US20130123083A1 - Adjustable abdominal exercise apparatus - Google Patents

Adjustable abdominal exercise apparatus Download PDF

Info

Publication number
US20130123083A1
US20130123083A1 US13/673,809 US201213673809A US2013123083A1 US 20130123083 A1 US20130123083 A1 US 20130123083A1 US 201213673809 A US201213673809 A US 201213673809A US 2013123083 A1 US2013123083 A1 US 2013123083A1
Authority
US
United States
Prior art keywords
track
exercise device
support structure
locking mechanism
relative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/673,809
Inventor
Travis Sip
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ifit Health and Fitness Inc
Original Assignee
Icon IP Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Icon IP Inc filed Critical Icon IP Inc
Priority to US13/673,809 priority Critical patent/US20130123083A1/en
Publication of US20130123083A1 publication Critical patent/US20130123083A1/en
Assigned to ICON HEALTH & FITNESS, INC. reassignment ICON HEALTH & FITNESS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ICON IP, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/20Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements using rollers, wheels, castors or the like, e.g. gliding means, to be moved over the floor or other surface, e.g. guide tracks, during exercising
    • A63B22/201Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements using rollers, wheels, castors or the like, e.g. gliding means, to be moved over the floor or other surface, e.g. guide tracks, during exercising for moving a support element in reciprocating translation, i.e. for sliding back and forth on a guide track
    • A63B22/203Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements using rollers, wheels, castors or the like, e.g. gliding means, to be moved over the floor or other surface, e.g. guide tracks, during exercising for moving a support element in reciprocating translation, i.e. for sliding back and forth on a guide track in a horizontal plane
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B23/00Exercising apparatus specially adapted for particular parts of the body
    • A63B23/02Exercising apparatus specially adapted for particular parts of the body for the abdomen, the spinal column or the torso muscles related to shoulders (e.g. chest muscles)
    • A63B23/0205Abdomen
    • A63B23/0222Abdomen moving torso and lower limbs
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/06User-manipulated weights
    • A63B21/068User-manipulated weights using user's body weight
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/40Interfaces with the user related to strength training; Details thereof
    • A63B21/4027Specific exercise interfaces
    • A63B21/4033Handles, pedals, bars or platforms
    • A63B21/4034Handles, pedals, bars or platforms for operation by feet
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/40Interfaces with the user related to strength training; Details thereof
    • A63B21/4041Interfaces with the user related to strength training; Details thereof characterised by the movements of the interface
    • A63B21/4045Reciprocating movement along, in or on a guide
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/0015Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with an adjustable movement path of the support elements
    • A63B22/0023Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with an adjustable movement path of the support elements the inclination of the main axis of the movement path being adjustable, e.g. the inclination of an endless band
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/0046Details of the support elements or their connection to the exercising apparatus, e.g. adjustment of size or orientation
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/20Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements using rollers, wheels, castors or the like, e.g. gliding means, to be moved over the floor or other surface, e.g. guide tracks, during exercising
    • A63B22/201Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements using rollers, wheels, castors or the like, e.g. gliding means, to be moved over the floor or other surface, e.g. guide tracks, during exercising for moving a support element in reciprocating translation, i.e. for sliding back and forth on a guide track
    • A63B22/205Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements using rollers, wheels, castors or the like, e.g. gliding means, to be moved over the floor or other surface, e.g. guide tracks, during exercising for moving a support element in reciprocating translation, i.e. for sliding back and forth on a guide track in a substantially vertical plane, e.g. for exercising against gravity
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/0057Means for physically limiting movements of body parts
    • A63B69/0062Leg restraining devices
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/09Adjustable dimensions
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/09Adjustable dimensions
    • A63B2225/093Height

Definitions

  • the present disclosure relates generally to systems and methods for exercising. More particularly, the present disclosure relates to systems and methods for exercising abdominal muscles.
  • a comprehensive fitness plan may include both cardiovascular and strength training or resistance-based regimens, and can target a number of different muscle groups.
  • fitness professionals are advising people to develop a well-defined and strengthened “core,” not only because the appearance of a tight stomach is considered desirable, but because a healthy core also promotes overall health and wellness.
  • Brown discloses an exercise machine that purports to “work the abdominal and oblique muscle groups and isolate the upper and lower abdominal muscles in a biometrically neutral position.”
  • the exercise device described in Brown includes front and rear supports with a track extending therebetween.
  • An upper body support is attached to the front support and a sled that includes a knee pad slides along the track.
  • the track may be arcuate in shape.
  • abdominal or other exercise devices include those in U.S. Pat. No. 7,232,404, U.S. Pat. No. 7,455,633, U.S. Pat. No. 7,485,079, U.S. Pat. No. 7,585,263, U.S. Pat. No. 7,611,445, U.S. Pat. No. 7,651,446, U.S. Pat. No. 7,662,076, U.S. Pat. No. 7,731,637, U.S. Pat. No. D598,965, and U.S. Patent Publication No. 2007/0259760, as well as exercise devices sold under the trade names “AB CIRCLE PRO” and “AB CIRCLE MINI.”
  • an exercise device may be used for exercising abdominal or other muscle groups.
  • the abdominal exercise device may include a support structure, a track that is movable relative to the support structure, a body support that moves along a length of the track, and an adjustable base secured to the support structure.
  • a track is rotatable relative to a support structure.
  • a track is elongate.
  • a track is arcuate.
  • a track is inclined relative to the support structure.
  • the body support is slide ably disposed relative to the track.
  • the exercise device includes a first and second foot support attached to the adjustable base.
  • At least one of the foot supports is vertically adjustable.
  • the exercise device has a Sip Factor configuration selectable between 1.0 and 0.25.
  • the exercise device has a Sip Factor configuration selectable between 0.98 and 0.86.
  • the exercise device has a Sip Factor configuration selectable between 1.0 and 0.98.
  • the exercise device has a Sip Factor configuration selectable between 0.86 and 0.5.
  • the exercise device includes a manual actuator secured to at least one of the first or second foot support.
  • the manual actuator is configured to vertically adjust at least one of the first or second foot support.
  • the exercise device includes a manual actuator, a hydraulic actuator, a pneumatic actuator, or an electrical actuator secured to the adjustable base.
  • an exercise device includes one or more locking mechanisms.
  • a locking mechanism selectively secures a track at a fixed position or orientation relative to a support structure.
  • a locking mechanism has an engaged state and a disengaged state.
  • a locking mechanism in an engaged state restricts rotational or other movement of a track relative to a support structure, and in a disengaged state allows the track to rotate or otherwise move relative to the support structure.
  • a locking mechanism includes a pin for securing the track relative to the support structure.
  • a track of an exercise device has at least two configurations.
  • a track in a first configuration is linked to a body support that, when moving, changes its position relative to a support structure and the track.
  • a track in a second configuration is linked to a body support that, when moving, changes its position relative to a support structure but is optionally at a constant position relative to the track.
  • a track in a second configuration is linked to a body support that, when moved during exercise by a user, can be either purely rotational relative to the support structure or a combination of rotational and translational movement relative to the support structure.
  • a body support member has three available motions, including a purely translational motion, a purely rotational motion, and a motion that combines the translational and rotational motions.
  • an exercise device includes a means for selectively moving a track relative to a support structure.
  • a means for selectively moving a track relative to a support structure includes any combination of one or more locking mechanisms, handles, or a body support.
  • a locking mechanism is disposed at an end of a track.
  • a locking mechanism is proximate a mount at which a track is connected to a support structure.
  • an axis of rotation of a track is about perpendicular to the track.
  • an axis of rotation of a track is about tangential to an arc defined by rotation of the track about the axis of rotation.
  • a method for exercising may include moving a body support member along a track.
  • sliding a body support member along a track may include sliding a body support member so as to translate the body support member relative to the track and a support structure supporting the track.
  • a method for exercising may include rotating a track relative to a support structure.
  • a method for exercising may include rotating a track relative to a support structure while also sliding a body support member along a length of the track.
  • a method for changing a configuration of an abdominal exercise machine may include selectively engaging or disengaging a locking mechanism.
  • engaging a locking mechanism may include, or result in, restricting rotational movement of a track relative to a support structure.
  • disengaging a locking mechanism may include, or result in, releasing a track from a locked position so as to enable the track to rotate relative to a support structure.
  • FIG. 1A is a side view of an exercise device in a low Sip Factor configuration according to one embodiment of the present disclosure
  • FIG. 1B is a side view of an exercise device in an elevated Sip Factor configuration according to one embodiment of the present disclosure
  • FIG. 2A is a perspective view of the exercise device of FIG. 1A in a low Sip Factor configuration
  • FIG. 2B is a perspective view of the exercise device of FIG. 1B in an elevated Sip Factor configuration
  • FIG. 3A is a partial perspective view of the exercise device of FIGS. 1A through 2B , and illustrates a locking mechanism in an engaged state;
  • FIG. 3B is a partial perspective view of the exercise device of FIGS. 1A through 2B , and illustrates a locking mechanism in a disengaged state;
  • FIG. 4 is an overhead view of the exercise device of FIG. 1A , the exercise device having a rotatable track;
  • FIGS. 5A and 5B are perspective views of the exercise device of FIG. 1A , in use by a user to rotate a track and translate a body support member along the track;
  • FIG. 6 illustrates an exercise device according to one embodiment of the present disclosure, the exercise device providing at least three motions
  • FIG. 7 illustrates an exercise device according to another embodiment of the present disclosure, the exercise device having a rotatable track
  • FIG. 8 illustrates an exercise device having a track and a slideable body support member, the body track being capable of translating and rotating;
  • FIG. 9 illustrates a partially exploded perspective view of an adjustable orientation support
  • FIG. 10 illustrates the exercise device of FIG. 1A in a low position and further illustrates the Sip factor calculation.
  • Sip Factor shall be interpreted broadly as referring to the cosine of the angular of the track assembly of a sliding core training apparatus relative to the surface it is on.
  • the Sip Factor is determined from the point that a line defined by the two end points of the track intersects a datum plane formed by the points of contact between the base of the sliding core training apparatus and the surface it is disposed on. In the event of a line defined by the two end points of the track that is parallel with the datum plane formed by the points of contact between the base of the sliding core training apparatus and the surface it is disposed on, the Sip Factor shall be 1.
  • an exercise device 100 having an adjustable Sip Factor includes a support structure 102 and a track 104 secured relative to the support structure 102 .
  • the exercise device 100 also includes a body support member 106 configured to support a body of a user and selectively move relative to the track 104 .
  • the support structure 102 , track 104 , and body support member 106 may have number of suitable configurations, shapes, components, or other features, or combinations of the foregoing.
  • the body support member 106 may be a sled adapted to operate as a knee pad or leg support.
  • the support structure 102 may have any number of suitable configurations.
  • the support structure 102 is configured to support the track 104 and maintain the track 104 in an elevated position relative to a surface on which the support structure 102 rests.
  • the support structure 102 may be placed on a floor or ground surface and cause the track 104 to remain elevated relative to the floor.
  • the distance between the track 104 and the surface on which the support structure 102 rests varies across a length of the track 104 .
  • the track 104 may have first and second ends 108 , 110 .
  • the first end 108 may be elevated a greater distance relative to the second end, or vice versa.
  • a line between the first and second ends 108 , 110 may be angled relative to the surface on which the support structure 102 rests.
  • the amount of incline may vary.
  • the incline is between about ten degrees and about thirty degrees. In other embodiments, however, the incline may be less than about ten degrees or more than about thirty degrees.
  • the first and second ends 108 , 110 may be elevated approximately the same distance relative to the surface on which the support structure 102 rests, such that the incline of the track 104 may be between about zero and about ten degrees.
  • the incline of the track 104 may be increased to be, for instance, between about thirty and about sixty degrees.
  • the incline may also be selectively adjustable by the user.
  • the track 104 is further illustrated as having a curved shape that is upwardly concave.
  • the type and degree of the curve in the track 104 may be varied.
  • the track 104 may be arcuate and have a circular, parabolic, ellipsoid, or any other curved shape, although in other embodiments, the track 104 may be straight, or have an upward convex curved configuration.
  • the track 104 may have any combination of the foregoing.
  • the track 104 may have various curved or linear profiles along its length.
  • the curve of the track 104 may transition between curves of different shapes or dimensions, as well as between straight, convex, or concave portions, or any combination of the foregoing.
  • the curved or inclined orientation of the track 104 can provide the user with the ability to exercise abdominal muscles in a manner similar to crunches or sit-ups, but in manner that preserves proper form and reduces the risk of injury. Furthermore, in a traditional sit-up, the user can “bounce” off the ground, and also has his or her hands behind his or her head. The “bounce” effect can use momentum to complete the sit-up, and the hands can be used to pull the head forward. As a result, momentum and muscles other than the abdominal muscles may be used in completing the sit-up. With the exercise device 100 , the curved and/or inclined track 104 can reduce or eliminate the “bounce” effect and require the user to use the abdominal muscles, thereby more effectively working the core muscle region.
  • the track 104 may be elevated from a surface by the support structure 102 according to any number of different aspects.
  • the support structure 102 includes a base 112 and an upright support 114 .
  • the track 104 can be supported or elevated using the base 112 and/or the upright support 114 .
  • the base 112 is configured to stabilize the exercise device 100 .
  • stability is provided as the base 112 includes opposing forward and rear foot portions 116 , 118 , along with a main support member 120 between the forward foot portion 116 and the rear foot portion 118 .
  • the forward and rear foot portions 116 , 118 may extend laterally outward (see FIGS.
  • the forces placed on the exercise device 100 can be spread over a larger area, thereby stabilizing the exercise device 100 and the user, and reducing the risk that the user 100 will inadvertently cause the exercise device 100 to tip over.
  • the Sip Factor is effected by the configuration and height of the rear foot support 118 relative to the forward foot support 116 .
  • the forward foot 116 is secured to the main support member 120 via an adjustable orientation support 117 .
  • an adjustable Sip Factor can be achieved by securing both the rear foot support 118 and the forward foot support 116 to the main support member 120 or other portions of the exercise device 100 via an adjustable orientation support 117 , for ease of explanation only, the present system will be described as having only a single front orientation support 117 .
  • the Sip Factor of the exercise device ( 100 ) is selectively modified by the adjustable orientation support 117 . Specifically, by varying the height of the connection points of the rear foot 118 and the forward foot 116 relative to the surface the exercise device is disposed on, the angular orientation of the main support member 120 and the track 104 are modified, thereby modifying the Sip Factor.
  • the adjustable orientation support 117 includes an adjustment housing 900 secured on a first end to the forward foot 116 .
  • the second end of the adjustment housing 900 is slideably attached to a sliding member 910 defining a plurality of height selection orifices 912 .
  • a first end of the mating sliding member 910 is slideably attached to the adjustment housing 900 and a second end of the sliding member is secured to the main support member 120 .
  • the pin 920 When aligned, the pin 920 can be inserted through the aligned orifices to fix the Sip Factor.
  • the pin 920 is biased.
  • the pin 920 may include spring loaded bearings. The bearings may be compressible by forcing the pin 920 through one or both of the orifices 902 , 912 . The biased bearings may reduce the risk that the pin 920 becomes inadvertently displaced from the apertures 902 , 912 , but may be overcome by exerting a sufficient force on the pin 902 .
  • FIG. 10 illustrates how modification of the adjustable orientation support 117 varies the Sip Factor.
  • the Sip Factor is the cosine of the angular orientation S of the track assembly of the sliding core training apparatus relative to the surface it is on.
  • the Sip Factor is determined from the point V that a line 1010 defined by the two end points of the track 108 , 110 intersects a datum plane 1000 formed by the points of contact between the base of the sliding core training apparatus 116 , 118 and the surface it is disposed on.
  • Actuation and extension of the adjustable orientation support 117 will incline the base 112 , the main support member 120 , and the track 104 . Consequently, the angle S will increase and the Sip Factor will decrease.
  • the amount of incline and the resulting Sip Factor may vary.
  • the adjustable range of incline that may be varied by varying the adjustable orientation support 117 is between about ten degrees and about thirty degrees, resulting in a Sip Factors ranging between 0.98 and 0.86.
  • the incline may be varied to between less than about ten degrees or more than about thirty degrees.
  • the first and second ends 108 , 110 may be elevated approximately the same distance relative to the surface on which the support structure 102 rests, such that the incline of the track 104 may be between about zero and about ten degrees, resulting in a Sip Factor of between 1 and 0.98.
  • the incline of the track 104 may be increased to be, for instance, between about thirty and about sixty degrees, resulting in a Sip Factor range of between 0.86 and 0.5.
  • the Sip Factor can be selectively modified between 1.0 and 0.25.
  • the main support member 120 is also curved, and upwardly convex. It should be appreciated that the curve of the main support member 120 is merely exemplary. In other embodiments, the main support member 120 may, for instance, be substantially straight. In at least one aspect, a curved main support member 120 may facilitate elevating the track 102 relative to a floor or other surface on which the base 112 of the support structure 102 is placed.
  • the track 104 is optionally supported directly or indirectly by the main support member 120 .
  • the convex, lower side of the track 104 may rest directly on the main support member 120 .
  • the track 104 may be displaced or elevated relative to the main support member 120 .
  • a track support 122 is attached to the main support member 120 and extends therefrom.
  • the track 104 may then be connected at or near a distal end of the track support 122 .
  • the track 104 may thus be supported by the track support 122 in a manner that causes the track 104 to remain at a position that is offset or displaced from the base 112 , including the main support member 120 .
  • the track 104 may be supported such that the track 104 is generally aligned with the direction of the main support member 120 , although this is not necessarily the case, or may change during use of the exercise device 100 .
  • the track support 122 may have any suitable construction, shape, or configuration. For instance, while a single track support 122 is illustrated as extending from the base 112 , this is merely exemplary. In other embodiments, multiple track supports 122 may extend from the base 112 , or one or more track supports 122 may support the track 104 without being attached to the base 112 . For instance, the track support 122 may directly engage a floor or other surface, be cantilevered from the upright support 114 , or otherwise support the track 104 . The position and orientation of the track support 122 may also be varied. By way of illustration, the track support 122 in FIGS. 1A and 1B is illustrated at an incline relative to vertical, and generally perpendicular to the incline of the track 104 . In other embodiments, the track support 122 may be at an acute or obtuse angle relative to the track 104 , may have a substantially vertical orientation, or may be otherwise configured.
  • the track support 122 is shown as being optionally attached to the track 104 at a location that is approximately centered along the arcuate length of the track 104 .
  • the track support 104 may be offset at any distance from a center of the track 104 .
  • the track support may be positioned at or near the first and/or second end 108 , 110 of the track 102 , or anywhere in between.
  • the track 104 is connected or otherwise supported to the support structure 102 at multiple locations.
  • the support structure 102 includes an upright support 114 extending at least partially in a vertical direction relative to the base 112 .
  • the upright support 114 may include, for instance, an elevation structure 124 and a set of handles 126 .
  • the elevation structure 124 can be connected to the base 112 , and extend at least partially in a vertical direction.
  • the elevation structure 124 may be substantially vertical, may be inclined, may be curved, or have another structure, or any combination of the foregoing.
  • the elevation structure 124 is curved and inclined such that the handles 126 extend from the base 112 in both vertical and horizontal directions.
  • the handles 126 are optionally connected to the elevation structure 124 of the upright support 114 , and can include grips 128 for a user to grasp while using the exercise device 100 .
  • the handles 126 form an upper body support that may be fixed relative to the track 104 , although this need not be the case. By fixing the handles 126 relative to the track 104 , a user is able to stabilize his or her upper body and focus on exercising the abdominal muscles.
  • the position of the handles 126 may be permanent or adjustable.
  • the handles 126 are connected to an adjustment member 127 that can be used to selectively adjust the height of the handles 126 .
  • the adjustment member 127 is coupled to the elevation structure 124 , and may include a knob or other member that can be rotated to selectively disengage the handles 126 , although a pop pin, clamp, or other adjustment mechanism may also be used.
  • the handles 126 can slide or otherwise move vertically upward or downward. The user may then reengage the adjustment mechanism 127 to secure the handles 126 at a desired position.
  • the handles 126 slide within channel braces, although in other embodiments, telescoping, gearing or other mechanisms may be used within the scope of the present disclosure.
  • the handles 126 are optionally pivotally connected to the elevation member 124 .
  • the adjustment member 127 may additionally or alternatively be used to selectively pivot relative to the elevation member 124 .
  • the handles 126 may be permitted to pivot, whereas the engaging the adjustment member 127 may fix the handles 126 at a desired orientation relative to the elevation structure 124 .
  • Allowing the handles 126 to pivot between different positions allows a user to perform multiple types of exercises or to isolate a particular muscle or muscle group. For instance, in FIGS. 1A and 1B , the handles 126 are oriented such that grips 128 are positioned above the first end 108 of the track 104 . If the handles 126 are rotated such that the grips 128 are positioned nearer the center of the track 104 , the user may be allowed to lean backward, thereby targeting a wholly different set of muscles. If the handles 126 are rotated forward such that the grips 128 are positioned will in advance of the first end 108 of the track 104 , the user may lean forward, thereby targeting still another muscle group.
  • any suitable mechanism may be used to allow the handles 126 to pivot relative to the elevation member 124 .
  • a pivot pin 129 may extend through the handles 126 and the elevation member 124 .
  • the handles 126 can rotate freely around the pivot pin 129 .
  • Hinges, linkages or other structures that allow the handles 126 to rotate relative to the elevation member 124 may also be used.
  • the handles 126 may pivot during use of the exercise device 100 , thereby facilitating targeting of multiple muscle groups.
  • the track 104 may be at least indirectly connected to the upright support 114 .
  • a locking mechanism 130 may selectively secure the track 104 relative to the upright support 114 .
  • the locking mechanism 130 connects the first end 108 of the track 104 to the elevation structure 124 of the upright support 114 .
  • the locking mechanism 130 may be changeable between at least first and second states.
  • the locking mechanism 130 may have a first, engaged state in which the track 104 is selectively secured at a fixed position relative to the vertical support 114 , and a second, disengaged state in which the track 104 is released and allowed to rotate or otherwise move relative to the vertical support 114 .
  • FIGS. 1A and 1B illustrates the locking mechanism 114 securing the track 104 to the elevation structure 124 of the upright support 114
  • the locking mechanism 114 may selectively lock or otherwise connect the track 104 to the handles 126 , the cross member 112 , the forward or rear foot portions 116 , 118 , the track support 122 , or to any other suitable member or component.
  • the locking mechanism 130 is one example of a means for selectively moving the track relative to the support structure 102 .
  • the body support member 106 may be slide ably disposed relative to the track 104 .
  • the body support member 106 is configured to receive a portion of a user's body, and allow the user's body to move relative to portions of the exercise device 100 .
  • the user may grasp the handles 126 of the support structure 102 so as to gain leverage to facilitate movement of the user's body and the body support member 106 , or may use the device without grasping the handles 126 .
  • the user may kneel or sit on the body support member 106 , may place a leg or arm on the body support member 106 , or otherwise place a portion of the user's body on the body support member 106 in a manner that facilitates exercise.
  • the user may kneel on the body support member 106 , such that the user faces the upright support 114 .
  • the body support member 106 may include a seat portion 132 on which the user places his or her knees or other portion of the body.
  • the seat portion 132 is attached to a carriage 134 that slides relative to the track 104 .
  • the carriage 134 may include a slider 136 that connects to the track 104 and facilitates movement along the track 104 .
  • the slider 136 may roll or slide relative to the track 104 .
  • the slider 136 may include wheels, ball bearings, roller bearings, a rack and pinion, or other elements that roll along an upper, lower, interior, or exterior surface of the track 104 . Additionally, or alternatively, the slider 136 may include linkage, a channel bracket, a belt clamp, clutching mechanism, or other sliding structure.
  • the track 104 can be made of any of a number of different materials, including metals, plastics, composites, organic materials, or other materials or combinations of the foregoing.
  • the track may have a coating, lubricant, or some other material that facilitates sliding of the carriage 134 relative to the track 104 .
  • a coating having a relatively low coefficient of friction can be used to reduce the friction between the slider 136 and the track 104 , to provide a more fluid sliding motion to the body support member 106 .
  • the shape and/or orientation of the track 104 may also provide various benefits to the user. For instance, where the track 104 is inclined, the body support member 106 may change elevation along the length of the track 104 . As the body support member 106 increases in elevation, the body of the user can counteract gravitational forces, thereby contracting the abdominal muscles. The degree to which the abdominal muscles are contracted, or the isolation of which muscles are contracted, can also be varied based on the position of the handles 126 , such that various intensity levels or exercises are possible based on whether the user is upright, leaning forward, or leaning backward.
  • the body support member 106 can be configured to slide along all or a portion of the length of the track 104 .
  • the track 104 may include or have attached thereto one or more stops 138 .
  • the stops 138 can be used to engage the carriage 134 or slider 136 and restrict movement of the body support member 106 .
  • stops 138 are positioned near the first and second ends 108 . 110 of the track 104 .
  • the body support member 106 may slide relative to the track 104 and towards the second end 110 of the track 104 .
  • the body support member 106 may be restricted from further movement towards the second end 110 of the track 104 , thereby reducing the chance that the body support member 106 disengages the track 104 during exercise.
  • the slider 136 may engage the stops 138 .
  • the stops 138 may be removable or excluded to allow the body support member 106 to have substantially a full range of motion along the track 104 . It is also not necessary that stops 138 be included at the first and second ends 108 , 110 of the track 104 . For instance, in some embodiments, no stop may be included as the handles 126 and/or the elevation structure 124 of the upright support 114 may restrict movement of the body support member 106 .
  • FIGS. 2A and 2B the exercise device 100 of FIGS. 1A and 1B is illustrated in a perspective view, and illustrates other exemplary aspects of an exercise device according to the present disclosure.
  • the track 104 is illustrated as being elevated above the track support 122 .
  • the track support 122 is connected to the main support member 120 , and the main support member 120 is in turn connected to and/or supported by two foot portions 116 , 118 .
  • the forward and rear foot portions 116 , 118 are, in the illustrated embodiment, connected to the main support member 120 using mechanical fasteners such as bolts, screws, rivets, and the like, although in other embodiments other mechanisms may be used.
  • the foot portions 116 , 118 may be welded to the main support member 120 , or may be integrally formed as a single unit using a casting, molding, machining, or other formation process. Further, while the foot portions 116 , 118 are illustrated as separate, in some embodiments, a ring or other mechanism may fully surround the main support member 120 .
  • the body support member 106 is also illustrated as including a seat portion 132 upon which a user may rest a portion of his or her body.
  • the seat portion 132 is adapted to be knelt or stood upon and to allow a user to comfortably rest his or her knees, feet, or legs on the top surface of the seat portion 132 .
  • the seat portion 132 may be contoured to comfortably accommodate a user's leg.
  • the seat portion 132 includes two indentions 144 configured to generally conform to the contours of a leg.
  • the track 104 includes two guides 140 which are engaged by the slider 136 .
  • the two guides 140 of FIGS. 2A and 2B have a curved, arcuate shape generally corresponding to and/or at least partially defining the curved, arcuate shape of the track 104 .
  • the guides 140 may also define the path along which the body support member 106 travels.
  • the slider 136 may engage the guides 140 and slide relative thereto, thereby directing the slider 136 and the carriage 134 along the path defined by the guides 140 and the track 104 . While the illustrated embodiment shows a set of two guides 140 that help to define a path of travel along at least a portion of the length of the track 104 , this is exemplary and in other embodiments there may be a single guide or more than two guides.
  • a mount 142 is connected to the guides 140 .
  • the mount 142 may be used for any number of purposes.
  • the mount 142 may be used to maintain the track 104 elevated relative to the base 112 of the support structure 102 .
  • the mount 142 is positioned at least partially between the guides 140 .
  • the mount 142 may be formed separate from the guides 140 and directly or indirectly secured to the guides 140 in any suitable manner such as with mechanical fasteners, welding, brazing, or other mechanisms, or combinations of the foregoing.
  • the mount 142 may be integrally formed with the guides 140 and/or the track 104 .
  • the mount 142 can be used to connect the track 104 to the track support 122 .
  • the manner of connection may also be such that the track 104 is permitted to selectively move relative to the track support 122 and/or the base 112 of the support structure 102 .
  • the mount 142 may be pivotally connected to the track support 122 . Consequently, the base 112 may remain in a relatively fixed position while the track 104 can be selectively rotated or otherwise moved relative to the base 112 .
  • movement of the track 104 relative to the base 112 may be selective. For instance, in at least one embodiment, a user may cause the body support member 106 to travel along a length of the track 104 . Using his or her core muscles, the user may cause the track 104 to maintain in a relatively stationary position relative to the base 112 . In some embodiments, the user maintains the track 104 stationary relative to the base 112 . In other embodiments, a locking mechanism 130 may be used to at least partially maintain the track 104 stationary relative to the base 112 .
  • FIGS. 3A and 3B illustrate the locking mechanism 130 of FIGS. 1A through 2B in greater detail.
  • FIG. 3A illustrates the locking mechanism 130 in a first state, in which at least the first end 108 of the track 104 is substantially locked at a fixed position relative to the elevation structure 124 of the support structure 102 .
  • FIG. 3B illustrates the locking mechanism 130 in a second state, in which the first end 108 of the track 104 is released and may be selectively moved relative to the elevation structure 124 of the support structure 102 .
  • FIG. 3A illustrates a portion of the exercise device illustrated in FIGS. 1A through 2B , and specifically illustrates the locking mechanism 130 .
  • the locking mechanism 130 is proximate the first end 108 of the track 104 , although this is merely exemplary. In other embodiments, for instance, the locking mechanism 130 may be positioned at a second end of the track 104 , at a position between the ends of the track 104 , or at any suitable location that allows the track 104 to be selectively placed in one or more states.
  • the locking mechanism 130 includes a containment plate 146 that cooperates with a pin 148 .
  • the containment plate 146 is, in this embodiment, secured between the two guides 140 of the track 140 , and defines a first aperture 150 .
  • the first support 124 of the support structure 102 includes a second aperture 152 , and the first and second apertures 150 , 152 are aligned in such a manner that the pin 148 , when in a first position, can be positioned within both the first and second apertures 150 , 152 , and thereby simultaneously engage both the containment plate 146 and the first support 124 .
  • the first and second apertures 150 , 152 thus define receptors such that in the first position, the pin 148 can thereby restrict movement of the first end 108 of the track 104 relative to the first support 124 .
  • the pin 148 can be used to restrict both rotational and translational motion of the track 104 relative to the first support 124 .
  • the pin 148 may be movable between different positions. Accordingly, in at least some aspects, the pin 148 has a second position, which may also correspond to a second state of the locking mechanism 130 . For instance, in a second state, the locking mechanism 130 may allow the track 104 to rotate, translate, or otherwise move relative to the support structure 102 .
  • FIG. 3B illustrates an example of such a second state of the locking mechanism 130 .
  • the pin 148 has been retracted from the first and second apertures 150 , 152 . As such, the pin 148 has ceased simultaneously engaging both the track 104 and the first support 124 , and thus been released from a motion-restrictive position.
  • the pin 148 need not be retracted from both the first and second apertures 150 , 152 to allow the locking mechanism 130 to transition from a first state to a second state.
  • the pin 148 may be removed solely from the second aperture 152 to release the track 104 such that it is free to move relative to the support structure 102 .
  • the pin 148 is biased.
  • the pin 148 may included spring loaded bearings. The bearings may be compressible by forcing the pin 148 through one or both of the apertures 150 , 152 . The biased bearings may reduce the risk that the pin 148 becomes inadvertently displaced from the apertures 150 , 152 , but may be overcome by exerting a sufficient force on the pin 148 .
  • the track 104 may also transition from a first, engaged state, to a second, disengaged state.
  • the track 104 In the engaged state, the track 104 optionally has a substantially fixed position relative to at least some portions of the support structure 102 .
  • the track 104 In the disengaged state, the track 104 may be released to freely move relative to such same portions of the support structure 102 .
  • FIG. 4 illustrates the exercise device 100 when the track 104 and locking mechanism 130 are in their respective disengaged states.
  • the track 104 may be secured to the support structure 102 using a pivotal connection.
  • the track 104 includes a mount 142 attached thereto.
  • the mount 142 may also be attached to a track support 122 (see FIGS. 1A through 2B ).
  • the mount 142 may connect to the track support 122 about a rotational axis that is optionally about perpendicular to the track 104 .
  • a user of the exercise device 100 may twist his or her lower body from side-to-side while using the exercise device 100 to not only exercise his or her left or right oblique muscles, but to also move the track 104 from side to side, as shown in FIG. 4 .
  • the user may, for instance, exert a force on the body support member 106 and/or the handles 126 to cause the track 104 to rotate from side-to-side, and may do so in a manner that alternates between exercising left and right oblique muscles.
  • the user may also slide the body support member 106 along the track 104 .
  • the user can exercise oblique muscles while also performing a crunch-like exercise and exercising multiple different abdominal muscles.
  • the handles 126 and/or the body support member 106 are each one example of a means for selectively moving the track 104 relative to the support structure 102 .
  • FIGS. 5A and 5B illustrate a user performing an abdominal exercise on the exercise device 100 , while the track 104 is in a disengaged state relative to the support 102 .
  • a user may use his or her hands to grasp the handles 126 of the exercise device 100 .
  • the user may rotate the track 104 to the position illustrated in FIG. 5A .
  • the track 104 may rotate about an axis of rotation that is defined by the mount 142 .
  • the track 104 is rotated to an angular position at which the track is about perpendicular to the cross-support 120 of the support structure 102 , although the track 104 may be positioned at any number of other angular positions.
  • a user may vary the resistance experienced and modify their workout. Once the desired Sip Factor is selected, a user may initiate any number of exercises.
  • FIGS. 5A and 5B illustrate the exercise device 100 having the track 104 at approximately the same orientation relative at the support structure 102 ; however, in FIG. 5B , the body support member 106 slides along the track 104 from a position near the second end 110 of the track (see FIG. 5A ) to a position that is more proximate the first end 108 of the track 104 .
  • the user can exercise each of the core muscle groups, and can also isolate particular core muscle groups. For instance, in accordance with one aspect, the user may isolate his or her oblique muscles by rotating the track 104 relative to the support structure 102 and maintaining the body support member 106 in a fixed position relative to the track 104 , such that the body support member 106 also moves relative to the support structure 102 . In another aspect, the user may isolate certain abdominal muscles by maintaining the track 104 at a fixed position relative to the support structure 102 , and moving the body support member 106 relative to the track 104 and the support structure 102 .
  • the exercise device 100 provides at least three exercise motions, namely: (a) a translational motion; (b) a rotational motion; and (c) a combined motion.
  • a translational motion namely: (a) a translational motion; (b) a rotational motion; and (c) a combined motion.
  • the user may simultaneously use both the translational and rotational motions provided by the exercise device 100 .
  • FIG. 6 schematically illustrates an exercise device 200 , along with some of the various exercise motions the user may perform using the exercise device 200 .
  • the track 204 and the body support member 206 may be at a first position 201 a. If the track 204 is allowed to freely rotate an axis of rotation defined by the mount 242 , the track 204 and body support member 206 may freely move between positions 201 a, 201 b, and 201 c .
  • the track 204 and body support member 206 may be independently movable relative to each other and the support structure, such that a user may maintain the body support member 206 at a relatively fixed location along the length of the track 204 , while the track 204 is rotated and moved from side-to-side between positions 201 b and 201 c.
  • the body support member 206 may follow a curved, arcuate path A-A.
  • the arcuate path A-A may have a radius of curvature about equal to the distance between the body support member 206 and the mount 242 .
  • the track 204 and body support member 206 can rotate relative to a support structure (see FIGS.
  • the axis of rotation of the track 204 is oriented at an angle that is substantially tangential relative to the arc A-A defined by rotation of the track about the axis of rotation.
  • the body support member 206 may be allowed to slide or otherwise move along all or a portion of the length of the track 204 .
  • the track 204 may be at position 201 a. While the track 204 remains substantially fixed at position 201 a, the body support member 204 may move along the track 204 by following the path B-B. While the path B-B is illustrated as being substantially linear, one will appreciate in view of the disclosure herein, that the path may have other forms.
  • the track 204 may be arcuate, such that the path B-B may be curved, arcuate, or take any number of other shapes and forms.
  • Path A-A and path B-B are merely illustrative of some example paths that a body support member 206 may take. For instance, such paths may illustrate movement of the body support member 206 relative to a structure supporting the track 204 .
  • paths A-A and B-B may also represent example paths facilitated by maintaining at least one element of the exercise device 200 at substantially constant position relative to another element.
  • the body support member 206 may remain at a substantially constant position relative to the track 204 .
  • the track 204 may remain at a substantially constant position relative to a support structure. Such constant positions may be maintained by the user or the exercise device.
  • the user may maintain the track 204 at a constant position relative to the support structure, and/or maintain the body support member 206 at a constant position relative to the track 204 .
  • the exercise device may include a locking mechanism or other structure that can fix the track 204 to a support structure, or can be used to lock the body support member 206 at a particular position along the length of the track 204 .
  • the body support member 206 may follow still additional paths, thereby allowing a user to isolate different muscles, or exercise abdominal muscles at different intensities. More particularly, by moving the body support member 206 relative to the track 204 , and by moving the track 204 relative to a support structure, the actual path of the body support member 206 may vary between an infinite number of possibilities.
  • FIG. 6 illustrates two such options as path C-C and path D-D.
  • paths C-C and D-D are about mirror images of each other, and illustrate example paths that the body support member 206 may follow if the body support member 206 translates along the track 204 and the track 204 is rotated about twenty-five degrees about an axis of rotation defined at least partially by the mount 242 .
  • the paths C-C and D-D are therefore obtained by combining the rotational movement of the track 204 (e.g., path A-A) with the translational movement of the body support member 206 (e.g., path B-B).
  • a user can perform abdominal exercises similar to sit-ups or crunches by positioning his or her body on the body support member 206 and using the abdominal muscles. More particularly, the abdominal muscles can be used to accelerate the body support member 206 from the second end 210 of the track 204 towards the first end 208 of the track, while the user's knees are on the body support member 208 . While paths A-A, B-B, CC, and D-D are illustrated as extending in a single direction, a full repetition is completed by returning the body support member 206 to a resting position. While the return path may be the same as the initial path, the return path may also be varied.
  • While the positions 201 b and 201 c of the track 204 are illustrated in FIG. 6 as being angularly offset from position 201 a by approximately twenty-five degrees, it should be appreciated that this is merely to provide one example of a manner in which a user may use the exercise devices described.
  • the track 204 may, for instance, be rotated any suitable amount, and such rotation may be greater or less than twenty-five degrees.
  • a user may rotate the track 204 about an axis of rotation by any amount between zero and ninety degrees, although in some embodiments, the track 204 may rotate a full three hundred sixty degrees.
  • the body support member 206 may also move any amount along the length of the track 204 .
  • the track 204 may be coupled to the support structure using a pivotal connection or other rotational coupling.
  • a connection may allow the track 204 to rotate about an axis that is about perpendicular to the track 204 .
  • the axis of rotation may extend through the mount 242 , which is, in this embodiment, positioned along the track 204 and between the opposing first and second ends 208 , 210 of the track 204 .
  • the mount 242 and/or the axis of rotation may be about centered relative to the length of the track 204 , although the location of the mount 242 or the axis of rotation may be varied.
  • FIG. 7 schematically illustrates an exercise device 300 having a track 304 that can rotate about an axis of rotation 341 that is at one end of the track 304 .
  • the track 304 has opposing first and second ends 308 , 310 , and the axis of rotation 341 is proximate the second end 310 of the track 304 .
  • the first end 308 of the track 304 may be positioned near a support structure that allows a user to balance himself or herself (e.g., vertical support 114 of FIG. 1A ).
  • a mount 342 or other structure may provide an axis or rotation 341 about the opposing second end 310 of the track 304 . Consequently, the user may use his or her core muscles, arms, and/or legs to cause the track 304 to rotate about a point near the second end 310 of the track 304 , thereby also rotating the body support member 306 .
  • the mount 342 may be movable relative to the track 304 .
  • a set screw or other mechanism may be used to selectively secure and release the mount 342 such that the mount 342 can move relative to the track 304 .
  • a user may, therefore vary the position of the mount 342 relative to the track 304 .
  • a user can change the position about which the track 304 rotates, and may also be able to change other parameters, such as the slope of the track 304 .
  • the track 304 may also be locked to selectively allow or restrict rotation.
  • a locking mechanism may be positioned at the first end 308 of the track 304 , and have various locking structures on a support structure to adjust for the various positions of the first end 308 relative to the support structure.
  • the locking mechanism may be placed at the second end 310 of the track.
  • a locking mechanism may be positioned at the mount 342 . For instance, if a locking mechanism is placed in an engaged state, the mount 342 may be restricted from rotating, thereby also restricting rotation of the track 304 .
  • FIG. 8 illustrates various features of an exercise device 400 in which a body support member 406 is connected to a track 404 .
  • the body support member 406 may be configured to slide along all or a portion of the length of the track 404 .
  • the track is configured as a rail and the body support member 406 may slide along the rail using rollers, bearings, linkages, and the like.
  • the track 404 may also be configured to move in one or more manners.
  • the support structure may define or include a guide 443 along which the track 404 may translate.
  • the guide 443 has a curved configuration; however, the guide 443 could be linear, S-shaped, or have any other suitable shape or form.
  • the track 304 may slide back and forth in a horizontal, lateral, or vertical direction, or in any combination thereof.
  • a mount 442 is coupled to the track 404 in FIG. 8 .
  • the mount 443 may also facilitate multiple movements with respect to the track 404 .
  • the mount 443 may facilitate rotational and/or translational movement of the track 404 .
  • the mount 443 may slide along all or a portion of the length of the guide 443 , thereby causing the track 404 to translate.
  • the mount 442 may include, or have connected thereto, rollers, bearings, linkages, channel brackets, or other suitable mechanisms to facilitate translational movement of the track 404 along the guide 443 .
  • the track 404 may also rotate.
  • the mount 442 is connected to a support structure.
  • Such a connection may be a pivotal or rotational connection. Consequently, a user may be able to cause the track 404 to rotate about an axis of rotation defined at least partially by the connection of the mount 442 to the support structure.
  • FIG. 8 illustrates an example exercise device 400 in which the track 404 is translated along the guide 443 while also being rotated about an axis of rotation centered within the mount 442 . More particularly, various available positions of the track 404 are illustrated in phantom lines, and include positions at which the track 404 is translated in opposing directions along the guide 443 , and rotated at various different angular positions at mount 442 .
  • the embodiment in FIG. 8 provides a user with a variety of different options for exercise. Such options may allow, for instance, the user to isolate various abdominal or other muscle groups in a customized and desired manner. Furthermore, the modification of the Sip Factor by varying the initial angle of the track 104 relative to the surface the exercise device 100 is resting on, gravitational resistance may be ideally tuned for training the targeted muscle groups. By way of example, a user may combine the different available motions of the body support member 406 and track 404 in any of seven different manners.
  • the user may: (i) translate the body support member 406 ; (ii) rotate the track 404 ; (iii) translate the track 404 ; (iv) translate the body support member 406 and rotate the track 404 ; (v) translate the body support member 406 and translate the track 404 ; (vi) rotate and translate the track 404 ; and (vii) translate the body support member while rotating and translating the track 404 , all at different Sip Factors.
  • a user's body may thus travel along an infinite number of exercise paths by using one or more available motions provided by the exercise device 400 .
  • the exercise device 400 optionally includes one or more locking mechanisms such as those discussed herein.
  • a locking mechanism may be used to restrict rotation of the track 404 , translation of the track 404 , translation of the body support member 406 , rotation of the body support member 406 , and the like.
  • multiple locking mechanisms may be used.
  • a locking mechanism may be placed near the first end 408 of the track 404 and another locking mechanism may be placed near the second end 410 of the track 404 .
  • the user may independently engage or disengage the various locking mechanisms.
  • a locking mechanism at the first end 408 of the track 404 may be engaged to restrict translational movement of the track 404 along the guide 443 .
  • a locking mechanism at the second end 408 or at the mount 442 may be used to restrict rotational movement of the track 404 about an axis or rotation within the mount 442 .
  • Specialized equipment may also be available, but it is often difficult or non-intuitive to use, and is generally cost-prohibitive to a consumer. Such specialized equipment is therefore often found only in fitness centers and gyms. Use of such equipment may therefore be difficult, not only because of the difficulty of operating the equipment, but because of the time a user must dedicate to travel to and from the fitness center or gym.
  • EMG electromyogram
  • muscle activation using the devices of the present disclosure far exceeded that for the AB CIRCLE PRO, AB CIRCLE MINI, and AB COASTER, and also exceeded that for sit-ups and crunches.
  • exercise on the devices of the present application was found to activate 44% more total muscle than the AB CIRCLE MINI, and 37% more than the AB CIRCLE PRO.
  • Use of the devices of the present disclosure was also found to activate a 34% greater muscle activation than the AB COASTER, even when the AB COASTER participants used a combined sliding and rotational motion.
  • Metabolic measurements also demonstrated that users of the devices of the present application expended significantly more calories than on any of the AB CIRCLE PRO, AB CIRCLE MINI, and AB COASTER. For instance, participants using the devices of the present disclosure expended 33% more calories than users of the AB CIRCLE MINI and 35% more calories than users of the AB CIRCLE PRO.
  • the exercise devices of the present application thus permit users to perform simple, intuitive exercises while providing greater muscle activation and caloric expenditure than other available products.
  • adjustment of the Sip Factor provides for increased and directed resistance.
  • the combination of the variable Sip Factor along with the rotational variability of the track 104 provides for focused and increased resistance for a user's obliques, back, chest, and arms.
  • the exercise devices use gravity and/or a defined sliding path to exercise core muscle groups, the user can work out safely without placing excessive stress on joints or muscles.
  • devices of the present application include easy-to-use, home or commercial exercise devices that may be desirable for use by any person, particularly those seeking to tone or strengthen their upper and lower abdominal muscles, burn fat, sculpt their body, or for any combination of the foregoing.
  • the exercise devices of the present disclosure are not only usable to enhance the abdominal strength of out-of-shape and overweight users, but are also effective for persons who hope to maintain their health or prevent the decline of their strength.
  • the disclosed exercise devices may also be used to exercise, strengthen, and tone muscle groups other than the abdominal muscles, including muscles in a user's arms, legs, and upper and lower back.
  • the degree to which the abdominal muscles are contracted, or the isolation of which muscles are contracted can also be varied based on the position of the adjustable forward foot and can be varied according to the Sip Factor. Specifically, the amount of resistance experienced by the user due to gravity is increased as the Sip Factor is decreased. As the angle of the track relative to the surface is increased, the Sip Factor is decreased and the gravitational resistance experienced by the user is increased. Additionally, as the Sip Factor is decreased, a user will work different muscles. As the Sip Factor is decreased, the user will employ additional back, chest, and arm muscles to overcome the added gravitational resistance.
  • the combination of a rotatable track and the ability to vary the Sip Factor provides the user with the ability to target any number of muscle groups, and particularly allows a user to target oblique core muscles by providing rotatable flexibility and the ability to vary gravitational resistance via a modification of the Sip Factor.
  • the Sip Factor is determined by a manual actuation of the orientation support.
  • the variable orientation of the track relative to the surface the exercise device is resting on may be achieved using any number of mechanically, hydraulically, pneumatically, or electrically actuated systems.
  • While devices of the present application may provide resistance based primarily by a user's body weight, the resistance may be increased by adding one or more resistance members.
  • resistance bands, springs, pneumatic members, shocks, and the like may extend along the track and/or between the track and support structure, to resist translational movement of the body support member, or rotational movement of the track. Weights may also be attached to increase the resistance.
  • the support structure includes an adjustable height mechanism that allows the front and/or rear feet portions to be elevated above the ground, thereby changing the Sip Factor for modified resistance and directed exercises.
  • locking mechanisms may take any of numerous different forms.
  • a pin may have a threaded configuration such that the pin engages mating threads within one or more corresponding threaded apertures.
  • a retractable pin may also be replaced with still other configurations.
  • a cog and sprocket, ratchet, clutch, tightening strap, clamp, knob, lug, pop pin, pin and yoke combination, spring release mechanism, brake, any other locking mechanism, or combinations of the foregoing may be used.
  • a retractable pin or other locking member may be accompanied by a tether, tie, or other retainer usable to connect the locking member directly or indirectly to a track or support structure, thereby reducing the risk that the locking member will be inadvertently removed and/or misplaced.
  • the devices disclosed herein thus allow a user to select which exercises to perform, what muscle groups to target, and the intensity and difficulty of the exercises being performed. Additionally, the devices provide safe and effective abdominal, back, leg, and arm exercises, making the exercise devices well-suited for home and commercial use.

Abstract

An abdominal exercise device includes a support structure, a track movable relative to the support structure, a body support member movable relative to the support structure and track, and an adjustable base secured to the support structure. A locking mechanism attaches to the track, and selectively secures the track at a fixed orientation relative to the support structure. In a first state, the locking mechanism restricts the track from rotating relative to the support structure. In a second state, the locking mechanism allows the track to rotate relative to the support structure. In using the exercise device, the user may obtain any of three motions. A first motion is provided by sliding the body support member along the track. A second motion is provided by rotating the track relative to the support structure. A third motion is a combined motion in which the body support slides along the track and the track rotates relative to the support structure. The resistance of each of the three motions may be varied by selectively varying the Sip Factor of the system.

Description

    RELATED APPLICATIONS
  • This utility application is a nonprovisional patent application that claims priority to U.S. patent application Ser. No. 61/558,924 filed Nov. 11, 2011.
  • TECHNICAL FIELD
  • The present disclosure relates generally to systems and methods for exercising. More particularly, the present disclosure relates to systems and methods for exercising abdominal muscles.
  • BACKGROUND
  • As part of a healthy lifestyle, physicians and other health and fitness professionals are advising people to make exercise a part of their daily routine. A comprehensive fitness plan may include both cardiovascular and strength training or resistance-based regimens, and can target a number of different muscle groups. Increasingly, fitness professionals are advising people to develop a well-defined and strengthened “core,” not only because the appearance of a tight stomach is considered desirable, but because a healthy core also promotes overall health and wellness.
  • Historically, exercises used to strengthen the core muscles and develop a tight stomach have been range of motion exercises that do not utilize a machine. In the case of both sit-ups and crunches, care must be taken to perform the exercise properly, or the person risks injury. Fitness equipment has also been developed to target the abdominal muscles. For instance, fitness centers and gyms offer a variety of exercise devices that can target the core, and may reduce the risk of injury to users. Unfortunately, such machines are often large and difficult to operate. Thus, such machines are often ineffective or impractical for personal home use.
  • One proposed solution for making core training equipment accessible is described in U.S. Pat. No. 7,611,445 to “Brown,” and which is commercially available under the AB COASTER name. Brown discloses an exercise machine that purports to “work the abdominal and oblique muscle groups and isolate the upper and lower abdominal muscles in a biometrically neutral position.” In particular, the exercise device described in Brown includes front and rear supports with a track extending therebetween. An upper body support is attached to the front support and a sled that includes a knee pad slides along the track. The track may be arcuate in shape.
  • In addition, other abdominal or other exercise devices include those in U.S. Pat. No. 7,232,404, U.S. Pat. No. 7,455,633, U.S. Pat. No. 7,485,079, U.S. Pat. No. 7,585,263, U.S. Pat. No. 7,611,445, U.S. Pat. No. 7,651,446, U.S. Pat. No. 7,662,076, U.S. Pat. No. 7,731,637, U.S. Pat. No. D598,965, and U.S. Patent Publication No. 2007/0259760, as well as exercise devices sold under the trade names “AB CIRCLE PRO” and “AB CIRCLE MINI.”
  • SUMMARY OF THE INVENTION
  • In one aspect of the present disclosure, an exercise device is provided, and may be used for exercising abdominal or other muscle groups. The abdominal exercise device may include a support structure, a track that is movable relative to the support structure, a body support that moves along a length of the track, and an adjustable base secured to the support structure.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, a track is rotatable relative to a support structure.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, a track is elongate.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, a track is arcuate.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, a track is inclined relative to the support structure.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, the body support is slide ably disposed relative to the track.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, the exercise device includes a first and second foot support attached to the adjustable base.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, at least one of the foot supports is vertically adjustable.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, the exercise device has a Sip Factor configuration selectable between 1.0 and 0.25.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, the exercise device has a Sip Factor configuration selectable between 0.98 and 0.86.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, the exercise device has a Sip Factor configuration selectable between 1.0 and 0.98.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, the exercise device has a Sip Factor configuration selectable between 0.86 and 0.5.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, the exercise device includes a manual actuator secured to at least one of the first or second foot support.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, the manual actuator is configured to vertically adjust at least one of the first or second foot support.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, the exercise device includes a manual actuator, a hydraulic actuator, a pneumatic actuator, or an electrical actuator secured to the adjustable base.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, an exercise device includes one or more locking mechanisms.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, a locking mechanism selectively secures a track at a fixed position or orientation relative to a support structure.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, a locking mechanism has an engaged state and a disengaged state.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, a locking mechanism in an engaged state restricts rotational or other movement of a track relative to a support structure, and in a disengaged state allows the track to rotate or otherwise move relative to the support structure.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, a locking mechanism includes a pin for securing the track relative to the support structure.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, a track of an exercise device has at least two configurations.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, a track in a first configuration is linked to a body support that, when moving, changes its position relative to a support structure and the track.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, a track in a second configuration is linked to a body support that, when moving, changes its position relative to a support structure but is optionally at a constant position relative to the track.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, a track in a second configuration is linked to a body support that, when moved during exercise by a user, can be either purely rotational relative to the support structure or a combination of rotational and translational movement relative to the support structure.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, a body support member has three available motions, including a purely translational motion, a purely rotational motion, and a motion that combines the translational and rotational motions.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, an exercise device includes a means for selectively moving a track relative to a support structure.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, a means for selectively moving a track relative to a support structure includes any combination of one or more locking mechanisms, handles, or a body support.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, a locking mechanism is disposed at an end of a track.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, a locking mechanism is proximate a mount at which a track is connected to a support structure.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, an axis of rotation of a track is about perpendicular to the track.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, an axis of rotation of a track is about tangential to an arc defined by rotation of the track about the axis of rotation.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, a method for exercising may include moving a body support member along a track.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, sliding a body support member along a track may include sliding a body support member so as to translate the body support member relative to the track and a support structure supporting the track.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, a method for exercising may include rotating a track relative to a support structure.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, a method for exercising may include rotating a track relative to a support structure while also sliding a body support member along a length of the track.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, a method for changing a configuration of an abdominal exercise machine may include selectively engaging or disengaging a locking mechanism.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, engaging a locking mechanism may include, or result in, restricting rotational movement of a track relative to a support structure.
  • In accordance with an aspect that may be combined with anyone or more other aspects herein, disengaging a locking mechanism may include, or result in, releasing a track from a locked position so as to enable the track to rotate relative to a support structure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a side view of an exercise device in a low Sip Factor configuration according to one embodiment of the present disclosure;
  • FIG. 1B is a side view of an exercise device in an elevated Sip Factor configuration according to one embodiment of the present disclosure;
  • FIG. 2A is a perspective view of the exercise device of FIG. 1A in a low Sip Factor configuration;
  • FIG. 2B is a perspective view of the exercise device of FIG. 1B in an elevated Sip Factor configuration;
  • FIG. 3A is a partial perspective view of the exercise device of FIGS. 1A through 2B, and illustrates a locking mechanism in an engaged state;
  • FIG. 3B is a partial perspective view of the exercise device of FIGS. 1A through 2B, and illustrates a locking mechanism in a disengaged state;
  • FIG. 4 is an overhead view of the exercise device of FIG. 1A, the exercise device having a rotatable track;
  • FIGS. 5A and 5B are perspective views of the exercise device of FIG. 1A, in use by a user to rotate a track and translate a body support member along the track;
  • FIG. 6 illustrates an exercise device according to one embodiment of the present disclosure, the exercise device providing at least three motions;
  • FIG. 7 illustrates an exercise device according to another embodiment of the present disclosure, the exercise device having a rotatable track; and
  • FIG. 8 illustrates an exercise device having a track and a slideable body support member, the body track being capable of translating and rotating;
  • FIG. 9 illustrates a partially exploded perspective view of an adjustable orientation support;
  • FIG. 10 illustrates the exercise device of FIG. 1A in a low position and further illustrates the Sip factor calculation.
  • DETAILED DESCRIPTION
  • As used in the present specification, and the appended claims, the term “Sip Factor” shall be interpreted broadly as referring to the cosine of the angular of the track assembly of a sliding core training apparatus relative to the surface it is on. The Sip Factor is determined from the point that a line defined by the two end points of the track intersects a datum plane formed by the points of contact between the base of the sliding core training apparatus and the surface it is disposed on. In the event of a line defined by the two end points of the track that is parallel with the datum plane formed by the points of contact between the base of the sliding core training apparatus and the surface it is disposed on, the Sip Factor shall be 1.
  • In the embodiment shown in FIGS. 1A and 1B, an exercise device 100 having an adjustable Sip Factor includes a support structure 102 and a track 104 secured relative to the support structure 102. The exercise device 100 also includes a body support member 106 configured to support a body of a user and selectively move relative to the track 104. The support structure 102, track 104, and body support member 106 may have number of suitable configurations, shapes, components, or other features, or combinations of the foregoing. For instance, according to one aspect, the body support member 106 may be a sled adapted to operate as a knee pad or leg support.
  • The support structure 102 may have any number of suitable configurations. In the illustrated embodiment, for instance, the support structure 102 is configured to support the track 104 and maintain the track 104 in an elevated position relative to a surface on which the support structure 102 rests. For instance, the support structure 102 may be placed on a floor or ground surface and cause the track 104 to remain elevated relative to the floor.
  • The distance between the track 104 and the surface on which the support structure 102 rests varies across a length of the track 104. For instance, in FIGS. 1A and 1B, the track 104 may have first and second ends 108, 110. The first end 108 may be elevated a greater distance relative to the second end, or vice versa. In the illustrated embodiment, for instance, a line between the first and second ends 108, 110 may be angled relative to the surface on which the support structure 102 rests. The amount of incline may vary. By way of example, in one embodiment, the incline is between about ten degrees and about thirty degrees. In other embodiments, however, the incline may be less than about ten degrees or more than about thirty degrees. Indeed, in other embodiments, the first and second ends 108, 110 may be elevated approximately the same distance relative to the surface on which the support structure 102 rests, such that the incline of the track 104 may be between about zero and about ten degrees. In other embodiments, the incline of the track 104 may be increased to be, for instance, between about thirty and about sixty degrees. The incline may also be selectively adjustable by the user.
  • The track 104 is further illustrated as having a curved shape that is upwardly concave. The type and degree of the curve in the track 104 may be varied. For instance the track 104 may be arcuate and have a circular, parabolic, ellipsoid, or any other curved shape, although in other embodiments, the track 104 may be straight, or have an upward convex curved configuration. In some embodiments, the track 104 may have any combination of the foregoing. For instance, the track 104 may have various curved or linear profiles along its length. Thus, the curve of the track 104 may transition between curves of different shapes or dimensions, as well as between straight, convex, or concave portions, or any combination of the foregoing.
  • The curved or inclined orientation of the track 104 can provide the user with the ability to exercise abdominal muscles in a manner similar to crunches or sit-ups, but in manner that preserves proper form and reduces the risk of injury. Furthermore, in a traditional sit-up, the user can “bounce” off the ground, and also has his or her hands behind his or her head. The “bounce” effect can use momentum to complete the sit-up, and the hands can be used to pull the head forward. As a result, momentum and muscles other than the abdominal muscles may be used in completing the sit-up. With the exercise device 100, the curved and/or inclined track 104 can reduce or eliminate the “bounce” effect and require the user to use the abdominal muscles, thereby more effectively working the core muscle region.
  • The track 104 may be elevated from a surface by the support structure 102 according to any number of different aspects. In the embodiment illustrated in FIGS. 1A and 1B, for instance, the support structure 102 includes a base 112 and an upright support 114. The track 104 can be supported or elevated using the base 112 and/or the upright support 114. In particular, in accordance with at least one aspect, the base 112 is configured to stabilize the exercise device 100. In the illustrated embodiment, stability is provided as the base 112 includes opposing forward and rear foot portions 116, 118, along with a main support member 120 between the forward foot portion 116 and the rear foot portion 118. The forward and rear foot portions 116, 118 may extend laterally outward (see FIGS. 2A and 2B) so as to increase the lateral footprint of the exercise device 100. As a result, the forces placed on the exercise device 100, including those associated with the weight of the exercise device 100, the weight of the user using the exercise device 100, and the forces exerted by the user during use of the exercise device 100, can be spread over a larger area, thereby stabilizing the exercise device 100 and the user, and reducing the risk that the user 100 will inadvertently cause the exercise device 100 to tip over.
  • As illustrated in FIGS. 1A and 1B, the Sip Factor is effected by the configuration and height of the rear foot support 118 relative to the forward foot support 116. As shown, the forward foot 116 is secured to the main support member 120 via an adjustable orientation support 117. While an adjustable Sip Factor can be achieved by securing both the rear foot support 118 and the forward foot support 116 to the main support member 120 or other portions of the exercise device 100 via an adjustable orientation support 117, for ease of explanation only, the present system will be described as having only a single front orientation support 117.
  • As illustrated in FIGS. 1A and 1B, the Sip Factor of the exercise device (100) is selectively modified by the adjustable orientation support 117. Specifically, by varying the height of the connection points of the rear foot 118 and the forward foot 116 relative to the surface the exercise device is disposed on, the angular orientation of the main support member 120 and the track 104 are modified, thereby modifying the Sip Factor.
  • As detailed in FIG. 9, the adjustable orientation support 117 includes an adjustment housing 900 secured on a first end to the forward foot 116. The second end of the adjustment housing 900 is slideably attached to a sliding member 910 defining a plurality of height selection orifices 912. As shown, a first end of the mating sliding member 910 is slideably attached to the adjustment housing 900 and a second end of the sliding member is secured to the main support member 120. When a desired Sip Factor is achieved via translation of the sliding member 910 relative to the adjustment housing 900, the pin reception orifice 902 defined by the adjustment housing 900 is aligned with the nearest height selection orifice 912 in the sliding member 910. When aligned, the pin 920 can be inserted through the aligned orifices to fix the Sip Factor. Optionally, the pin 920 is biased. For instance, the pin 920 may include spring loaded bearings. The bearings may be compressible by forcing the pin 920 through one or both of the orifices 902, 912. The biased bearings may reduce the risk that the pin 920 becomes inadvertently displaced from the apertures 902, 912, but may be overcome by exerting a sufficient force on the pin 902.
  • FIG. 10 illustrates how modification of the adjustable orientation support 117 varies the Sip Factor. As illustrated in FIG. 10, the Sip Factor is the cosine of the angular orientation S of the track assembly of the sliding core training apparatus relative to the surface it is on. Particularly, as illustrated, the Sip Factor is determined from the point V that a line 1010 defined by the two end points of the track 108, 110 intersects a datum plane 1000 formed by the points of contact between the base of the sliding core training apparatus 116, 118 and the surface it is disposed on. Actuation and extension of the adjustable orientation support 117 will incline the base 112, the main support member 120, and the track 104. Consequently, the angle S will increase and the Sip Factor will decrease.
  • The amount of incline and the resulting Sip Factor may vary. By way of example, in one embodiment, the adjustable range of incline that may be varied by varying the adjustable orientation support 117 is between about ten degrees and about thirty degrees, resulting in a Sip Factors ranging between 0.98 and 0.86. In other embodiments, however, the incline may be varied to between less than about ten degrees or more than about thirty degrees. Indeed, in other embodiments, the first and second ends 108, 110 may be elevated approximately the same distance relative to the surface on which the support structure 102 rests, such that the incline of the track 104 may be between about zero and about ten degrees, resulting in a Sip Factor of between 1 and 0.98. In other embodiments, the incline of the track 104 may be increased to be, for instance, between about thirty and about sixty degrees, resulting in a Sip Factor range of between 0.86 and 0.5. In yet another embodiment, the Sip Factor can be selectively modified between 1.0 and 0.25.
  • Returning again to FIGS. 1A and 1B, the main support member 120 is also curved, and upwardly convex. It should be appreciated that the curve of the main support member 120 is merely exemplary. In other embodiments, the main support member 120 may, for instance, be substantially straight. In at least one aspect, a curved main support member 120 may facilitate elevating the track 102 relative to a floor or other surface on which the base 112 of the support structure 102 is placed.
  • The track 104 is optionally supported directly or indirectly by the main support member 120. For instance, the convex, lower side of the track 104 may rest directly on the main support member 120. In other embodiments, however, the track 104 may be displaced or elevated relative to the main support member 120. In FIGS. 1A and 1B, for instance, a track support 122 is attached to the main support member 120 and extends therefrom. The track 104 may then be connected at or near a distal end of the track support 122. The track 104 may thus be supported by the track support 122 in a manner that causes the track 104 to remain at a position that is offset or displaced from the base 112, including the main support member 120. For instance, the track 104 may be supported such that the track 104 is generally aligned with the direction of the main support member 120, although this is not necessarily the case, or may change during use of the exercise device 100.
  • The track support 122 may have any suitable construction, shape, or configuration. For instance, while a single track support 122 is illustrated as extending from the base 112, this is merely exemplary. In other embodiments, multiple track supports 122 may extend from the base 112, or one or more track supports 122 may support the track 104 without being attached to the base 112. For instance, the track support 122 may directly engage a floor or other surface, be cantilevered from the upright support 114, or otherwise support the track 104. The position and orientation of the track support 122 may also be varied. By way of illustration, the track support 122 in FIGS. 1A and 1B is illustrated at an incline relative to vertical, and generally perpendicular to the incline of the track 104. In other embodiments, the track support 122 may be at an acute or obtuse angle relative to the track 104, may have a substantially vertical orientation, or may be otherwise configured.
  • Furthermore, in FIGS. 1A and 1B, the track support 122 is shown as being optionally attached to the track 104 at a location that is approximately centered along the arcuate length of the track 104. In other embodiments, the track support 104 may be offset at any distance from a center of the track 104. For instance, the track support may be positioned at or near the first and/or second end 108, 110 of the track 102, or anywhere in between.
  • Optionally, the track 104 is connected or otherwise supported to the support structure 102 at multiple locations. By way of example, in FIGS. 1A and 1B, the support structure 102 includes an upright support 114 extending at least partially in a vertical direction relative to the base 112. The upright support 114 may include, for instance, an elevation structure 124 and a set of handles 126. The elevation structure 124 can be connected to the base 112, and extend at least partially in a vertical direction. The elevation structure 124 may be substantially vertical, may be inclined, may be curved, or have another structure, or any combination of the foregoing. In FIGS. 1A and 1B, for instance, the elevation structure 124 is curved and inclined such that the handles 126 extend from the base 112 in both vertical and horizontal directions.
  • The handles 126 are optionally connected to the elevation structure 124 of the upright support 114, and can include grips 128 for a user to grasp while using the exercise device 100.
  • The handles 126 form an upper body support that may be fixed relative to the track 104, although this need not be the case. By fixing the handles 126 relative to the track 104, a user is able to stabilize his or her upper body and focus on exercising the abdominal muscles.
  • The position of the handles 126 may be permanent or adjustable. For instance, in FIGS. 1A and 1B, the handles 126 are connected to an adjustment member 127 that can be used to selectively adjust the height of the handles 126. In FIGS. 1A and 1B, the adjustment member 127 is coupled to the elevation structure 124, and may include a knob or other member that can be rotated to selectively disengage the handles 126, although a pop pin, clamp, or other adjustment mechanism may also be used. Upon disengaging the adjustment member 127, the handles 126 can slide or otherwise move vertically upward or downward. The user may then reengage the adjustment mechanism 127 to secure the handles 126 at a desired position. In one embodiment, the handles 126 slide within channel braces, although in other embodiments, telescoping, gearing or other mechanisms may be used within the scope of the present disclosure.
  • The handles 126 are optionally pivotally connected to the elevation member 124. For instance, the adjustment member 127 may additionally or alternatively be used to selectively pivot relative to the elevation member 124. When the adjustment member 127 is disengaged, the handles 126 may be permitted to pivot, whereas the engaging the adjustment member 127 may fix the handles 126 at a desired orientation relative to the elevation structure 124.
  • Allowing the handles 126 to pivot between different positions allows a user to perform multiple types of exercises or to isolate a particular muscle or muscle group. For instance, in FIGS. 1A and 1B, the handles 126 are oriented such that grips 128 are positioned above the first end 108 of the track 104. If the handles 126 are rotated such that the grips 128 are positioned nearer the center of the track 104, the user may be allowed to lean backward, thereby targeting a wholly different set of muscles. If the handles 126 are rotated forward such that the grips 128 are positioned will in advance of the first end 108 of the track 104, the user may lean forward, thereby targeting still another muscle group.
  • Any suitable mechanism may be used to allow the handles 126 to pivot relative to the elevation member 124. For instance, a pivot pin 129 may extend through the handles 126 and the elevation member 124. When the adjustment member 127 is disengaged, the handles 126 can rotate freely around the pivot pin 129. Hinges, linkages or other structures that allow the handles 126 to rotate relative to the elevation member 124 may also be used. Optionally, the handles 126 may pivot during use of the exercise device 100, thereby facilitating targeting of multiple muscle groups.
  • As illustrated in FIGS. 1A and 1B, the track 104 may be at least indirectly connected to the upright support 114. For instance, in at least one aspect, a locking mechanism 130 may selectively secure the track 104 relative to the upright support 114. In particular, in FIGS. 1A and 1B, the locking mechanism 130 connects the first end 108 of the track 104 to the elevation structure 124 of the upright support 114. As discussed in greater detail herein, the locking mechanism 130 may be changeable between at least first and second states. For instance, the locking mechanism 130 may have a first, engaged state in which the track 104 is selectively secured at a fixed position relative to the vertical support 114, and a second, disengaged state in which the track 104 is released and allowed to rotate or otherwise move relative to the vertical support 114.
  • While FIGS. 1A and 1B illustrates the locking mechanism 114 securing the track 104 to the elevation structure 124 of the upright support 114, it should be appreciated that this is merely one embodiment. In other embodiments, for instance, the locking mechanism 114 may selectively lock or otherwise connect the track 104 to the handles 126, the cross member 112, the forward or rear foot portions 116, 118, the track support 122, or to any other suitable member or component. Inasmuch as release of the locking mechanism 130 can allow movement of the track relative to the support structure, the locking mechanism 130 is one example of a means for selectively moving the track relative to the support structure 102.
  • As also illustrated in FIGS. 1A and 1B, the body support member 106 may be slide ably disposed relative to the track 104. In accordance with at least one aspect, the body support member 106 is configured to receive a portion of a user's body, and allow the user's body to move relative to portions of the exercise device 100. The user may grasp the handles 126 of the support structure 102 so as to gain leverage to facilitate movement of the user's body and the body support member 106, or may use the device without grasping the handles 126. According to at least some embodiments, the user may kneel or sit on the body support member 106, may place a leg or arm on the body support member 106, or otherwise place a portion of the user's body on the body support member 106 in a manner that facilitates exercise.
  • According to one aspect, the user may kneel on the body support member 106, such that the user faces the upright support 114. The body support member 106 may include a seat portion 132 on which the user places his or her knees or other portion of the body. In FIGS. 1A and 1B, the seat portion 132 is attached to a carriage 134 that slides relative to the track 104. For instance, the carriage 134 may include a slider 136 that connects to the track 104 and facilitates movement along the track 104. The slider 136 may roll or slide relative to the track 104. For instance, the slider 136 may include wheels, ball bearings, roller bearings, a rack and pinion, or other elements that roll along an upper, lower, interior, or exterior surface of the track 104. Additionally, or alternatively, the slider 136 may include linkage, a channel bracket, a belt clamp, clutching mechanism, or other sliding structure.
  • The track 104 can be made of any of a number of different materials, including metals, plastics, composites, organic materials, or other materials or combinations of the foregoing. According to some aspects, the track may have a coating, lubricant, or some other material that facilitates sliding of the carriage 134 relative to the track 104. For instance, a coating having a relatively low coefficient of friction can be used to reduce the friction between the slider 136 and the track 104, to provide a more fluid sliding motion to the body support member 106.
  • The shape and/or orientation of the track 104 may also provide various benefits to the user. For instance, where the track 104 is inclined, the body support member 106 may change elevation along the length of the track 104. As the body support member 106 increases in elevation, the body of the user can counteract gravitational forces, thereby contracting the abdominal muscles. The degree to which the abdominal muscles are contracted, or the isolation of which muscles are contracted, can also be varied based on the position of the handles 126, such that various intensity levels or exercises are possible based on whether the user is upright, leaning forward, or leaning backward. The body support member 106 can be configured to slide along all or a portion of the length of the track 104. In one aspect, the track 104 may include or have attached thereto one or more stops 138. The stops 138 can be used to engage the carriage 134 or slider 136 and restrict movement of the body support member 106. In FIGS. 1A and 1B, for instance, stops 138 are positioned near the first and second ends 108. 110 of the track 104. More particularly, the body support member 106 may slide relative to the track 104 and towards the second end 110 of the track 104. As the carriage 134 engages the stop 138, the body support member 106 may be restricted from further movement towards the second end 110 of the track 104, thereby reducing the chance that the body support member 106 disengages the track 104 during exercise. Similarly, as the body support member 106 slides relative to the track 104 and towards the first end 108 of the track 104, the slider 136 may engage the stops 138. The stops 138 may be removable or excluded to allow the body support member 106 to have substantially a full range of motion along the track 104. It is also not necessary that stops 138 be included at the first and second ends 108, 110 of the track 104. For instance, in some embodiments, no stop may be included as the handles 126 and/or the elevation structure 124 of the upright support 114 may restrict movement of the body support member 106.
  • Turning now to FIGS. 2A and 2B, the exercise device 100 of FIGS. 1A and 1B is illustrated in a perspective view, and illustrates other exemplary aspects of an exercise device according to the present disclosure. For instance, in the illustrated embodiment, the track 104 is illustrated as being elevated above the track support 122. As shown in FIGS. 2A and 2B, the track support 122 is connected to the main support member 120, and the main support member 120 is in turn connected to and/or supported by two foot portions 116, 118. The forward and rear foot portions 116, 118 are, in the illustrated embodiment, connected to the main support member 120 using mechanical fasteners such as bolts, screws, rivets, and the like, although in other embodiments other mechanisms may be used. For instance, the foot portions 116, 118 may be welded to the main support member 120, or may be integrally formed as a single unit using a casting, molding, machining, or other formation process. Further, while the foot portions 116, 118 are illustrated as separate, in some embodiments, a ring or other mechanism may fully surround the main support member 120.
  • The body support member 106 is also illustrated as including a seat portion 132 upon which a user may rest a portion of his or her body. In at least one aspect, the seat portion 132 is adapted to be knelt or stood upon and to allow a user to comfortably rest his or her knees, feet, or legs on the top surface of the seat portion 132. The seat portion 132 may be contoured to comfortably accommodate a user's leg. For instance, in FIGS. 2A and 2B, the seat portion 132 includes two indentions 144 configured to generally conform to the contours of a leg.
  • When a user has placed his or her body on the seat portion 132, the user may then move the seat portion 132 back and forth along the track 140. To facilitate such movement, the track 104 includes two guides 140 which are engaged by the slider 136. The two guides 140 of FIGS. 2A and 2B have a curved, arcuate shape generally corresponding to and/or at least partially defining the curved, arcuate shape of the track 104. The guides 140 may also define the path along which the body support member 106 travels. The slider 136 may engage the guides 140 and slide relative thereto, thereby directing the slider 136 and the carriage 134 along the path defined by the guides 140 and the track 104. While the illustrated embodiment shows a set of two guides 140 that help to define a path of travel along at least a portion of the length of the track 104, this is exemplary and in other embodiments there may be a single guide or more than two guides.
  • In FIGS. 2A and 2B, a mount 142 is connected to the guides 140. The mount 142 may be used for any number of purposes. For instance, the mount 142 may be used to maintain the track 104 elevated relative to the base 112 of the support structure 102. Optionally, the mount 142 is positioned at least partially between the guides 140. For instance, the mount 142 may be formed separate from the guides 140 and directly or indirectly secured to the guides 140 in any suitable manner such as with mechanical fasteners, welding, brazing, or other mechanisms, or combinations of the foregoing. In another aspect, the mount 142 may be integrally formed with the guides 140 and/or the track 104.
  • The mount 142 can be used to connect the track 104 to the track support 122. The manner of connection may also be such that the track 104 is permitted to selectively move relative to the track support 122 and/or the base 112 of the support structure 102. For instance, in at least one aspect, the mount 142 may be pivotally connected to the track support 122. Consequently, the base 112 may remain in a relatively fixed position while the track 104 can be selectively rotated or otherwise moved relative to the base 112.
  • As discussed herein, movement of the track 104 relative to the base 112 may be selective. For instance, in at least one embodiment, a user may cause the body support member 106 to travel along a length of the track 104. Using his or her core muscles, the user may cause the track 104 to maintain in a relatively stationary position relative to the base 112. In some embodiments, the user maintains the track 104 stationary relative to the base 112. In other embodiments, a locking mechanism 130 may be used to at least partially maintain the track 104 stationary relative to the base 112.
  • FIGS. 3A and 3B illustrate the locking mechanism 130 of FIGS. 1A through 2B in greater detail. In particular, FIG. 3A illustrates the locking mechanism 130 in a first state, in which at least the first end 108 of the track 104 is substantially locked at a fixed position relative to the elevation structure 124 of the support structure 102. FIG. 3B illustrates the locking mechanism 130 in a second state, in which the first end 108 of the track 104 is released and may be selectively moved relative to the elevation structure 124 of the support structure 102.
  • More particularly, FIG. 3A illustrates a portion of the exercise device illustrated in FIGS. 1A through 2B, and specifically illustrates the locking mechanism 130. In the illustrated embodiment, the locking mechanism 130 is proximate the first end 108 of the track 104, although this is merely exemplary. In other embodiments, for instance, the locking mechanism 130 may be positioned at a second end of the track 104, at a position between the ends of the track 104, or at any suitable location that allows the track 104 to be selectively placed in one or more states.
  • In FIG. 3A, the locking mechanism 130 includes a containment plate 146 that cooperates with a pin 148. The containment plate 146 is, in this embodiment, secured between the two guides 140 of the track 140, and defines a first aperture 150. The first support 124 of the support structure 102 includes a second aperture 152, and the first and second apertures 150, 152 are aligned in such a manner that the pin 148, when in a first position, can be positioned within both the first and second apertures 150, 152, and thereby simultaneously engage both the containment plate 146 and the first support 124. The first and second apertures 150, 152 thus define receptors such that in the first position, the pin 148 can thereby restrict movement of the first end 108 of the track 104 relative to the first support 124. For instance, the pin 148 can be used to restrict both rotational and translational motion of the track 104 relative to the first support 124.
  • The pin 148 may be movable between different positions. Accordingly, in at least some aspects, the pin 148 has a second position, which may also correspond to a second state of the locking mechanism 130. For instance, in a second state, the locking mechanism 130 may allow the track 104 to rotate, translate, or otherwise move relative to the support structure 102. FIG. 3B illustrates an example of such a second state of the locking mechanism 130. In the illustrated second state, the pin 148 has been retracted from the first and second apertures 150, 152. As such, the pin 148 has ceased simultaneously engaging both the track 104 and the first support 124, and thus been released from a motion-restrictive position.
  • In one embodiment, the pin 148 need not be retracted from both the first and second apertures 150, 152 to allow the locking mechanism 130 to transition from a first state to a second state. For instance, the pin 148 may be removed solely from the second aperture 152 to release the track 104 such that it is free to move relative to the support structure 102. Optionally, the pin 148 is biased. For instance, the pin 148 may included spring loaded bearings. The bearings may be compressible by forcing the pin 148 through one or both of the apertures 150, 152. The biased bearings may reduce the risk that the pin 148 becomes inadvertently displaced from the apertures 150, 152, but may be overcome by exerting a sufficient force on the pin 148.
  • As noted herein, when the locking mechanism 130 transitions between first and second states, the track 104 may also transition from a first, engaged state, to a second, disengaged state. In the engaged state, the track 104 optionally has a substantially fixed position relative to at least some portions of the support structure 102. In the disengaged state, the track 104 may be released to freely move relative to such same portions of the support structure 102.
  • FIG. 4 illustrates the exercise device 100 when the track 104 and locking mechanism 130 are in their respective disengaged states. In particular, in at least some aspects, the track 104 may be secured to the support structure 102 using a pivotal connection. More particularly, in the illustrated embodiment, the track 104 includes a mount 142 attached thereto. The mount 142 may also be attached to a track support 122 (see FIGS. 1A through 2B). The mount 142 may connect to the track support 122 about a rotational axis that is optionally about perpendicular to the track 104. A user of the exercise device 100 may twist his or her lower body from side-to-side while using the exercise device 100 to not only exercise his or her left or right oblique muscles, but to also move the track 104 from side to side, as shown in FIG. 4. The user may, for instance, exert a force on the body support member 106 and/or the handles 126 to cause the track 104 to rotate from side-to-side, and may do so in a manner that alternates between exercising left and right oblique muscles. The user may also slide the body support member 106 along the track 104. Thus, the user can exercise oblique muscles while also performing a crunch-like exercise and exercising multiple different abdominal muscles. As the user may use the handles 126 and/or the body support member 106 to provide leverage to selectively move the track, the handles 126 and the body support member 106 are each one example of a means for selectively moving the track 104 relative to the support structure 102.
  • While the locking mechanism 130 is in a disengaged state, a user can rotate the track 104 to a particular angular orientation relative to the support structure 102. Additionally, the user may then use his or her abdominal muscles to substantially maintain the track 104 at the particular angular orientation, while continuing to slide the body support member 106 along the track 104. For instance, FIGS. 5A and 5B illustrate a user performing an abdominal exercise on the exercise device 100, while the track 104 is in a disengaged state relative to the support 102.
  • As shown in FIG. 5A, a user may use his or her hands to grasp the handles 126 of the exercise device 100. Using his or her oblique muscles, the user may rotate the track 104 to the position illustrated in FIG. 5A. For instance, the track 104 may rotate about an axis of rotation that is defined by the mount 142. In the illustrated embodiment, the track 104 is rotated to an angular position at which the track is about perpendicular to the cross-support 120 of the support structure 102, although the track 104 may be positioned at any number of other angular positions. Particularly, by modifying the Sip Factor, a user may vary the resistance experienced and modify their workout. Once the desired Sip Factor is selected, a user may initiate any number of exercises.
  • With the user's knees positioned on the body support member 106, the user may pull on the handles 126 and use his or her abdominal muscles to slide the body support member 104 along all or a portion of the length of the track 104. For instance, in FIGS. 5A and 5B illustrate the exercise device 100 having the track 104 at approximately the same orientation relative at the support structure 102; however, in FIG. 5B, the body support member 106 slides along the track 104 from a position near the second end 110 of the track (see FIG. 5A) to a position that is more proximate the first end 108 of the track 104.
  • Using the exercise device 100 described herein, the user can exercise each of the core muscle groups, and can also isolate particular core muscle groups. For instance, in accordance with one aspect, the user may isolate his or her oblique muscles by rotating the track 104 relative to the support structure 102 and maintaining the body support member 106 in a fixed position relative to the track 104, such that the body support member 106 also moves relative to the support structure 102. In another aspect, the user may isolate certain abdominal muscles by maintaining the track 104 at a fixed position relative to the support structure 102, and moving the body support member 106 relative to the track 104 and the support structure 102. Indeed, inasmuch as the track 104 may rotate relative to the support structure 102, and the body support member 106 may slide relative to the track 104, the exercise device 100 provides at least three exercise motions, namely: (a) a translational motion; (b) a rotational motion; and (c) a combined motion. In the combined motion, the user may simultaneously use both the translational and rotational motions provided by the exercise device 100.
  • FIG. 6 schematically illustrates an exercise device 200, along with some of the various exercise motions the user may perform using the exercise device 200. In the illustrated embodiment, the track 204 and the body support member 206 may be at a first position 201 a. If the track 204 is allowed to freely rotate an axis of rotation defined by the mount 242, the track 204 and body support member 206 may freely move between positions 201 a, 201 b, and 201 c. For instance, the track 204 and body support member 206 may be independently movable relative to each other and the support structure, such that a user may maintain the body support member 206 at a relatively fixed location along the length of the track 204, while the track 204 is rotated and moved from side-to-side between positions 201 b and 201 c. In so doing, the body support member 206 may follow a curved, arcuate path A-A. The arcuate path A-A may have a radius of curvature about equal to the distance between the body support member 206 and the mount 242. Thus, in at least one aspect, the track 204 and body support member 206 can rotate relative to a support structure (see FIGS. 5A and 5B), while the body support member 206 remains about stationary relative to the track 204. Optionally, the axis of rotation of the track 204 is oriented at an angle that is substantially tangential relative to the arc A-A defined by rotation of the track about the axis of rotation.
  • As also discussed previously, rather than maintaining the body support member 206 at a fixed position relative to the track 204, the body support member 206 may be allowed to slide or otherwise move along all or a portion of the length of the track 204. For instance, in FIG. 6, the track 204 may be at position 201 a. While the track 204 remains substantially fixed at position 201 a, the body support member 204 may move along the track 204 by following the path B-B. While the path B-B is illustrated as being substantially linear, one will appreciate in view of the disclosure herein, that the path may have other forms. For instance, the track 204 may be arcuate, such that the path B-B may be curved, arcuate, or take any number of other shapes and forms.
  • Path A-A and path B-B are merely illustrative of some example paths that a body support member 206 may take. For instance, such paths may illustrate movement of the body support member 206 relative to a structure supporting the track 204. In accordance with some aspects, paths A-A and B-B may also represent example paths facilitated by maintaining at least one element of the exercise device 200 at substantially constant position relative to another element. In particular, along path A-A, the body support member 206 may remain at a substantially constant position relative to the track 204. Along path B-B, the track 204 may remain at a substantially constant position relative to a support structure. Such constant positions may be maintained by the user or the exercise device. For instance, by using his or her core muscles, the user may maintain the track 204 at a constant position relative to the support structure, and/or maintain the body support member 206 at a constant position relative to the track 204. Additionally, or alternatively, the exercise device may include a locking mechanism or other structure that can fix the track 204 to a support structure, or can be used to lock the body support member 206 at a particular position along the length of the track 204.
  • In other aspects, the body support member 206 may follow still additional paths, thereby allowing a user to isolate different muscles, or exercise abdominal muscles at different intensities. More particularly, by moving the body support member 206 relative to the track 204, and by moving the track 204 relative to a support structure, the actual path of the body support member 206 may vary between an infinite number of possibilities. FIG. 6 illustrates two such options as path C-C and path D-D. In particular, paths C-C and D-D are about mirror images of each other, and illustrate example paths that the body support member 206 may follow if the body support member 206 translates along the track 204 and the track 204 is rotated about twenty-five degrees about an axis of rotation defined at least partially by the mount 242. The paths C-C and D-D are therefore obtained by combining the rotational movement of the track 204 (e.g., path A-A) with the translational movement of the body support member 206 (e.g., path B-B).
  • As the user uses the exercise device 200, a user can perform abdominal exercises similar to sit-ups or crunches by positioning his or her body on the body support member 206 and using the abdominal muscles. More particularly, the abdominal muscles can be used to accelerate the body support member 206 from the second end 210 of the track 204 towards the first end 208 of the track, while the user's knees are on the body support member 208. While paths A-A, B-B, CC, and D-D are illustrated as extending in a single direction, a full repetition is completed by returning the body support member 206 to a resting position. While the return path may be the same as the initial path, the return path may also be varied.
  • While the positions 201 b and 201 c of the track 204 are illustrated in FIG. 6 as being angularly offset from position 201 a by approximately twenty-five degrees, it should be appreciated that this is merely to provide one example of a manner in which a user may use the exercise devices described. The track 204 may, for instance, be rotated any suitable amount, and such rotation may be greater or less than twenty-five degrees. For instance, a user may rotate the track 204 about an axis of rotation by any amount between zero and ninety degrees, although in some embodiments, the track 204 may rotate a full three hundred sixty degrees. Furthermore the body support member 206 may also move any amount along the length of the track 204.
  • In embodiments in which the track 204 can rotate relative to a corresponding support structure (e.g., about an axis of rotation passing through the mount 242), the track 204 may be coupled to the support structure using a pivotal connection or other rotational coupling. In some embodiments, such a connection may allow the track 204 to rotate about an axis that is about perpendicular to the track 204. In FIG. 6, the axis of rotation may extend through the mount 242, which is, in this embodiment, positioned along the track 204 and between the opposing first and second ends 208, 210 of the track 204. For instance, the mount 242 and/or the axis of rotation may be about centered relative to the length of the track 204, although the location of the mount 242 or the axis of rotation may be varied.
  • For instance, FIG. 7 schematically illustrates an exercise device 300 having a track 304 that can rotate about an axis of rotation 341 that is at one end of the track 304. In this embodiment, the track 304 has opposing first and second ends 308, 310, and the axis of rotation 341 is proximate the second end 310 of the track 304. For instance, the first end 308 of the track 304 may be positioned near a support structure that allows a user to balance himself or herself (e.g., vertical support 114 of FIG. 1A). A mount 342 or other structure may provide an axis or rotation 341 about the opposing second end 310 of the track 304. Consequently, the user may use his or her core muscles, arms, and/or legs to cause the track 304 to rotate about a point near the second end 310 of the track 304, thereby also rotating the body support member 306.
  • In some embodiments, the mount 342 may be movable relative to the track 304. For instance, a set screw or other mechanism may be used to selectively secure and release the mount 342 such that the mount 342 can move relative to the track 304. A user may, therefore vary the position of the mount 342 relative to the track 304. As a result, a user can change the position about which the track 304 rotates, and may also be able to change other parameters, such as the slope of the track 304.
  • Even in embodiments in which the mount 342 is movable along the length of the track 304, the track 304 may also be locked to selectively allow or restrict rotation. For instance, a locking mechanism may be positioned at the first end 308 of the track 304, and have various locking structures on a support structure to adjust for the various positions of the first end 308 relative to the support structure. In other embodiments, the locking mechanism may be placed at the second end 310 of the track. In still other embodiments, a locking mechanism may be positioned at the mount 342. For instance, if a locking mechanism is placed in an engaged state, the mount 342 may be restricted from rotating, thereby also restricting rotation of the track 304.
  • FIG. 8 illustrates various features of an exercise device 400 in which a body support member 406 is connected to a track 404. The body support member 406 may be configured to slide along all or a portion of the length of the track 404. For instance, in FIG. 8, the track is configured as a rail and the body support member 406 may slide along the rail using rollers, bearings, linkages, and the like.
  • In some embodiments, the track 404 may also be configured to move in one or more manners. For instance, in FIG. 8, the support structure may define or include a guide 443 along which the track 404 may translate. In this embodiment, the guide 443 has a curved configuration; however, the guide 443 could be linear, S-shaped, or have any other suitable shape or form. For instance, in some embodiments, the track 304 may slide back and forth in a horizontal, lateral, or vertical direction, or in any combination thereof.
  • A mount 442 is coupled to the track 404 in FIG. 8. The mount 443 may also facilitate multiple movements with respect to the track 404. For instance, the mount 443 may facilitate rotational and/or translational movement of the track 404. In at least some embodiments, the mount 443 may slide along all or a portion of the length of the guide 443, thereby causing the track 404 to translate. For instance, the mount 442 may include, or have connected thereto, rollers, bearings, linkages, channel brackets, or other suitable mechanisms to facilitate translational movement of the track 404 along the guide 443.
  • Optionally, the track 404 may also rotate. For instance, in at least some embodiments, the mount 442 is connected to a support structure. Such a connection may be a pivotal or rotational connection. Consequently, a user may be able to cause the track 404 to rotate about an axis of rotation defined at least partially by the connection of the mount 442 to the support structure. For instance, FIG. 8 illustrates an example exercise device 400 in which the track 404 is translated along the guide 443 while also being rotated about an axis of rotation centered within the mount 442. More particularly, various available positions of the track 404 are illustrated in phantom lines, and include positions at which the track 404 is translated in opposing directions along the guide 443, and rotated at various different angular positions at mount 442.
  • As will be appreciated in view of the disclosure herein, the embodiment in FIG. 8 provides a user with a variety of different options for exercise. Such options may allow, for instance, the user to isolate various abdominal or other muscle groups in a customized and desired manner. Furthermore, the modification of the Sip Factor by varying the initial angle of the track 104 relative to the surface the exercise device 100 is resting on, gravitational resistance may be ideally tuned for training the targeted muscle groups. By way of example, a user may combine the different available motions of the body support member 406 and track 404 in any of seven different manners. In particular, the user may: (i) translate the body support member 406; (ii) rotate the track 404; (iii) translate the track 404; (iv) translate the body support member 406 and rotate the track 404; (v) translate the body support member 406 and translate the track 404; (vi) rotate and translate the track 404; and (vii) translate the body support member while rotating and translating the track 404, all at different Sip Factors. In view of the disclosure herein, one skilled in the art will readily appreciate that a user's body may thus travel along an infinite number of exercise paths by using one or more available motions provided by the exercise device 400.
  • Furthermore, the exercise device 400 optionally includes one or more locking mechanisms such as those discussed herein. For instance, a locking mechanism may be used to restrict rotation of the track 404, translation of the track 404, translation of the body support member 406, rotation of the body support member 406, and the like. In some embodiments, multiple locking mechanisms may be used. For instance, a locking mechanism may be placed near the first end 408 of the track 404 and another locking mechanism may be placed near the second end 410 of the track 404. The user may independently engage or disengage the various locking mechanisms. By way of illustration, a locking mechanism at the first end 408 of the track 404 may be engaged to restrict translational movement of the track 404 along the guide 443. A locking mechanism at the second end 408 or at the mount 442 may be used to restrict rotational movement of the track 404 about an axis or rotation within the mount 442.
  • INDUSTRIAL APPLICABILITY
  • In general, available training methods for strengthening a person's abdominal muscles have traditionally included crunches or sit-ups, specialized equipment, or home equipment. Sit-ups and crunches have long been effective, but may increase a person's likelihood of injury as they are frequently performed improperly. Also, a person may inadvertently reduce the efficiency of such exercises by using muscles other than the abdominal muscles in performing the exercise.
  • Specialized equipment may also be available, but it is often difficult or non-intuitive to use, and is generally cost-prohibitive to a consumer. Such specialized equipment is therefore often found only in fitness centers and gyms. Use of such equipment may therefore be difficult, not only because of the difficulty of operating the equipment, but because of the time a user must dedicate to travel to and from the fitness center or gym.
  • More recently, home-use fitness products such as the AB CIRCLE PRO, AB CIRCLE MINI, and AB COASTER have been made available to consumers for home use. While such products purport to allow a user to efficiently strengthen and train abdominal muscles, recent research has shown that the muscle activity and caloric expenditure resulting from use of such devices is far from optimal. For instance, a recent study was performed in which research subjects exercised on a device that is the subject of the present disclosure, performed sit-ups and crunches, and also used each of the AB CIRCLE PRO, AB CIRCLE MINI, and AB COASTER. Using electromyogram (EMG) hardware and software to record electric currents associated with muscle contractions, peak and mean muscle activity was measured for each of the rectus abdominus, transverse abdominus, pectoralis major, biceps brachii, triceps brachii, trapezius, rectus femoris, biceps femoris, and gluteus maximus muscle groups. Participant heart rate and oxygen consumption were measured, and caloric expenditure was calculated for each condition.
  • Based on such research, muscle activation using the devices of the present disclosure far exceeded that for the AB CIRCLE PRO, AB CIRCLE MINI, and AB COASTER, and also exceeded that for sit-ups and crunches. For example, where the body support member had a combined side-to-side swiveling motion, as well as the translating glide motion along the track, exercise on the devices of the present application was found to activate 44% more total muscle than the AB CIRCLE MINI, and 37% more than the AB CIRCLE PRO. Use of the devices of the present disclosure was also found to activate a 34% greater muscle activation than the AB COASTER, even when the AB COASTER participants used a combined sliding and rotational motion. Metabolic measurements also demonstrated that users of the devices of the present application expended significantly more calories than on any of the AB CIRCLE PRO, AB CIRCLE MINI, and AB COASTER. For instance, participants using the devices of the present disclosure expended 33% more calories than users of the AB CIRCLE MINI and 35% more calories than users of the AB CIRCLE PRO.
  • The exercise devices of the present application thus permit users to perform simple, intuitive exercises while providing greater muscle activation and caloric expenditure than other available products. Particularly, according to the embodiments disclosed herein, adjustment of the Sip Factor provides for increased and directed resistance. Specifically, the combination of the variable Sip Factor along with the rotational variability of the track 104 provides for focused and increased resistance for a user's obliques, back, chest, and arms. Moreover, because the exercise devices use gravity and/or a defined sliding path to exercise core muscle groups, the user can work out safely without placing excessive stress on joints or muscles. Accordingly, devices of the present application include easy-to-use, home or commercial exercise devices that may be desirable for use by any person, particularly those seeking to tone or strengthen their upper and lower abdominal muscles, burn fat, sculpt their body, or for any combination of the foregoing.
  • The exercise devices of the present disclosure are not only usable to enhance the abdominal strength of out-of-shape and overweight users, but are also effective for persons who hope to maintain their health or prevent the decline of their strength. The disclosed exercise devices may also be used to exercise, strengthen, and tone muscle groups other than the abdominal muscles, including muscles in a user's arms, legs, and upper and lower back.
  • The degree to which the abdominal muscles are contracted, or the isolation of which muscles are contracted can also be varied based on the position of the adjustable forward foot and can be varied according to the Sip Factor. Specifically, the amount of resistance experienced by the user due to gravity is increased as the Sip Factor is decreased. As the angle of the track relative to the surface is increased, the Sip Factor is decreased and the gravitational resistance experienced by the user is increased. Additionally, as the Sip Factor is decreased, a user will work different muscles. As the Sip Factor is decreased, the user will employ additional back, chest, and arm muscles to overcome the added gravitational resistance. In this manner, the combination of a rotatable track and the ability to vary the Sip Factor provides the user with the ability to target any number of muscle groups, and particularly allows a user to target oblique core muscles by providing rotatable flexibility and the ability to vary gravitational resistance via a modification of the Sip Factor.
  • As detailed above, the Sip Factor is determined by a manual actuation of the orientation support. However, the variable orientation of the track relative to the surface the exercise device is resting on may be achieved using any number of mechanically, hydraulically, pneumatically, or electrically actuated systems.
  • While devices of the present application may provide resistance based primarily by a user's body weight, the resistance may be increased by adding one or more resistance members. For example, resistance bands, springs, pneumatic members, shocks, and the like may extend along the track and/or between the track and support structure, to resist translational movement of the body support member, or rotational movement of the track. Weights may also be attached to increase the resistance. As described, the support structure includes an adjustable height mechanism that allows the front and/or rear feet portions to be elevated above the ground, thereby changing the Sip Factor for modified resistance and directed exercises.
  • Further, while some devices in accordance with the present application may use a locking mechanism such as a pin to transition between different states or configurations, locking mechanisms may take any of numerous different forms. For instance, a pin may have a threaded configuration such that the pin engages mating threads within one or more corresponding threaded apertures. A retractable pin may also be replaced with still other configurations. For instance, a cog and sprocket, ratchet, clutch, tightening strap, clamp, knob, lug, pop pin, pin and yoke combination, spring release mechanism, brake, any other locking mechanism, or combinations of the foregoing may be used. Optionally, a retractable pin or other locking member may be accompanied by a tether, tie, or other retainer usable to connect the locking member directly or indirectly to a track or support structure, thereby reducing the risk that the locking member will be inadvertently removed and/or misplaced.
  • The devices disclosed herein thus allow a user to select which exercises to perform, what muscle groups to target, and the intensity and difficulty of the exercises being performed. Additionally, the devices provide safe and effective abdominal, back, leg, and arm exercises, making the exercise devices well-suited for home and commercial use.

Claims (20)

What is claimed is:
1. An exercise device, comprising:
a support structure;
a track secured relative to the support structure, the track having an axis of rotation about which the track is configured to selectively rotate;
a body support member movable along and supported at least partially by the track; and
a vertically adjustable base secured to the support structure.
2. The exercise device recited in claim 1, further comprising:
a first foot support attached to said adjustable base; and
a second foot support attached to said adjustable base;
wherein at least one of said first foot support and said second foot support is vertically adjustable.
3. The exercise device recited in claim 1, wherein said exercise device has a Sip Factor configuration selectable between 1.0 and 0.25.
4. The exercise device recited in claim 1, wherein said exercise device has a Sip Factor configuration selectable between 0.98 and 0.86.
5. The exercise device recited in claim 1, wherein said exercise device has a Sip Factor configuration selectable between 1.0 and 0.98.
6. The exercise device recited in claim 1, wherein said exercise device has a Sip Factor configuration selectable between 0.86 and 0.5.
7. The exercise device recited in claim 2, further comprising:
a manual actuator secured to at least one of said first foot support or said second foot support;
wherein said manual actuator is configured to vertically adjust said at least one of said first foot support or said second foot support.
8. The exercise device recited in claim 1, further comprising one of a manual actuator, a hydraulic actuator, a pneumatic actuator, or an electrical actuator secured to said adjustable base.
9. The exercise device recited in claim 1, further comprising:
a locking mechanism, the locking mechanism being at least selectively secured to the track, wherein the locking mechanism has an engaged state and a disengaged state.
10. The exercise device recited in claim 9, wherein:
in the engaged state, the locking mechanism substantially restricts the track from rotating about the axis of rotation; and
in the disengaged state, the track is selectively rotatable about the axis of rotation.
11. The exercise device recited in claim 1, wherein the track is pivotally secured to the support structure.
12. The exercise device recited in claim 1, wherein the track defines an arcuate translation path for the body support member.
13. The exercise device recited in claim 1, wherein the axis of rotation is about centered along a length of the track.
14. The exercise device recited in claim 1, wherein the track defines a first path, and rotation of the track about the axis of rotation defines a second path, and wherein at least a third path is defined which combines the first and second paths.
15. The exercise device recited in claim 1, wherein the track defines a path such that the axis of rotation of the track extends in a direction that is substantially perpendicular to the path defined by the track, and substantially tangential to an arc defined by rotation of the track about the axis of rotation.
16. An exercise device, comprising:
a support structure;
an arcuate track pivotally secured relative to the support structure, the track having an axis of rotation about which the track is configured to selectively rotate;
a body support member movable along and supported at least partially by the track; and
a vertically adjustable base secured to the support structure, said vertically adjustable base including a first foot support attached to said adjustable base, and a second foot support attached to said adjustable base, wherein at least one of said first foot support and said second foot support is vertically adjustable;
wherein said exercise device has a Sip Factor configuration selectable between 1.0 and 0.25.
17. The exercise device recited in claim 16, further comprising an actuator secured to at least one of said first foot support or said second foot support;
wherein said actuator is configured to vertically adjust said at least one of said first foot support or said second foot support.
18. The exercise device recited in claim 17, wherein said actuator comprises one of a manual actuator, a hydraulic actuator, a pneumatic actuator, or an electrical actuator.
19. The exercise device recited in claim 16, further comprising:
a locking mechanism, the locking mechanism being at least selectively secured to the track, wherein the locking mechanism has an engaged state and a disengaged state;
wherein in the engaged state, the locking mechanism substantially restricts the track from rotating about the axis of rotation, and in the disengaged state, the track is selectively rotatable about the axis of rotation.
20. An exercise device, comprising:
a support structure;
an arcuate track pivotally secured relative to the support structure, the track having an axis of rotation about which the track is configured to selectively rotate;
a body support member movable along and supported at least partially by the track;
a vertically adjustable base secured to the support structure, said vertically adjustable base including a first foot support attached to said adjustable base, a second foot support attached to said adjustable base, and an actuator secured to at least one of said first foot support or said second foot support, wherein said actuator is configured to vertically adjust said at least one of said first foot support or said second foot support; and
a locking mechanism, the locking mechanism being at least selectively secured to the track, wherein the locking mechanism has an engaged state and a disengaged state;
wherein in the engaged state, the locking mechanism substantially restricts the track from rotating about the axis of rotation, and in the disengaged state, the track is selectively rotatable about the axis of rotation;
wherein said exercise device has a Sip Factor configuration selectable between 1.0 and 0.25.
US13/673,809 2011-11-11 2012-11-09 Adjustable abdominal exercise apparatus Abandoned US20130123083A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/673,809 US20130123083A1 (en) 2011-11-11 2012-11-09 Adjustable abdominal exercise apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161558924P 2011-11-11 2011-11-11
US13/673,809 US20130123083A1 (en) 2011-11-11 2012-11-09 Adjustable abdominal exercise apparatus

Publications (1)

Publication Number Publication Date
US20130123083A1 true US20130123083A1 (en) 2013-05-16

Family

ID=46671677

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/673,809 Abandoned US20130123083A1 (en) 2011-11-11 2012-11-09 Adjustable abdominal exercise apparatus

Country Status (6)

Country Link
US (1) US20130123083A1 (en)
CN (1) CN103100190A (en)
BR (1) BR102012028712A2 (en)
DE (1) DE202012004598U1 (en)
FR (1) FR2982496B3 (en)
TW (1) TWI472357B (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120115695A1 (en) * 2010-11-10 2012-05-10 Watterson Scott R System and method for exercising
US20130130875A1 (en) * 2011-11-18 2013-05-23 Yu-Chih Chou Exercise Device with Length Adjustable Leg
US20140100091A1 (en) * 2012-10-05 2014-04-10 Wei-Teh Ho Multi-dimensional abdomen exercise machine
US20140100088A1 (en) * 2012-10-05 2014-04-10 Wei-Teh Ho Multi-dimensional abdomen exercise machine
US20140121070A1 (en) * 2011-12-19 2014-05-01 Joseph K. Ellis Abdominal muscle exercise machine
USD796593S1 (en) * 2016-06-15 2017-09-05 Wei-Teh Ho Abdomen exercise machine
US9868023B2 (en) 2014-02-06 2018-01-16 James Darryl Boykin Sliding exercise device with a plurality of tracks
EP2695644B1 (en) * 2012-08-08 2018-06-13 Hoist Fitness Systems, Inc. Exercise machine with movable user support
US10188890B2 (en) 2013-12-26 2019-01-29 Icon Health & Fitness, Inc. Magnetic resistance mechanism in a cable machine
US10212994B2 (en) 2015-11-02 2019-02-26 Icon Health & Fitness, Inc. Smart watch band
US10252109B2 (en) 2016-05-13 2019-04-09 Icon Health & Fitness, Inc. Weight platform treadmill
US10279212B2 (en) 2013-03-14 2019-05-07 Icon Health & Fitness, Inc. Strength training apparatus with flywheel and related methods
US10293211B2 (en) 2016-03-18 2019-05-21 Icon Health & Fitness, Inc. Coordinated weight selection
US10426989B2 (en) 2014-06-09 2019-10-01 Icon Health & Fitness, Inc. Cable system incorporated into a treadmill
US20190299052A1 (en) * 2018-03-31 2019-10-03 Aaron St.Cyr Exercise rocker
US10441840B2 (en) 2016-03-18 2019-10-15 Icon Health & Fitness, Inc. Collapsible strength exercise machine
US10449416B2 (en) 2015-08-26 2019-10-22 Icon Health & Fitness, Inc. Strength exercise mechanisms
US10561894B2 (en) 2016-03-18 2020-02-18 Icon Health & Fitness, Inc. Treadmill with removable supports
US10661114B2 (en) 2016-11-01 2020-05-26 Icon Health & Fitness, Inc. Body weight lift mechanism on treadmill
US10786706B2 (en) 2018-07-13 2020-09-29 Icon Health & Fitness, Inc. Cycling shoe power sensors
US10918905B2 (en) 2016-10-12 2021-02-16 Icon Health & Fitness, Inc. Systems and methods for reducing runaway resistance on an exercise device
US10940360B2 (en) 2015-08-26 2021-03-09 Icon Health & Fitness, Inc. Strength exercise mechanisms
US10953305B2 (en) 2015-08-26 2021-03-23 Icon Health & Fitness, Inc. Strength exercise mechanisms
US11000730B2 (en) 2018-03-16 2021-05-11 Icon Health & Fitness, Inc. Elliptical exercise machine
US11020626B2 (en) * 2019-05-30 2021-06-01 Chao-Chi Yu Elliptical machine with function of freely controlling the lateral movement of the pedal
US11033777B1 (en) 2019-02-12 2021-06-15 Icon Health & Fitness, Inc. Stationary exercise machine
US11058913B2 (en) 2017-12-22 2021-07-13 Icon Health & Fitness, Inc. Inclinable exercise machine
US11058914B2 (en) 2016-07-01 2021-07-13 Icon Health & Fitness, Inc. Cooling methods for exercise equipment
US11187285B2 (en) 2017-12-09 2021-11-30 Icon Health & Fitness, Inc. Systems and methods for selectively rotationally fixing a pedaled drivetrain
USD947299S1 (en) * 2021-02-03 2022-03-29 Yingjuan Wang Abdomen exercise machine
US11298577B2 (en) 2019-02-11 2022-04-12 Ifit Inc. Cable and power rack exercise machine
US11326673B2 (en) 2018-06-11 2022-05-10 Ifit Inc. Increased durability linear actuator
US11451108B2 (en) 2017-08-16 2022-09-20 Ifit Inc. Systems and methods for axial impact resistance in electric motors
US11534654B2 (en) 2019-01-25 2022-12-27 Ifit Inc. Systems and methods for an interactive pedaled exercise device
US11534651B2 (en) 2019-08-15 2022-12-27 Ifit Inc. Adjustable dumbbell system
US11673036B2 (en) 2019-11-12 2023-06-13 Ifit Inc. Exercise storage system
US11794070B2 (en) 2019-05-23 2023-10-24 Ifit Inc. Systems and methods for cooling an exercise device
US11850497B2 (en) 2019-10-11 2023-12-26 Ifit Inc. Modular exercise device
US11931621B2 (en) 2020-03-18 2024-03-19 Ifit Inc. Systems and methods for treadmill drift avoidance
US11951377B2 (en) 2020-03-24 2024-04-09 Ifit Inc. Leaderboard with irregularity flags in an exercise machine system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105664440A (en) * 2014-11-16 2016-06-15 青岛瑞箭机电工程技术有限公司 Two-leg kneeling-slipping exercise equipment

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004801A (en) * 1975-06-13 1977-01-25 Campanaro Thomas J Isotonic exercise unit
US4101124A (en) * 1977-01-18 1978-07-18 Mahnke Parker E Pull type exercising apparatus
US4176836A (en) * 1977-06-21 1979-12-04 Randy Coyle Variable resistance exercising apparatus and method
US4744558A (en) * 1987-06-16 1988-05-17 Smirmaul Heinz J Downhill ski exercise device
US4795151A (en) * 1987-09-30 1989-01-03 Mulcaster Donald L Baby walker with safety track feature
US4858918A (en) * 1986-03-25 1989-08-22 Superspine, Inc. Device for providing enhanced movement of a person's truncal muscles and spine
US4989860A (en) * 1986-03-25 1991-02-05 Superspine, Inc. Device for providing enhanced movement of a person's truncal muscles and spine
US5192258A (en) * 1990-10-26 1993-03-09 Martin Keller Training device especially adapted for teaching snow boarding techniques
US5722921A (en) * 1997-02-06 1998-03-03 Cybex International, Inc. Range limiting device for exercise equipment
US5833584A (en) * 1993-09-30 1998-11-10 Fitness Master, Inc. Striding exerciser with upwardly curved tracks
US6440045B1 (en) * 1999-04-22 2002-08-27 Kerry R. Gaston Abdominal exercise apparatus and method
US20070179022A1 (en) * 2006-01-27 2007-08-02 Tsung-Yu Chen Surfing exercisers
US20080070765A1 (en) * 2005-01-05 2008-03-20 Ab Coaster Holdings, Inc. Abdominal exercise machine
USD565134S1 (en) * 2005-01-05 2008-03-25 Abcoaster Holdings Llc Abdominal exercise device
US20080161175A1 (en) * 2007-01-03 2008-07-03 Shou-Shan Ho Exercising device for simulating skateboarding
USD584367S1 (en) * 2008-03-21 2009-01-06 David Augustine Abdominal exercise device
US7713181B1 (en) * 2009-01-02 2010-05-11 Lorne Durham Versatile abdominal exercise bed
USD622334S1 (en) * 2008-01-31 2010-08-24 Robson Splane Exercise device
USD626608S1 (en) * 2009-09-25 2010-11-02 Cheng-Kang Chu Swing exerciser
USD631519S1 (en) * 2010-05-05 2011-01-25 Yi-Fan Chen Multi-function exercising machine
US7878957B1 (en) * 2010-05-26 2011-02-01 Yi-Fan Chen Multi-functional exercising machine
US8043199B1 (en) * 2010-05-06 2011-10-25 Jerry Barker Exercise machine
US20120115694A1 (en) * 2010-11-08 2012-05-10 Paul Chen Swinging and climbing exercise apparatus
US20120115695A1 (en) * 2010-11-10 2012-05-10 Watterson Scott R System and method for exercising
USD659777S1 (en) * 2010-12-03 2012-05-15 Icon Ip, Inc. Exercise device
USD660383S1 (en) * 2010-12-03 2012-05-22 Icon Ip, Inc. Dual curved support for an exercise device
USD671178S1 (en) * 2011-11-11 2012-11-20 Icon Ip, Inc. Static frame abdominal exercise apparatus
USD671177S1 (en) * 2011-11-11 2012-11-20 Icon Ip, Inc. Adjustable abdominal exercise apparatus

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US598965A (en) 1898-02-15 Saw-oiler
ZA853932B (en) * 1984-06-22 1986-12-30 Phillip Edmund Gordon Owen Exercising apparatus
US7232404B2 (en) 2004-01-05 2007-06-19 Tristar Products, Inc. Abdominal exercise machine
US7455633B2 (en) 2005-01-05 2008-11-25 Ab Coaster Holdings, Llc Abdominal exerciser device
US7611445B2 (en) 2004-01-05 2009-11-03 Ab Coaster Holdings, Inc. Abdominal exercise machine
US7485079B2 (en) 2005-01-05 2009-02-03 Ab Coaster Holdings, Inc. Abdominal exercise machine
WO2008141160A2 (en) 2007-05-11 2008-11-20 D Eredita Michael Simulated rowing machine
CN201150755Y (en) * 2008-02-01 2008-11-19 江好咏 Abdomen waist body-building device
US8113997B2 (en) * 2008-09-16 2012-02-14 Products Of Tomorrow, Inc. Ab wave abdominal exerciser
US7651446B1 (en) 2008-11-13 2010-01-26 Paul William Eschenbach Elliptical core cycle exercise apparatus
US7662076B1 (en) 2008-12-29 2010-02-16 Wei-Teh Ho Exercising machine
CN201744116U (en) * 2009-09-15 2011-02-16 明日产品公司 Fitness equipment
CN201921390U (en) * 2010-12-01 2011-08-10 徐金山 Multifunctional abdominal exercising device
TWM409082U (en) * 2010-12-10 2011-08-11 Paul Chen A lever and a support device
CN201949557U (en) * 2011-01-05 2011-08-31 厦门嘉明达塑料工贸有限公司 Gyratory abdomen training apparatus
TWM412785U (en) * 2011-03-04 2011-10-01 Zhu Zhen Gang Pull-up rehabilitation device

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004801A (en) * 1975-06-13 1977-01-25 Campanaro Thomas J Isotonic exercise unit
US4101124A (en) * 1977-01-18 1978-07-18 Mahnke Parker E Pull type exercising apparatus
US4176836A (en) * 1977-06-21 1979-12-04 Randy Coyle Variable resistance exercising apparatus and method
US4858918A (en) * 1986-03-25 1989-08-22 Superspine, Inc. Device for providing enhanced movement of a person's truncal muscles and spine
US4989860A (en) * 1986-03-25 1991-02-05 Superspine, Inc. Device for providing enhanced movement of a person's truncal muscles and spine
US4744558A (en) * 1987-06-16 1988-05-17 Smirmaul Heinz J Downhill ski exercise device
US4795151A (en) * 1987-09-30 1989-01-03 Mulcaster Donald L Baby walker with safety track feature
US5192258A (en) * 1990-10-26 1993-03-09 Martin Keller Training device especially adapted for teaching snow boarding techniques
US5833584A (en) * 1993-09-30 1998-11-10 Fitness Master, Inc. Striding exerciser with upwardly curved tracks
US5722921A (en) * 1997-02-06 1998-03-03 Cybex International, Inc. Range limiting device for exercise equipment
US6440045B1 (en) * 1999-04-22 2002-08-27 Kerry R. Gaston Abdominal exercise apparatus and method
US20080070765A1 (en) * 2005-01-05 2008-03-20 Ab Coaster Holdings, Inc. Abdominal exercise machine
USD565134S1 (en) * 2005-01-05 2008-03-25 Abcoaster Holdings Llc Abdominal exercise device
US20070179022A1 (en) * 2006-01-27 2007-08-02 Tsung-Yu Chen Surfing exercisers
US20080161175A1 (en) * 2007-01-03 2008-07-03 Shou-Shan Ho Exercising device for simulating skateboarding
USD622334S1 (en) * 2008-01-31 2010-08-24 Robson Splane Exercise device
USD584367S1 (en) * 2008-03-21 2009-01-06 David Augustine Abdominal exercise device
US7713181B1 (en) * 2009-01-02 2010-05-11 Lorne Durham Versatile abdominal exercise bed
USD626608S1 (en) * 2009-09-25 2010-11-02 Cheng-Kang Chu Swing exerciser
USD631519S1 (en) * 2010-05-05 2011-01-25 Yi-Fan Chen Multi-function exercising machine
US8043199B1 (en) * 2010-05-06 2011-10-25 Jerry Barker Exercise machine
US7878957B1 (en) * 2010-05-26 2011-02-01 Yi-Fan Chen Multi-functional exercising machine
US20120115694A1 (en) * 2010-11-08 2012-05-10 Paul Chen Swinging and climbing exercise apparatus
US20120115695A1 (en) * 2010-11-10 2012-05-10 Watterson Scott R System and method for exercising
USD659777S1 (en) * 2010-12-03 2012-05-15 Icon Ip, Inc. Exercise device
USD660383S1 (en) * 2010-12-03 2012-05-22 Icon Ip, Inc. Dual curved support for an exercise device
USD671178S1 (en) * 2011-11-11 2012-11-20 Icon Ip, Inc. Static frame abdominal exercise apparatus
USD671177S1 (en) * 2011-11-11 2012-11-20 Icon Ip, Inc. Adjustable abdominal exercise apparatus

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120115695A1 (en) * 2010-11-10 2012-05-10 Watterson Scott R System and method for exercising
US8870726B2 (en) * 2010-11-10 2014-10-28 Icon Ip, Inc. System and method for exercising
US20130130875A1 (en) * 2011-11-18 2013-05-23 Yu-Chih Chou Exercise Device with Length Adjustable Leg
US20140121070A1 (en) * 2011-12-19 2014-05-01 Joseph K. Ellis Abdominal muscle exercise machine
US9630041B2 (en) * 2011-12-19 2017-04-25 Joseph K. Ellis Abdominal muscle exercise machine
US11504583B2 (en) 2012-08-08 2022-11-22 Hoist Fitness Systems, Inc. Exercise machine with movable user support
US10420985B2 (en) 2012-08-08 2019-09-24 Hoist Fitness Systems, Inc. Exercise machine with movable user support
EP2695644B1 (en) * 2012-08-08 2018-06-13 Hoist Fitness Systems, Inc. Exercise machine with movable user support
US10960268B2 (en) 2012-08-08 2021-03-30 Hoist Fitness Systems, Inc. Exercise machine with movable user support
US20140100088A1 (en) * 2012-10-05 2014-04-10 Wei-Teh Ho Multi-dimensional abdomen exercise machine
US8944980B2 (en) * 2012-10-05 2015-02-03 Wei-Teh Ho Multi-dimensional abdomen exercise machine
US8944981B2 (en) * 2012-10-05 2015-02-03 Wei-Teh Ho Multi-dimensional abdomen exercise machine
US20140100091A1 (en) * 2012-10-05 2014-04-10 Wei-Teh Ho Multi-dimensional abdomen exercise machine
US10953268B1 (en) 2013-03-14 2021-03-23 Icon Health & Fitness, Inc. Strength training apparatus
US11338169B2 (en) 2013-03-14 2022-05-24 IFIT, Inc. Strength training apparatus
US10279212B2 (en) 2013-03-14 2019-05-07 Icon Health & Fitness, Inc. Strength training apparatus with flywheel and related methods
US10709925B2 (en) 2013-03-14 2020-07-14 Icon Health & Fitness, Inc. Strength training apparatus
US10967214B1 (en) 2013-12-26 2021-04-06 Icon Health & Fitness, Inc. Cable exercise machine
US10188890B2 (en) 2013-12-26 2019-01-29 Icon Health & Fitness, Inc. Magnetic resistance mechanism in a cable machine
US10758767B2 (en) 2013-12-26 2020-09-01 Icon Health & Fitness, Inc. Resistance mechanism in a cable exercise machine
US9868023B2 (en) 2014-02-06 2018-01-16 James Darryl Boykin Sliding exercise device with a plurality of tracks
US10426989B2 (en) 2014-06-09 2019-10-01 Icon Health & Fitness, Inc. Cable system incorporated into a treadmill
US10449416B2 (en) 2015-08-26 2019-10-22 Icon Health & Fitness, Inc. Strength exercise mechanisms
US10953305B2 (en) 2015-08-26 2021-03-23 Icon Health & Fitness, Inc. Strength exercise mechanisms
US10940360B2 (en) 2015-08-26 2021-03-09 Icon Health & Fitness, Inc. Strength exercise mechanisms
US10212994B2 (en) 2015-11-02 2019-02-26 Icon Health & Fitness, Inc. Smart watch band
US10864407B2 (en) 2016-03-18 2020-12-15 Icon Health & Fitness, Inc. Coordinated weight selection
US11565148B2 (en) 2016-03-18 2023-01-31 Ifit Inc. Treadmill with a scale mechanism in a motor cover
US11013960B2 (en) 2016-03-18 2021-05-25 Icon Health & Fitness, Inc. Exercise system including a stationary bicycle and a free weight cradle
US10293211B2 (en) 2016-03-18 2019-05-21 Icon Health & Fitness, Inc. Coordinated weight selection
US11794075B2 (en) 2016-03-18 2023-10-24 Ifit Inc. Stationary exercise machine configured to execute a programmed workout with aerobic portions and lifting portions
US10561894B2 (en) 2016-03-18 2020-02-18 Icon Health & Fitness, Inc. Treadmill with removable supports
US10441840B2 (en) 2016-03-18 2019-10-15 Icon Health & Fitness, Inc. Collapsible strength exercise machine
US10994173B2 (en) 2016-05-13 2021-05-04 Icon Health & Fitness, Inc. Weight platform treadmill
US10252109B2 (en) 2016-05-13 2019-04-09 Icon Health & Fitness, Inc. Weight platform treadmill
US11779812B2 (en) 2016-05-13 2023-10-10 Ifit Inc. Treadmill configured to automatically determine user exercise movement
USD796593S1 (en) * 2016-06-15 2017-09-05 Wei-Teh Ho Abdomen exercise machine
US11058914B2 (en) 2016-07-01 2021-07-13 Icon Health & Fitness, Inc. Cooling methods for exercise equipment
US10918905B2 (en) 2016-10-12 2021-02-16 Icon Health & Fitness, Inc. Systems and methods for reducing runaway resistance on an exercise device
US10661114B2 (en) 2016-11-01 2020-05-26 Icon Health & Fitness, Inc. Body weight lift mechanism on treadmill
US11451108B2 (en) 2017-08-16 2022-09-20 Ifit Inc. Systems and methods for axial impact resistance in electric motors
US11187285B2 (en) 2017-12-09 2021-11-30 Icon Health & Fitness, Inc. Systems and methods for selectively rotationally fixing a pedaled drivetrain
US11058913B2 (en) 2017-12-22 2021-07-13 Icon Health & Fitness, Inc. Inclinable exercise machine
US11000730B2 (en) 2018-03-16 2021-05-11 Icon Health & Fitness, Inc. Elliptical exercise machine
US11596830B2 (en) 2018-03-16 2023-03-07 Ifit Inc. Elliptical exercise machine
US10773120B2 (en) * 2018-03-31 2020-09-15 Aaron St. Cyr Exercise rocker
US20190299052A1 (en) * 2018-03-31 2019-10-03 Aaron St.Cyr Exercise rocker
US11326673B2 (en) 2018-06-11 2022-05-10 Ifit Inc. Increased durability linear actuator
US10786706B2 (en) 2018-07-13 2020-09-29 Icon Health & Fitness, Inc. Cycling shoe power sensors
US11534654B2 (en) 2019-01-25 2022-12-27 Ifit Inc. Systems and methods for an interactive pedaled exercise device
US11452903B2 (en) 2019-02-11 2022-09-27 Ifit Inc. Exercise machine
US11298577B2 (en) 2019-02-11 2022-04-12 Ifit Inc. Cable and power rack exercise machine
US11426633B2 (en) 2019-02-12 2022-08-30 Ifit Inc. Controlling an exercise machine using a video workout program
US11033777B1 (en) 2019-02-12 2021-06-15 Icon Health & Fitness, Inc. Stationary exercise machine
US11058918B1 (en) 2019-02-12 2021-07-13 Icon Health & Fitness, Inc. Producing a workout video to control a stationary exercise machine
US11951358B2 (en) 2019-02-12 2024-04-09 Ifit Inc. Encoding exercise machine control commands in subtitle streams
US11794070B2 (en) 2019-05-23 2023-10-24 Ifit Inc. Systems and methods for cooling an exercise device
US11020626B2 (en) * 2019-05-30 2021-06-01 Chao-Chi Yu Elliptical machine with function of freely controlling the lateral movement of the pedal
US11534651B2 (en) 2019-08-15 2022-12-27 Ifit Inc. Adjustable dumbbell system
US11850497B2 (en) 2019-10-11 2023-12-26 Ifit Inc. Modular exercise device
US11673036B2 (en) 2019-11-12 2023-06-13 Ifit Inc. Exercise storage system
US11931621B2 (en) 2020-03-18 2024-03-19 Ifit Inc. Systems and methods for treadmill drift avoidance
US11951377B2 (en) 2020-03-24 2024-04-09 Ifit Inc. Leaderboard with irregularity flags in an exercise machine system
USD947299S1 (en) * 2021-02-03 2022-03-29 Yingjuan Wang Abdomen exercise machine

Also Published As

Publication number Publication date
CN103100190A (en) 2013-05-15
DE202012004598U1 (en) 2012-07-16
TWI472357B (en) 2015-02-11
FR2982496A3 (en) 2013-05-17
BR102012028712A2 (en) 2014-12-30
FR2982496B3 (en) 2014-03-07
TW201318670A (en) 2013-05-16

Similar Documents

Publication Publication Date Title
US8870726B2 (en) System and method for exercising
US20130123083A1 (en) Adjustable abdominal exercise apparatus
US10653916B2 (en) Concurrent upper and lower body press exercise machine
US10426991B2 (en) Exercise device
US7585263B2 (en) Abdominal exercise machine
US20160332024A1 (en) Multi-functional exercise machine
EP2111268B1 (en) Abdominal exercise device
US7611445B2 (en) Abdominal exercise machine
US8926480B2 (en) Three-point adjustment multi-purpose exercise machine
US8012073B2 (en) Fitness machine with automated variable resistance
US9770623B2 (en) Upper and lower body press exercise machine
US11911646B2 (en) Exercise machine
US20070298945A1 (en) Rotating exerciser system and methods
US20140005006A1 (en) Abdomen exercise machine
US7125370B1 (en) Exercise apparatus
WO2015138279A1 (en) Multi-functional exercise machine
US9682270B2 (en) Apparatus for exercise
CA2884721A1 (en) Push-up exercise apparatus
US11213717B2 (en) Power rowing machine with pivoting weight arm
US11590386B2 (en) Exercise system and method
WO2010100415A1 (en) Exercise apparatus
CA2881530A1 (en) Exercise apparatus
WO2016094116A1 (en) Upper and lower body press exercise machine
EP3230914A1 (en) Upper and lower body multi-press exercise machine
Schaffner et al. Exercise apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: ICON HEALTH & FITNESS, INC., UTAH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ICON IP, INC.;REEL/FRAME:034650/0013

Effective date: 20141216

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION