US20120276524A1 - Genotyping method - Google Patents

Genotyping method Download PDF

Info

Publication number
US20120276524A1
US20120276524A1 US13/510,226 US201013510226A US2012276524A1 US 20120276524 A1 US20120276524 A1 US 20120276524A1 US 201013510226 A US201013510226 A US 201013510226A US 2012276524 A1 US2012276524 A1 US 2012276524A1
Authority
US
United States
Prior art keywords
sequence
genotyping
mark
nucleotide
signpost
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/510,226
Inventor
Sung Whan An
Myung Sok Oh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genomictree Inc
Original Assignee
Genomictree Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genomictree Inc filed Critical Genomictree Inc
Assigned to GENOMICTREE, INC. reassignment GENOMICTREE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AN, SUN WHAN, OH, MYUNG SOK
Publication of US20120276524A1 publication Critical patent/US20120276524A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6874Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • C12Q1/708Specific hybridization probes for papilloma
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2525/00Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
    • C12Q2525/10Modifications characterised by
    • C12Q2525/185Modifications characterised by incorporating bases where the precise position of the bases in the nucleic acid string is important
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2535/00Reactions characterised by the assay type for determining the identity of a nucleotide base or a sequence of oligonucleotides
    • C12Q2535/122Massive parallel sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2537/00Reactions characterised by the reaction format or use of a specific feature
    • C12Q2537/10Reactions characterised by the reaction format or use of a specific feature the purpose or use of
    • C12Q2537/143Multiplexing, i.e. use of multiple primers or probes in a single reaction, usually for simultaneously analyse of multiple analysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/179Nucleic acid detection characterized by the use of physical, structural and functional properties the label being a nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/30Detection characterised by liberation or release of label
    • C12Q2565/301Pyrophosphate (PPi)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays

Definitions

  • the present invention relates to a genotyping method, and more particularly to an ID sequence, which is assigned to each genotype, and a multiplex genotyping method which uses the ID sequence.
  • Methods which have been developed for detecting infectious organisms include traditional methods of identifying the physical and chemical characteristics of pathogens by cultivation, and methods of detecting the specific genetic characteristics of pathogens.
  • the methods for detecting genetic characteristics include restriction fragment length polymorphism (RFLP) analysis, amplified fragment length polymorphism (AFLP) analysis, pulsed-field gel electrophoresis, arbitrarily-primed polymerase chain reaction (AP-PCR), repetitive sequence-based PCR, ribotyping, and comparative nucleic acid sequencing. These methods are generally too slow, expensive, irreproducible, and technically demanding to be used in most diagnostic settings.
  • pyrosequencing is a method of DNA sequencing based on the “sequencing by DNA synthesis” principle, which relies on the detection of pyrophosphate release on nucleotide incorporation, unlike the traditional Sanger sequencing method.
  • dNTPs deoxynucleotide triphosphates
  • PPi attached to the dNTPs being polymerized emit light by enzymatic reactions, and the emitted light shows a signal peak according to the reaction order of each of the sequentially added dNTPs, in which the peak shows a pattern which is high or low in proportion to the number of the reacted dNTPs, such that the nucleotide sequence of the pathogen can be determined.
  • methods of detecting pathogenic bacteria or viruses in clinical samples based on pyrograms obtained by pyrosequencing of the PCR products of sequences specific to the pathogens have been used (Travasso, C M et al, J.
  • nucleotide sequencing is performed according to the dispensation order of dNTPs, and a nucleotide in a template, which is absent in the dispensation order, does not react, and thus does not form a peak.
  • the heights of the peaks are determined according to the intensities of light emitted. Accordingly, when various pathogens exist in the same sample, the peaks of the nucleotides of the various pathogens appear overlapped, thus making it difficult to identify the genotypes through the interpretation of pyrograms. Particularly, as the number of repetitive sequences increases, the peaks of the anterior sequences become relatively lower. Thus, in the case of infection with multiple pathogens, it is difficult to detect a peak according to the degree of infection with each pathogen.
  • the present inventors have made extensive efforts to enable the genotypes of interest to be identified by unique and simple pyrograms obtained when performing genotyping using pyrosequencing.
  • the present inventors have found that, when an ID sequence, which has an ID mark, a signpost and an endmark while existing independently of the specific sequence to be typed, is linked with the specific sequence and is used to perform pyrosequencing, a unique and simple pyrogram can be obtained for each genotype, thereby completing the present invention.
  • Another object of the present invention is to provide a genotyping method which uses said ID sequence.
  • Still another object of the present invention is to provide a method of genotyping HPV using said ID sequence.
  • Yet another object of the present invention is to provide a method of detecting KRAS gene mutation using said ID sequence.
  • a further object of the present invention is to provide a method of detecting respiratory virus using said ID sequence.
  • the present invention provides an ID sequence for genotyping which consists of A(ID ⁇ S)n ⁇ E, wherein ID is an ID mark which is a single nucleotide selected from among A, T, C and G; S is a signpost which is a nucleotide linked with the adjacent ID mark and different from that of the adjacent ID mark; E is an endmark which is a nucleotide different from that of the signpost; and n is a natural number ranging from 1 to 32.
  • the present invention also provides an ID sequence for genotyping which consists of ID ⁇ S, wherein ID is an ID mark which is a nucleotide selected from among A, T, C and G, and S is a signpost which is a nucleotide linked with the adjacent ID mark and different from that of the adjacent ID mark.
  • the present invention also provides a genotyping primer comprising a gene-specific sequence for genotyping linked to said ID sequence.
  • the present invention also provides a genotyping method which comprises using said genotyping primer.
  • the present invention also provides a method for genotyping HPV, the method comprising the steps of: (a) designing an ID sequence for genotyping according to the genotype of each HPV virus, the ID sequence consisting of (ID ⁇ S)n ⁇ E, wherein ID is an ID mark which is a nucleotide selected from among A, T, C and G; S is a signpost which is a nucleotide linked with the adjacent ID mark and different from that of the adjacent ID mark; E is an endmark which is a nucleotide different from that of the signpost, and n is a natural number ranging from 1 to 32; (b) constructing a genotyping primer composed of a pyrosequencing primer sequence, the ID sequence, and a sequence specific to a virus genotype corresponding to the ID sequence; (c) amplifying an HPV virus-containing sample by PCR using the genotyping primer; and (d) subjecting the amplified PCR product to pyrosequencing to obtain a sequence for the ID sequence, and distinguishing the
  • the present invention also provides a method for detecting KRAS gene mutation, the method comprising the steps of: (a) designing an ID sequence for genotyping according to the gene mutation of each KRAS, the ID sequence consisting of (ID ⁇ S)n ⁇ E wherein ID is an ID mark which is a nucleotide selected from among A, T, C and G; S is a signpost which is a nucleotide linked with the adjacent ID mark and different from that of the adjacent ID mark; E is an endmark which is a nucleotide different from that of the signpost, and n is a natural number ranging from 1 to 32; (b) constructing a detection primer composed of a pyrosequencing primer sequence, the ID sequence, and a sequence specific for a KRAS gene mutation corresponding to the ID sequence; (c) amplifying a KRAS gene-containing sample by PCR using the detection primer; and (d) subjecting the amplified PCR product to pyrosequencing to obtain a pyrogram for the ID
  • the present invention also provides a method for detecting respiratory virus, the method comprising the steps of: (a) designing an ID sequence for genotyping according to the genotype of each of influenza A virus, influenza B virus, RSV B, rhinovirus, and coronavirus OC43, the ID sequence consisting of (ID ⁇ S)n ⁇ E wherein ID is an ID mark which is a nucleotide selected from among A, T, C and G; S is a signpost which is a nucleotide linked with the adjacent ID mark and different from that of the adjacent ID mark, E is an endmark which is a nucleotide different from that of the signpost, and n is a natural number ranging from 1 to 32; (b) constructing a detection primer composed of a pyrosequencing primer sequence, the ID sequence, and a sequence specific to each respiratory virus gene corresponding to the ID sequence; (c) amplifying a sample, which contains a respiratory virus selected from the group consisting of influenza A virus, influenza B virus, RSV B, rhinovirus,
  • FIG. 1 shows a pyrosequencing process, which is performed according a dispensation order, and the resulting pyrogram.
  • FIG. 2 shows the change in pyrogram peaks according to analytical sequences.
  • FIG. 3 shows the change in pyrogram peaks according to analytical sequences.
  • FIG. 4 shows the change in pyrogram peaks, which results from insertion of a signpost.
  • FIG. 5 shows pyrograms obtained for a mixture of two different analytical sequences.
  • FIG. 6 shows pyrograms obtained in the presence or absence of a signpost in a dispensation order.
  • FIG. 7 shows the changes in pyrogram patterns according to the changes in a sequence posterior to a signpost.
  • FIG. 8 shows pyrograms obtained in the absence of an endmark.
  • FIG. 9 shows pyrograms obtained in the absence of an endmark.
  • FIG. 10 shows the change in the dispensation order according to the change in the order of a signpost.
  • FIG. 11 shows a method of designing an ID sequence according to a dispensation order.
  • FIG. 12 shows a method of designing a dispensation order.
  • FIG. 13 shows pyrograms obtained by ID sequences according to dispensation orders.
  • FIG. 14 shows a method of designing an ID sequence after determining a dispensation order.
  • FIG. 15 shows pyrograms obtained by ID sequences according to dispensation orders.
  • FIG. 16 shows a method of genotyping HPV using an ID sequence of the present invention.
  • FIG. 17 shows a general system for detecting KRAS mutations.
  • FIG. 18 shows a method of detecting KRAS mutations using ID sequences of the present invention.
  • FIG. 19 shows the results obtained by genotyping 15 HPV types using ID sequences of the present invention.
  • FIG. 20 shows the results obtained by genotyping two or more types of HPV.
  • FIG. 21 shows the results of detecting KRAS mutations using ID sequences of the present invention.
  • FIG. 22 shows the results of detecting multiple KRAS mutations using ID sequences of the present invention.
  • FIG. 23 shows the results of detecting KRAS mutations in colorectal cancer tissue using ID sequences of the present invention.
  • FIG. 24 shows a method of detecting respiratory virus infection using an ID sequence of the present invention.
  • FIG. 25 shows the results of detecting single infections of 5 types of respiratory viruses using ID sequences of the present invention.
  • FIG. 26 shows the results of detecting multiple infections of 5 types of respiratory viruses using ID sequences of the present invention.
  • the present invention is directed to an ID sequence for genotyping which consists of A(ID ⁇ S)n ⁇ E, wherein ID is an ID mark which is a nucleotide selected from among A, T, C and G; S is a signpost which is a nucleotide linked with the adjacent ID mark and different from that of the adjacent ID mark, E is an endmark which is a nucleotide different from that of the signpost; and n is a natural number ranging from 1 to 32.
  • the present invention is directed to an ID sequence for genotyping which consists of ID ⁇ S, wherein ID is an ID mark which is a nucleotide selected from among A, T, C and G, and S is a signpost which is a nucleotide linked with the adjacent ID mark and different from that of the adjacent ID mark.
  • ID sequence is not a specific sequence conserved in each gene and refers to an artificially constructed nucleotide sequence which can be specifically assigned to each genotype in the genotyping method of the present invention.
  • adjacent ID mark means an ID mark located ahead of or behind the signpost.
  • the ID sequence of the present invention is used to perform pyrosequencing such that the pyrogram is distinguished by one nucleotide according to the determined dispensation order using the signpost and the endmark, which allow the pyrogram peak to be formed at a specific location without being influenced by the next sequence.
  • ID mark a nucleotide that forms a specific peak according to the dispensation order in this pyrosequencing process
  • ID sequence a sequence comprising the signpost and the endmark, which is a sequence required for forming a single peak by the ID mark
  • ID sequence a sequence comprising the signpost and the endmark, which is a sequence required for forming a single peak by the ID mark.
  • nucleotide sequencing is performed according to the dispensation order (the order of nucleotide addition in DNA synthesis), and if a template has a nucleotide absent in the dispensation order, no reaction will occur, and thus no peak will be formed, but if a sequence identical to the sequence included in the dispensation order is continuously present in the template, the height of the peak is formed according to the intensity of light emitted ( FIG. 1 ).
  • nucleotide when one nucleotide is used as an analytical sequence, it can be distinguished by four different peaks on the pyrogram.
  • a sequence next to the analytical sequence is one of A, T, G and C, and thus in at least one case, multiple peaks (if the identical sequences are repeated, one large peak is formed) are necessarily formed.
  • FIG. 2 there are at most three methods capable of distinguishing a single peak by a single nucleotide
  • an undesired peak is formed due to a sequence following the analytical sequence, and if repeated nucleotides are continuously present following the analysis sequence, polymerization reactions will occur at once to form a single peak.
  • the intensity of light generated in the reactions increases, the height of the peak proportionally increases, and if such repetitive sequences exist, the height of the peak for a single nucleotide relatively decreases ( FIG. 3 ).
  • a sequence that separates the “analytical sequence” so as not to be influenced by the next sequence and allows additional analysis is named “signpost” ( FIG. 4 ).
  • each of three nucleotides can be located at the site of the remaining one nucleotide (if identical sequences are located, the peaks will overlap, and thus three nucleotides excluding the nucleotide assigned as the signpost can be located at the remaining one nucleotide site), and the nucleotide located ahead of the signpost can be set as shown in FIG. 4 such that the peak can be independently distinguished without being influenced by the nucleotide located behind the analytical sequence.
  • the single nucleotide separated by the signpost in the analytical sequence is named “ID mark”, and as shown in FIG. 4 , multiplex genotyping of three types is possible using one ID mark and one signpost.
  • ID mark The single nucleotide separated by the signpost in the analytical sequence.
  • FIG. 4 multiplex genotyping of three types is possible using one ID mark and one signpost.
  • the position of the signpost in the dispensation order is after the ID mark (because only the ID mark located ahead of the signpost is not influenced by the sequence located following the analytical sequence).
  • analytical sequences of type 1 (analytical sequence: AC), type 2 (analytical sequence: TC) and type 3 (analytical sequence: GC) are synthesized and subjected to pyrosequencing.
  • type 1 analytical sequence: AC
  • type 2 analytical sequence: TC
  • type 3 analytical sequence: GC
  • the peak of G appears in dispensation order 3
  • the peak of C appears in dispensation order 4.
  • A, T and G which are the first nucleotides of the analytical sequences are respectively ID marks
  • C which is the second nucleotide of each of the analytical sequences is a signpost.
  • a sample consisting of type 1 (analytical sequence: AC) and type 2 (analytical sequence: TC) is pyrosequenced in the dispensation order of A ⁇ T ⁇ G ⁇ C.
  • the peak of A appears in dispensation sequence 1
  • the peak of T appears in dispensation sequence 2
  • no peak appears in dispensation sequence 3
  • the peak of C that is the signpost appears in dispensation sequence 4.
  • the peak of the signpost C is two times higher than the peaks of A and T and present in both the two types, and thus the amount of the reaction is two times larger and the peak intensity is also two times higher than those of A and T.
  • the peak of A appears in dispensation order 1
  • the peak of G appears in dispensation order 3
  • no peak appears in dispensation order 2
  • the peak of C that is the signpost appears in dispensation order 4.
  • the peak of the signpost C is two times higher and present in both the two types, and thus the amount of the reaction is two times larger and the peak intensity is also two times higher.
  • the peak of T appears in dispensation order 2
  • the peak of G appears in dispensation order 3
  • the peak of C that is the signpost appears in dispensation order 4.
  • the peak of the signpost C is two times higher and is present in both the two types, and thus the amount of the reaction is two times larger and the peak intensity is also two times higher.
  • the ID mark can be separated from the next sequence by the signpost and can be present independently of the next sequence.
  • it can advantageously be used in multiplex genotyping.
  • results of genotyping in pyrosequencing performed using an analytical sequence consisting of an “ID mark” and a “signpost” are not influenced by whether or not the sequence of the signpost is inserted into the dispensation order.
  • the sequence of the signpost is not inserted into the dispensation order, there will be a problem in that a mechanical error cannot be judged ( FIG. 6 ).
  • the sequence of the signpost is preferably inserted into the dispensation order to make it possible to determine whether or not pyrosequencing was normally performed.
  • the peak of the ID mark in multiplex genotyping in pyrosequencing isn't able to be higher than the peak of the signpost, this can also be used as a reference for judging pyrosequencing error ( FIG. 6 ).
  • the signpost functions to separate the single-nucleotide ID mark from the next sequence so as not to be influenced by the next sequence.
  • the next sequence is identical to the signpost, the height of the peak increases in proportion to the increase in the intensity of light emitted. For this reason, there can occur a phenomenon that the height of the peak of the ID mark changes ( FIG. 7 ).
  • a nucleotide sequence different from the signpost can be inserted following the signpost in order to prevent the ID mark and the signpost from being influenced by the next sequence.
  • the inserted sequence is named “endmark”, and the endmark is not inserted in the dispensation order. The endmark functions to prevent the ID mark and the signpost from being influenced by the next sequence and make the peak height constant.
  • the number N of signposts that can be added is preferably 2-32, and if N is 32, genotyping of 65 types is possible.
  • genotyping of 3 or more types is possible.
  • the ID mark can be located ahead of the signpost or between two signposts.
  • the ID mark located between two signposts may consist of two different nucleotides, because it must have nucleotides different from the signposts located at both sides thereof.
  • the ID mark located ahead of the signpost may consist of three different nucleotides, because it must have a nucleotide different from the signpost located behind thereof.
  • nucleotide of signpost 1 should not be identical to the nucleotide of signpost 3, and the nucleotide sequence of the most posterior signpost must also not be identical to the base sequence of the endmark.
  • the sequence consisting of the ID mark, the signpost and the endmark is named “ID sequence”.
  • ID sequence may also be composed of the ID mark and the signpost. Preferably, it consists of the Id mark, the signpost and the endmark.
  • Nucleotide sequences excluding the ID mark and the endmark are used as the signposts.
  • the nucleotide sequences of the signposts in the ID sequence must be located in the same order. In other words, only the ID mark should be located ahead of or between the signposts, and the signposts should be arranged in the same order. This is because, when the arrangement of the signposts changes, the dispensation order also changes due to the feature of pyrosequencing ( FIG. 10 ).
  • an ID mark which is located ahead of signpost 1 (T) may be any one of A, G and C
  • an ID mark which is located between signpost 1 and signpost 2 may be A or C
  • an endmark may be any one of A, T and C.
  • the ID sequence consisting of the ID mark, the signpost and the endmark can be produced using one ID mark: three cases (A, G and C) in which the ID mark is located ahead of signpost 1; and two cases (A and C) in which the ID mark is located between signpost 1 and signpost 2.
  • the endmarks in the ID sequences may be the same or different.
  • the ID marks located in the ID sequence sequentially form independent peaks according to the dispensation order.
  • the dispensation order can be designed according to various permutations which can be formed using the signpost as a boundary.
  • dispensation orders which can be formed according tot he ID sequence is shown in the following figure, and the endmark is not included in the dispensation order:
  • FIG. 12 shows 12 dispensation orders which can be formed according to the ID sequence, and one selected from among the 12 dispensation orders may be used.
  • the ID sequence has characteristic peaks according to the dispensation order.
  • An ID sequence consists of one ID mark, one or more signposts and at least one endmark.
  • the adjacent nucleotides must differ from each other, and the dispensation order must have the same conditions as described above.
  • the ID sequence may also be designed after determining the dispensation order.
  • three ID marks may be located ahead of signpost 1, and two ID marks may be located between two signposts.
  • the following ID sequence can be made with the dispensation order.
  • the present invention is directed to a genotyping primer comprising a gene-specific sequence for genotyping linked to said ID sequence.
  • the gene-specific sequence for genotyping is preferably a sequence specific to a gene selected from the group consisting of viral genes, disease genes, bacterial genes, and identification genes.
  • the primer preferably additionally contains a sequencing primer sequence at the 5′ terminal end in order to facilitate pyrosequencing.
  • the present invention is directed to a genotyping method which comprises using said genotyping primer.
  • the genotyping primer comprising the ID sequence of the present invention may be used in various genotyping methods which are performed using dispensation orders and sequencing methods. Preferably, it may be used in pyrosequencing methods and semiconductor sequencing methods, but is not limited thereto.
  • the pyrosequencing method is a method in which light emitted from the degradation of ppi (pyrophosphate) generated in a sequencing process
  • the semiconductor sequencing method is a method in which the change in current by a proton (H + ion) generated in a sequencing process is analyzed by a chip (Andersona, Erik P. et al., Sens Actuators B Chem.; 129(1): 79, 2008).
  • the genotyping method of the present invention may comprise the steps of: (a) designing an ID sequence for genotyping according to the genotyping target gene, the ID sequence consisting of (ID ⁇ S)n ⁇ E, wherein ID is an ID mark which is a nucleotide-selected from among A, T, C and G, S is a signpost which is a nucleotide linked with the adjacent ID mark and different from that of the adjacent ID mark, E is an endmark which is a nucleotide different from that of the signpost, and n is a natural number ranging from 1 to 32; (b) amplifying the template of the genotyping target gene by PCR using a genotyping primer comprising a gene-specific sequence for genotyping linked to the designed ID sequence, thereby obtaining a PCR product; and (c) pyrosequencing the PCR product to obtain a pyrogram for the ID sequence.
  • the present invention is directed to a method for genotyping HPV, the method comprising the steps of: (a) designing an ID sequence for genotyping according to the genotype of each HPV virus, the ID sequence consisting of (ID ⁇ S)n ⁇ E, wherein ID is an ID mark which is a nucleotide selected from among A, T, C and G; S is a signpost which is a nucleotide linked with the adjacent ID mark and different from that of the adjacent ID mark, E is an endmark which is a nucleotide different from that of the signpost, and n is a natural number ranging from 1 to 32; (b) constructing a genotyping primer composed of a pyrosequencing primer sequence, the ID sequence, and a sequence specific to a virus genotype corresponding to the ID sequence; (c) amplifying an HPV virus-containing sample by PCR using the genotyping primer; and (d) subjecting the amplified PCR product to pyrosequencing to obtain a pyrogram for
  • sequence specific to a virus genotype may be selected among nucleotide sequences shown by SEQ ID NOS: 1 to 15.
  • HPV human papilloma virus
  • HPV human papilloma virus
  • HPV shows different cancer incidences, cancer types and cancer metastatic processes depending on the genotypes, it is important to identify the genotype of HPV, which infected the patient, by genotyping. For example, it was reported that 55% of the incidence of CIN III+ is associated with HPV type 16, 15% with HPV type 18, and the remaining 30% with HPV type 13.
  • genotyping HPV makes it possible to monitor genotype-specific HPV infections.
  • a period of persistent infection in older women generally is generally longer than that in younger women, and this is because the older women were highly likely to be infected for a long time.
  • a critical period of persistent infection has not yet been clinically determined, it is generally known that an infection period longer than 1 year has increased risk.
  • HPV type 16 and HPV type 18 it is most important to examine persistent infection with carcinogenic HPV infection.
  • 15 HPV virus types were genotyped using the ID sequence.
  • Each of 15 HPV viral genomes was amplified by PCR using HPV L1 protein specific to 15 HPV virus types, primers(GT-HPV 15type primer) containing 15 kinds of ID sequences and sequencing primer sequences, and a 5′ biotinylated GP6 plus primer, and the PCR products were pyrosequenced.
  • primers(GT-HPV 15type primer) containing 15 kinds of ID sequences and sequencing primer sequences
  • a 5′ biotinylated GP6 plus primer were pyrosequenced.
  • a sample of a mixture of the genome DNA of the CaSki cell line infected with HPV type 16 and the same amount of the genomic DNA of the HeLa cell line infected with HPV type 18 was amplified by PCR using a GT-HPV 15 type primer and a 5′ biotinylated GP6 plus primer, and the PCR product was pyrosequenced.
  • a GT-HPV 15 type primer and a 5′ biotinylated GP6 plus primer was amplified by PCR using a GT-HPV 15 type primer and a 5′ biotinylated GP6 plus primer, and the PCR product was pyrosequenced.
  • the present invention is directed to a method for detecting KRAS gene mutation, the method comprising the steps of: (a) designing an ID sequence for genotyping according to the gene mutation of each KRAS, the ID sequence consisting of (ID ⁇ S)n ⁇ E wherein ID is an ID mark which is a nucleotide selected from among A, T, C and G; S is a signpost which is a nucleotide linked with the adjacent ID mark and different from that of the adjacent ID mark, E is an endmark which is a nucleotide different from that of the signpost, and n is a natural number ranging from 1 to 32; (b) constructing a detection primer composed of a pyrosequencing primer sequence, the ID sequence, and a sequence specific for a KRAS gene mutation corresponding to the ID sequence; (c) amplifying a KRAS gene-containing sample by PCR using the detection primer; and (d) subjecting the amplified PCR product to pyrosequencing to obtain
  • the Ras gene was first identified as a retroviral oncogene causing a sarcoma in rats. Since the presence of K-ras in the lymph node of pancreatic cancer patients was identified in 1985, various studies on the K-ras gene have been conducted. The mutation of this oncogene is frequently found in the malignant mutations of the human body. As genes having a structure and function similar to those of this oncogene, H-ras and N-ras are also known as oncogenes. Mutations in codons 12, 13 and 61 of K-ras influence the protein activity to cause excessive activity.
  • Mutations in the K-ras gene are found in adenocarcinoma of the digestive system.
  • adenocarcinoma of the pancreas 90% of mutations can be found in pancreatic juice and tissue and are known as mutations of codon 12.
  • these mutations are found in 40-45% of colorectal cancer and are known to be associated with a decrease in the response to drugs such as cetuximab or panitumumab, which are used for progressed colon cancer that does not respond to chemotherapy.
  • these mutations are observed in 5-30% of non-small cell lung and are observed mainly in smoking patients.
  • these mutations are found exclusively with EGFR mutations.
  • a method of detecting mutations in codon 12 and codon 13 of the KRAS gene was disclosed.
  • primers binding specifically to the three types of mutations of codon 12 (GGT>GTT) and codon 13 (GGC>TGC and GGC>GCC) were designed such that the mutations can be detected using ID sequences located ahead of nucleotide sequences specific to the three types of primers.
  • 12 types of KRAS mutations can be detected by a single PCR process using 3 types of forward primers and 1 type of biotinylated reverse primer ( FIG. 18 ).
  • sequence specific for a KRAS gene mutation may be selected among nucleotide sequences shown by SEQ ID NOS: 34 to 35.
  • the present invention is directed to a method for detecting respiratory virus, the method comprising the steps of: (a) designing an ID sequence for genotyping according to the genotype of each of influenza A virus, influenza B virus, RSV B, rhinovirus, and coronavirus OC43, the ID sequence consisting of (ID ⁇ S)n ⁇ E wherein ID is an ID mark which is a nucleotide selected from among A, T, C and G; S is a signpost which is a nucleotide linked with the adjacent ID mark and different from that of the adjacent ID mark, E is an endmark which is a nucleotide different from that of the signpost, and n is a natural number ranging from 1 to 32; (b) constructing a detection primer composed of a pyrosequencing primer sequence, the ID sequence, and a sequence specific to each respiratory virus gene corresponding to the ID sequence; (c) amplifying a sample, which contains a respiratory virus selected from the group consisting of influenza A virus, influenza B virus,
  • a method of detecting respiratory virus was disclosed.
  • primers binding specifically to 5 types of respiratory viruses are designed such that the viruses can be detected using ID sequences located ahead of nucleotide sequences specific to the primers.
  • cDNA is synthesized using 5 types of forward primers binding to 5 types of GT-respiratory viruses and 1 type of biotinylated reverse primer, and was amplified by PCR using a GT-RespiVirus ID primer and a 5′-biotinylated M13 reverse primer, and the PCR products were pyrosequenced.
  • sequences specific to the respiratory virus genotypes may be nucleotide sequences shown by SEQ ID NO: 41 for influenza A virus, SEQ ID NO: 42 for influenza B virus, SEQ ID NO: 43 for RSV B, SEQ ID NO: 44 for rhinovirus, and SEQ ID NO: 45 for coronavirus OC43.
  • the genes of high-risk HPV (human papilloma virus) types causing cervical cancer were typed.
  • HPV types A GCACATG HPV type 16 T GCACATG HPV type 58 C GCACATG HPV type 18 G A CACATG HPV type 33 G T CACATG HPV type 52 GC G ACATG HPV type 35 GC T ACATG HPV type 45 GCA T CATG HPV type 51 GCA G CATG HPV type 31 GCAC T ATG HPV type 39 GCAC G ATG HPV type 56 GCACA C TG HPV type 59 GCACA G TG HPV type 68 GCACAT A G HPV type 66 GCACAT C G HPV type 82
  • a nucleotide sequence specific to each of 15 HPV types was linked to the 3′ terminal end of each of 15 ID sequences, and a common sequencing primer sequence was linked to the 5′ terminal end, such that 15 types of different ID sequences can be used in pyrosequencing with a single sequencing primer, thereby constructing PCR primers containing the ID sequences (Table 2).
  • HPV viruses The 15 types of HPV viruses were obtained by extracting genomic DNA from Korean female cervicovaginal secretions (Department of Obstetrics & Gynecology, Chungnam National University), identifying the infected genotypes using an HPV DNA chip, and amplifying the L1 gene of the HPV virus by PCR.
  • PCR primers for determining whether the clinical samples were infected with HPV a GP5 plus primer and a GP6 plus primer were used.
  • PCR amplification was performed under the following conditions using forward primers (15 types of GT-HPV primers) consisting of the 15 types of PCR primers shown in Table 2 and a reverse primer consisting of a 5′ biotinylated GP6 plus primer (Bioneer, Korea): 95° C. for 15 min; then 45 cycles each consisting of 95° C. (0.5 min), 45° C. (0.5 min) and 72° C. (0.5 min); then 72° C. (10 min); and then storage at ⁇ 4° C.
  • forward primers 15 types of GT-HPV primers
  • a reverse primer consisting of a 5′ biotinylated GP6 plus primer
  • the PCR products contained a common .
  • a general T7 primer (5′-TAA TAC GAC TCA CTA TAG GG-3′) was used to perform pyrosequencing with the ID sequences, and the pyrograms were analyzed to type HPV ( FIGS. 19 and 20 ).
  • ID marks formed according to the types of HPV in the dispensation order are shown in the upper portion of FIG. 19 .
  • the peaks indicated in red are ID marks, and the peaks indicated in blue are signposts.
  • PCR amplification was performed with the GP5 plus primer and the GP6 plus primer. Then, using a 1:1 mixture of the PCR products for each HPV type as a template, PCR amplification was performed with 15 types of GT-HPV primers and a 5′ biotinylated GP6 plus primer. Then, the PCR products were pyrosequenced using a T7 primer.
  • PCR amplification was performed with 15 types of GT-HPV forward primers and a 5′ biotinylated GP6 plus primer. Then, the PCR products were pyrosequenced using a T7 sequencing primer to obtain pyrograms for the ID sequences.
  • ID sequences for three types of KRAS mutations that is, mutations of codon 12 (GGT>GTT) and codon 13 (GGC>TGC and GGC>GCC), were designed (Table 6).
  • nucleotide sequence specific to each of the three types of KRAS mutations was linked to the 3′ terminal end of each of the ID sequences, and a common sequencing primer sequence to the 5′ terminal end, such that pyrosequencing can be performed using the three different ID sequences with a single sequencing primer, thereby constructing ID sequence-containing PCR primers (Table 7).
  • GT-KRAS ID primers GT-KRAS ID forward primer Sequencing primer ID KRAS mutation- binding site sequence specific sequence Codon12 AACTTGTGGTAGTTGGAGCT GTGCAGT TGGAGCTGT (SEQ ID NO: 33) (GGT > GTT) (SEQ ID NO: 36) Codon13 AACTTGTGGTAGTTGGAGCT GTGCTGT GAGCTGGTT (SEQ ID NO: 34) (GGC > TGC) (SEQ ID NO: 37) Codon13 AACTTGTGGTAGTTGGAGCT CGCACATT AGCTGGTGC (SEQ ID NO: 35) (GGC > GCC) (SEQ ID NO: 38)
  • Templates for mutations corresponding to the ID sequences used as samples were made through gene synthesis (Bioneer, Korea), and the normal KRAS cell line Caco2(ATCC HTB-37) and the mutant cell lines A549(ATCC CCL-185) and HCT116(ATCC CCL-247) were used.
  • Each of the templates was amplified by PCR using the four types of KRAS forward primers and a 5′ biotinylated reverse primer, and the PCR products were pyrosequenced under the following conditions:
  • KRAS mutations were detected using the ID sequences ( FIG. 21 ).
  • New influenza A H1N1
  • seasonal influenza A H1 and H3
  • B viruses prevail in the same season and show similar infection symptoms, but show different responses to antiviral agents. Thus, it is required to accurately identify virus types for treatment.
  • a method of genotyping respiratory virus using the ID sequence was developed.
  • a nucleotide sequence specific to each of the 5 types of respiratory viruses was linked to the 3′ terminal end of each of the ID sequences, and a common sequencing primer sequence was linked to the 5′ end, pyrosequencing for the 5 types of ID sequences can be performed using a single sequencing primer, thereby constructing ID sequence-containing PCR primers (Table 10).
  • GT-RespiVirus ID primers GT-respiratory virus 5 type primer construction
  • Sequencing primer ID Respiratory virus-specific binding sites sequence sequence Influenza A TAATACGACTCACTATAGGG CATA ATATACAACAGGATGGGGGCTGTG virus (SEQ ID NO: 41) (SEQ ID NO: 46) Influenza B TAATACGACTCACTATAGGG G ATA ATCATCATCCCAGGCGACAAAGATG virus ((SEQ ID NO: 42) (SEQ ID NO: 47) RSV B TAATACGACTCACTATAGGG T ATA TGATATGCCTATAACAAATGACCAGAAA (SEQ ID NO: (SEQ ID NO: 43) 48) Rhino TAATACGACTCACTATAGGG A C TA GCCAGAAAGTGGACAAGGTGTGAAGAG virus1 (SEQ ID NO: 44) (SEQ ID NO: 49) Coronavirus TAATACGACTCACTATAGGG AT C A GCAGATTTGCCAGCTTATA
  • cDNAs from virus-infected cells were synthesized using the 5 types of GT-respiratory forward primers and a 5′ biotinylated reverse primer (Table 11), and then amplified by PCR using the GT-RespiVirus ID primers shown in Table 10 and a 5′ biotinylated M13 reverse primer.
  • the PCR products were pyrosequenced to detect virus infection ( FIG. 24 ).
  • the required portions of the virus genes were synthesized, and multiplex PCR was performed using the synthesized virus genes as templates, followed by pyrosequencing for detection of the virus genes.
  • the virus gene templates were mixed at the same ratio, and then amplified by multiplex PCR, followed by pyrosequencing for detection of the viral genes. As a result, multiple infections were normally detected.
  • the ID sequence When pyrosequencing is performed using the ID sequence, a unique and simple pyrogram can be obtained for each genotype.
  • the use of the ID sequence makes it possible to genotype viral genes, disease genes, bacterial genes and identification genes in a simple and efficient manner.

Abstract

The present invention relates to a genotyping method, and more particularly to an ID sequence, which is assigned to each genotype, and a multiplex genotyping method which uses the ID sequence. When pyrosequencing is performed using the ID sequence, a unique and simple pyrogram can be obtained for each genotype. Thus, the use of the ID sequence makes it possible to genotype viral genes, disease genes, bacterial genes and identification genes in a simple and efficient manner. In addition, a genotyping primer of the invention can be used in various genotyping methods which are performed using dispensation orders and sequencing methods.

Description

    TECHNICAL FIELD
  • The present invention relates to a genotyping method, and more particularly to an ID sequence, which is assigned to each genotype, and a multiplex genotyping method which uses the ID sequence.
  • BACKGROUND ART
  • Methods which have been developed for detecting infectious organisms include traditional methods of identifying the physical and chemical characteristics of pathogens by cultivation, and methods of detecting the specific genetic characteristics of pathogens. The methods for detecting genetic characteristics include restriction fragment length polymorphism (RFLP) analysis, amplified fragment length polymorphism (AFLP) analysis, pulsed-field gel electrophoresis, arbitrarily-primed polymerase chain reaction (AP-PCR), repetitive sequence-based PCR, ribotyping, and comparative nucleic acid sequencing. These methods are generally too slow, expensive, irreproducible, and technically demanding to be used in most diagnostic settings. All of the above-mentioned methods generally require that a cumbersome gel electrophoretic step be used, that the pathogen be grown in culture, that its genomic DNA be purified, and that the sample not contain more than one type of organism. These limitations also apply to recently developed detection methods which employ high density microarrays (Salazar et al., Nucleic Acids Res. 24:5056-5057, 1996; Troesch et al., J. Clin. Microbiol. 37:49-55, 1999; Lashkari et al., Proc. Natil. Acad. Sci. U.S.A. 94: 13057-13062, 1997). Meanwhile, pyrosequencing is a method of DNA sequencing based on the “sequencing by DNA synthesis” principle, which relies on the detection of pyrophosphate release on nucleotide incorporation, unlike the traditional Sanger sequencing method. In the pyrosequencing method, four deoxynucleotide triphosphates (dNTPs) are sequentially added one by one during polymerization. PPi attached to the dNTPs being polymerized emit light by enzymatic reactions, and the emitted light shows a signal peak according to the reaction order of each of the sequentially added dNTPs, in which the peak shows a pattern which is high or low in proportion to the number of the reacted dNTPs, such that the nucleotide sequence of the pathogen can be determined. In recent years, methods of detecting pathogenic bacteria or viruses in clinical samples based on pyrograms obtained by pyrosequencing of the PCR products of sequences specific to the pathogens have been used (Travasso, C M et al, J. Biosci., 33:73-80, 2008; Gharizadeh, B et al., Molecular and Cellular Probes, 20, 230-238, 2006; Hoffmann, C et al., Nucleic Acid Research, 1-8, 2007).
  • In the pyrosequencing technique, however, nucleotide sequencing is performed according to the dispensation order of dNTPs, and a nucleotide in a template, which is absent in the dispensation order, does not react, and thus does not form a peak. However, when identical nucleotides in the dispensation order continuously appear, the heights of the peaks are determined according to the intensities of light emitted. Accordingly, when various pathogens exist in the same sample, the peaks of the nucleotides of the various pathogens appear overlapped, thus making it difficult to identify the genotypes through the interpretation of pyrograms. Particularly, as the number of repetitive sequences increases, the peaks of the anterior sequences become relatively lower. Thus, in the case of infection with multiple pathogens, it is difficult to detect a peak according to the degree of infection with each pathogen.
  • Accordingly, the present inventors have made extensive efforts to enable the genotypes of interest to be identified by unique and simple pyrograms obtained when performing genotyping using pyrosequencing. As a result, the present inventors have found that, when an ID sequence, which has an ID mark, a signpost and an endmark while existing independently of the specific sequence to be typed, is linked with the specific sequence and is used to perform pyrosequencing, a unique and simple pyrogram can be obtained for each genotype, thereby completing the present invention.
  • DISCLOSURE OF INVENTION
  • It is an object of the present invention to provide an ID sequence which is useful to perform pyrosequencing so as to enable the genotypes of interest to be identified by unique and simple pyrograms.
  • Another object of the present invention is to provide a genotyping method which uses said ID sequence.
  • Still another object of the present invention is to provide a method of genotyping HPV using said ID sequence.
  • Yet another object of the present invention is to provide a method of detecting KRAS gene mutation using said ID sequence.
  • A further object of the present invention is to provide a method of detecting respiratory virus using said ID sequence.
  • To achieve the above objects, the present invention provides an ID sequence for genotyping which consists of A(ID−S)n−E, wherein ID is an ID mark which is a single nucleotide selected from among A, T, C and G; S is a signpost which is a nucleotide linked with the adjacent ID mark and different from that of the adjacent ID mark; E is an endmark which is a nucleotide different from that of the signpost; and n is a natural number ranging from 1 to 32.
  • The present invention also provides an ID sequence for genotyping which consists of ID−S, wherein ID is an ID mark which is a nucleotide selected from among A, T, C and G, and S is a signpost which is a nucleotide linked with the adjacent ID mark and different from that of the adjacent ID mark.
  • The present invention also provides a genotyping primer comprising a gene-specific sequence for genotyping linked to said ID sequence.
  • The present invention also provides a genotyping method which comprises using said genotyping primer.
  • The present invention also provides a method for genotyping HPV, the method comprising the steps of: (a) designing an ID sequence for genotyping according to the genotype of each HPV virus, the ID sequence consisting of (ID−S)n−E, wherein ID is an ID mark which is a nucleotide selected from among A, T, C and G; S is a signpost which is a nucleotide linked with the adjacent ID mark and different from that of the adjacent ID mark; E is an endmark which is a nucleotide different from that of the signpost, and n is a natural number ranging from 1 to 32; (b) constructing a genotyping primer composed of a pyrosequencing primer sequence, the ID sequence, and a sequence specific to a virus genotype corresponding to the ID sequence; (c) amplifying an HPV virus-containing sample by PCR using the genotyping primer; and (d) subjecting the amplified PCR product to pyrosequencing to obtain a sequence for the ID sequence, and distinguishing the genotype of HPV according to the ID sequence.
  • The present invention also provides a method for detecting KRAS gene mutation, the method comprising the steps of: (a) designing an ID sequence for genotyping according to the gene mutation of each KRAS, the ID sequence consisting of (ID−S)n−E wherein ID is an ID mark which is a nucleotide selected from among A, T, C and G; S is a signpost which is a nucleotide linked with the adjacent ID mark and different from that of the adjacent ID mark; E is an endmark which is a nucleotide different from that of the signpost, and n is a natural number ranging from 1 to 32; (b) constructing a detection primer composed of a pyrosequencing primer sequence, the ID sequence, and a sequence specific for a KRAS gene mutation corresponding to the ID sequence; (c) amplifying a KRAS gene-containing sample by PCR using the detection primer; and (d) subjecting the amplified PCR product to pyrosequencing to obtain a pyrogram for the ID sequence, and detecting the KRAS gene mutation according to the ID sequence.
  • The present invention also provides a method for detecting respiratory virus, the method comprising the steps of: (a) designing an ID sequence for genotyping according to the genotype of each of influenza A virus, influenza B virus, RSV B, rhinovirus, and coronavirus OC43, the ID sequence consisting of (ID−S)n−E wherein ID is an ID mark which is a nucleotide selected from among A, T, C and G; S is a signpost which is a nucleotide linked with the adjacent ID mark and different from that of the adjacent ID mark, E is an endmark which is a nucleotide different from that of the signpost, and n is a natural number ranging from 1 to 32; (b) constructing a detection primer composed of a pyrosequencing primer sequence, the ID sequence, and a sequence specific to each respiratory virus gene corresponding to the ID sequence; (c) amplifying a sample, which contains a respiratory virus selected from the group consisting of influenza A virus, influenza B virus, RSV B, rhinovirus, and coronavirus OC43, by PCR using the detection primer; and (d) subjecting the amplified PCR product to pyrosequencing to obtain a pyrogram for the ID sequence, and detecting the respiratory virus according to the ID sequence.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a pyrosequencing process, which is performed according a dispensation order, and the resulting pyrogram.
  • FIG. 2 shows the change in pyrogram peaks according to analytical sequences.
  • FIG. 3 shows the change in pyrogram peaks according to analytical sequences.
  • FIG. 4 shows the change in pyrogram peaks, which results from insertion of a signpost.
  • FIG. 5 shows pyrograms obtained for a mixture of two different analytical sequences.
  • FIG. 6 shows pyrograms obtained in the presence or absence of a signpost in a dispensation order.
  • FIG. 7 shows the changes in pyrogram patterns according to the changes in a sequence posterior to a signpost.
  • FIG. 8 shows pyrograms obtained in the absence of an endmark.
  • FIG. 9 shows pyrograms obtained in the absence of an endmark.
  • FIG. 10 shows the change in the dispensation order according to the change in the order of a signpost.
  • FIG. 11 shows a method of designing an ID sequence according to a dispensation order.
  • FIG. 12 shows a method of designing a dispensation order.
  • FIG. 13 shows pyrograms obtained by ID sequences according to dispensation orders.
  • FIG. 14 shows a method of designing an ID sequence after determining a dispensation order.
  • FIG. 15 shows pyrograms obtained by ID sequences according to dispensation orders.
  • FIG. 16 shows a method of genotyping HPV using an ID sequence of the present invention.
  • FIG. 17 shows a general system for detecting KRAS mutations.
  • FIG. 18 shows a method of detecting KRAS mutations using ID sequences of the present invention.
  • FIG. 19 shows the results obtained by genotyping 15 HPV types using ID sequences of the present invention.
  • FIG. 20 shows the results obtained by genotyping two or more types of HPV.
  • FIG. 21 shows the results of detecting KRAS mutations using ID sequences of the present invention.
  • FIG. 22 shows the results of detecting multiple KRAS mutations using ID sequences of the present invention.
  • FIG. 23 shows the results of detecting KRAS mutations in colorectal cancer tissue using ID sequences of the present invention.
  • FIG. 24 shows a method of detecting respiratory virus infection using an ID sequence of the present invention.
  • FIG. 25 shows the results of detecting single infections of 5 types of respiratory viruses using ID sequences of the present invention.
  • FIG. 26 shows the results of detecting multiple infections of 5 types of respiratory viruses using ID sequences of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • Other features and embodiments of the present invention will be more apparent from the following detailed descriptions and the appended claims
  • In one aspect, the present invention is directed to an ID sequence for genotyping which consists of A(ID−S)n−E, wherein ID is an ID mark which is a nucleotide selected from among A, T, C and G; S is a signpost which is a nucleotide linked with the adjacent ID mark and different from that of the adjacent ID mark, E is an endmark which is a nucleotide different from that of the signpost; and n is a natural number ranging from 1 to 32.
  • In another aspect, the present invention is directed to an ID sequence for genotyping which consists of ID−S, wherein ID is an ID mark which is a nucleotide selected from among A, T, C and G, and S is a signpost which is a nucleotide linked with the adjacent ID mark and different from that of the adjacent ID mark.
  • As used herein, the term “ID sequence” is not a specific sequence conserved in each gene and refers to an artificially constructed nucleotide sequence which can be specifically assigned to each genotype in the genotyping method of the present invention.
  • As used herein, the term “adjacent ID mark” means an ID mark located ahead of or behind the signpost.
  • The ID sequence of the present invention is used to perform pyrosequencing such that the pyrogram is distinguished by one nucleotide according to the determined dispensation order using the signpost and the endmark, which allow the pyrogram peak to be formed at a specific location without being influenced by the next sequence.
  • In this invention, a nucleotide that forms a specific peak according to the dispensation order in this pyrosequencing process is named “ID mark”, and a sequence comprising the signpost and the endmark, which is a sequence required for forming a single peak by the ID mark, is named “ID sequence”. There can be three types of ID marks which are not influenced by a gene sequence located next to the ID mark through the use of one signpost and one endmark, and thus the number of types that can be genotyped is three. In order to perform multiplex genotyping of more than three types, additional signposts and ID marks are required.
  • In general pyrosequencing, nucleotide sequencing is performed according to the dispensation order (the order of nucleotide addition in DNA synthesis), and if a template has a nucleotide absent in the dispensation order, no reaction will occur, and thus no peak will be formed, but if a sequence identical to the sequence included in the dispensation order is continuously present in the template, the height of the peak is formed according to the intensity of light emitted (FIG. 1).
  • It is believed that, when one nucleotide is used as an analytical sequence, it can be distinguished by four different peaks on the pyrogram. However, in fact, a sequence next to the analytical sequence is one of A, T, G and C, and thus in at least one case, multiple peaks (if the identical sequences are repeated, one large peak is formed) are necessarily formed. As a result, there are at most three methods capable of distinguishing a single peak by a single nucleotide (FIG. 2).
  • In addition, an undesired peak is formed due to a sequence following the analytical sequence, and if repeated nucleotides are continuously present following the analysis sequence, polymerization reactions will occur at once to form a single peak. However, because the intensity of light generated in the reactions increases, the height of the peak proportionally increases, and if such repetitive sequences exist, the height of the peak for a single nucleotide relatively decreases (FIG. 3). Because of such problems, there is a limit to multiplex genotyping which uses a single nucleotide. To solve such problems, in the ID sequence of the present invention, a sequence that separates the “analytical sequence” so as not to be influenced by the next sequence and allows additional analysis is named “signpost” (FIG. 4).
  • In addition, a design of the dispensation order for pyrosequencing varies depending on the signpost sequence.
  • If one nucleotide in an analytical sequence consisting of two nucleotides is set as a signpost, each of three nucleotides can be located at the site of the remaining one nucleotide (if identical sequences are located, the peaks will overlap, and thus three nucleotides excluding the nucleotide assigned as the signpost can be located at the remaining one nucleotide site), and the nucleotide located ahead of the signpost can be set as shown in FIG. 4 such that the peak can be independently distinguished without being influenced by the nucleotide located behind the analytical sequence.
  • The single nucleotide separated by the signpost in the analytical sequence is named “ID mark”, and as shown in FIG. 4, multiplex genotyping of three types is possible using one ID mark and one signpost. Herein, the position of the signpost in the dispensation order is after the ID mark (because only the ID mark located ahead of the signpost is not influenced by the sequence located following the analytical sequence).
  • In one aspect of the present invention, in order to genotype a two-nucleotide analytical sequence consisting of a one-nucleotide ID mark and a signpost, as shown in FIG. 5, analytical sequences of type 1 (analytical sequence: AC), type 2 (analytical sequence: TC) and type 3 (analytical sequence: GC) are synthesized and subjected to pyrosequencing. As a result, for type 1, the peak of A appears in dispensation order 1, and the peak of C appears in dispensation order 4. For type 2, the peak of T appears in dispensation order 2, and the peak of C appears in dispensation order 4. For type 3, the peak of G appears in dispensation order 3, and the peak of C appears in dispensation order 4. Herein, A, T and G which are the first nucleotides of the analytical sequences are respectively ID marks, and C which is the second nucleotide of each of the analytical sequences is a signpost.
  • To perform multiplex genotyping for the three types of analytical sequences, as shown in FIG. 5( a), a sample consisting of type 1 (analytical sequence: AC) and type 2 (analytical sequence: TC) is pyrosequenced in the dispensation order of A→T→G→C. As a result, the peak of A appears in dispensation sequence 1, the peak of T appears in dispensation sequence 2, no peak appears in dispensation sequence 3, and the peak of C that is the signpost appears in dispensation sequence 4. Herein, the peak of the signpost C is two times higher than the peaks of A and T and present in both the two types, and thus the amount of the reaction is two times larger and the peak intensity is also two times higher than those of A and T.
  • Similarly, as shown in FIG. 5( b), in the case of a sample consisting of type 1 (analytical sequence: AC) and type 3 (analytical sequence: GC), the peak of A appears in dispensation order 1, the peak of G appears in dispensation order 3, no peak appears in dispensation order 2, and the peak of C that is the signpost appears in dispensation order 4. Herein, the peak of the signpost C is two times higher and present in both the two types, and thus the amount of the reaction is two times larger and the peak intensity is also two times higher.
  • In addition, as shown in FIG. 5( c), in the case of a sample consisting of type 2 (analytical sequence: TC) and type 3 (analytical sequence: GC), the peak of T appears in dispensation order 2, the peak of G appears in dispensation order 3, no peak appeared in dispensation order 1, and the peak of C that is the signpost appears in dispensation order 4. Herein, the peak of the signpost C is two times higher and is present in both the two types, and thus the amount of the reaction is two times larger and the peak intensity is also two times higher.
  • Accordingly, the ID mark can be separated from the next sequence by the signpost and can be present independently of the next sequence. Thus, it can advantageously be used in multiplex genotyping.
  • The results of genotyping in pyrosequencing performed using an analytical sequence consisting of an “ID mark” and a “signpost” are not influenced by whether or not the sequence of the signpost is inserted into the dispensation order. However, if the sequence of the signpost is not inserted into the dispensation order, there will be a problem in that a mechanical error cannot be judged (FIG. 6). For this reason, the sequence of the signpost is preferably inserted into the dispensation order to make it possible to determine whether or not pyrosequencing was normally performed. In addition, because the peak of the ID mark in multiplex genotyping in pyrosequencing isn't able to be higher than the peak of the signpost, this can also be used as a reference for judging pyrosequencing error (FIG. 6).
  • Endmark
  • The signpost functions to separate the single-nucleotide ID mark from the next sequence so as not to be influenced by the next sequence. However, when the next sequence is identical to the signpost, the height of the peak increases in proportion to the increase in the intensity of light emitted. For this reason, there can occur a phenomenon that the height of the peak of the ID mark changes (FIG. 7). To solve this phenomenon, a nucleotide sequence different from the signpost can be inserted following the signpost in order to prevent the ID mark and the signpost from being influenced by the next sequence. Herein, the inserted sequence is named “endmark”, and the endmark is not inserted in the dispensation order. The endmark functions to prevent the ID mark and the signpost from being influenced by the next sequence and make the peak height constant.
  • In order words, in the case in which the endmark is absent as shown in FIG. 8, if type 1 (analytical sequence: AC) is followed by CA and if pyrosequencing is performed in the dispensation order of A→T→G→C, the peak of C in dispensation order 3 will be larger than the peak of A in dispensation order 1, because of the overlapping C next to the signpost C. Similarly, if type 3 (analytical sequence: GC) is followed by CC, the peak of G in dispensation order 3 will be much smaller than the excessively large peak of C in dispensation order 4, because C next to the signpost C overlaps three times.
  • In the case in which the endmark is present as shown in FIG. 9, if type 1 (analytical sequence: AC) is followed by CA and if T as the endmark is inserted therebetween and if pyrosequencing is performed in the dispensation order of A→T→G→C, C will not overlap due to the insertion of T next to the signpost C, and the height of the peak of A in dispensation order 1 and the height of the peak of C in dispensation order 3 will be constant. Similarly, if type 3 (analytical sequence: GC) is followed by CC, C next to the signpost will not overlap due to the insertion of the endmark T next to the signpost C, and the height of the peak of G in dispensation order 3 will be equal to the height of the peak of C in dispensation order 4. In the present invention, the number N of signposts that can be added is preferably 2-32, and if N is 32, genotyping of 65 types is possible.
  • When a plurality of ID marks and a plurality of signposts are used, genotyping of 3 or more types is possible.
  • In this case, the adjacent nucleotide sequences should differ from each other in order to obtain pyrograms of single peaks. The ID mark can be located ahead of the signpost or between two signposts. The ID mark located between two signposts may consist of two different nucleotides, because it must have nucleotides different from the signposts located at both sides thereof. In addition, the ID mark located ahead of the signpost may consist of three different nucleotides, because it must have a nucleotide different from the signpost located behind thereof.
  • Herein, the nucleotide of signpost 1 should not be identical to the nucleotide of signpost 3, and the nucleotide sequence of the most posterior signpost must also not be identical to the base sequence of the endmark.
  • In the present invention, the sequence consisting of the ID mark, the signpost and the endmark is named “ID sequence”. In the present invention, the ID sequence may also be composed of the ID mark and the signpost. Preferably, it consists of the Id mark, the signpost and the endmark.
  • Whenever one signpost is added, the ID seqauence of the present invention enables two additional types to be distinguished. Thus, it enables 2N+1 (N=the number of signposts) types to be distinguished by genotyping according to the location of the ID mark.
  • Nucleotide sequences excluding the ID mark and the endmark are used as the signposts. In order to distinguish the ID marks of the ID sequence in the same dispensation order, the nucleotide sequences of the signposts in the ID sequence must be located in the same order. In other words, only the ID mark should be located ahead of or between the signposts, and the signposts should be arranged in the same order. This is because, when the arrangement of the signposts changes, the dispensation order also changes due to the feature of pyrosequencing (FIG. 10).
  • Design of ID Sequence
  • Case of Making ID Sequence After Determining Signposts
  • In the case in which an ID sequence comprises two signposts, if T and G are used as signpost 1 and signpost 2, respectively, an ID mark which is located ahead of signpost 1 (T) may be any one of A, G and C, an ID mark which is located between signpost 1 and signpost 2 may be A or C, and an endmark may be any one of A, T and C.
  • Thus, as shown in FIG. 11, there are the following five cases in which the ID sequence consisting of the ID mark, the signpost and the endmark can be produced using one ID mark: three cases (A, G and C) in which the ID mark is located ahead of signpost 1; and two cases (A and C) in which the ID mark is located between signpost 1 and signpost 2.
  • Herein, because the endmarks are not included in the dispensation order, the endmarks in the ID sequences may be the same or different.
  • Design of Dispensation Order
  • In genotyping which is performed using the ID sequence, the ID marks located in the ID sequence sequentially form independent peaks according to the dispensation order. The dispensation order can be designed according to various permutations which can be formed using the signpost as a boundary.
  • One of dispensation orders which can be formed according tot he ID sequence is shown in the following figure, and the endmark is not included in the dispensation order:
  • FIG. 12 shows 12 dispensation orders which can be formed according to the ID sequence, and one selected from among the 12 dispensation orders may be used.
  • The number of dispensation orders that can be formed is 4×6N (N=number of signposts). Thus, if the number of signposts is 2, then 144 dispensation orders may be made.
  • Accordingly, as shown in FIG. 13, the ID sequence has characteristic peaks according to the dispensation order.
  • Method of Designing ID Sequence After Determining Dispensation Order
  • An ID sequence consists of one ID mark, one or more signposts and at least one endmark. In the ID sequence, the adjacent nucleotides must differ from each other, and the dispensation order must have the same conditions as described above. In addition, the ID sequence may also be designed after determining the dispensation order.
  • In the dispensation order, three ID marks may be located ahead of signpost 1, and two ID marks may be located between two signposts. When this rule is used, the following ID sequence can be made with the dispensation order.
  • For example, when 9 genotypes are to be separated, 4 signposts are required according to the formula (2N+1). As shown in FIG. 14, if the dispensation order is determined such that A, T, G and C are repeated n times, the signposts will be C, G, T and A, the endmark will be T, and the ID marks will be located between the signposts, thereby constructing an ID sequence. When pyrosequencing is performed according to the dispensation order, the results shown in FIG. 15 can be obtained.
  • In still another aspect, the present invention is directed to a genotyping primer comprising a gene-specific sequence for genotyping linked to said ID sequence.
  • In the present invention, the gene-specific sequence for genotyping is preferably a sequence specific to a gene selected from the group consisting of viral genes, disease genes, bacterial genes, and identification genes. The primer preferably additionally contains a sequencing primer sequence at the 5′ terminal end in order to facilitate pyrosequencing.
  • In yet another aspect, the present invention is directed to a genotyping method which comprises using said genotyping primer.
  • The genotyping primer comprising the ID sequence of the present invention may be used in various genotyping methods which are performed using dispensation orders and sequencing methods. Preferably, it may be used in pyrosequencing methods and semiconductor sequencing methods, but is not limited thereto.
  • In the present invention, the pyrosequencing method is a method in which light emitted from the degradation of ppi (pyrophosphate) generated in a sequencing process, and the semiconductor sequencing method is a method in which the change in current by a proton (H+ ion) generated in a sequencing process is analyzed by a chip (Andersona, Erik P. et al., Sens Actuators B Chem.; 129(1): 79, 2008).
  • The genotyping method of the present invention may comprise the steps of: (a) designing an ID sequence for genotyping according to the genotyping target gene, the ID sequence consisting of (ID−S)n−E, wherein ID is an ID mark which is a nucleotide-selected from among A, T, C and G, S is a signpost which is a nucleotide linked with the adjacent ID mark and different from that of the adjacent ID mark, E is an endmark which is a nucleotide different from that of the signpost, and n is a natural number ranging from 1 to 32; (b) amplifying the template of the genotyping target gene by PCR using a genotyping primer comprising a gene-specific sequence for genotyping linked to the designed ID sequence, thereby obtaining a PCR product; and (c) pyrosequencing the PCR product to obtain a pyrogram for the ID sequence.
  • In a further aspect, the present invention is directed to a method for genotyping HPV, the method comprising the steps of: (a) designing an ID sequence for genotyping according to the genotype of each HPV virus, the ID sequence consisting of (ID−S)n−E, wherein ID is an ID mark which is a nucleotide selected from among A, T, C and G; S is a signpost which is a nucleotide linked with the adjacent ID mark and different from that of the adjacent ID mark, E is an endmark which is a nucleotide different from that of the signpost, and n is a natural number ranging from 1 to 32; (b) constructing a genotyping primer composed of a pyrosequencing primer sequence, the ID sequence, and a sequence specific to a virus genotype corresponding to the ID sequence; (c) amplifying an HPV virus-containing sample by PCR using the genotyping primer; and (d) subjecting the amplified PCR product to pyrosequencing to obtain a pyrogram for the ID sequence, and distinguishing the genotype of HPV according to the ID sequence.
  • In the present invention, the sequence specific to a virus genotype may be selected among nucleotide sequences shown by SEQ ID NOS: 1 to 15.
  • HPV (human papilloma virus) is one of the most common viruses which infect the human skin or mucous membrane. Today more than about 150 HPV types are known, and about 30 kinds infect the genital tract. About 85% of cancers caused by HPV virus are associated with cervical cancer. Among 30 HPV types that infect the genital tract, 15 types are known as high-risk types that cause cervical cancer. Cervical cancer ranks sixth in cancer incidence among women in Korea, and Pap smears have poor sensitivity and reproducibility, and thus have problems involved in detecting precancerous conditions. In addition, these testing methods incur high cost due to frequent testing. HPV testing methods approved by the FDA to date include HybridCaptureII, but this method can diagnose only HPV infection and cannot determine what type of HPV infection is present.
  • Because HPV shows different cancer incidences, cancer types and cancer metastatic processes depending on the genotypes, it is important to identify the genotype of HPV, which infected the patient, by genotyping. For example, it was reported that 55% of the incidence of CIN III+ is associated with HPV type 16, 15% with HPV type 18, and the remaining 30% with HPV type 13.
  • The most important reason for genotyping HPV is that the genotyping makes it possible to monitor genotype-specific HPV infections. A period of persistent infection in older women generally is generally longer than that in younger women, and this is because the older women were highly likely to be infected for a long time. Although a critical period of persistent infection has not yet been clinically determined, it is generally known that an infection period longer than 1 year has increased risk. Although it is also important to identify HPV type 16 and HPV type 18, it is most important to examine persistent infection with carcinogenic HPV infection.
  • In one example of the present invention, 15 HPV virus types were genotyped using the ID sequence. Each of 15 HPV viral genomes was amplified by PCR using HPV L1 protein specific to 15 HPV virus types, primers(GT-HPV 15type primer) containing 15 kinds of ID sequences and sequencing primer sequences, and a 5′ biotinylated GP6 plus primer, and the PCR products were pyrosequenced. As a result, pyrograms of 15 ID sequences for 15 virus types could be obtained (FIG. 16).
  • In another example of the present invention, a sample of a mixture of the genome DNA of the CaSki cell line infected with HPV type 16 and the same amount of the genomic DNA of the HeLa cell line infected with HPV type 18 was amplified by PCR using a GT-HPV 15 type primer and a 5′ biotinylated GP6 plus primer, and the PCR product was pyrosequenced. As a result, pyrograms of ID sequences, which were clear without the interference of overlapping peaks and corresponded to HPV type 16 and HPV type 18, could be obtained.
  • In a still further aspect, the present invention is directed to a method for detecting KRAS gene mutation, the method comprising the steps of: (a) designing an ID sequence for genotyping according to the gene mutation of each KRAS, the ID sequence consisting of (ID−S)n−E wherein ID is an ID mark which is a nucleotide selected from among A, T, C and G; S is a signpost which is a nucleotide linked with the adjacent ID mark and different from that of the adjacent ID mark, E is an endmark which is a nucleotide different from that of the signpost, and n is a natural number ranging from 1 to 32; (b) constructing a detection primer composed of a pyrosequencing primer sequence, the ID sequence, and a sequence specific for a KRAS gene mutation corresponding to the ID sequence; (c) amplifying a KRAS gene-containing sample by PCR using the detection primer; and (d) subjecting the amplified PCR product to pyrosequencing to obtain a pyrogram for the ID sequence, and detecting the KRAS gene mutation according to the ID sequence.
  • The Ras gene was first identified as a retroviral oncogene causing a sarcoma in rats. Since the presence of K-ras in the lymph node of pancreatic cancer patients was identified in 1985, various studies on the K-ras gene have been conducted. The mutation of this oncogene is frequently found in the malignant mutations of the human body. As genes having a structure and function similar to those of this oncogene, H-ras and N-ras are also known as oncogenes. Mutations in codons 12, 13 and 61 of K-ras influence the protein activity to cause excessive activity.
  • Mutations in the K-ras gene are found in adenocarcinoma of the digestive system. In the case of adenocarcinoma of the pancreas, 90% of mutations can be found in pancreatic juice and tissue and are known as mutations of codon 12. In addition, these mutations are found in 40-45% of colorectal cancer and are known to be associated with a decrease in the response to drugs such as cetuximab or panitumumab, which are used for progressed colon cancer that does not respond to chemotherapy. Furthermore, these mutations are observed in 5-30% of non-small cell lung and are observed mainly in smoking patients. In addition, these mutations are found exclusively with EGFR mutations.
  • Three mutation types, including a mutation of codon 12 (GGT>GTT) and mutations of codon 13 (GGC>TGC and GGC>GCC), in wild-type KRAS, are difficult to detect by a general pyrosequencing method. Particularly, the mutation of codon (GGT>GTT) has a high frequency of occurrence, and thus is difficult to exclude because of the detection limit (FIG. 17).
  • In one example of the present invention, a method of detecting mutations in codon 12 and codon 13 of the KRAS gene was disclosed. In the present invention, primers binding specifically to the three types of mutations of codon 12 (GGT>GTT) and codon 13 (GGC>TGC and GGC>GCC) were designed such that the mutations can be detected using ID sequences located ahead of nucleotide sequences specific to the three types of primers. According to the method of the present invention, 12 types of KRAS mutations can be detected by a single PCR process using 3 types of forward primers and 1 type of biotinylated reverse primer (FIG. 18).
  • In the present invention, the sequence specific for a KRAS gene mutation may be selected among nucleotide sequences shown by SEQ ID NOS: 34 to 35.
  • In a yet further aspect, the present invention is directed to a method for detecting respiratory virus, the method comprising the steps of: (a) designing an ID sequence for genotyping according to the genotype of each of influenza A virus, influenza B virus, RSV B, rhinovirus, and coronavirus OC43, the ID sequence consisting of (ID−S)n−E wherein ID is an ID mark which is a nucleotide selected from among A, T, C and G; S is a signpost which is a nucleotide linked with the adjacent ID mark and different from that of the adjacent ID mark, E is an endmark which is a nucleotide different from that of the signpost, and n is a natural number ranging from 1 to 32; (b) constructing a detection primer composed of a pyrosequencing primer sequence, the ID sequence, and a sequence specific to each respiratory virus gene corresponding to the ID sequence; (c) amplifying a sample, which contains a respiratory virus selected from the group consisting of influenza A virus, influenza B virus, RSV B, rhinovirus, and coronavirus OC43, by PCR using the detection primer; and (d) subjecting the amplified PCR product to pyrosequencing to obtain a pyrogram for the ID sequence, and detecting the respiratory virus according to the ID sequence.
  • In one example of the present invention, a method of detecting respiratory virus was disclosed. In this method, primers binding specifically to 5 types of respiratory viruses are designed such that the viruses can be detected using ID sequences located ahead of nucleotide sequences specific to the primers. cDNA is synthesized using 5 types of forward primers binding to 5 types of GT-respiratory viruses and 1 type of biotinylated reverse primer, and was amplified by PCR using a GT-RespiVirus ID primer and a 5′-biotinylated M13 reverse primer, and the PCR products were pyrosequenced.
  • In the present invention, the sequences specific to the respiratory virus genotypes may be nucleotide sequences shown by SEQ ID NO: 41 for influenza A virus, SEQ ID NO: 42 for influenza B virus, SEQ ID NO: 43 for RSV B, SEQ ID NO: 44 for rhinovirus, and SEQ ID NO: 45 for coronavirus OC43.
  • EXAMPLES
  • Hereinafter, the present invention will be described in further detail with reference to examples. It will be obvious to a person having ordinary skill in the art that these examples are illustrative purposes only and are not to be construed to limit the scope of the present invention. That is, the following steps will be described as one illustrative ones and do not limit the scope of the present invention.
  • Example 1 Genotyping of HPV Using ID Sequence
  • Using the ID sequences of the present invention, the genes of high-risk HPV (human papilloma virus) types causing cervical cancer were typed.
  • ID sequences for 15 high-risk HPV types were designed as shown in Table 1 below.
  • TABLE 1 
    ID sequences for 15 HPV types
    ID sequences HPV types
    A GCACATG HPV type 16
    T GCACATG HPV type 58
    C GCACATG HPV type 18
    G A CACATG HPV type 33
    G T CACATG HPV type  52
    GC G ACATG HPV type  35
    GC T ACATG HPV type  45
    GCATCATG HPV type  51
    GCAGCATG HPV type  31
    GCACTATG HPV type  39
    GCACGATG HPV type 56
    GCACACTG HPV type  59
    GCACAGTG HPV type  68
    GCACATAG HPV type  66
    GCACATCG HPV type  82
  • A nucleotide sequence specific to each of 15 HPV types was linked to the 3′ terminal end of each of 15 ID sequences, and a common sequencing primer sequence was linked to the 5′ terminal end, such that 15 types of different ID sequences can be used in pyrosequencing with a single sequencing primer, thereby constructing PCR primers containing the ID sequences (Table 2).
  • TABLE 2
    ID-sequencing PCR primer mixtures for analysis
    of HPV genotype - ID sequence-based HPV primers: primers for
    15 GT-HPV 15 types
    GT-HPV 15 type primer construction
    Sequencing primer ID HPV type-specific
    binding site sequences sequence
    HPV TAATACGACTCACTATAGGG A GCACATG TGTCATTATGTGCTGCCATATC
    type16 (SEQ ID NO: 1)
    (SEQ ID
    NO: 16)
    HPV TAATACGACTCACTATAGGG T GCACATG ACTGAAGTAACTAAGGAAGG
    type58 (SEQ ID NO: 2)
    (SEQ ID
    NO: 17)
    HPV TAATACGACTCACTATAGGG C GCACATG ACAGTCTCCTGTACCTGGG
    type18 (SEQ ID NO: 3)
    (SEQ ID
    NO: 18)
    HPV TAATACGACTCACTATAGGG G A CACATG TATGCACACAAGTAACTAGTG
    type33 (SEQ ID NO: 4)
    (SEQ ID
    NO: 19)
    HPV TAATACGACTCACTATAGGG G T CACATG TGACTTTATGTGCTGAGG
    type52 (SEQ ID NO: 5)
    (SEQ ID
    NO: 20)
    HPV TAATACGACTCACTATAGGG GC G ACATG TGTTCTGCTGTGTCTTCTAG
    type35 (SEQ ID NO: 6)
    (SEQ ID
    NO: 21)
    HPV TAATACGACTCACTATAGGG GC T ACATG CCAAGTACATATGACCCTAC
    type45 (SEQ ID NO: 7)
    (SEQ ID
    NO: 22)
    HPV TAATACGACTCACTATAGGG GCATCATG ACTGCCACTGCTGCGGTTTC
    type51 (SEQ ID NO: 8)
    (SEQ ID
    NO: 23)
    HPV TAATACGACTCACTATAGGG GCAGCATG CAATTGCAAACAGTGATAC
    type31 (SEQ ID NO: 9)
    (SEQ ID
    NO: 24)
    HPV TAATACGACTCACTATAGGG GCACTATG AGAGTCTTCCATACCTTCTAC
    type39 (SEQ ID NO: 10)
    (SEQ ID
    NO: 25)
    HPV TAATACGACTCACTATAGGG GCACGATG TACTGCTACAGAACAGTTAAG
    type56 (SEQ ID NO: 11)
    (SEQ ID
    NO: 26)
    HPV TAATACGACTCACTATAGGG GCACACTG TGTGCTCTACTACTCTCTATTC
    type59 (SEQ ID NO: 12)
    (SEQ ID
    NO: 27)
    HPV TAATACGACTCACTATAGGG GCACAGTG ACTACTGAATCAGCTGTACC
    type68 (SEQ ID NO: 13)
    (SEQ ID
    NO: 28)
    HPV TAATACGACTCACTATAGGG GCACATAG ACTATTAATGCAGCTAAAAGCAC
    type66 (SEQ ID NO: 14)
    (SEQ ID
    NO: 29)
    HPV TAATACGACTCACTATAGGG GCACATCG TGTTACTCCATCTGTTGCAC
    type82 (SEQ ID NO: 15)
    (SEQ ID
    NO: 30)
  • The 15 types of HPV viruses were obtained by extracting genomic DNA from Korean female cervicovaginal secretions (Department of Obstetrics & Gynecology, Chungnam National University), identifying the infected genotypes using an HPV DNA chip, and amplifying the L1 gene of the HPV virus by PCR.
  • As PCR primers for determining whether the clinical samples were infected with HPV, a GP5 plus primer and a GP6 plus primer were used.
  • TABLE 3
    GP5 plus primer/GP6 plus primer
    Forward primer
    GP5 plus primer 5′-TTTGTTACTGTGGTAGATACTAC-3′
    (SEQ ID NO: 31)
    Reverse primer
    GP6 plus primer 5′-GAAAAATAAACTGTAAATCATATTC-3′
    (SEQ ID NO: 32)
  • Using each of the 15 types of HPV viruses as a template, PCR amplification was performed under the following conditions using forward primers (15 types of GT-HPV primers) consisting of the 15 types of PCR primers shown in Table 2 and a reverse primer consisting of a 5′ biotinylated GP6 plus primer (Bioneer, Korea): 95° C. for 15 min; then 45 cycles each consisting of 95° C. (0.5 min), 45° C. (0.5 min) and 72° C. (0.5 min); then 72° C. (10 min); and then storage at −4° C.
  • The PCR products contained a common
    Figure US20120276524A1-20121101-P00999
    . In this Example, a general T7 primer (5′-TAA TAC GAC TCA CTA TAG GG-3′) was used to perform pyrosequencing with the ID sequences, and the pyrograms were analyzed to type HPV (FIGS. 19 and 20).
  • The locations of ID marks formed according to the types of HPV in the dispensation order are shown in the upper portion of FIG. 19. In FIG. 19, the peaks indicated in red are ID marks, and the peaks indicated in blue are signposts.
  • As a result, it could be seen that the pyrogram peaks appeared only in specific ID marks corresponding to the 15 types of HPV viruses.
  • Example 2 Multiplex HPV genotyping
  • Using the HPV ID sequences constructed in Example 1, genotyping of multiple HPV infections was performed.
  • (1) Multiplex Genotyping of 4 HPV Types
  • Using the genomic DNA of each of 4 HPV types ( HPV 16, 33, 31 and 66) as a template, PCR amplification was performed with the GP5 plus primer and the GP6 plus primer. Then, using a 1:1 mixture of the PCR products for each HPV type as a template, PCR amplification was performed with 15 types of GT-HPV primers and a 5′ biotinylated GP6 plus primer. Then, the PCR products were pyrosequenced using a T7 primer.
  • As a result, as shown in FIG. 20 a), the same pyrograms as theoretically expected results could be obtained.
  • (2) Multiplex HPV Genotyping Using CaSki Cell Line and HeLa Cell Line
  • Using a mixture of 10 ng of the genomic DNA of the CaSki cell line (ATCC CRL-1550™) infected with HPV type 16 and 10 ng of the genomic DNA of the HeLa cell line (ATCC CCL-2™) infected with HPV 18 as a template, PCR amplification was performed with 15 types of GT-HPV forward primers and a 5′ biotinylated GP6 plus primer. Then, the PCR products were pyrosequenced using a T7 sequencing primer to obtain pyrograms for the ID sequences.
  • As a result, as shown in FIG. 20 b), the same pyrograms as theoretically expected results could be obtained, because it is known that CaSki cells contain about 600 copies of HPV type 16 per cell, and HeLa cells contain about 50 copies of HPV type 18 per cells.
  • (3) Multiplex HPV Genotyping for Cervical Scraps Samples
  • gDNA was extracted from cervical scraps samples was subjected to multiplex HPV genotyping using the ID sequences or to general sequencing. As a result, it could be seen that the results of the multiplex HPV genotyping were completely identical to those of the general sequencing (Tables 4 and 5).
  • TABLE 4
    Summary of comparison between the results of ID sequence-based
    multiplex HPV genotyping and the results of general sequencing
    Identical Equal Total
    68/79 (86.1%) 11/79 (13.9%) 79/79 (100%)
  • TABLE 5
    Comparison between the results of ID sequence-based multiplex
    HPV genotyping and the results of general sequencing
    ID
    sequence-based Results of
    Sample multiplex HPV general
    Nos. genotyping sequencing
    1 16 16
    2 66 66
    3 52 52
    4 33, 68 33
    5 16 16
    6 16, 68 66
    7 56 56
    8 16 16
    9 66 66
    10 33 33
    11 18 18
    12 18, 51 51
    13 56 56
    14 16 16
    15 18 18
    16 58, 66 66
    17 51 51
    18 52 52
    19 58, 33 33
    20 16 16
    21 16 16
    22 18 18
    23 51 51
    24 56 56
    25 16 16
    26 58 58
    27 18 18
    28 52 52
    29 16 16
    30 33 33
    31 58 58
    32 16 16
    33 16 16
    34 16 16
    35 16 16
    36 33 33
    37 18 18
    38 56 56
    39 16 16
    40 16 16
    41 35 35
    42 16 16
    43 35 35
    44 58 58
    45 35 35
    46 16, 52 52
    47 33 33
    48 16, 31 16
    49 58 58
    50 58 58
    51 16 16
    52 33 33
    53 16, 51 51
    54 16 16
    55 16 16
    56 18, 31 31
    57 16 16
    58 16 16
    59 58 58
    60 16 16
    61 16, 58 16
    62 16 16
    63 33 33
    64 16, 56 16
    65 18 18
    66 16 16
    67 16 16
    68 58 58
    69 16 16
    70 16 16
    71 33 33
    72 16 16
    73 16 16
    74 16 16
    75 16 16
    76 58 58
    77 16 16
    78 58 58
    79 16 16
  • Example 3 Detection of KRAS Mutations Using ID Sequences
  • In order to detect mutations in the KRAS gene using the ID sequences of the present invention, ID sequences for three types of KRAS mutations, that is, mutations of codon 12 (GGT>GTT) and codon 13 (GGC>TGC and GGC>GCC), were designed (Table 6).
  • TABLE 6
    ID sequences for three types of KRAS mutations
    ID sequences KRAS mutation types
    ID1 GTGC A GT codonl2 (GGT > GTT)
    ID2 GTGC T GT codonl3 (GGC > TGC)
    ID3 GTGCG A T codonl3 (GGC > GCC)
  • In addition, a nucleotide sequence specific to each of the three types of KRAS mutations was linked to the 3′ terminal end of each of the ID sequences, and a common sequencing primer sequence to the 5′ terminal end, such that pyrosequencing can be performed using the three different ID sequences with a single sequencing primer, thereby constructing ID sequence-containing PCR primers (Table 7).
  • TABLE 7
    ID sequence-based KRAS primers: GT-KRAS ID primers
    GT-KRAS ID forward primer
    Sequencing primer ID KRAS mutation-
    binding site sequence specific sequence
    Codon12 AACTTGTGGTAGTTGGAGCT GTGCAGT TGGAGCTGT(SEQ ID NO: 33)
    (GGT > GTT)
    (SEQ ID
    NO: 36)
    Codon13 AACTTGTGGTAGTTGGAGCT GTGCTGT GAGCTGGTT(SEQ ID NO: 34)
    (GGC > TGC)
    (SEQ ID
    NO: 37)
    Codon13 AACTTGTGGTAGTTGGAGCT CGCACATT AGCTGGTGC(SEQ ID NO: 35)
    (GGC > GCC)
    (SEQ ID
    NO: 38)
  • Templates for mutations corresponding to the ID sequences used as samples were made through gene synthesis (Bioneer, Korea), and the normal KRAS cell line Caco2(ATCC HTB-37) and the mutant cell lines A549(ATCC CCL-185) and HCT116(ATCC CCL-247) were used.
  • TABLE 8
    KRAS PCR primers
    Forward primer
    KRAS-F 5′-NNNGGCCTGCTGAAAATGACTGAA-3′
    (SEQ ID NO: 39)
    Reverse primer)
    KRAS-R 5′-TTAGCTGTATCGTCAAGGCACTCT-3′
    (SEQ ID NO: 40)
  • Each of the templates was amplified by PCR using the four types of KRAS forward primers and a 5′ biotinylated reverse primer, and the PCR products were pyrosequenced under the following conditions:
  • 95° C. for 5 min, then 40 cycles of 95° C. (0.5 min), 60° C. (0.5 min) and 72° C. (0.5 min), then 72° C. (10 min, and then storage at −4° C.
  • Using each of the normal KRAS cell line and a KRAS mutant plasmid from the mutant cell lines as a template, KRAS mutations were detected using the ID sequences (FIG. 21).
  • As a result, it could be seen that pyrogram peaks appeared in the specific ID marks corresponding to the mutant strains.
  • In order to examine whether the detection of multiple mutations can be achieved by the ID sequence-based KRAS mutation method, the three types of KRAS mutant DNAs were mixed at the same ratio, followed by pyrosequencing for detection of KRAS mutations.
  • As a result, as can be seen in FIG. 22, the same pyrograms as theoretically expected results were obtained.
  • In addition, whether the ID sequence-based KRAS multiple mutation detection method can be applied to actual clinical samples was tested using gDNA of colorectal tissue samples from 12 colorectal cancer patients. As a result, mutations could be detected in 3 patients, and typical pyrograms for the mutations are shown in FIG. 23.
  • Example 4 Detection of Respiratory Virus Infections Using ID Sequences
  • New influenza A (H1N1) and seasonal influenza A (H1 and H3) and B viruses prevail in the same season and show similar infection symptoms, but show different responses to antiviral agents. Thus, it is required to accurately identify virus types for treatment. Thus, in the present invention, a method of genotyping respiratory virus using the ID sequence was developed.
  • In this Example, detection of typical respiratory viruses, influenza A virus, influenza B virus, RSV B, rhinovirus and coronavirus OC43, was performed. ID sequences for the 5 types of respiratory viruses were designed as shown in Table 9 below.
  • TABLE 9
    ID sequences for five types of
    respiratory viruses
    ID sequence Kind of respiratory viruses
    CATA Influenza A virus
    GATA Influenza B virus
    TATA RSV B
    ACTA Rhino virus1
    ATCA Coronavirus OC43
  • A nucleotide sequence specific to each of the 5 types of respiratory viruses was linked to the 3′ terminal end of each of the ID sequences, and a common sequencing primer sequence was linked to the 5′ end, pyrosequencing for the 5 types of ID sequences can be performed using a single sequencing primer, thereby constructing ID sequence-containing PCR primers (Table 10).
  • TABLE 10
    ID sequence-based respiratory virus forward
    primers: GT-RespiVirus ID primers
    GT-respiratory virus 5 type primer construction
    Sequencing primer ID Respiratory virus-specific
    binding sites sequence sequence
    Influenza A TAATACGACTCACTATAGGG CATA ATATACAACAGGATGGGGGCTGTG
    virus (SEQ ID NO: 41)
    (SEQ ID NO:
    46)
    Influenza B TAATACGACTCACTATAGGG GATA ATCATCATCCCAGGCGACAAAGATG
    virus ((SEQ ID NO: 42)
    (SEQ ID NO:
    47)
    RSV B TAATACGACTCACTATAGGG TATA TGATATGCCTATAACAAATGACCAGAAA
    (SEQ ID NO: (SEQ ID NO: 43)
    48)
    Rhino TAATACGACTCACTATAGGG ACTA GCCAGAAAGTGGACAAGGTGTGAAGAG
    virus1 (SEQ ID NO: 44)
    (SEQ ID NO:
    49)
    Coronavirus TAATACGACTCACTATAGGG ATCA GCAGATTTGCCAGCTTATATGACTGTT
    OC43 (SEQ ID NO: 45)
    (SEQ ID NO:
    50)
  • In the respiratory virus detection method of this Example, cDNAs from virus-infected cells were synthesized using the 5 types of GT-respiratory forward primers and a 5′ biotinylated reverse primer (Table 11), and then amplified by PCR using the GT-RespiVirus ID primers shown in Table 10 and a 5′ biotinylated M13 reverse primer. The PCR products were pyrosequenced to detect virus infection (FIG. 24).
  • TABLE 11
    ID sequence-based respiratory virus reverse
    transcription (RT) primers: GT-RespiVirus RT primers
    GT-RespiVirus RT R primer construction
    M13 R Tagging respiratory virus type-
    sequence specific sequence
    Influenza A virus CAGGAAACAGCTATGACC ATATACAACAGGATGGGGGCTGTG
    (SEQ ID NO: 51)
    Influenza B CAGGAAACAGCTATGACC ATCATCATCCCAGGCGACAAAGATG
    virus
    (SEQ ID NO: 52)
    RSV B CAGGAAACAGCTATGACC TGATATGCCTATAACAAATGACCAGAAA
    (SEQ ID NO: 53)
    Rhino virus1 CAGGAAACAGCTATGACC GCCAGAAAGTGGACAAGGTGTGAAGAG
    (SEQ ID NO: 54)
    Coronavirus OC43 CAGGAAACAGCTATGACC GCAGATTTGCCAGCTTATATGACTGTT
    (SEQ ID NO: 55)
  • In this Example, the required portions of the virus genes were synthesized, and multiplex PCR was performed using the synthesized virus genes as templates, followed by pyrosequencing for detection of the virus genes.
  • As a result, as can be seen in FIG. 25, the same pyrograms as theoretically expected results could be obtained.
  • In addition, in a test for detection of multiple infections, the virus gene templates were mixed at the same ratio, and then amplified by multiplex PCR, followed by pyrosequencing for detection of the viral genes. As a result, multiple infections were normally detected.
  • Although the present invention has been described in detail with reference to the specific features, it will be apparent to those skilled in the art that this description is only for a preferred embodiment and does not limit the scope of the present invention. Thus, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.
  • INDUSTRIAL APPLICABILITY
  • When pyrosequencing is performed using the ID sequence, a unique and simple pyrogram can be obtained for each genotype. Thus, the use of the ID sequence makes it possible to genotype viral genes, disease genes, bacterial genes and identification genes in a simple and efficient manner.

Claims (13)

1. An ID sequence for genotyping which consists of (ID−S)n−E, wherein ID is an ID mark which is a single nucleotide selected from among A, T, C and G; S is a signpost which is a nucleotide linked with the adjacent ID mark and different from that of the adjacent ID mark;
E is an endmark which is a nucleotide different from that of the signpost; and n is a natural number ranging from 1 to 32.
2. An ID sequence for genotyping which consists of ID−S, wherein ID is an ID mark which is a single nucleotide selected from among A, T, C and G; and S is a signpost which is a nucleotide linked with the adjacent ID mark and different from that of the adjacent ID mark.
3. A genotyping primer comprising a gene-specific sequence for genotyping linked to the ID sequence of claim 1.
4. The genotyping primer of claim 3, wherein the gene-specific sequence for genotyping is a sequence specific for a gene selected from the group consisting of viral genes, disease genes, bacterial genes, and identification genes.
5. A genotyping method which comprises using the genotyping primer of claim 3.
6. The genotyping method of claim 5, wherein the genotyping uses pyrosequencing methods or semiconductor sequencing methods.
7. The genotyping method of claim 5, the method comprising the steps of:
(a) designing an ID sequence for genotyping according to genotyping target gene, the ID sequence consisting of (ID−S)n−E, wherein ID is an ID mark which is a nucleotide selected from among A, T, C and G, S is a signpost which is a nucleotide linked with the adjacent ID mark and different from that of the adjacent ID mark, E is an endmark which is a nucleotide different from that of the signpost, and n is a natural number ranging from 1 to 32;
(b) amplifying the template of the genotyping target gene by PCR using a genotyping primer comprising a gene-specific sequence for genotyping linked to the designed ID sequence, thereby obtaining a PCR product; and
(c) pyrosequencing the PCR product to obtain a pyrogram for the ID sequence.
8. A method for genotyping HPV, the method comprising the steps of:
(a) designing an ID sequence for genotyping according to the genotype of each HPV virus, the ID sequence consisting of (ID−S)n−E, wherein ID is an ID mark which is a nucleotide selected from among A, T, C and G; S is a signpost which is a nucleotide linked with the adjacent ID mark and different from that of the adjacent ID mark, E is an endmark which is a nucleotide different from that of the signpost, and n is a natural number ranging from 1 to 32;
(b) constructing a genotyping primer composed of a pyrosequencing primer sequence, the ID sequence, and a sequence specific to a virus genotype corresponding to the ID sequence;
(c) amplifying an HPV virus-containing sample by PCR using the genotyping primer; and
(d) subjecting the amplified PCR product to pyrosequencing to obtain a pyrogram for the ID sequence, and distinguishing the genotype of HPV according to the ID sequence.
9. The method of claim 8, wherein the sequence specific to a virus genotype is selected among nucleotide sequences shown by SEQ ID NOS: 1 to 15.
10. A method for detecting KRAS gene mutation, the method comprising the steps of:
(a) designing an ID sequence for genotyping according to each gene mutation of KRAS, the ID sequence consisting of (ID−S)n−E wherein ID is an ID mark which is a nucleotide selected from among A, T, C and G; S is a signpost which is a nucleotide linked with the adjacent ID mark and different from that of the adjacent ID mark, E is an endmark which is a nucleotide different from that of the signpost, and n is a natural number ranging from 1 to 32;
(b) constructing a detection primer composed of a pyrosequencing primer sequence, the ID sequence, and a sequence specific for a KRAS gene mutation corresponding to the ID sequence;
(c) amplifying a KRAS gene-containing sample by PCR using the detection primer; and
(d) subjecting the amplified PCR product to pyrosequencing to obtain a sequence for the ID sequence, and detecting the KRAS gene mutation according to the ID sequence.
11. The method of claim 10, wherein the sequence specific for the KRAS gene mutation is selected among nucleotide sequences shown by SEQ ID NOS: 34 to 35.
12. A method for detecting respiratory virus, the method comprising the steps of:
(a) designing an ID sequence for genotyping according to the genotype of each of influenza A virus, influenza B virus, RSV B, rhinovirus, and coronavirus OC43, the ID sequence consisting of (ID−S)n−E wherein ID is an ID mark which is a nucleotide selected from among A, T, C and G; S is a signpost which is a nucleotide linked with the adjacent ID mark and different from that of the adjacent ID mark, E is an endmark which is a nucleotide different from that of the signpost, and n is a natural number ranging from 1 to 32;
(b) constructing a detection primer composed of a pyrosequencing primer sequence, the ID sequence, and a sequence specific to each respiratory virus gene corresponding to the ID sequence;
(c) amplifying a sample, which contains a respiratory virus selected from the group consisting of influenza A virus, influenza B virus, RSV B, rhinovirus, and coronavirus OC43, by PCR using the detection primer; and
(d) subjecting the amplified PCR product to pyrosequencing to obtain a sequence for the ID sequence, and detecting the respiratory virus according to the ID sequence.
13. The method of claim 12, wherein the sequences specific to the respiratory virus genotypes are nucleotide sequences shown by SEQ ID NO: 41 for influenza A virus, SEQ ID NO: 42 for influenza B virus, SEQ ID NO: 43 for RSV B, SEQ ID NO: 44 for rhinovirus, and SEQ ID NO: 45 for coronavirus OC43.
US13/510,226 2009-11-16 2010-11-15 Genotyping method Abandoned US20120276524A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2009-0110331 2009-11-16
KR20090110331 2009-11-16
PCT/KR2010/008055 WO2011059285A2 (en) 2009-11-16 2010-11-15 Genotyping method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/008055 A-371-Of-International WO2011059285A2 (en) 2009-11-16 2010-11-15 Genotyping method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/811,396 Division US9695473B2 (en) 2009-11-16 2015-07-28 Genotyping method

Publications (1)

Publication Number Publication Date
US20120276524A1 true US20120276524A1 (en) 2012-11-01

Family

ID=43992257

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/510,226 Abandoned US20120276524A1 (en) 2009-11-16 2010-11-15 Genotyping method
US14/811,396 Active 2030-12-11 US9695473B2 (en) 2009-11-16 2015-07-28 Genotyping method

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/811,396 Active 2030-12-11 US9695473B2 (en) 2009-11-16 2015-07-28 Genotyping method

Country Status (7)

Country Link
US (2) US20120276524A1 (en)
EP (1) EP2522741B1 (en)
JP (2) JP2013510589A (en)
KR (1) KR101183199B1 (en)
CN (2) CN102741428A (en)
ES (1) ES2542426T3 (en)
WO (1) WO2011059285A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112852937A (en) * 2021-03-10 2021-05-28 美格医学检验所(广州)有限公司 Respiratory tract pathogenic microorganism detection primer combination, kit and application thereof
CN114381518A (en) * 2020-10-05 2022-04-22 复旦大学附属华山医院 Primer and kit for rapidly detecting glioma mutation site and parting

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106854682A (en) * 2016-12-27 2017-06-16 上海派森诺生物科技股份有限公司 A kind of method that parting is carried out using gene infected by influenza
CN109411018A (en) * 2019-01-23 2019-03-01 上海宝藤生物医药科技股份有限公司 According to gene mutation information to the method, apparatus, equipment and medium of sample classification

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6004826A (en) * 1988-07-20 1999-12-21 David Segev Repair-mediated process for amplifying and detecting nucleic acid sequences
WO2002068684A2 (en) * 2001-02-23 2002-09-06 Pyrosequencing Ab Allele-specific primer extension assay
US20040029251A1 (en) * 2002-04-26 2004-02-12 Medlmmune Vaccines, Inc. Multi plasmid system for the production of influenza virus
US20040203008A1 (en) * 2000-10-30 2004-10-14 Takashi Uemori Method of determining nucleic acid base sequence
US7323305B2 (en) * 2003-01-29 2008-01-29 454 Life Sciences Corporation Methods of amplifying and sequencing nucleic acids
WO2008061193A2 (en) * 2006-11-15 2008-05-22 Biospherex Llc Multitag sequencing and ecogenomics analysis
US20080131937A1 (en) * 2006-06-22 2008-06-05 Applera Corporation Conversion of Target Specific Amplification to Universal Sequencing
US20090006002A1 (en) * 2007-04-13 2009-01-01 Sequenom, Inc. Comparative sequence analysis processes and systems
US20090170713A1 (en) * 2005-09-29 2009-07-02 Keygene N.V. High throughput screening of mutagenized populations

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393665B2 (en) * 2005-02-10 2008-07-01 Population Genetics Technologies Ltd Methods and compositions for tagging and identifying polynucleotides
US7407757B2 (en) * 2005-02-10 2008-08-05 Population Genetics Technologies Genetic analysis by sequence-specific sorting
CN100540682C (en) * 2007-09-14 2009-09-16 东南大学 Dna sequencing method based on the base modification protection reciprocation extension
JP2011500041A (en) * 2007-10-16 2011-01-06 エフ.ホフマン−ラ ロシュ アーゲー High resolution and high efficiency HLA genotyping by clonal sequencing

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6004826A (en) * 1988-07-20 1999-12-21 David Segev Repair-mediated process for amplifying and detecting nucleic acid sequences
US20040203008A1 (en) * 2000-10-30 2004-10-14 Takashi Uemori Method of determining nucleic acid base sequence
WO2002068684A2 (en) * 2001-02-23 2002-09-06 Pyrosequencing Ab Allele-specific primer extension assay
US20040029251A1 (en) * 2002-04-26 2004-02-12 Medlmmune Vaccines, Inc. Multi plasmid system for the production of influenza virus
US7323305B2 (en) * 2003-01-29 2008-01-29 454 Life Sciences Corporation Methods of amplifying and sequencing nucleic acids
US20090170713A1 (en) * 2005-09-29 2009-07-02 Keygene N.V. High throughput screening of mutagenized populations
US20080131937A1 (en) * 2006-06-22 2008-06-05 Applera Corporation Conversion of Target Specific Amplification to Universal Sequencing
WO2008061193A2 (en) * 2006-11-15 2008-05-22 Biospherex Llc Multitag sequencing and ecogenomics analysis
US20090006002A1 (en) * 2007-04-13 2009-01-01 Sequenom, Inc. Comparative sequence analysis processes and systems

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Fan et al. (Parallel Genotyping of Human SNPs Using Generic High-density Oligonucleotide Tag Arrays, Genome Res, 10:853-860, 2000) *
Gharizadeh et al. (Large-scale Pyrosequencing of synthetic DNA: A comparison with results from Sanger dideoxy sequencing, Electrophoresis. 2006 Aug;27(15):3042-7) *
Hamady et al. (Microbial community profiling for human microbiome projects: Tools, techniques, and challenges, Genome Res. 2009 Jul;19(7):1141-52. Epub 2009 Apr 21) *
Hoffman et al. (DNA bar coding and pyrosequencing to identify rare HIV drug resistance mutations, Nucleic Acids Res. 2007;35(13):e91. Epub 2007 Jun 18) *
Parameswaran et al. (A pyrosequencing-tailored nucleotide barcode design unveils opportunities for large-scale sample multiplexing, Nucleic Acids Res. 2007;35(19):e130. Epub 2007 Oct 11) *
Qiu et al. (DNA Sequence-Based "Bar Codes" for Tracking the Origins of Expressed Sequence Tags from a Maize cDNA Library Constructed Using Multiple mRNA Sources, Plant Physiol. 2003 Oct;133(2):475-81) *
Smith et al. (Quantitative phenotyping via deep barcode sequencing, Genome Res. 2009 Oct;19(10):1836-42. Epub 2009 Jul 21) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114381518A (en) * 2020-10-05 2022-04-22 复旦大学附属华山医院 Primer and kit for rapidly detecting glioma mutation site and parting
CN112852937A (en) * 2021-03-10 2021-05-28 美格医学检验所(广州)有限公司 Respiratory tract pathogenic microorganism detection primer combination, kit and application thereof

Also Published As

Publication number Publication date
JP2015163075A (en) 2015-09-10
CN102741428A (en) 2012-10-17
JP2013510589A (en) 2013-03-28
CN104611423A (en) 2015-05-13
EP2522741A2 (en) 2012-11-14
KR20110053911A (en) 2011-05-24
EP2522741A4 (en) 2013-05-22
WO2011059285A2 (en) 2011-05-19
US20150322509A1 (en) 2015-11-12
EP2522741B1 (en) 2015-04-15
US9695473B2 (en) 2017-07-04
WO2011059285A3 (en) 2011-10-06
JP6026589B2 (en) 2016-11-16
KR101183199B1 (en) 2012-09-14
CN104611423B (en) 2018-03-20
ES2542426T3 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
JP6464316B2 (en) Genetic marker for discrimination and detection of aquatic product infectious disease-causing virus, and method for discriminating and detecting the virus using the same
WO2016101258A1 (en) Method for detecting differentially methylated cpg islands associated with abnormal state of human body
JP6025562B2 (en) Assay method for MDV-1
US9695473B2 (en) Genotyping method
CN105593378B (en) For detecting the method and composition of mutation in people's EZH2 gene
CN110964814A (en) Primers, compositions and methods for nucleic acid sequence variation detection
JP6343404B2 (en) Gene mutation detection method
CN111440852B (en) Kit and method for detecting methylation sites of DMR2 region of MGMT gene promoter through multiple probes
CN110387439B (en) Primers, probes, kit and method for adenovirus detection and typing
US8409829B2 (en) Methods for analysis of molecular events
CN110592215A (en) Composition for detecting nucleic acid sequence and detection method
CN112824535B (en) Primer composition for gene mutation multiplex detection and kit thereof
Yeo et al. Rapid detection of codon 460 mutations in the UL97 gene of ganciclovir-resistant cytomegalovirus clinical isolates by real-time PCR using molecular beacons
US7541148B2 (en) Method for detecting base mutation
Mabruk et al. A simple and rapid technique for the detection of Epstein‐Barr virus DNA in HIV‐associated oral hairy leukoplakia biopsies
JP2005058218A (en) Combination of circulating epstein-barr virus (ebv) dna in serum or plasma of patient and method for evaluating ebv subtype for predicting and detecting cancer related to ebv
TWI659106B (en) Genetic marker for detecting yellow head virus genotype 1 and method for detecting yellow head virus genotype 1 using the same
JP6551656B2 (en) Method for obtaining information on ovarian cancer, and marker for obtaining information on ovarian cancer and kit for detecting ovarian cancer
CN112301096A (en) Novel nucleic acid probe labeling method
CN116219072A (en) Primer and fluorescent probe for monkey pox virus detection
CN116445472A (en) Differential sequence double amplification enrichment and detection method
CN116064820A (en) Biomarker for detecting early liver cancer, kit and use method thereof
CN111118210A (en) Hepatitis B virus genome mutation detection method, kit and application
JP2006075142A (en) Method for estimating race or birthplace by organism, virus or the like with which human is infected
CN108103157A (en) A kind of base mutation PCR detection method of high specific

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENOMICTREE, INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AN, SUN WHAN;OH, MYUNG SOK;REEL/FRAME:028584/0216

Effective date: 20120706

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION