or more of the claims. Materials, processes and numerical examples described above are exemplary only, and should not be deemed to limit the claims. All of the embodiments can be reversed in orientation (i.e. whereby the top wall 16 contacts and/or is mounted to the support panel 20, and the bottom wall 18 contacts and/or is mounted to the floating panel 26). Support panel 20 can be omitted, where the dampening device would rest on the floor.

Claims (25)

What is claimed is:
1. A dampening device, comprising:
opposing top and bottom walls;
an annular inner side wall extending between the top and bottom walls;
an annular outer side wall extending between the top and bottom walk and around the annular inner side wall, wherein at least one portion of the outer side wall has an outwardly protruding convex cross sectional shape;
wherein the inner and outer side walls are formed of a resilient material that flexes as the top and bottom walls are compressed toward each other.
2. The dampening device of claim 1, wherein the resilient material is low density poly ethylene.
3. The dampening device of claim 1, further comprising:
a threaded hole extending through the top wall.
4. The dampening device of claim 3, further comprising:
a threaded hole extending through the bottom wall.
5. The dampening device of claim 1, wherein the inner side wall is cylindrically shaped.
6. The dampening device of claim 1, further comprising:
a coil spring extending between the top and bottom walls.
7. The dampening device of claim 6, wherein the coil spring is disposed inside of the inner side wall.
8. The dampening device of claim 6, wherein the coil spring is disposed between the inner side wall and the outer side wall.
9. The dampening device of claim 8, further comprising:
a spiral shaped channel formed into an outer surface of the inner side wall, wherein the coil spring is at least partially disposed in the spiral shaped channel.
10. The dampening device of claim 1, wherein the inner side wall has an outwardly projecting convex cross sectional shape.
11. The dampening device of claim 1, wherein the inner side wall is conically shaped.
12. The dampening device of claim 1, wherein the inner side wall includes two conical portions having narrow ends disposed at the top or bottom walls and wider ends terminating together at a point of flexure.
13. The dampening device of claim 1, wherein the inner side wall has a cross sectional shape having two inwardly curved portions terminating together at a point of flexure.
14. The dampening device of claim 13, wherein the inner and outer side walls are dimensioned such that the point of flexure of the inner side wall engages with the outer side wall as the top and bottom walls are compressed toward each other.
15. The dampening device of claim 1, wherein at least a portion of the outer side wall has a straight cross sectional shape.
16. The dampening device of claim 1, wherein the outer side wall has a cross sectional shape having two inwardly curved portions terminating together at a point of flexure.
17. The dampening device of claim 1, wherein:
the inner side wall has a cross sectional shape having two inwardly curved portions terminating together at a first point of flexure;
the at least one portion of the outer side wall includes first and second portions each having an outwardly curved cross sectional shape;
the outer side wall including a third portion disposed between the first and second portions having an inwardly curved cross section shape, wherein the third portion terminates at the first and second portions at second and third points of flexure respectively.
18. The dampening device of claim 17, wherein the inner and outer side walls are dimensioned such that the point of flexure of the inner side wall engages with the third portion of the outer side wall as the top and bottom walls are compressed toward each other.
19. The dampening device of claim 1, wherein the bottom wall is shaped as a ring with an opening exposing an inner surface of the inner side wall.
20. The dampening device of claim 19, wherein the bottom wall includes a plurality of holes for receiving a plurality of screws.
21. The dampening device of claim 1, further comprising:
at least one fastener having a hole or slot for removably engaging with a tab formed on the bottom wall.
22. The dampening device of claim 1, further comprising:
a plurality of spot dimples formed in at least one of the inner and outer side walls.
23. The dampening device of claim 1, further comprising:
a plurality of elongated dimples formed in at least one of the inner and outer side walls.
24. A dampening assembly, comprising:
a bracket including:
a first member extending in a first plane,
a second member extending in a second plane, and
a third member extending in a third plane,
wherein the second and third members are connected to or extend from the first member, and wherein the first, second and third planes are orthogonal to each other;
first, second and third dampening devices mounted to the first, second and third members, respectively,
each of the first, second and third dampening devices including:
opposing top and bottom walls,
an annular inner side wall extending between the top and bottom walls,
an annular outer side wall extending between the top and bottom walls and around the annular inner side wall, wherein at least one portion of the outer side wall has an outwardly protruding convex cross sectional shape,
wherein the inner and outer side walls are formed of a resilient material that flexes as the top and bottom walls are compressed toward each other.
25. A dampening device, comprising:
opposing top and bottom walls;
a coil spring extending between the top and bottom walls;
an annular outer side wall extending between the top and bottom walls and around the coil spring, wherein at least a portion of the outer side wall has an outwardly protruding convex cross sectional shape;
wherein the outer side wail is formed of a resilient material that flexes as the top and bottom walls are compressed toward each other.
US13/607,500 2011-09-09 2012-09-07 Shock and vibration dampening device Abandoned US20130233760A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/607,500 US20130233760A1 (en) 2011-09-09 2012-09-07 Shock and vibration dampening device
PCT/US2012/054504 WO2013036954A1 (en) 2011-09-09 2012-09-10 Shock and vibration dampening device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161532815P 2011-09-09 2011-09-09
US13/607,500 US20130233760A1 (en) 2011-09-09 2012-09-07 Shock and vibration dampening device

Publications (1)

Publication Number Publication Date
US20130233760A1 true US20130233760A1 (en) 2013-09-12

Family

ID=47832648

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/607,500 Abandoned US20130233760A1 (en) 2011-09-09 2012-09-07 Shock and vibration dampening device

Country Status (2)

Country Link
US (1) US20130233760A1 (en)
WO (1) WO2013036954A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140185209A1 (en) * 2012-12-28 2014-07-03 Hon Hai Precision Industry Co., Ltd. Container data center with server cabinet assembly
US20170008442A1 (en) * 2014-02-04 2017-01-12 The Skydyne Company Shock isolation system
US20170037928A1 (en) * 2015-08-04 2017-02-09 Gokm Innovations, Inc. Isolation system for transporting and storing fragile objects
CN107253572A (en) * 2017-05-19 2017-10-17 成都协恒科技有限公司 A kind of shockproof container
US20180282019A1 (en) * 2017-03-28 2018-10-04 Paul J. Harber Shock and Vibration Absorbing Pallets and Panels
JP2018169575A (en) * 2017-03-30 2018-11-01 旭化成株式会社 Cushioning material for pellicle and packaging body
US20190210786A1 (en) * 2018-01-05 2019-07-11 You-Hao Hsu Pressure control box used for transporting objects
US10822141B1 (en) * 2019-09-05 2020-11-03 Inventec (Pudong) Technology Corporation Pallet
US10836554B2 (en) 2018-06-01 2020-11-17 The Supporting Organization for the Georgia O'Keefe Museum System for transporting fragile objects
US11772870B2 (en) 2021-05-07 2023-10-03 The Supporting Organization For The Georgia O'keeffe Museum System for transporting fragile objects

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210215224A1 (en) * 2020-01-13 2021-07-15 Pelican Products, Inc. Shock absorbing container and vibration isolator system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2241026A (en) * 1939-07-05 1941-05-06 Ernest L Wylie Motor mounting
US2596031A (en) * 1947-11-25 1952-05-06 Harold R Kaufman Pneumatic spring
US2993673A (en) * 1958-04-11 1961-07-25 Servo Corp Of America Multi-directional shock mount
US3522940A (en) * 1967-01-17 1970-08-04 Tijer Plastics Nv Spring element
US3690540A (en) * 1970-02-05 1972-09-12 James S Hardigg Shock isolating device
US3724833A (en) * 1971-03-12 1973-04-03 D Sergay Reversible energy absorbing bumper system
US3806106A (en) * 1971-01-14 1974-04-23 Pneumatiques Caoutchouc Mfg Elastomeric load supports
US4342158A (en) * 1980-06-19 1982-08-03 Mcmahon Thomas A Biomechanically tuned shoe construction
US4856626A (en) * 1986-05-09 1989-08-15 Kabushiki Kaisha Cubic Engineering Bellows type shock absorber
US5819943A (en) * 1997-10-27 1998-10-13 Depuy; Clyde A. Inflatable external air cushion assembly and cargo crate bearing the same
US6533258B2 (en) * 2001-02-08 2003-03-18 Lockheed Martin Corporation Barrel elastomer mount
US7458172B2 (en) * 2004-09-27 2008-12-02 Nike, Inc. Impact attenuating devices and products containing such devices

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2864256A (en) * 1956-12-21 1958-12-16 American Radiator & Standard Damping device
US5219051A (en) * 1991-10-25 1993-06-15 Honeywell Inc. Folded viscous damper
US20080211156A1 (en) * 2005-11-09 2008-09-04 Check Ronald N Spring damper
US8061694B2 (en) * 2006-06-05 2011-11-22 Bridgestone Corporation Vibration isolation device
CN201106655Y (en) * 2007-08-30 2008-08-27 鸿富锦精密工业(深圳)有限公司 Shock-absorbing structure

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2241026A (en) * 1939-07-05 1941-05-06 Ernest L Wylie Motor mounting
US2596031A (en) * 1947-11-25 1952-05-06 Harold R Kaufman Pneumatic spring
US2993673A (en) * 1958-04-11 1961-07-25 Servo Corp Of America Multi-directional shock mount
US3522940A (en) * 1967-01-17 1970-08-04 Tijer Plastics Nv Spring element
US3690540A (en) * 1970-02-05 1972-09-12 James S Hardigg Shock isolating device
US3806106A (en) * 1971-01-14 1974-04-23 Pneumatiques Caoutchouc Mfg Elastomeric load supports
US3724833A (en) * 1971-03-12 1973-04-03 D Sergay Reversible energy absorbing bumper system
US4342158A (en) * 1980-06-19 1982-08-03 Mcmahon Thomas A Biomechanically tuned shoe construction
US4856626A (en) * 1986-05-09 1989-08-15 Kabushiki Kaisha Cubic Engineering Bellows type shock absorber
US5819943A (en) * 1997-10-27 1998-10-13 Depuy; Clyde A. Inflatable external air cushion assembly and cargo crate bearing the same
US6533258B2 (en) * 2001-02-08 2003-03-18 Lockheed Martin Corporation Barrel elastomer mount
US7458172B2 (en) * 2004-09-27 2008-12-02 Nike, Inc. Impact attenuating devices and products containing such devices

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140185209A1 (en) * 2012-12-28 2014-07-03 Hon Hai Precision Industry Co., Ltd. Container data center with server cabinet assembly
US20170008442A1 (en) * 2014-02-04 2017-01-12 The Skydyne Company Shock isolation system
US10106317B2 (en) * 2014-02-04 2018-10-23 The Skydyne Company Shock isolation system
US20170037928A1 (en) * 2015-08-04 2017-02-09 Gokm Innovations, Inc. Isolation system for transporting and storing fragile objects
US11407573B2 (en) 2015-08-04 2022-08-09 The Supporting Organization For The Georgia O'keeffe Museum System for transporting fragile objects
US9939041B2 (en) 2015-08-04 2018-04-10 The Supporting Organization For The Georgia O'keeffe Museum Container assembly for transporting a flexible panel
US10082189B2 (en) 2015-08-04 2018-09-25 The Supporting Organization for the Georgia O'Keefe Museum Vibration-isolating and impact-absorbing case comprising vibration-damping footing
US11242909B2 (en) * 2015-08-04 2022-02-08 The Supporting Organization For The Georgia O'keeffe Museum Isolation system for transporting and storing fragile objects
US10618687B2 (en) * 2017-03-28 2020-04-14 Paul J. Harber Shock and vibration absorbing pallets and panels
US20180282019A1 (en) * 2017-03-28 2018-10-04 Paul J. Harber Shock and Vibration Absorbing Pallets and Panels
JP2018169575A (en) * 2017-03-30 2018-11-01 旭化成株式会社 Cushioning material for pellicle and packaging body
CN107253572A (en) * 2017-05-19 2017-10-17 成都协恒科技有限公司 A kind of shockproof container
US20190210786A1 (en) * 2018-01-05 2019-07-11 You-Hao Hsu Pressure control box used for transporting objects
US10836554B2 (en) 2018-06-01 2020-11-17 The Supporting Organization for the Georgia O'Keefe Museum System for transporting fragile objects
US10822141B1 (en) * 2019-09-05 2020-11-03 Inventec (Pudong) Technology Corporation Pallet
US11772870B2 (en) 2021-05-07 2023-10-03 The Supporting Organization For The Georgia O'keeffe Museum System for transporting fragile objects

Also Published As

Publication number Publication date
WO2013036954A1 (en) 2013-03-14

Similar Documents

Publication Publication Date Title
US20130233760A1 (en) Shock and vibration dampening device
US6464080B1 (en) Cushioning structure
US5385232A (en) Packaging for fragile articles having controlled collapsibility
US20060243636A1 (en) Corner protector
US5259508A (en) Protective shipping package
US3023885A (en) Package for delicate articles
US3275131A (en) Shock absorbing system for containers
US8875889B2 (en) Packaging cushion structure made from stiff paper-board sheets
US5799796A (en) Spring system end cap for packaging fragile articles within shipping cartons
US20140007322A1 (en) Shock absorbing layer with independent elements
CA2505163A1 (en) Corner protector
US8584858B2 (en) Packing reinforcement member
US7648750B2 (en) Flexible molded end cap cushion
CN101391680B (en) Light weight product cushioning device
US8511473B1 (en) Energy dissapation structure for packaging fragile articles
JP6289248B2 (en) Packing material
EP1718530B1 (en) Modified spring system end cap for packaging fragile articles within shipping cartons
JP5718001B2 (en) Honeycomb structure packaging tray
JP7263752B2 (en) packing equipment
JP6905707B2 (en) palette
JP5158090B2 (en) Packing container
AU2020264317B2 (en) Shock absorbing container and vibration isolator system
CN215477079U (en) Shock attenuation tray and have its packing carton
CN215753948U (en) Packing base of refrigerator
RU2378545C2 (en) Vibration isolator

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION