US20120045498A1 - Antimicrobial coating system - Google Patents

Antimicrobial coating system Download PDF

Info

Publication number
US20120045498A1
US20120045498A1 US13/284,032 US201113284032A US2012045498A1 US 20120045498 A1 US20120045498 A1 US 20120045498A1 US 201113284032 A US201113284032 A US 201113284032A US 2012045498 A1 US2012045498 A1 US 2012045498A1
Authority
US
United States
Prior art keywords
film
antimicrobial
weight
forming composition
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/284,032
Inventor
Caroline M. Ylitalo
Gerald R.A. Hofmann
Mitchell T. Johnson
Linda K.M. Olson
Duane Douglas Fansler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to US13/284,032 priority Critical patent/US20120045498A1/en
Publication of US20120045498A1 publication Critical patent/US20120045498A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/34Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides

Definitions

  • the present invention relates to antimicrobial coatings.
  • the present invention relates to removable antimicrobial coatings for use on surfaces to reduce the risk of contamination by microorganisms.
  • Such surfaces may include countertops, tables, and food preparation surfaces in restaurants, splash guards and conveyor belts in food processing plants, public facilities, display applications, and a variety of surfaces in healthcare settings. Contamination with pathogenic microorganisms in such locations may result in the spread of disease and infections to people, which correspondingly endangers human lives and increases health care costs.
  • the antimicrobial coating system can include a film-forming composition comprising a polymer having an effective molecular weight, and an effective amount of an antimicrobial agent dispersed within the polymer.
  • the film-forming composition can form a water-insoluble, biocidal antimicrobial film when applied to a surface.
  • a film-forming composition can include a polymer and an effective amount of an antimicrobial agent dispersed within the polymer.
  • the polymer can include at least one of acrylic, urethane, polyvinyl alcohol having an effective molecular weight, and combinations thereof.
  • the antimicrobial agent can include at least one of a fatty acid monoester, a fatty acid monoether, a transition metal ion-containing compound, a quaternary ammonium-containing compound, a biguanide, and combinations thereof.
  • an antimicrobial film comprising a polymer having an effective molecular weight, and an effective amount of an antimicrobial agent.
  • the antimicrobial film can be water-insoluble and biocidal.
  • FIG. 1 is a side sectional view of an antimicrobial film of the present invention disposed on a surface.
  • FIG. 2 is a side sectional view of the antimicrobial film disposed on the surface, with a remover composition of the present invention being deposited on the antimicrobial film.
  • FIG. 3 is a top perspective view of a hand of a user removing the antimicrobial film from the surface with a wipe article.
  • FIG. 4 is a top perspective view of an article in use for applying an antimicrobial coating system of the present invention to a surface to form an antimicrobial film of the present invention.
  • FIG. 1 is a side sectional view of antimicrobial film 10 disposed on surface 12 , where antimicrobial film 10 is formed by a film-forming composition that can form a first part of a two-part antimicrobial coating system of the present invention.
  • the second part of the antimicrobial coating system is a remover composition (not shown in FIG. 1 ) that includes a solvent suitable for removing antimicrobial film 10 from surface 12 .
  • Surface 12 may be any surface that may incur contamination by microorganisms, such as table and counter tops, food preparation surfaces, surfaces found in publicly used locations and facilities (e.g., public telephones, public transportation, and public lavatory facilities), touch-screen displays, door handles, light switches, and surfaces found in healthcare settings (e.g., bed rails and side tables). While surface 12 is shown as a flat, planar surface, antimicrobial film 10 may also be coated on curved and irregular shaped surfaces.
  • the term “microorganism,” “microbe,” or a derivative thereof is used to refer to any microscopic organism, including without limitation, one or more of bacteria, viruses, algae, fungi and protozoa. In some cases, the microorganisms of particular interest are those that are pathogenic, and the term “pathogen” is used herein to refer to any pathogenic microorganism.
  • antimicrobial film 10 is derived from a film-forming composition that is coated onto surface 12 , where the film-forming composition includes a polymer of an effective molecular weight to provide a water-insoluble antimicrobial film 10 and an effective amount of one or more antimicrobial agents to reduce microorganism contamination.
  • the antimicrobial agents are dispersed within the polymer in a releasable manner, which allows the antimicrobial agents to be released from antimicrobial film 10 at an effective diffusion rate to reduce microorganism contamination on surface 12 .
  • reducing microorganism contamination includes providing biocidal activity.
  • biocidal is used to describe an antimicrobial film 10 that kills microorganisms that come into contact with the antimicrobial film 10 .
  • biocidal activity is distinguishable over systems that merely provide inhibition of microorganism growth, because a film that inhibits growth and/or reproduction of microorganisms does not necessarily kill the microorganisms.
  • biocidal activity, and particularly, extended biocidal activity can be demonstrated by the microbial load reductions exhibited by the antimicrobial film 10 , when tested pursuant to ASTM E2180-01.
  • antimicrobial film 10 While disposed on surface 12 , antimicrobial film 10 is resistant to removal by moderate frictional forces, such as frictional forces applied when a user uses a wipe article (e.g., a cloth towel or sponge) to wipe food or waste from surface 12 . This allows antimicrobial film 10 to provide antimicrobial protection to surface 12 without the risk of accidentally being removed while surface 12 is wiped clean.
  • antimicrobial film 10 is water-insoluble.
  • water-insoluble is used to refer to an antimicrobial film that does not dissolve (i.e., form a homogeneous solution) after 30 minutes of being placed in DI water at room temperature with no stirring.
  • a method for testing water-insolubility is by forming the antimicrobial film onto a release liner, peeling the antimicrobial film from the release liner and submerging the antimicrobial film in DI water at room temperature for 30 minutes with no stirring.
  • the antimicrobial film is “water-insoluble.” As a result, if an antimicrobial film swells in water under these conditions, but does not dissolve to form a homogeneous solution, the antimicrobial film is “water-insoluble.”
  • antimicrobial film 10 When desired, antimicrobial film 10 may be removed from surface 12 with a remover composition, and a fresh coating of antimicrobial film 10 may be applied to provide continuing antimicrobial protection to surface 12 . When removal of antimicrobial film 10 is desired, the remover composition may be applied, and antimicrobial film 10 may then be wiped off from surface 12 under moderate frictional forces.
  • the antimicrobial coating system of the present invention is a convenient system for applying and removing durable antimicrobial coatings having biocidal activity to and from a variety of surfaces.
  • Suitable polymers for use in the film-forming composition of antimicrobial film 10 include water-soluble polymers, organic solvent-soluble polymers, and water-based polymer dispersions.
  • water-soluble polymers include polyvinyl alcohols, polyvinylpyrrolidones, polyethylene oxides, sulfonated polyurethanes, copolymers thereof, and combinations thereof.
  • Suitable commercially available polyvinyl alcohols include those available from J. T. Baker, Phillipsburg, N.J., and from Sigma-Aldrich Company, St. Louis, Mo.
  • Suitable commercially available polyvinylpyrrolidones include those available from J. T.
  • Suitable commercially available polyethylene oxide polymers include those available under the trade designation “POLYOX” from Dow Chemical Co., Midland, Mich.
  • Suitable water-soluble polymers may have a wide range of molecular weights, where the molecular weight generally determines the product performance. For example, if the polymer molecular weight is too low, the film coating may be tacky and easily removable (i.e., has poor durability and is water-soluble). Alternatively, if the molecular weight of the polymer is too high, the coating solution exhibits poor solubility, which results in the film being difficult to remove.
  • an effective molecular weight refers to a molecular weight that allows the resulting antimicrobial film 10 to be water-insoluble.
  • an effective molecular weight of polyvinyl alcohol is at least about 100,000 Daltons, particularly, at least about 120,000, and more particularly, at least about 150,000 Daltons.
  • Suitable organic solvent-soluble polymers include polyurethanes, acrylic polymers, polyamides, copolymers thereof, and combinations thereof.
  • Commercially available solvent-based polyurethanes include those available under the trade designation “PERMUTHANE” from Stahl USA, Peabody, Mass. (e.g., “SU26-248”, which is an aliphatic polyurethane in toluene).
  • Other suitable polyurethanes include those commercially available under the trade designations “ESTANE” from B.F. Goodrich, Cleveland, Ohio (e.g., “Estane 5715” and “Estane 5778”), and “MORTHANE” from Huntsman Polyurethanes, Ringwood, Ill. (e.g., “CA118” and “CA237” polyester polyurethanes).
  • Additional suitable polymers include those commercially available under the trade designation “U-371” from DSM NeoResins, Wilmington, Mass.
  • water-based polymer dispersions include polyurethanes, polyureas, polyacrylics, polyethers, polyester, and copolymers thereof and combinations thereof.
  • Suitable aqueous dispersions include urethanes such as those commercially available under the trade designation “NEOREZ” from DSM NeoResins, Wilmington, Mass.
  • NEOREZ R-960 and “NEOREZ R-9699”
  • acrylics such as those commercially available under the trade designation “NEOCRYL” from DSM NeoResins (e.g., “NEOCRYL XK-90”, “NEOCRYL XK-96”, and “NEOCRYL XK-95”); and acrylic urethane copolymers such as those commercially available under the trade designation “NEOPAC” from DSM NeoResins.
  • Additional suitable water-based urethanes include those commercially available under the trade designations “RU-077” and “RU-075” from Stahl USA, Peabody, Mass.
  • Water-soluble materials can be suitable for use in situations where antimicrobial film 10 remains dry until the intended removal with a water-based remover composition.
  • the above-listed materials may also be partially or fully cross-linked to improve the mechanical structure of the polymer, and to reduce the water solubility of such materials. Polymers having reduced water solubility are beneficial for use on surfaces (e.g., surface 12 ) that come into contact with water (e.g., surfaces that are rinsed or soaked with water).
  • the polymer may include curing agents, such as chain extension agents, chemical cross-linking agents, and radiation cross-linking agents (e.g., photoinitiators).
  • the film-forming composition may include cross-linking agents, such as chain extension agents and chemical cross-linking agents.
  • cross-linking agents include isocyanates such as those commercially available under the trade designation “DESMODUR” from Bayer AG, Pittsburgh, Pa.; aziridine crosslinkers such as those commercially available under the trade designation “CX-100” from DSM NeoResins, Wilmington, Mass.; and those commercially available under the trade designation “XR-2500” from Stahl USA, Peabody, Mass.
  • Suitable chain extension agents include carbodiimides such as those commercially available under the trade designation “EX62-944”, and melamines such as those commercially available under the trade designation “XR-9174”, both from Stahl USA.
  • cross-linkable polymer compositions include self cross-linking polymer dispersions, where the deposited coating self cross-links upon drying to form a durable, water-insoluble coating layer.
  • Self cross-linking polymer dispersions typically contain side groups that react to form chemical bonds via condensation polymerizations, which take place upon evaporation of water.
  • Self cross-linking polymer dispersions offer the advantage of forming antimicrobial films (e.g., antimicrobial film 10 ) that are solvent resistant without requiring cross-linking agents.
  • Various types of cross-linking agents can pose potential health risks because they are small, solvent-borne, organic molecules (e.g., isocyanates).
  • self cross-linking urethane dispersions include polyester-urethanes that are terminated by hydrolysable silyl groups and contain solubilizing sulfonic acid functional groups. Such polyester-urethanes are described in Krepski, et al., U.S. Pat. No. 5,929,160, which is incorporated by reference in its entirety. Additional examples of suitable self cross-linking urethane dispersions include polyurethane water-based dispersions containing hydroxyl groups to accomplish the self cross-linking function. Suitable hydroxyl group-based polyurethanes include those prepared pursuant to the process described in Mazanek et al., U.S. Pat. No.
  • Suitable self cross-linking urethane dispersions include polyurethane polymer hybrid dispersions based on oxidatively drying polyols, such as those disclosed in Ingrisch et al., U.S. Pat. No. 6,462,127, which is incorporated by reference in its entirety.
  • Examples of commercially available self cross-linking polymers include dispersions sold under the trade designations “RHEOPLEX” and “ROVACE” available from Rohm and Haas Company, Philadelphia, Pa., which are typically used as binders for textile and non-woven substrates for the protection of color dyes applied to the substrates.
  • Exemplary compositions include the trade designated “RHEOPLEX HA-12” (non-ionic dispersion with glass transition temperature of about 19° C.) and “RHEOPLEX TR-407” (anionic dispersion with glass transition temperature of 34° C.), both of which exhibit good wash durability and chemical resistance.
  • NEOREZ R-551 polyether-based polymers
  • NEOCRYL XK-98 acrylic emulsion polymers, both of which are available from DSM NeoResins, Wilmington, Mass.
  • the “NEOCRYL XK-98” acrylic emulsion polymers are particularly suitable because they provide good adhesion to most substrates and exhibit high gloss and block resistance.
  • Suitable concentrations of the polymer in the film-forming composition of antimicrobial film 10 include any concentration that is effective for dispersing and containing the antimicrobial agents.
  • suitable concentrations of the polymer in the film-forming composition of antimicrobial film 10 range from about 50% by weight to about 99.9% by weight, with particularly suitable concentrations ranging from about 70% by weight to about 99% by weight, and with even more particularly suitable concentrations ranging from about 90% by weight to about 95% by weight.
  • Suitable antimicrobial agents for use in the film-forming composition of antimicrobial film 10 include any inorganic or organic antimicrobial agent that is effective for reducing microbial contamination.
  • suitable antimicrobial agents include transition metal ion-containing compounds, (e.g., silver, zinc, copper, gold, tin and platinum-based compounds), fatty acid monoesters/monoethers, triclosan, peroxides, iodines, quaternary ammonium-containing compounds, biguanides, complexes thereof (e.g., iodophores), derivatives thereof, and combinations thereof.
  • suitable silver-containing compounds include silver sulfate, silver acetate, silver chloride, silver lactate, silver phosphate, silver stearate, silver thiocyanate, silver proteinate, silver carbonate, silver nitrate, silver sulfadiazine, silver alginate, silver nanoparticles, silver-substituted ceramic zeolites, silver complexed with calcium phosphates, silver-copper complexed with calcium phosphates, silver dihydrogen citrates, silver iodines, silver oxides, silver zirconium phosphates, silver-substituted glass, and combinations thereof.
  • Suitable commercially available silver zeolite-containing compounds include those sold under the trade designation “AGION” from AgION Technologies Inc., Wakefield, Mass.; those available under the trade designations “IRGAGUARD B5000” and “IRGAGUARD B8000”, which are based on AgZn zeolites supplied by Ciba Specialty Chemicals, Tarrytown, N.Y.; as well as those available under the trade designation “ALPHASAN”, which are silver sodium hydrogen zirconium phosphates, supplied by Milliken Chemicals, Spartanburg, S.C.
  • Suitable commercially available silver chloride-containing compounds include those available under the trade designation “JMAC” from Clariant Corporation, Charlotte, N.C.
  • organic antimicrobial agents include polymeric quaternary ammonium salts such as 2-butenyldimethyl ammonium chloride polymers commercially available under the trade designation “POLYQUAT” from Arch Chemicals, Inc., Norwalk, Conn.; phenolic compounds such as phenol and its derivatives, parabens, and triclosan, which has the chemical formula 2,4,4′-trichloro-2′-hydroxy diphenyl ether, and is commercially available from Ciba Specialty Chemicals, Tarrytown, N.Y.; poly(iminoimidocarbonylimidocarbonyliminohexamethylene hydrochlorides), commercially available under the trade designation “VANTOCIL P” from Arch Chemicals, Inc., Norwalk, Conn.; polyhexamethylene biguanides, antimicrobial lipids such as those disclosed in Scholz et al., U.S.
  • polymeric quaternary ammonium salts such as 2-butenyldimethyl ammonium chloride polymers commercial
  • antimicrobial acids e.g., fatty acids, benzoic acids, and salicylic acids
  • antimicrobial natural oils e.g., tea tree oils, and grape fruit seed extracts
  • Additional suitable organic antimicrobial agents include organic salts of transition metals (i.e., organometallic antimicrobial agents), such as silver salts (e.g., silver lactate), copper salts (e.g., copper napthenate), zinc salts, and tin salts (e.g., trialkyl tin hydroxides and triaryl tin hydroxides).
  • Suitable antimicrobial lipids include, for example, fatty acid monoesters/monoethers.
  • the fatty acid monoesters/monoethers suitable for the antimicrobial agent are considered food grade and recognized as safe (GRAS) by the U.S. Food and Drug Administration (FDA).
  • GRAS food grade and recognized as safe
  • FDA U.S. Food and Drug Administration
  • Such fatty acid monoesters/monoethers may be derived from C8 to C12 fatty acids such as glycerol monoesters of caprylic acid, capric acid, and lauric acid; propylene glycol monoesters of caprylic acid, capric acid, and lauric acid; and combinations thereof.
  • Suitable fatty acid monoesters include, but are not limited to, glycerol monolaurate commercially available under the trade designation “LAURICIDIN” from Med-Chem Laboratories, East Lansing, Mich.; glycerol monocaprylate commercially available under the trade designation “POEM M-100” from Riken Vitamin Ltd., Tokyo, Japan; glycerol monocaprate commercially available under the trade designation “POEM M-200” from Riken Vitamin Ltd.; propylene glycol monolaurate, propylene glycol monocaprylate, and propylene glycol monocaprate, all commercially available from Uniquema International, Chicago, Ill.; and combinations thereof.
  • suitable concentrations of the fatty acid monoesters/monoethers range from about 1.0% to about 30.0% by weight.
  • suitable concentrations of the fatty acid monoesters/monoethers in the composition range from about 5.0% to about 20.0% by weight.
  • the antimicrobial agent may also include an enhancer and/or a surfactant for use with the fatty acid monoesters/monoethers, as discussed in Andrew et al., PCT application No. WO 00/71183, entitled “Antimicrobial Articles,” and in Andrews et al., PCT Application No. WO01/43549, entitled “Fruit, Vegetable, and Seed Disinfectants,” both of which are incorporated herein by reference in their entireties.
  • Suitable concentrations of the antimicrobial agents in the film-forming composition of antimicrobial film 10 include any concentration that is effective for providing biocidal activity. This may vary depending on the type of antimicrobial agent used. Examples of suitable concentrations of the antimicrobial agents in the film-forming composition of antimicrobial film 10 range from about 0.1% by weight to about 20% by weight, with particularly suitable concentrations ranging from about 1% by weight to about 10% by weight.
  • the antimicrobial agent may at least partially interact with the polymer (i.e., form non-covalent bonds (e.g., ionic bonds, hydrogen bonds, matrix interactions, etc.) or covalent bonds with the polymer) so as not to be sufficiently available to provide biocidal activity to microorganisms that come into contact with the antimicrobial film 10 .
  • the resulting antimicrobial film may not have a sufficient surface concentration of the antimicrobial agent to provide biocidal activity.
  • a higher concentration of antimicrobial agent may be needed to provide biocidal activity.
  • an effective amount of antimicrobial agent is an amount that provides biocidal activity to microorganisms that come into contact with the antimicrobial film 10 .
  • a “sufficiently available” antimicrobial agent or a “sufficient surface concentration” of the antimicrobial agent in the antimicrobial film 10 is sometimes used to refer to an antimicrobial film having microbial load reductions of at least 90% against gram positive or gram negative pathogens when tested pursuant to ASTM E2180-01, particularly, microbial load reductions of at least 90% against gram positive and gram negative pathogens when tested pursuant to ASTM E2180-01, particularly, microbial load reductions of at least 99% against gram positive or gram negative pathogens when tested pursuant to ASTM E2180-01, and more particularly, microbial load reductions of at least 99% against gram positive and gram negative pathogens when tested pursuant to ASTM E2180-01.
  • the film-forming composition may also include fast-acting antimicrobial agents that may not provide antimicrobial activity over extended periods of time, but which provide fast antimicrobial activity of a relatively short duration upon application of the film-forming composition to surface 12 .
  • suitable fast-acting antimicrobial agents include quaternary ammonium salts, benzalkonium chlorides, biguanide compounds (e.g., halogenated hexidines such as chlorhexidine, chlorhexidine gluconate, and chlorhexidine acetate), alcohols (e.g., low molecular weight alcohols such as ethyl alcohol and isopropyl alcohol), bleach, hydrogen peroxide, urea hydrogen peroxide, hydrogen peroxide stabilized in a sodium pyrophosphate matrix, hydrogen peroxide chelated in polyvinylpyrrolidone, and combinations thereof.
  • quaternary ammonium salts examples include didecyl dimethyl ammonium chlorides available under the trade designation “BTC 1010” from Stepan Company, Northfield, Ill., and under the trade designation “BARDAC 2250” from Lonza Group Ltd., Valais, Switzerland; dialkyl dimethyl ammonium chlorides available under the trade designation “BARDAC 2050 also from Lonza Group Ltd.; and alkyl dimethyl benzyl ammonium chloride available under the trade designation “BARQUAT MB-50” also from Lonza Group Ltd.
  • Suitable concentrations of the fast-acting antimicrobial agents in the film-forming composition of antimicrobial film 10 include any concentration that is effective for reducing microbial contamination, and may depend on the type of fast-acting antimicrobial agent used.
  • suitable concentrations of the alcohol in the film-forming composition range from about 20% by weight to about 80% by weight, with particularly suitable concentrations ranging from about 40% by weight to about 60% by weight.
  • suitable concentrations of the antimicrobial agents in the film-forming composition of antimicrobial film 10 when quaternary amines are used range from about 0.001% by weight to about 10% by weight, with particularly suitable concentrations ranging from about 0.1% by weight to about 5% by weight.
  • the film-forming composition may also include surfactants and thickeners to modify wetting and flow properties.
  • suitable surfactants include the trade designated “SURFONIC L” series surfactants commercially available from Huntsman Corporation, Salt Lake City, Utah; and the trade designated “ZONYL” surfactants commercially available from E. I. du Pont de Nemours and Company.
  • suitable thickeners include starch, gum arabic, guar gum, and carboxymethylcellulose.
  • a particularly suitable thickening agent is commercially available under the trade designation “NEOCRYL-A1127” from DSM NeoResins, Wilmington, Mass.
  • suitable total concentrations of surfactants and thickeners in the film-forming composition of antimicrobial film 10 range from about 1% by weight to about 20% by weight, with particularly suitable total concentrations ranging from about 5% by weight to about 10% by weight.
  • Additional optional components that may be incorporated into the film-forming composition include buffering agents and pH adjusting agents, fragrances or perfumes, dyes and/or colorants, solubilizing materials, defoamers, lotions and/or mineral oils, essential oils, enzymes, bleaching agents, preservatives, indicator dyes, and combinations thereof.
  • suitable total concentrations of the optional components in the film-forming composition of antimicrobial film 10 range from about 1% by weight to about 20% by weight, with particularly suitable total concentrations ranging from about 1% by weight to about 5% by weight.
  • the film-forming composition of antimicrobial film 10 may contain a dye to allow color tinting of antimicrobial film 10 if desired.
  • Tinted films allow the end user to visually verify the film coverage of surface 12 and, after applying the remover composition, visually ensure that all of antimicrobial film 10 has been removed from surface 12 .
  • indicator dyes provide color to the formulation allowing a user to visually verify the film coverage of surface 12 , but the color disappears upon drying (e.g., upon exposure to air) within a short time period (e.g., few seconds or minutes) leaving a colorless film.
  • suitable indicator dyes include dyes based on phthalein chemistry, such as phenolphthalein (pink), thymolphthalein (blue), and o-cresolphthalein (purple), all of which are obtainable from Sigma-Aldrich Chemical Company, Saint Louis, Mo.
  • Such indicator dyes also allow a user to check that antimicrobial film 10 is still intact by wetting the surface 12 .
  • the surface 12 will change color upon wetting (e.g., with water, a high pH solution (such as WINDEX-brand glass cleaner solution), an ammonia solution, or whatever substance to which the indicator dye is sensitive). This would indicate to the user, for example, that antimicrobial film 10 is still applied to the surface 12 .
  • the film-forming composition of antimicrobial film 10 may be formed by blending the antimicrobial agent, the polymer, and any optional components together. This may be performed as a solution in a solvent, where the solvent is selected to substantially dissolve or disperse the antimicrobial agent, the polymer, and any optional components.
  • suitable solid concentrations in the solvent for the resulting film-forming composition range from about 5% by weight to about 50% by weight.
  • suitable solid concentrations in the solvent for water-based polymer dispersions range from about 10% to about 40% by weight.
  • particularly suitable solid concentrations in the solvent range from about 5% to about 20% by weight.
  • the film-forming composition may then be applied to surface 12 and dried to form antimicrobial film 10 .
  • the film-forming composition may be applied to surface 12 in a variety of manners, such as by spraying, brushing, rod coating, or by wiping the film-forming composition onto surface 12 with a wipe article.
  • FIG. 4 is a top perspective view of an article 30 being wiped across surface 12 by hand 16 of a user.
  • Article 30 is a wipe article that includes a substrate and a film-forming composition impregnated within the substrate. As the user wipes article 30 across surface 12 , the film-forming composition is extracted from the substrate of article 30 and deposits on surface 12 . This forms a thin, continuous antimicrobial film 10 on surface 12 .
  • the substrate of article 30 may be any type of woven, non-woven, knitted, foam, or sponge substrate, or combinations thereof, that is capable of being impregnated with the film-forming composition.
  • the substrate may consist of a single layer or multiple layers of one or more materials. Non-woven substrates are particularly suitable because of their utility in the manufacture of cleaning and scouring articles.
  • article 30 is particularly suitable as a disposable wipe (i.e., article 30 may be formed from substrate materials intended to be discarded after use).
  • suitable disposable wipe materials for the substrate of article 30 include spun-bond and spun-lace non-woven materials having a basis weight ranging from about 15 grams/meter 2 to about 75 grams/meter 2 .
  • Such materials are generally made of synthetic polymers, natural polymers, and combinations thereof.
  • Suitable synthetic polymers include rayon polyester, polyethylene terephthalate (PET), polyvinyl chloride, polyacrylamide, polystyrene, polyethersulfone, acrylics and acrylic copolymers, rayon, polyolefins (e.g., polypropylene), and combinations thereof.
  • Suitable natural polymers include wood pulp, cotton, cellulose, rayon, and combinations thereof.
  • article 30 may be formed from materials used for semi-disposable or reusable wipes.
  • suitable semi-disposable wipe materials for the substrate of article 30 include spun-lace non-woven materials having a basis weight ranging from about 75 grams/meter 2 to about 250 grams/meter 2 .
  • Such materials may be formed from fibers or microfibers of polyester, polyamide, viscose, or combinations thereof.
  • suitable reusable wipe materials for the substrate of article 30 include knitted, woven, thermo-bonded, latex-coated, and chamois-type materials having a basis weight ranging from about 100 grams/meter 2 to about 300 grams/meter 2 .
  • Such materials may be formed from fibers or microfibers of polyester, rayon, viscose, polypropylene, natural fibers, polyamides, or combinations thereof.
  • Suitable commercially available wipe materials include those sold under the trade designation “SONTARA”, non-woven fabrics available from Du Pont such as SONTARA 8001 (100% polyester substrate) and SONTARA 8100 (50% polyester/50% Dacron).
  • Other suitable wipe materials include those designated as M001, M022, and M017, and are 100% spunlaced polyester materials available from Polymer Group Inc., Wilmington, Del.
  • Other polyester substrate materials can be obtained from Jacob Holms Industries under the designation 350160 and 10203-003.
  • article 30 is glove-shaped to receive hand 16 of the user. This provides a convenient means for the user to wipe article 30 across surface 12 to extract the film-forming composition.
  • the glove-shaped article 30 includes a barrier layer (e.g., a flexible polymeric layer) between the substrate containing the film-forming composition and the hand 16 of the user. This can inhibit contact between the film-forming composition and hand 16 of the user, thereby reducing the risk of irritating the skin of hand 16 .
  • the film-forming composition that is impregnated within the substrate includes a polymer, one or more antimicrobial agents, and a solvent.
  • the polymer and the antimicrobial agent are substantially dissolved in the solvent, and the solvent is impregnated within the substrate, thereby retaining the polymer and the antimicrobial agents (and any optional components) within the substrate.
  • suitable concentrations of the film-forming composition in article 10 , prior to extraction range from about 50% by weight to about 500% by weight of the substrate, based on a dry weight of the substrate.
  • Examples of particularly suitable concentrations of the film-forming composition in article 10 , prior to extraction range from about 100% by weight to about 400% by weight of the substrate, based on a dry weight of the substrate.
  • the film-forming composition may be impregnated within the substrate in a variety of manners, such as spraying, knife coating, roll coating, curtain coating, spin coating, immersion coating, and combinations thereof. After impregnation and prior to use, the substrate is at least partially saturated with the film-forming composition. The resulting article 10 may then be packaged in a sealed environment (individually or with multiple articles) to prevent the solvent from evaporating. When the user desires to apply an antimicrobial film on surface 12 , the user may wipe article 10 across surface 12 while applying a moderate amount of pressure. The applied pressure and the frictional force imposed by the wiping action causes portions of the film-forming composition to deposit from the substrate of article 10 .
  • the polymer, the antimicrobial agent, and the solvent of the film-forming composition are each deposited from the substrate of article 10 .
  • This is in contrast to conventional antimicrobial wipes, in which only an antimicrobial (and typically a solvent) are deposited.
  • the resulting antimicrobial film coated on surface 12 prevents the antimicrobial agent from being immediately washed away when surface 12 is cleaned.
  • the amount of film-forming composition extracted is dependent on the pressure applied, the extent of the wiping action, and the concentration of the film-forming composition impregnated within the substrate. In some embodiments, the amount of film-forming composition extracted is enough to form a dried antimicrobial film having a layer thickness on surface 12 (after drying) ranging from about 1 micrometers to about 100 micrometers, and particularly, ranging from about 2 micrometers to about 50 micrometers. This can provide a suitable concentration of antimicrobial agents to reduce the risk of microorganism contamination.
  • article 30 may be discarded. Alternatively, if article 30 retains a useable portion of the impregnated film-forming composition, article 30 may be reused to apply antimicrobial films to additional surfaces until the reservoir of film-forming composition impregnated within substrate 12 is depleted. Accordingly, article 30 may be used as a disposable or semi-disposable wipe article by consumers. However, article 30 may also be re-impregnated with an additional supply of the film-forming composition for subsequent use. This increases the product life of article 30 .
  • the film-forming composition may be dried to remove the solvent. Suitable drying techniques include air drying (e.g., forced or passive) at room temperature or elevated temperatures. The use of volatile solvents (e.g., isopropanol and acetone) can be useful for increasing the rate of drying.
  • the resulting antimicrobial film is a thin, continuous film that provides antimicrobial protection to surface 12 , as discussed above.
  • the polymer matrix may also be fully or partially cross-linked after being applied to surface 12 and dried. This can increase the mechanical integrity of the antimicrobial film, thereby allowing the antimicrobial film to provide abrasion and chemical resistance to surface 12 in addition to antimicrobial activity.
  • antimicrobial film 10 examples include a thin, durable film that provides antimicrobial protection to surface 12 , as discussed above. In some embodiments, antimicrobial film 10 is also a transparent film, which allows the aesthetic qualities of the underlying surface (e.g., surface 12 ) to be visually observed through antimicrobial film 10 .
  • antimicrobial film 10 exhibits antimicrobial activity to reduce the microorganism contamination of surface 12 , and particularly, exhibits biocidal activity.
  • suitable levels of biocidal activity include microbial load reductions of at least about 90% for at least one of S. aureus (gram positive) and Ps. aeruginosa (gram negative) pathogens.
  • examples of even more suitable levels of biocidal activity include microbial load reductions of at least about 99% for at least one of S. aureus (gram positive) and Ps. aeruginosa (gram negative) pathogens.
  • particularly suitable levels of biocidal activity include microbial load reductions of at least about 90% for both of S. aureus (gram positive) and Ps.
  • aeruginosa (gram negative) pathogens.
  • examples of even more particularly suitable levels of biocidal activity include microbial load reductions of at least about 99% for both of S. aureus (gram positive) and Ps. aeruginosa (gram negative) pathogens.
  • the “microbial load reductions” herein refer to microbial load reductions obtained pursuant to ASTM E2180-01.
  • Antimicrobial film 10 may also include an end-of-service indicator to provide visual indication prompting the user to replace antimicrobial film 10 .
  • suitable end-of-service indicators include time-temperature indicators and color changing dyes.
  • An end-of-service indicator may be applied to antimicrobial film 10 in the form of a label or paint to the corners of antimicrobial film 10 after antimicrobial film 10 is formed on surface 12 .
  • the indicator is calibrated to indicate a color change at about the time when the corresponding antimicrobial layer 10 should be replaced (e.g., when the antimicrobial activity levels have substantially decreased or are exhausted).
  • Time-temperature indicators typically operate by chemical reaction mechanisms, diffusion mechanisms, and capillary driven, fluid-wicking mechanisms.
  • suitable time-temperature indicators are disclosed in Bommarito, et al., U.S. Pat. No. 6,741,523 (i.e., microstructured time-dependent indicators) and Arens, et al., U.S. Pat. No. 5,667,303, both of which are incorporated by reference in their entireties, and in The Wiley Encyclopedia of Packaging Technology, 400-406 (John Wiley & Sons, 1986) under the section entitled “Indicating Devices”.
  • suitable commercially available time-temperature indicators include those sold under the trade designations “MONITOR MARK” from 3M Corporation, St.
  • FIG. 2 is a side sectional view of antimicrobial film 10 disposed on surface 12 , with remover composition 14 being deposited on antimicrobial film 10 .
  • Remover composition 14 is a solvent-based composition that dissolves and/or swells the film-forming composition of antimicrobial film 10 , as discussed below.
  • Remover composition 14 may be deposited on antimicrobial film 10 in a spray form as illustrated in FIG. 2 .
  • remover composition 14 may be incorporated in a wipe article that is wiped across antimicrobial film 10 , thereby allowing remover composition 14 to dissolve and/or swell antimicrobial film 10 during the wiping process.
  • Remover composition 14 may include one or more solvents that are effective for dissolving the film-forming composition of antimicrobial film 10 .
  • suitable solvents for use in remover composition 14 include water, aqueous alkaline solvents, volatile solvents (e.g., acetone and isopropanol), glycols, and combinations thereof.
  • the solvent of remover composition 14 may be selected to dissolve antimicrobial film 10 .
  • the remover solvent is selected to closely match the solubility parameter of the polymer used.
  • solubility parameter herein refers to the Hildebrand solubility parameter ( ⁇ ), which is a solubility parameter represented by the square root of the cohesive energy density of a material, having units of (pressure) 1/2 , and being represented by the following equation:
  • Hildebrand solubility parameters are generally provided in conventional units of (calories/centimeter 3 ) 1/2 ((cal/cm 3 ) 1/2 ) and in SI units of megaPascals 1/2 (MPa 1/2 ).
  • Hildebrand solubility parameters are tabulated for solvents in Barton, A. F. M., Handbook of Solubility and Other Cohesion Parameters, 2 nd Ed. CRC Press, Boca Raton, Fla., (1991), for monomers and representative polymers in Polymer Handbook, 3 rd Ed., J. Brandrup & E. H. Immergut, Eds. John Wiley, NY pp. 519-557 (1989), and for many commercially available polymers in Barton, A. F. M., Handbook of Polymer - Liquid Interaction Parameters and Solubility Parameters , CRC Press, Boca Raton, Fla., (1990).
  • suitable differences in Hildebrand solubility parameters between the polymer in the film-forming composition of antimicrobial film 10 and the solvent of remover composition 14 include differences of about 5.0 (cal/cm 3 ) 1/2 or less, with particularly suitable differences in Hildebrand solubility parameters including differences of about 2.0 (cal/cm 3 ) 1/2 or less, and with even more particularly suitable differences in Hildebrand solubility parameters including differences of about 1.0 (cal/cm 3 ) 1/2 .
  • the solvent of remover composition 14 may be selected to either dissolve (by chemically disrupting and breaking the cross-links) antimicrobial film 10 , swell (by absorbing into the cross-linked polymer matrix) antimicrobial film 10 , or a combination thereof. Swelling takes place when the solvent of remover composition 14 penetrates into a cross-linked polymer network through the surface of antimicrobial film 10 , which acts as a semi-permeable membrane. The solvent interacts with segments of the polymer network, which increases their mobility, disrupts the adhesion of the polymer segments to surface 12 , and facilitates the removal of the film-forming composition. Swelling will take place only if the free energy of mixing between the solvent and the polymer segments is negative, where the free energy of mixing is defined as:
  • Equation (2) along with more detailed discussion of the theory of polymer swelling can be found in Richards, E. G., An Introduction to Physical Properties of Large Molecules in Solution , IUPAB Biophysics Series, Cambridge University Press, Cambridge, (1980).
  • Suitable solvents for use in remover composition 14 when the polymer of the antimicrobial film is partially or fully cross-linked include aqueous alkaline solvents (e.g., ammonia-containing solvents), volatile solvents (e.g., acetone and isopropanol), and combinations thereof.
  • aqueous alkaline solvents e.g., ammonia-containing solvents
  • volatile solvents e.g., acetone and isopropanol
  • remover composition 14 may include a high pH solvent (e.g., an ammonia solution or soap-containing aqueous solvent) to dissolve and/or swell the antimicrobial film 10 .
  • a high pH solvent e.g., an ammonia solution or soap-containing aqueous solvent
  • suitable concentrations of the solvent in remover composition 14 range from about 50% by weight to 100% by weight, with particularly suitable total concentrations ranging from about 90% by weight to 100% by weight.
  • Remover composition 14 may also include surfactants and thickeners, and foaming agents to modify wetting and flow properties.
  • suitable surfactants and thickeners include those discussed above for the film-forming composition of antimicrobial film 10 .
  • suitable total concentrations of surfactants and thickeners in remover composition 14 range from about 1% by weight to about 20% by weight, with particularly suitable total concentrations ranging from about 5% by weight to about 10% by weight.
  • FIG. 3 is a top perspective view of hand 16 of a user removing antimicrobial film 10 from surface 12 with wipe article 18 .
  • antimicrobial film 10 Prior to remover composition 14 being deposited, antimicrobial film 10 is resistant to being removed from surface 12 , as discussed above. As such, antimicrobial film 10 must be subjected to at least a first minimum frictional force before being removed. The first minimum frictional force is greater than a moderate frictional force applied during a surface wiping with a wipe article. This prevents antimicrobial film 10 from being undesirably removed until remover composition 14 is deposited.
  • Remover composition 14 swells the polymer of the antimicrobial film 10 and/or breaks down the structural integrity of the polymer (i.e., dissolves the polymer), thereby allowing antimicrobial film 10 to be readily removed from surface 12 .
  • antimicrobial film 10 may be removed by an application of a second minimum frictional force that is less than the first minimum frictional force.
  • the second minimum frictional force is equal to or less than a moderate frictional force applied by a wiping motion with wipe article 18 .
  • remover composition 14 may be impregnated within wipe article 18 .
  • the user may forgo a separate step of depositing remover composition 14 onto antimicrobial film 10 .
  • remover composition 14 is extracted from wipe article 18 and deposits onto antimicrobial film 10 .
  • Remover composition 14 then dissolves and/or swells the polymer in the film-forming composition of antimicrobial film 10 , thereby allowing antimicrobial film 10 to be wiped away from surface 12 after several strokes with wipe article 18 .
  • wipe article 18 is a disposable article that reduces time and effort the user must undertake to remove antimicrobial film 10 from surface 12 .
  • a fresh coating of antimicrobial film 10 may be coated on surface 12 , pursuant to the coating techniques discussed above in FIG. 1 . This may provide antimicrobial protection to surface 12 for extended periods of time. For example, when substantially all of the antimicrobial agents are released from a first coating of antimicrobial film 10 , a user may deposit remover composition 14 on antimicrobial film 10 , and wipe the first coating of antimicrobial film 10 away. The user may then coat surface 12 with a second coating of antimicrobial film 10 to provide a renewed source of protection against microbial contamination.
  • Antimicrobial films of Examples 1 and 2 were each prepared pursuant to the following procedure.
  • a PVOH solution was prepared by combining 5 parts of PVOH with 95 parts water, and shaking the mixture in a warm bath for 24 hours to fully dissolve the PVOH. 30 parts of the PVOH solution were then mixed with 0.2 parts of an antimicrobial agent (AgION for Example 1, and Triclosan for Example 2). The resulting film-forming composition was then coated onto a corona-treated BOPP film using a Meyer rod #36, and dried at 55° C. for 5 minutes to form the antimicrobial film.
  • the antimicrobial films of Examples 1 and 2 were each tested for “microbial load reduction” pursuant to ASTM E2180-01, which involved inoculation of a molten (45° C.) agar slurry with a standardized culture of bacterial cells. A thin layer of the inoculated agar slurry (0.5 milliliter) was then pipetted onto the test material and the untreated control material. Samples were tested in duplicate using Staphylococcus aureus (ATCC 6538) and Pseudomonas aeruginosa (ATCC 9027).
  • surviving microorganisms were recovered via elution of the agar slurry inoculum from the test substrate into D/E Neutralizing broth and extracted by sonication and vortexing. Serial dilutions were then made, and pour plates were made of each dilution. Agar plates were incubated for 48 hours at 28° C. ⁇ 1° C. Bacterial colonies from each dilution series were then counted and recorded. Calculation of percent reduction of bacteria from treated versus untreated samples was then made. A percent reduction greater than 99.95% was reported as 100%.
  • Table 1 provides the microbial load reduction results for the antimicrobial films of Examples 1 and 2.
  • Table 1 illustrate the good antimicrobial activity provided by the antimicrobial films of Examples 1 and 2.
  • the antimicrobial film of Example 2 exhibited poor gram negative results, which is typical for Triclosan antimicrobial agents.
  • the antimicrobial films of Examples 1 and 2 were also tested for ease of removal with a remover composition.
  • Synthetic wipes (commercially available under the trade designation “TX1009 ALPHAWIPE” from ITW Texwipe, Upper Saddle River, N.J.) were used for the evaluation.
  • TX1009 ALPHAWIPE commercially available under the trade designation “TX1009 ALPHAWIPE” from ITW Texwipe, Upper Saddle River, N.J.
  • TX1009 ALPHAWIPE trade designation “TX1009 ALPHAWIPE” from ITW Texwipe, Upper Saddle River, N.J.
  • the film was removed from the BOPP substrate after two strokes with the wet synthetic wipe. Based on visual observations, the first stroke appeared to wet and soften the antimicrobial film due to the antimicrobial film swelling, and the second stroke removed it in a solid form. This demonstrates that the antimicrobial film was swelled by water but did not dissolve in water and was durable enough to
  • Antimicrobial films of Examples 3-8 were each prepared pursuant to the following procedure.
  • a solution was prepared by dissolving PVP-K90 and an antimicrobial agent in a 50:50 solution of isopropanol and methyl ethyl ketone.
  • the solution was then coated on a non-treated polyethylene terephthalate substrate using a Meyer rod #9. The coated film was dried at room temperature for 20 minutes and then dried at 80° C. for 10 minutes.
  • the antimicrobial films of Examples 3-8 were each tested for “microbial load reduction” pursuant to the procedure discussed above for Examples 1 and 2.
  • a control coating of PVP-K90 without an antimicrobial agent was used as a control.
  • Table 2 illustrate the good antimicrobial activity provided by the antimicrobial films of Examples 3-8. Accordingly, a variety of antimicrobial agents may be used with the present invention.
  • Antimicrobial films of Examples 9-15 and Comparative Examples A and B were each prepared pursuant to the following procedure.
  • a solution was prepared by combining an antimicrobial agent, a cross-linking agent, a polymer dispersion, and 5 parts of water.
  • the polymer dispersion was 20 parts of R-960
  • the polymer dispersion was 10 parts of RU21-075.
  • Table 3 provides the antimicrobial agents and cross-linking agents combined in the solutions for the films of Examples 9-15 and Comparative Examples A and B.
  • Example 9 AgION 0.5 XR-2500 0.2
  • Example 10 AgION 0.5 XL-A 4.0
  • Example 11 Triclosan 5.0 XL-A 4.0 Comparative None 0.0 None 0.0
  • Example B Example 12 AgION 0.5 XL-A 2.0
  • Example 13 AgION 0.5 XR-2500 0.1
  • Example 14 Triclosan 1.0 XL-A 2.0
  • Example 15 Triclosan 1.0 XR-2500 0.1
  • the resulting film-forming compositions were then coated onto a corona-treated BOPP film using a Meyer rod #6, and dried at 55° C. for 5 minutes to form the antimicrobial film.
  • the antimicrobial films of Examples 9-15 and Comparative Examples A and B were then each tested for “microbial load reduction” pursuant to ASTM E2180-01, as discussed above for Examples 1 and 2.
  • Table 4 provides the microbial load reduction results for the antimicrobial films of Examples 9-15 and Comparative Examples A and B.
  • Table 4 further illustrate the good antimicrobial activity provided by the antimicrobial films of the present invention.
  • the antimicrobial films containing Triclosan i.e., Examples 11, 14, and 15
  • the antimicrobial films containing Triclosan exhibited poor gram negative results, which is typical for Triclosan antimicrobial agents.
  • the antimicrobial films containing Triclosan exhibited relatively poor gram positive results. This could be due to the triclosan interacting more strongly with the polymer of the antimicrobial film.
  • the antimicrobial films of Examples 9, 10, 12, and 13, and Comparative Examples A and B were also tested for ease of removal from the BOPP film with a remover composition pursuant to the following procedure.
  • Each sample was sprayed with WINDEX-brand glass cleaner solution, which is commercially available from SC Johnson & Son, Inc., Racine, Wis. After a 30 second waiting period, the sample was then wiped three strokes under moderate force with a paper towel, and the amounts of the film removed were estimated by visual observation.
  • Table 5 provides the percent removal for the antimicrobial films of Examples 9, 10, 12, and 13, and Comparative Examples A and B.
  • Table 5 illustrate the difference in removal based on the type of cross-linked polymer dispersion used. This is shown by the films of Examples 9 and 10, which used the R-960. Accordingly, a stronger solvent is more desirable for use with the films of Examples 9 and 10. In comparison, however, the films of Examples 12 and 13 exhibited low resistances to the alkali environment, and were readily removed. As such, ammonia-based solvents are suitable as remover compositions for antimicrobial films containing cross-linked RU21-075 polymer matrix materials.
  • Example 16 An antimicrobial film of Example 16, which is an example of a self cross-linking polymer, was prepared pursuant to the following procedure. A mixture was formed by combining 95 parts of NeoCryl XK-98 with 5 parts AgION. The mixture was then coated onto BOPP film using a Meyer rod #14 and dried in an oven at 60° C. for 5 minutes. While drying, the NeoCryl XK-98 polymer self cross-linked via a condensation reaction. The resulting antimicrobial film of Example 16 was then tested for “microbial load reduction” pursuant to ASTM E2180-01, as discussed above for Examples 1 and 2. The film of Example 16 exhibited a 100% microbial load reduction for both S. aureus (gram positive) and Ps. aeruginosa (gram negative).
  • the antimicrobial film of Example 16 was also tested for ease of removal from the BOPP film with remover compositions.
  • a first sample of the film was sprayed with water and a second sample of the film was sprayed with WINDEX-brand glass cleaner solution, which is commercially available from SC Johnson & Son, Inc., Racine, Wis. After a 30 second waiting period, the samples were then wiped three strokes under moderate force with a paper towel, and the amount of the film removed was observed.
  • the film was unaffected by the water and was not removed. This is due to the cross-linked structure of the film. In contrast, for the WINDEX-sprayed sample, the film was readily removed.
  • the antimicrobial film of Example 16 is suitable for use on a variety of surfaces that are treated with water.
  • the cross-linked polymer matrix prevents the antimicrobial film of Example 16 from being removed during normal washing operations (e.g., washing a surface with a wetted towel or sponge), but is readily removed when a WINDEX-based remover composition is applied.
  • Example 17 An antimicrobial film of Example 17, which is an example of AgION silver in a solvent-borne formulation, was prepared pursuant to the following procedure.
  • a mixture was prepared by combining 2 parts by weight of B66 acrylic resin, 0.2 parts AgION, and 8 parts Exxate 800 solvent. The mixture was stirred for one hour to dissolve the B66 acrylic resin and disperse the AgION. The resulting mixture was then coated on a BOPP film using a Meyer rod #26. The film was then dried in an oven at 55° C. for 5 minutes. The coating appearance was transparent, but non-uniform with a blotchy surface.
  • Example 17 The resulting antimicrobial film of Example 17 was then tested for “microbial load reduction” pursuant to ASTM E2180-01, as discussed above for Examples 1 and 2.
  • the film of Example 17 exhibited a 68.4% microbial load reduction for S. aureus (gram positive) and a 100.0% microbial load reduction for Ps. aeruginosa (gram negative).
  • a wipe was saturated with MEK (methyl ethyl ketone) and used to rub the film. After three strokes, about 80% of the film was removed, as estimated by visual observation.
  • MEK methyl ethyl ketone
  • Example 18 An antimicrobial film of Example 18, which is an example of AgION silver in a water-based formulation, was prepared pursuant to the following procedure.
  • a mixture was prepared by combining 8.6 parts XK-90 (acrylic cross-linkable polymer dispersion in water), 0.6 parts XL-A cross-linker, and 0.4 parts AgION. The mixture was stirred for a few minutes until homogeneous in appearance.
  • the composition was coated onto a BOPP film using a Meyer rod #14. The film was then dried at 55° C. for 5 minutes. The resulting film appearance was hazy, but uniform.
  • Example 18 The resulting antimicrobial film of Example 18 was then tested for “microbial load reduction” pursuant to ASTM E2180-01, as discussed above for Examples 1 and 2.
  • the film of Example 17 exhibited a 100.0% microbial load reduction for both S. aureus (gram positive) and Ps. aeruginosa (gram negative).
  • An antimicrobial film of Example 19 was prepared pursuant to the following procedure.
  • a silver oxide solution was initially prepared by combining 5 parts ammonium carbonate salt with 95 parts water, and mixing until the salt was dissolved. To this solution, 1 part silver oxide was added. The mixture was stirred at 60° C. for one hour until the silver oxide was dissolved.
  • a mixture was then prepared by combining 20 parts by weight of XK-90 binder material, 1 part silver oxide solution, 2 parts XL-A cross-linker, and 12 parts water. The mixture was shaken by hand to form a uniform dispersion, and then coated on a PET film using a Meyer rod #12. The film was then dried at in an oven at 55° C. for 5 minutes and cured. The resulting film appearance was transparent and uniform, with a slight brown tint due to the presence of the silver oxide. This color tint can be beneficial for allowing a user to visually determine the presence and uniformity of the coating.
  • Example 10 The resulting antimicrobial film of Example 10 was then tested for “microbial load reduction” pursuant to ASTM E2180-01, as discussed above for Examples 1 and 2.
  • the film of Example 28 exhibited a 51.2% microbial load reduction for S. aureus (gram positive) and a 100.0% microbial load reduction for Ps. aeruginosa (gram negative).
  • Example 20 An antimicrobial film of Example 20, which included a fast-acting antimicrobial agent, was prepared pursuant to the following procedure.
  • a solvent of 60 parts ethyl alcohol and 40 parts water was initially prepared.
  • a mixture was then prepared by adding 6 parts PVOH polymer to the solvent. The mixture was shaken in warm bath until the PVOH was dissolved, which was about 24 hours. After the shaking process, 1 part AgION was added to the mixture.
  • the resulting mixture exhibited instant bacterial kill capabilities due to the high content of ethyl alcohol, while the coated composition also provided for longer-term antimicrobial activity after the alcohol evaporates as shown above in Example 1. This illustrates the versatility of the present invention for reducing pathogen contamination.
  • Examples 21-27 illustrate prophetic polymer-antimicrobial agent combinations that can be used to form water-insoluble, biocidal antimicrobial films according to the present invention.
  • Table 6 provides the listing of the polymer-antimicrobial agent combinations for Examples 21-27.
  • a plurality of antimicrobial agents can be used alone or in combination and are listed in a comma-delimited manner to signify this.

Abstract

An antimicrobial coating system, a film-forming composition, and an antimicrobial film. In some embodiments, the antimicrobial coating system can include a film-forming composition comprising a polymer having an effective molecular weight, and an effective amount of an antimicrobial agent dispersed within the polymer. The film-forming composition can form a water-insoluble, biocidal antimicrobial film when applied to a surface.

Description

    CROSS-REFERENCE TO RELATED APPLICATION(S)
  • This is a continuation of U.S. patent application Ser. No. 12/097,334, filed Dec. 14, 2006, which is a national stage filing under 35 U.S.C. §371 of PCT Application No. PCT/US2006/047779, which claims priority to U.S. Provisional Patent Application No. 60/743,037, filed Dec. 14, 2005, and U.S. Provisional Patent Application No. 60/743,038, filed Dec. 14, 2005, the disclosures of all of which are incorporated herein by reference in their entirety.
  • FIELD OF THE INVENTION
  • The present invention relates to antimicrobial coatings. In particular, the present invention relates to removable antimicrobial coatings for use on surfaces to reduce the risk of contamination by microorganisms.
  • BACKGROUND
  • Contamination by microorganisms can have dramatic impact on human life and health.
  • During everyday routines, people continuously come into contact with a variety of surfaces that are contaminated with one or more types of microorganisms, some of which may be pathogens. Such surfaces may include countertops, tables, and food preparation surfaces in restaurants, splash guards and conveyor belts in food processing plants, public facilities, display applications, and a variety of surfaces in healthcare settings. Contamination with pathogenic microorganisms in such locations may result in the spread of disease and infections to people, which correspondingly endangers human lives and increases health care costs.
  • To counter the spread of undesired microorganisms, frequently touched, potentially contaminated surfaces are typically cleaned and sanitized on a regular basis. While this provides an immediate reduction in concentration of microorganisms on given surfaces, the surfaces must be repeatedly cleaned and sanitized on a frequent basis to continue to prevent contamination by microorganisms. One reason for this is because many antimicrobial materials used for cleaning and sanitation become deactivated when the surface is dried. In addition, many articles used to wipe visible dirt from surfaces may recontaminate the wiped surface with microorganisms that will grow and cause a cross-contamination hazard. For example, tables and food preparation surfaces at restaurants are continuously wiped with a sponge or towel to remove excess consumables and garbage. The article used for wiping frequently harbors pathogenic microorganisms that are transferred to the wiped surface.
  • SUMMARY
  • Some aspects of the present invention provide an antimicrobial coating system. The antimicrobial coating system can include a film-forming composition comprising a polymer having an effective molecular weight, and an effective amount of an antimicrobial agent dispersed within the polymer. The film-forming composition can form a water-insoluble, biocidal antimicrobial film when applied to a surface.
  • In some aspects of the present invention, a film-forming composition is provided. The film-forming composition can include a polymer and an effective amount of an antimicrobial agent dispersed within the polymer. The polymer can include at least one of acrylic, urethane, polyvinyl alcohol having an effective molecular weight, and combinations thereof. The antimicrobial agent can include at least one of a fatty acid monoester, a fatty acid monoether, a transition metal ion-containing compound, a quaternary ammonium-containing compound, a biguanide, and combinations thereof.
  • Some aspects of the present invention provide an antimicrobial film comprising a polymer having an effective molecular weight, and an effective amount of an antimicrobial agent. The antimicrobial film can be water-insoluble and biocidal.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a side sectional view of an antimicrobial film of the present invention disposed on a surface.
  • FIG. 2 is a side sectional view of the antimicrobial film disposed on the surface, with a remover composition of the present invention being deposited on the antimicrobial film.
  • FIG. 3 is a top perspective view of a hand of a user removing the antimicrobial film from the surface with a wipe article.
  • FIG. 4 is a top perspective view of an article in use for applying an antimicrobial coating system of the present invention to a surface to form an antimicrobial film of the present invention.
  • While the above-identified drawings set forth several embodiments of the invention, other embodiments are also contemplated, as noted in the discussion. In all cases, this disclosure presents the invention by way of representation and not limitation. It should be understood that numerous other modifications and embodiments can be devised by those skilled in the art, which fall within the scope and spirit of the principles of the invention. The figures may not be drawn to scale. Like reference numbers have been used throughout the figures to denote like parts.
  • DETAILED DESCRIPTION
  • FIG. 1 is a side sectional view of antimicrobial film 10 disposed on surface 12, where antimicrobial film 10 is formed by a film-forming composition that can form a first part of a two-part antimicrobial coating system of the present invention. As discussed below, the second part of the antimicrobial coating system is a remover composition (not shown in FIG. 1) that includes a solvent suitable for removing antimicrobial film 10 from surface 12.
  • Surface 12 may be any surface that may incur contamination by microorganisms, such as table and counter tops, food preparation surfaces, surfaces found in publicly used locations and facilities (e.g., public telephones, public transportation, and public lavatory facilities), touch-screen displays, door handles, light switches, and surfaces found in healthcare settings (e.g., bed rails and side tables). While surface 12 is shown as a flat, planar surface, antimicrobial film 10 may also be coated on curved and irregular shaped surfaces. As used herein and in the appended claims, the term “microorganism,” “microbe,” or a derivative thereof, is used to refer to any microscopic organism, including without limitation, one or more of bacteria, viruses, algae, fungi and protozoa. In some cases, the microorganisms of particular interest are those that are pathogenic, and the term “pathogen” is used herein to refer to any pathogenic microorganism.
  • As described above, antimicrobial film 10 is derived from a film-forming composition that is coated onto surface 12, where the film-forming composition includes a polymer of an effective molecular weight to provide a water-insoluble antimicrobial film 10 and an effective amount of one or more antimicrobial agents to reduce microorganism contamination. In some embodiments, the antimicrobial agents are dispersed within the polymer in a releasable manner, which allows the antimicrobial agents to be released from antimicrobial film 10 at an effective diffusion rate to reduce microorganism contamination on surface 12. In some embodiments, reducing microorganism contamination includes providing biocidal activity. As used herein and in the appended claims, the term “biocidal” is used to describe an antimicrobial film 10 that kills microorganisms that come into contact with the antimicrobial film 10. As a result, biocidal activity is distinguishable over systems that merely provide inhibition of microorganism growth, because a film that inhibits growth and/or reproduction of microorganisms does not necessarily kill the microorganisms. In some embodiments, as further taught by the examples, biocidal activity, and particularly, extended biocidal activity (e.g., after 24 hours) can be demonstrated by the microbial load reductions exhibited by the antimicrobial film 10, when tested pursuant to ASTM E2180-01.
  • While disposed on surface 12, antimicrobial film 10 is resistant to removal by moderate frictional forces, such as frictional forces applied when a user uses a wipe article (e.g., a cloth towel or sponge) to wipe food or waste from surface 12. This allows antimicrobial film 10 to provide antimicrobial protection to surface 12 without the risk of accidentally being removed while surface 12 is wiped clean. In some embodiments, antimicrobial film 10 is water-insoluble.
  • As used herein and in the appended claims, the term “water-insoluble” is used to refer to an antimicrobial film that does not dissolve (i.e., form a homogeneous solution) after 30 minutes of being placed in DI water at room temperature with no stirring. One example of a method for testing water-insolubility is by forming the antimicrobial film onto a release liner, peeling the antimicrobial film from the release liner and submerging the antimicrobial film in DI water at room temperature for 30 minutes with no stirring. If, after 30 minutes, in these conditions, at least a portion of the antimicrobial film still remains intact and has not gone into solution, the antimicrobial film is “water-insoluble.” As a result, if an antimicrobial film swells in water under these conditions, but does not dissolve to form a homogeneous solution, the antimicrobial film is “water-insoluble.”
  • When desired, antimicrobial film 10 may be removed from surface 12 with a remover composition, and a fresh coating of antimicrobial film 10 may be applied to provide continuing antimicrobial protection to surface 12. When removal of antimicrobial film 10 is desired, the remover composition may be applied, and antimicrobial film 10 may then be wiped off from surface 12 under moderate frictional forces. As a result, the antimicrobial coating system of the present invention is a convenient system for applying and removing durable antimicrobial coatings having biocidal activity to and from a variety of surfaces.
  • Suitable polymers for use in the film-forming composition of antimicrobial film 10 include water-soluble polymers, organic solvent-soluble polymers, and water-based polymer dispersions. Examples of water-soluble polymers include polyvinyl alcohols, polyvinylpyrrolidones, polyethylene oxides, sulfonated polyurethanes, copolymers thereof, and combinations thereof. Suitable commercially available polyvinyl alcohols include those available from J. T. Baker, Phillipsburg, N.J., and from Sigma-Aldrich Company, St. Louis, Mo. Suitable commercially available polyvinylpyrrolidones include those available from J. T. Baker, and those available under the trade designations “PVP-Kxx” from Peakchem, ZheJiang, China, where the “xx” number after the letter K indicates the average molecular weight (in 1,000s of Daltons) of the polymer (e.g., “PVP-K90” and “PVP-K30”).
  • Suitable commercially available polyethylene oxide polymers include those available under the trade designation “POLYOX” from Dow Chemical Co., Midland, Mich. Suitable water-soluble polymers may have a wide range of molecular weights, where the molecular weight generally determines the product performance. For example, if the polymer molecular weight is too low, the film coating may be tacky and easily removable (i.e., has poor durability and is water-soluble). Alternatively, if the molecular weight of the polymer is too high, the coating solution exhibits poor solubility, which results in the film being difficult to remove. For applications in which the antimicrobial film 10 will need to be removed and replenished from time to time, suitable molecular weights provide good film durability, water-insolubility, and relative ease of removal by an appropriate remover composition. That is, in some embodiments, an effective molecular weight refers to a molecular weight that allows the resulting antimicrobial film 10 to be water-insoluble. For example, in some embodiments, an effective molecular weight of polyvinyl alcohol is at least about 100,000 Daltons, particularly, at least about 120,000, and more particularly, at least about 150,000 Daltons.
  • Suitable organic solvent-soluble polymers include polyurethanes, acrylic polymers, polyamides, copolymers thereof, and combinations thereof. Commercially available solvent-based polyurethanes include those available under the trade designation “PERMUTHANE” from Stahl USA, Peabody, Mass. (e.g., “SU26-248”, which is an aliphatic polyurethane in toluene). Other suitable polyurethanes include those commercially available under the trade designations “ESTANE” from B.F. Goodrich, Cleveland, Ohio (e.g., “Estane 5715” and “Estane 5778”), and “MORTHANE” from Huntsman Polyurethanes, Ringwood, Ill. (e.g., “CA118” and “CA237” polyester polyurethanes). Additional suitable polymers include those commercially available under the trade designation “U-371” from DSM NeoResins, Wilmington, Mass.
  • Examples of water-based polymer dispersions include polyurethanes, polyureas, polyacrylics, polyethers, polyester, and copolymers thereof and combinations thereof. Suitable aqueous dispersions include urethanes such as those commercially available under the trade designation “NEOREZ” from DSM NeoResins, Wilmington, Mass. (e.g., “NEOREZ R-960” and “NEOREZ R-9699”); acrylics such as those commercially available under the trade designation “NEOCRYL” from DSM NeoResins (e.g., “NEOCRYL XK-90”, “NEOCRYL XK-96”, and “NEOCRYL XK-95”); and acrylic urethane copolymers such as those commercially available under the trade designation “NEOPAC” from DSM NeoResins. Additional suitable water-based urethanes include those commercially available under the trade designations “RU-077” and “RU-075” from Stahl USA, Peabody, Mass.
  • Water-soluble materials can be suitable for use in situations where antimicrobial film 10 remains dry until the intended removal with a water-based remover composition. The above-listed materials may also be partially or fully cross-linked to improve the mechanical structure of the polymer, and to reduce the water solubility of such materials. Polymers having reduced water solubility are beneficial for use on surfaces (e.g., surface 12) that come into contact with water (e.g., surfaces that are rinsed or soaked with water). To initiate the cross-linking, the polymer may include curing agents, such as chain extension agents, chemical cross-linking agents, and radiation cross-linking agents (e.g., photoinitiators).
  • To initiate the cross-linking, the film-forming composition may include cross-linking agents, such as chain extension agents and chemical cross-linking agents. Examples of cross-linking agents include isocyanates such as those commercially available under the trade designation “DESMODUR” from Bayer AG, Pittsburgh, Pa.; aziridine crosslinkers such as those commercially available under the trade designation “CX-100” from DSM NeoResins, Wilmington, Mass.; and those commercially available under the trade designation “XR-2500” from Stahl USA, Peabody, Mass. Suitable chain extension agents include carbodiimides such as those commercially available under the trade designation “EX62-944”, and melamines such as those commercially available under the trade designation “XR-9174”, both from Stahl USA.
  • Examples of particularly suitable cross-linkable polymer compositions include self cross-linking polymer dispersions, where the deposited coating self cross-links upon drying to form a durable, water-insoluble coating layer. Self cross-linking polymer dispersions typically contain side groups that react to form chemical bonds via condensation polymerizations, which take place upon evaporation of water. Self cross-linking polymer dispersions offer the advantage of forming antimicrobial films (e.g., antimicrobial film 10) that are solvent resistant without requiring cross-linking agents. Various types of cross-linking agents can pose potential health risks because they are small, solvent-borne, organic molecules (e.g., isocyanates).
  • Examples of self cross-linking urethane dispersions include polyester-urethanes that are terminated by hydrolysable silyl groups and contain solubilizing sulfonic acid functional groups. Such polyester-urethanes are described in Krepski, et al., U.S. Pat. No. 5,929,160, which is incorporated by reference in its entirety. Additional examples of suitable self cross-linking urethane dispersions include polyurethane water-based dispersions containing hydroxyl groups to accomplish the self cross-linking function. Suitable hydroxyl group-based polyurethanes include those prepared pursuant to the process described in Mazanek et al., U.S. Pat. No. 7,049,367, which is incorporated by reference in its entirety. Even further additional examples of suitable self cross-linking urethane dispersions include polyurethane polymer hybrid dispersions based on oxidatively drying polyols, such as those disclosed in Ingrisch et al., U.S. Pat. No. 6,462,127, which is incorporated by reference in its entirety.
  • Examples of commercially available self cross-linking polymers include dispersions sold under the trade designations “RHEOPLEX” and “ROVACE” available from Rohm and Haas Company, Philadelphia, Pa., which are typically used as binders for textile and non-woven substrates for the protection of color dyes applied to the substrates. Exemplary compositions include the trade designated “RHEOPLEX HA-12” (non-ionic dispersion with glass transition temperature of about 19° C.) and “RHEOPLEX TR-407” (anionic dispersion with glass transition temperature of 34° C.), both of which exhibit good wash durability and chemical resistance. Additional examples of commercially available self cross-linking polymers include the trade designated “NEOREZ R-551” polyether-based polymers and “NEOCRYL XK-98” acrylic emulsion polymers, both of which are available from DSM NeoResins, Wilmington, Mass. The “NEOCRYL XK-98” acrylic emulsion polymers are particularly suitable because they provide good adhesion to most substrates and exhibit high gloss and block resistance.
  • Suitable concentrations of the polymer in the film-forming composition of antimicrobial film 10, after application and drying of the film, include any concentration that is effective for dispersing and containing the antimicrobial agents. Examples of suitable concentrations of the polymer in the film-forming composition of antimicrobial film 10 range from about 50% by weight to about 99.9% by weight, with particularly suitable concentrations ranging from about 70% by weight to about 99% by weight, and with even more particularly suitable concentrations ranging from about 90% by weight to about 95% by weight.
  • Suitable antimicrobial agents for use in the film-forming composition of antimicrobial film 10 include any inorganic or organic antimicrobial agent that is effective for reducing microbial contamination. Examples of suitable antimicrobial agents include transition metal ion-containing compounds, (e.g., silver, zinc, copper, gold, tin and platinum-based compounds), fatty acid monoesters/monoethers, triclosan, peroxides, iodines, quaternary ammonium-containing compounds, biguanides, complexes thereof (e.g., iodophores), derivatives thereof, and combinations thereof.
  • Examples of suitable silver-containing compounds include silver sulfate, silver acetate, silver chloride, silver lactate, silver phosphate, silver stearate, silver thiocyanate, silver proteinate, silver carbonate, silver nitrate, silver sulfadiazine, silver alginate, silver nanoparticles, silver-substituted ceramic zeolites, silver complexed with calcium phosphates, silver-copper complexed with calcium phosphates, silver dihydrogen citrates, silver iodines, silver oxides, silver zirconium phosphates, silver-substituted glass, and combinations thereof.
  • Suitable commercially available silver zeolite-containing compounds include those sold under the trade designation “AGION” from AgION Technologies Inc., Wakefield, Mass.; those available under the trade designations “IRGAGUARD B5000” and “IRGAGUARD B8000”, which are based on AgZn zeolites supplied by Ciba Specialty Chemicals, Tarrytown, N.Y.; as well as those available under the trade designation “ALPHASAN”, which are silver sodium hydrogen zirconium phosphates, supplied by Milliken Chemicals, Spartanburg, S.C. Suitable commercially available silver chloride-containing compounds include those available under the trade designation “JMAC” from Clariant Corporation, Charlotte, N.C.
  • Examples of suitable commercially available organic antimicrobial agents include polymeric quaternary ammonium salts such as 2-butenyldimethyl ammonium chloride polymers commercially available under the trade designation “POLYQUAT” from Arch Chemicals, Inc., Norwalk, Conn.; phenolic compounds such as phenol and its derivatives, parabens, and triclosan, which has the chemical formula 2,4,4′-trichloro-2′-hydroxy diphenyl ether, and is commercially available from Ciba Specialty Chemicals, Tarrytown, N.Y.; poly(iminoimidocarbonylimidocarbonyliminohexamethylene hydrochlorides), commercially available under the trade designation “VANTOCIL P” from Arch Chemicals, Inc., Norwalk, Conn.; polyhexamethylene biguanides, antimicrobial lipids such as those disclosed in Scholz et al., U.S. Publication No. 2005/0089539, which is incorporated herein by reference, antimicrobial acids (e.g., fatty acids, benzoic acids, and salicylic acids), antimicrobial natural oils (e.g., tea tree oils, and grape fruit seed extracts), and combinations thereof. Additional suitable organic antimicrobial agents include organic salts of transition metals (i.e., organometallic antimicrobial agents), such as silver salts (e.g., silver lactate), copper salts (e.g., copper napthenate), zinc salts, and tin salts (e.g., trialkyl tin hydroxides and triaryl tin hydroxides).
  • Suitable antimicrobial lipids include, for example, fatty acid monoesters/monoethers. In some embodiments, the fatty acid monoesters/monoethers suitable for the antimicrobial agent are considered food grade and recognized as safe (GRAS) by the U.S. Food and Drug Administration (FDA). Such fatty acid monoesters/monoethers may be derived from C8 to C12 fatty acids such as glycerol monoesters of caprylic acid, capric acid, and lauric acid; propylene glycol monoesters of caprylic acid, capric acid, and lauric acid; and combinations thereof. Examples of suitable fatty acid monoesters include, but are not limited to, glycerol monolaurate commercially available under the trade designation “LAURICIDIN” from Med-Chem Laboratories, East Lansing, Mich.; glycerol monocaprylate commercially available under the trade designation “POEM M-100” from Riken Vitamin Ltd., Tokyo, Japan; glycerol monocaprate commercially available under the trade designation “POEM M-200” from Riken Vitamin Ltd.; propylene glycol monolaurate, propylene glycol monocaprylate, and propylene glycol monocaprate, all commercially available from Uniquema International, Chicago, Ill.; and combinations thereof.
  • Examples of suitable concentrations of the fatty acid monoesters/monoethers range from about 1.0% to about 30.0% by weight. Examples of particularly suitable concentrations of the fatty acid monoesters/monoethers in the composition range from about 5.0% to about 20.0% by weight.
  • The antimicrobial agent may also include an enhancer and/or a surfactant for use with the fatty acid monoesters/monoethers, as discussed in Andrew et al., PCT application No. WO 00/71183, entitled “Antimicrobial Articles,” and in Andrews et al., PCT Application No. WO01/43549, entitled “Fruit, Vegetable, and Seed Disinfectants,” both of which are incorporated herein by reference in their entireties.
  • Suitable concentrations of the antimicrobial agents in the film-forming composition of antimicrobial film 10 include any concentration that is effective for providing biocidal activity. This may vary depending on the type of antimicrobial agent used. Examples of suitable concentrations of the antimicrobial agents in the film-forming composition of antimicrobial film 10 range from about 0.1% by weight to about 20% by weight, with particularly suitable concentrations ranging from about 1% by weight to about 10% by weight.
  • In some embodiments, the antimicrobial agent may at least partially interact with the polymer (i.e., form non-covalent bonds (e.g., ionic bonds, hydrogen bonds, matrix interactions, etc.) or covalent bonds with the polymer) so as not to be sufficiently available to provide biocidal activity to microorganisms that come into contact with the antimicrobial film 10. In other words, the resulting antimicrobial film may not have a sufficient surface concentration of the antimicrobial agent to provide biocidal activity. In such embodiments, a higher concentration of antimicrobial agent may be needed to provide biocidal activity. As a result, in some embodiments, an effective amount of antimicrobial agent is an amount that provides biocidal activity to microorganisms that come into contact with the antimicrobial film 10.
  • A “sufficiently available” antimicrobial agent or a “sufficient surface concentration” of the antimicrobial agent in the antimicrobial film 10 is sometimes used to refer to an antimicrobial film having microbial load reductions of at least 90% against gram positive or gram negative pathogens when tested pursuant to ASTM E2180-01, particularly, microbial load reductions of at least 90% against gram positive and gram negative pathogens when tested pursuant to ASTM E2180-01, particularly, microbial load reductions of at least 99% against gram positive or gram negative pathogens when tested pursuant to ASTM E2180-01, and more particularly, microbial load reductions of at least 99% against gram positive and gram negative pathogens when tested pursuant to ASTM E2180-01.
  • The film-forming composition may also include fast-acting antimicrobial agents that may not provide antimicrobial activity over extended periods of time, but which provide fast antimicrobial activity of a relatively short duration upon application of the film-forming composition to surface 12. Examples of suitable fast-acting antimicrobial agents include quaternary ammonium salts, benzalkonium chlorides, biguanide compounds (e.g., halogenated hexidines such as chlorhexidine, chlorhexidine gluconate, and chlorhexidine acetate), alcohols (e.g., low molecular weight alcohols such as ethyl alcohol and isopropyl alcohol), bleach, hydrogen peroxide, urea hydrogen peroxide, hydrogen peroxide stabilized in a sodium pyrophosphate matrix, hydrogen peroxide chelated in polyvinylpyrrolidone, and combinations thereof. Examples of suitable commercially available quaternary ammonium salts include didecyl dimethyl ammonium chlorides available under the trade designation “BTC 1010” from Stepan Company, Northfield, Ill., and under the trade designation “BARDAC 2250” from Lonza Group Ltd., Valais, Switzerland; dialkyl dimethyl ammonium chlorides available under the trade designation “BARDAC 2050 also from Lonza Group Ltd.; and alkyl dimethyl benzyl ammonium chloride available under the trade designation “BARQUAT MB-50” also from Lonza Group Ltd.
  • Suitable concentrations of the fast-acting antimicrobial agents in the film-forming composition of antimicrobial film 10 include any concentration that is effective for reducing microbial contamination, and may depend on the type of fast-acting antimicrobial agent used. For example, when the fast-acting antimicrobial agent is an alcohol, suitable concentrations of the alcohol in the film-forming composition range from about 20% by weight to about 80% by weight, with particularly suitable concentrations ranging from about 40% by weight to about 60% by weight. Examples of suitable concentrations of the antimicrobial agents in the film-forming composition of antimicrobial film 10 when quaternary amines are used range from about 0.001% by weight to about 10% by weight, with particularly suitable concentrations ranging from about 0.1% by weight to about 5% by weight.
  • The film-forming composition may also include surfactants and thickeners to modify wetting and flow properties. Examples of suitable surfactants include the trade designated “SURFONIC L” series surfactants commercially available from Huntsman Corporation, Salt Lake City, Utah; and the trade designated “ZONYL” surfactants commercially available from E. I. du Pont de Nemours and Company. Examples of suitable thickeners include starch, gum arabic, guar gum, and carboxymethylcellulose. A particularly suitable thickening agent is commercially available under the trade designation “NEOCRYL-A1127” from DSM NeoResins, Wilmington, Mass. Examples of suitable total concentrations of surfactants and thickeners in the film-forming composition of antimicrobial film 10 range from about 1% by weight to about 20% by weight, with particularly suitable total concentrations ranging from about 5% by weight to about 10% by weight.
  • Additional optional components that may be incorporated into the film-forming composition include buffering agents and pH adjusting agents, fragrances or perfumes, dyes and/or colorants, solubilizing materials, defoamers, lotions and/or mineral oils, essential oils, enzymes, bleaching agents, preservatives, indicator dyes, and combinations thereof. Examples of suitable total concentrations of the optional components in the film-forming composition of antimicrobial film 10 range from about 1% by weight to about 20% by weight, with particularly suitable total concentrations ranging from about 1% by weight to about 5% by weight. The film-forming composition of antimicrobial film 10 may contain a dye to allow color tinting of antimicrobial film 10 if desired.
  • Tinted films allow the end user to visually verify the film coverage of surface 12 and, after applying the remover composition, visually ensure that all of antimicrobial film 10 has been removed from surface 12. Furthermore, indicator dyes provide color to the formulation allowing a user to visually verify the film coverage of surface 12, but the color disappears upon drying (e.g., upon exposure to air) within a short time period (e.g., few seconds or minutes) leaving a colorless film. Examples of suitable indicator dyes include dyes based on phthalein chemistry, such as phenolphthalein (pink), thymolphthalein (blue), and o-cresolphthalein (purple), all of which are obtainable from Sigma-Aldrich Chemical Company, Saint Louis, Mo. Such indicator dyes also allow a user to check that antimicrobial film 10 is still intact by wetting the surface 12. For example, in some embodiments, if antimicrobial film 10 including the indicator dye is still intact on the surface 12, the surface 12 will change color upon wetting (e.g., with water, a high pH solution (such as WINDEX-brand glass cleaner solution), an ammonia solution, or whatever substance to which the indicator dye is sensitive). This would indicate to the user, for example, that antimicrobial film 10 is still applied to the surface 12.
  • The film-forming composition of antimicrobial film 10 may be formed by blending the antimicrobial agent, the polymer, and any optional components together. This may be performed as a solution in a solvent, where the solvent is selected to substantially dissolve or disperse the antimicrobial agent, the polymer, and any optional components. Examples of suitable solid concentrations in the solvent for the resulting film-forming composition range from about 5% by weight to about 50% by weight. For water-based polymer dispersions, higher concentrations of solids may be achieved without an increase in the solution viscosity. Accordingly, particularly suitable solid concentrations in the solvent for water-based polymer dispersions range from about 10% to about 40% by weight. For non-dispersion water-based coatings, and for solvent-based coatings, particularly suitable solid concentrations in the solvent range from about 5% to about 20% by weight.
  • The film-forming composition may then be applied to surface 12 and dried to form antimicrobial film 10. The film-forming composition may be applied to surface 12 in a variety of manners, such as by spraying, brushing, rod coating, or by wiping the film-forming composition onto surface 12 with a wipe article.
  • For example, FIG. 4 is a top perspective view of an article 30 being wiped across surface 12 by hand 16 of a user. Article 30 is a wipe article that includes a substrate and a film-forming composition impregnated within the substrate. As the user wipes article 30 across surface 12, the film-forming composition is extracted from the substrate of article 30 and deposits on surface 12. This forms a thin, continuous antimicrobial film 10 on surface 12.
  • The substrate of article 30 may be any type of woven, non-woven, knitted, foam, or sponge substrate, or combinations thereof, that is capable of being impregnated with the film-forming composition. The substrate may consist of a single layer or multiple layers of one or more materials. Non-woven substrates are particularly suitable because of their utility in the manufacture of cleaning and scouring articles.
  • Because the film-forming composition is extracted from the substrate during use, article 30 is particularly suitable as a disposable wipe (i.e., article 30 may be formed from substrate materials intended to be discarded after use). Examples of suitable disposable wipe materials for the substrate of article 30 include spun-bond and spun-lace non-woven materials having a basis weight ranging from about 15 grams/meter2 to about 75 grams/meter2. Such materials are generally made of synthetic polymers, natural polymers, and combinations thereof. Suitable synthetic polymers include rayon polyester, polyethylene terephthalate (PET), polyvinyl chloride, polyacrylamide, polystyrene, polyethersulfone, acrylics and acrylic copolymers, rayon, polyolefins (e.g., polypropylene), and combinations thereof. Suitable natural polymers include wood pulp, cotton, cellulose, rayon, and combinations thereof.
  • In alternative embodiments, article 30 may be formed from materials used for semi-disposable or reusable wipes. Examples of suitable semi-disposable wipe materials for the substrate of article 30 include spun-lace non-woven materials having a basis weight ranging from about 75 grams/meter2 to about 250 grams/meter2. Such materials may be formed from fibers or microfibers of polyester, polyamide, viscose, or combinations thereof. Examples of suitable reusable wipe materials for the substrate of article 30 include knitted, woven, thermo-bonded, latex-coated, and chamois-type materials having a basis weight ranging from about 100 grams/meter2 to about 300 grams/meter2. Such materials may be formed from fibers or microfibers of polyester, rayon, viscose, polypropylene, natural fibers, polyamides, or combinations thereof.
  • Examples of suitable commercially available wipe materials include those sold under the trade designation “SONTARA”, non-woven fabrics available from Du Pont such as SONTARA 8001 (100% polyester substrate) and SONTARA 8100 (50% polyester/50% Dacron). Other suitable wipe materials include those designated as M001, M022, and M017, and are 100% spunlaced polyester materials available from Polymer Group Inc., Wilmington, Del. Other polyester substrate materials can be obtained from Jacob Holms Industries under the designation 350160 and 10203-003.
  • In some embodiments, article 30 is glove-shaped to receive hand 16 of the user. This provides a convenient means for the user to wipe article 30 across surface 12 to extract the film-forming composition. In some embodiments, the glove-shaped article 30 includes a barrier layer (e.g., a flexible polymeric layer) between the substrate containing the film-forming composition and the hand 16 of the user. This can inhibit contact between the film-forming composition and hand 16 of the user, thereby reducing the risk of irritating the skin of hand 16.
  • The film-forming composition that is impregnated within the substrate includes a polymer, one or more antimicrobial agents, and a solvent. In some embodiments, the polymer and the antimicrobial agent are substantially dissolved in the solvent, and the solvent is impregnated within the substrate, thereby retaining the polymer and the antimicrobial agents (and any optional components) within the substrate. Examples of suitable concentrations of the film-forming composition in article 10, prior to extraction, range from about 50% by weight to about 500% by weight of the substrate, based on a dry weight of the substrate. Examples of particularly suitable concentrations of the film-forming composition in article 10, prior to extraction, range from about 100% by weight to about 400% by weight of the substrate, based on a dry weight of the substrate.
  • The film-forming composition may be impregnated within the substrate in a variety of manners, such as spraying, knife coating, roll coating, curtain coating, spin coating, immersion coating, and combinations thereof. After impregnation and prior to use, the substrate is at least partially saturated with the film-forming composition. The resulting article 10 may then be packaged in a sealed environment (individually or with multiple articles) to prevent the solvent from evaporating. When the user desires to apply an antimicrobial film on surface 12, the user may wipe article 10 across surface 12 while applying a moderate amount of pressure. The applied pressure and the frictional force imposed by the wiping action causes portions of the film-forming composition to deposit from the substrate of article 10. In particular, the polymer, the antimicrobial agent, and the solvent of the film-forming composition are each deposited from the substrate of article 10. This is in contrast to conventional antimicrobial wipes, in which only an antimicrobial (and typically a solvent) are deposited. By depositing the polymer with the antimicrobial agent and the solvent, the resulting antimicrobial film coated on surface 12 prevents the antimicrobial agent from being immediately washed away when surface 12 is cleaned.
  • The amount of film-forming composition extracted is dependent on the pressure applied, the extent of the wiping action, and the concentration of the film-forming composition impregnated within the substrate. In some embodiments, the amount of film-forming composition extracted is enough to form a dried antimicrobial film having a layer thickness on surface 12 (after drying) ranging from about 1 micrometers to about 100 micrometers, and particularly, ranging from about 2 micrometers to about 50 micrometers. This can provide a suitable concentration of antimicrobial agents to reduce the risk of microorganism contamination.
  • After use, article 30 may be discarded. Alternatively, if article 30 retains a useable portion of the impregnated film-forming composition, article 30 may be reused to apply antimicrobial films to additional surfaces until the reservoir of film-forming composition impregnated within substrate 12 is depleted. Accordingly, article 30 may be used as a disposable or semi-disposable wipe article by consumers. However, article 30 may also be re-impregnated with an additional supply of the film-forming composition for subsequent use. This increases the product life of article 30.
  • After being applied to surface 12, the film-forming composition may be dried to remove the solvent. Suitable drying techniques include air drying (e.g., forced or passive) at room temperature or elevated temperatures. The use of volatile solvents (e.g., isopropanol and acetone) can be useful for increasing the rate of drying. After drying, the resulting antimicrobial film is a thin, continuous film that provides antimicrobial protection to surface 12, as discussed above. In some embodiments, the polymer matrix may also be fully or partially cross-linked after being applied to surface 12 and dried. This can increase the mechanical integrity of the antimicrobial film, thereby allowing the antimicrobial film to provide abrasion and chemical resistance to surface 12 in addition to antimicrobial activity.
  • Examples of suitable layer thicknesses for antimicrobial film 10 (after drying) range from about 1 micrometer to about 500 micrometers, with particularly suitable layer thicknesses ranging from about 2 micrometers to about 50 micrometers. Once applied, antimicrobial film 10 is a thin, durable film that provides antimicrobial protection to surface 12, as discussed above. In some embodiments, antimicrobial film 10 is also a transparent film, which allows the aesthetic qualities of the underlying surface (e.g., surface 12) to be visually observed through antimicrobial film 10.
  • As discussed above, after application to surface 12, antimicrobial film 10 exhibits antimicrobial activity to reduce the microorganism contamination of surface 12, and particularly, exhibits biocidal activity. Examples of suitable levels of biocidal activity include microbial load reductions of at least about 90% for at least one of S. aureus (gram positive) and Ps. aeruginosa (gram negative) pathogens. Examples of even more suitable levels of biocidal activity include microbial load reductions of at least about 99% for at least one of S. aureus (gram positive) and Ps. aeruginosa (gram negative) pathogens. Examples of particularly suitable levels of biocidal activity include microbial load reductions of at least about 90% for both of S. aureus (gram positive) and Ps. aeruginosa (gram negative) pathogens. Finally, examples of even more particularly suitable levels of biocidal activity include microbial load reductions of at least about 99% for both of S. aureus (gram positive) and Ps. aeruginosa (gram negative) pathogens. The “microbial load reductions” herein refer to microbial load reductions obtained pursuant to ASTM E2180-01.
  • Antimicrobial film 10 may also include an end-of-service indicator to provide visual indication prompting the user to replace antimicrobial film 10. Examples of suitable end-of-service indicators include time-temperature indicators and color changing dyes. An end-of-service indicator may be applied to antimicrobial film 10 in the form of a label or paint to the corners of antimicrobial film 10 after antimicrobial film 10 is formed on surface 12. In some embodiments, the indicator is calibrated to indicate a color change at about the time when the corresponding antimicrobial layer 10 should be replaced (e.g., when the antimicrobial activity levels have substantially decreased or are exhausted).
  • Time-temperature indicators typically operate by chemical reaction mechanisms, diffusion mechanisms, and capillary driven, fluid-wicking mechanisms. Examples of suitable time-temperature indicators are disclosed in Bommarito, et al., U.S. Pat. No. 6,741,523 (i.e., microstructured time-dependent indicators) and Arens, et al., U.S. Pat. No. 5,667,303, both of which are incorporated by reference in their entireties, and in The Wiley Encyclopedia of Packaging Technology, 400-406 (John Wiley & Sons, 1986) under the section entitled “Indicating Devices”. Examples of suitable commercially available time-temperature indicators include those sold under the trade designations “MONITOR MARK” from 3M Corporation, St. Paul, Minn.; “WARM MARK” from Dry Pak Industries, Studio City, Calif.; “FRESH CHECK” from Lifelines Technology Inc., Morris Plains, N.J.; “VISTAB” from Visual Indicator Tag Systems AB, Malmö, Sweden; and “TT MONITOR” from Avery Dennison Corporation, Pasadena, Calif.
  • FIG. 2 is a side sectional view of antimicrobial film 10 disposed on surface 12, with remover composition 14 being deposited on antimicrobial film 10. Remover composition 14 is a solvent-based composition that dissolves and/or swells the film-forming composition of antimicrobial film 10, as discussed below. Remover composition 14 may be deposited on antimicrobial film 10 in a spray form as illustrated in FIG. 2. Alternatively, remover composition 14 may be incorporated in a wipe article that is wiped across antimicrobial film 10, thereby allowing remover composition 14 to dissolve and/or swell antimicrobial film 10 during the wiping process.
  • Remover composition 14 may include one or more solvents that are effective for dissolving the film-forming composition of antimicrobial film 10. Examples of suitable solvents for use in remover composition 14 include water, aqueous alkaline solvents, volatile solvents (e.g., acetone and isopropanol), glycols, and combinations thereof.
  • If the polymer in the film-forming composition of antimicrobial film 10 is not cross-linked, then the solvent of remover composition 14 may be selected to dissolve antimicrobial film 10. In some embodiments, the remover solvent is selected to closely match the solubility parameter of the polymer used. The term “solubility parameter” herein refers to the Hildebrand solubility parameter (δ), which is a solubility parameter represented by the square root of the cohesive energy density of a material, having units of (pressure)1/2, and being represented by the following equation:
  • δ = ( Δ H - RT V ) ( 1 )
  • where ΔH is the molar vaporization enthalpy of the material, R is the universal gas constant, T is the absolute temperature, and V is the molar volume of the solvent. Hildebrand solubility parameters are generally provided in conventional units of (calories/centimeter3)1/2 ((cal/cm3)1/2) and in SI units of megaPascals1/2 (MPa1/2).
  • Hildebrand solubility parameters are tabulated for solvents in Barton, A. F. M., Handbook of Solubility and Other Cohesion Parameters, 2nd Ed. CRC Press, Boca Raton, Fla., (1991), for monomers and representative polymers in Polymer Handbook, 3rd Ed., J. Brandrup & E. H. Immergut, Eds. John Wiley, NY pp. 519-557 (1989), and for many commercially available polymers in Barton, A. F. M., Handbook of Polymer-Liquid Interaction Parameters and Solubility Parameters, CRC Press, Boca Raton, Fla., (1990). Examples of suitable differences in Hildebrand solubility parameters between the polymer in the film-forming composition of antimicrobial film 10 and the solvent of remover composition 14 include differences of about 5.0 (cal/cm3)1/2 or less, with particularly suitable differences in Hildebrand solubility parameters including differences of about 2.0 (cal/cm3)1/2 or less, and with even more particularly suitable differences in Hildebrand solubility parameters including differences of about 1.0 (cal/cm3)1/2.
  • If the polymer in the film-forming composition of antimicrobial film 10 is cross-linked, then the solvent of remover composition 14 may be selected to either dissolve (by chemically disrupting and breaking the cross-links) antimicrobial film 10, swell (by absorbing into the cross-linked polymer matrix) antimicrobial film 10, or a combination thereof. Swelling takes place when the solvent of remover composition 14 penetrates into a cross-linked polymer network through the surface of antimicrobial film 10, which acts as a semi-permeable membrane. The solvent interacts with segments of the polymer network, which increases their mobility, disrupts the adhesion of the polymer segments to surface 12, and facilitates the removal of the film-forming composition. Swelling will take place only if the free energy of mixing between the solvent and the polymer segments is negative, where the free energy of mixing is defined as:

  • ΔG m =ΔH m −TΔS m =RT(n 1 ln φ1 +n 2 ln φ21φ2 n 1)  (2)
  • where ΔGm is the Gibbs free energy of mixing, ΔHm is the enthalpy of mixing, T is the absolute temperature, ΔSm is the entropy of mixing, R is the universal gas constant, n1 is the molar fraction of the solvent in the swollen film, φ1 is the weight fraction of the solvent, n2 is molar fraction of the polymer in the swollen film, φ2 the weight fraction of the polymer, and χ1 is the Flory-Huggins interaction parameter. Equation (2) along with more detailed discussion of the theory of polymer swelling can be found in Richards, E. G., An Introduction to Physical Properties of Large Molecules in Solution, IUPAB Biophysics Series, Cambridge University Press, Cambridge, (1980).
  • Examples of suitable solvents for use in remover composition 14 when the polymer of the antimicrobial film is partially or fully cross-linked (i.e., polymers having reduced water solubility) include aqueous alkaline solvents (e.g., ammonia-containing solvents), volatile solvents (e.g., acetone and isopropanol), and combinations thereof. For example, when the film-forming composition of antimicrobial film 10 includes an alkali soluble acrylic copolymer dispersion commercially available under the trade designation “NEOCRYL BT-9” from DSM NeoResins, Wilmington, Mass., remover composition 14 may include a high pH solvent (e.g., an ammonia solution or soap-containing aqueous solvent) to dissolve and/or swell the antimicrobial film 10. Examples of suitable concentrations of the solvent in remover composition 14 range from about 50% by weight to 100% by weight, with particularly suitable total concentrations ranging from about 90% by weight to 100% by weight.
  • Remover composition 14 may also include surfactants and thickeners, and foaming agents to modify wetting and flow properties. Examples of suitable surfactants and thickeners include those discussed above for the film-forming composition of antimicrobial film 10. Examples of suitable total concentrations of surfactants and thickeners in remover composition 14 range from about 1% by weight to about 20% by weight, with particularly suitable total concentrations ranging from about 5% by weight to about 10% by weight.
  • FIG. 3 is a top perspective view of hand 16 of a user removing antimicrobial film 10 from surface 12 with wipe article 18. Prior to remover composition 14 being deposited, antimicrobial film 10 is resistant to being removed from surface 12, as discussed above. As such, antimicrobial film 10 must be subjected to at least a first minimum frictional force before being removed. The first minimum frictional force is greater than a moderate frictional force applied during a surface wiping with a wipe article. This prevents antimicrobial film 10 from being undesirably removed until remover composition 14 is deposited.
  • Remover composition 14, however, swells the polymer of the antimicrobial film 10 and/or breaks down the structural integrity of the polymer (i.e., dissolves the polymer), thereby allowing antimicrobial film 10 to be readily removed from surface 12. As a result, after remover composition 14 is deposited, antimicrobial film 10 may be removed by an application of a second minimum frictional force that is less than the first minimum frictional force. In some embodiments, the second minimum frictional force is equal to or less than a moderate frictional force applied by a wiping motion with wipe article 18.
  • In some embodiments, as shown in FIG. 3, remover composition 14 may be impregnated within wipe article 18. In this embodiment, the user may forgo a separate step of depositing remover composition 14 onto antimicrobial film 10. As the user applies frictional force to antimicrobial film 10 with wipe article 18, remover composition 14 is extracted from wipe article 18 and deposits onto antimicrobial film 10. Remover composition 14 then dissolves and/or swells the polymer in the film-forming composition of antimicrobial film 10, thereby allowing antimicrobial film 10 to be wiped away from surface 12 after several strokes with wipe article 18. Accordingly, wipe article 18 is a disposable article that reduces time and effort the user must undertake to remove antimicrobial film 10 from surface 12.
  • After antimicrobial film 10 is removed from surface 12, a fresh coating of antimicrobial film 10 may be coated on surface 12, pursuant to the coating techniques discussed above in FIG. 1. This may provide antimicrobial protection to surface 12 for extended periods of time. For example, when substantially all of the antimicrobial agents are released from a first coating of antimicrobial film 10, a user may deposit remover composition 14 on antimicrobial film 10, and wipe the first coating of antimicrobial film 10 away. The user may then coat surface 12 with a second coating of antimicrobial film 10 to provide a renewed source of protection against microbial contamination.
  • EXAMPLES
  • The present invention is more particularly described in the following examples that are intended to be illustrative and not limiting, since numerous modifications and variations within the scope of the present invention will be apparent to those skilled in the art. Examples 1-20 are working examples, and Examples 21-27 are prophetic examples.
  • Unless otherwise noted, all parts, percentages, and ratios reported in the following examples are on a weight basis, and all reagents used in the examples were obtained, or are available, from the chemical suppliers described below, or may be synthesized by conventional techniques.
  • The following compositional abbreviations are used in the following Examples:
    • “AgION”: A silver-containing inorganic zeolite food-grade antimicrobial agent, type AJ, which contains 2.5% silver, and which is commercially available under the trade designation “AgION” Antimicrobial from AgION Technologies, Inc., Wakefield, Mass.
    • “Triclosan”: Triclosan antimicrobial agent, commercially available from Ciba Specialty Chemicals., Tarrytown, N.Y.
    • “Lauricidin solution”: A fluid solution containing 20.0% glycerol monolaurate fatty acid monoester (commercially available under the trade designation “LAURICIDIN” from Med-Chem Laboratories, East Lansing, Mich.), 10.0% 2-hydroxybenzoic (salicylic) acid (HOC6H8CO2H) with a formula weight of 138.1 (commercially available from Sigma-Aldrich Chemical Company, Saint Louis, Mo.), and 10.0% dioctylsulfosuccinate (DOSS) surfactant (commercially available from Alfa Aesar, Ward Hill, Mass.) in isopropanol.
    • “Bardac 205M”: A quaternary ammonium compound commercially available under the trade designation “BARDAC 205M” from Lonza Group Ltd., Valais, Switzerland.
    • “Bardac 208M”: A quaternary ammonium compound commercially available under the trade designation “BARDAC 208M” from Lonza Lonza Group Ltd., Valais, Switzerland.
    • “Zn Pyrithione”: Zinc pyrithione, which is synthesized from 2-mercaptopyridine N-oxide salt and zinc acetate, both of which are commercially available from Sigma-Aldrich Chemical Company, Saint Louis, Mo.
    • “Silver oxide”: Silver oxide (AgO) having a formula weight of 123.9, commercially available from Alfa Aesar, Ward Hill, Mass.
    • “Vantocil P”: A poly(iminoimidocarbonylimidocarbonyliminohexa-methylene hydrochloride), pH 5-6, 20% by weight active in water, commercially available under the trade designation “VANTOCIL P” from Arch Chemicals, Inc., Norwalk, Conn.
    • “Vantocil IB”: A poly(iminoimidocarbonylimidocarbonyliminohexa-methylene hydrochloride), pH 4-5, 20% by weight active in water, commercially available under the trade designation “VANTOCIL IB” from Arch Chemicals, Inc., Norwalk, Conn.
    • “Metasol TK 25”: A thiabendazole-based agent, commercially available under the trade designation “METASOL TK 25” from Lanxess Corporation, Pittsburgh, Pa.
    • “AgION SilverClene 24”: A silver-containing inorganic zeolite food-grade antimicrobial agent, which contains 0.003% silver, 4.8% citric acid, and which is commercially available under the trade designation “AGION SILVERCLENE 24” Antimicrobial from AgION Technologies, Inc., Wakefield, Mass.
    • “CHG”: 20% chlorhexidine gluconate by weight in water, commercially available from Xttrium Laboratories, Inc., Chicago, Ill.
    • “Ammonium Carbonate”: Ammonium carbonate salt, commercially available from Sigma-Aldrich, Milwaukee, Wis.
    • “PVOH”: A polyvinyl alcohol polymer with molecular weight of 180,000 Daltons, commercially available from Sigma-Aldrich Chemical Company, Saint Louis, Mo.
    • “PVP-K90”: A polyvinylpyrrolidone polymer with molecular weight of 90,000 Daltons, which is commercially available under the trade designation “PVP-K90” from Peakchem, ZheJiang, China.
    • “R-960”: A water based urethane dispersion containing 33% solids, commercially available under the trade designation “NEOREZ R-960” from DSM-NeoResins, Wilmington, Mass.
    • “RU21-075”: A water-based polyurethane dispersion containing 40% solids, commercially available under the trade designation “RU21-075” from Stahl USA, Peabody, Mass.
    • “Sancure 815”: A water-based polyurethane dispersion, commercially available under the trade designation “SANCURE 815” from Noveon, Inc., Cleveland, Ohio.
    • “PVP”: A polyvinylpyrrolidone (2% solids in water), commercially available under the trade designation “K-12” from International Specialty Products, Wayne, N.J.
    • “Incorez 835/494”: A soft aliphatic polyurethane dispersion (5% in water), commercially available under the trade designation “INCOREZ 835/494” from Industrial Copolymers, Ltd., Lancashire, England.
    • “Incorez 835/140”: A hard aliphatic polyurethane dispersion (5% in water), commercially available under the trade designation “INCOREZ 835/140” from Industrial Copolymers, Ltd., Lancashire, England.
    • “Cydrothane HP 5035”: A hard aromatic polyurethane dispersion (5% in water), commercially available under the trade designation “CYDROTHANE HP 5035” from Cytek Industries, Inc., West Paterson, N.J.
    • “Cydrothane HP 1035”: A soft aromatic polyurethane dispersion (5% in water), commercially available under the trade designation “CYDROTHANE HP 1035” from Cytek Industries, Inc., West Paterson, N.J.
    • “GlossTek”: A reactive aliphatic polyurethane, commercially available under the trade designation “GLOSSTEK” from Ecolab, St. Paul, Minn.
    • “Stance”: A zinc cross-linked acrylic plus polyethylene wax dispersion, commercially available under the trade designation “STANCE” from 3M Corporation, St. Paul, Minn.
    • “Cornerstone”: An acrylic floor sealer/finish (25% in water), commercially available under the trade designation “CORNERSTONE” from 3M Corporation, St. Paul, Minn.
    • “NeoCryl XK-98”: A self cross-linking acrylic dispersion commercially available under the trade designation “NEOCRYL XK-98” from DSM NeoResins, Wilmington, Mass.
    • “B66 acrylic resin”: An acrylic resin commercially available under the trade designation “SPEC-CRETE SUPERSEAL B66” from Farfan & Mendes Ltd., Georgetown, Guyana.
    • “XK-90”: A 40% acrylic cross-linkable polymer dispersion in water, commercially available under the trade designation “NEOPAC XK-90” from DSM-NeoResins, Wilmington, Mass.
    • “XR-2500”: A polyfunctional aziridine cross-linker commercially available under the trade designation “XR-2500” from Stahl USA, Peabody, Mass.
    • “XL-A”: A combination of 76 parts ethanol, 22.8 parts of an aziridine cross-linker commercially available under the trade designation “CX-100” from DSM NeoResins, Wilmington, Mass., and 1.2 parts of a surfactant commercially available under the trade designation “SURFYNOL 104PA” from Air Products and Chemicals, Inc. Allentown, Pa. The combined mixture was blended for 20 minutes under high shear.
    • “Exxate 800”: An oxo-alkyl acetic ester solvent commercially available under the trade designation “EXXATE 800” from Exxon Mobil Corporation, Houston, Tex.
    • “PET film”: A polyethylene terephthalate film with acrylate-primed layer, commercially available from Mitsubishi, Japan.
    • “BOPP Film”: A biaxially-oriented, corona-treated, polypropylene film available from 3M Corporation, St. Paul, Minn.
    Examples 1 and 2
  • Antimicrobial films of Examples 1 and 2 were each prepared pursuant to the following procedure. A PVOH solution was prepared by combining 5 parts of PVOH with 95 parts water, and shaking the mixture in a warm bath for 24 hours to fully dissolve the PVOH. 30 parts of the PVOH solution were then mixed with 0.2 parts of an antimicrobial agent (AgION for Example 1, and Triclosan for Example 2). The resulting film-forming composition was then coated onto a corona-treated BOPP film using a Meyer rod #36, and dried at 55° C. for 5 minutes to form the antimicrobial film.
  • The antimicrobial films of Examples 1 and 2 were each tested for “microbial load reduction” pursuant to ASTM E2180-01, which involved inoculation of a molten (45° C.) agar slurry with a standardized culture of bacterial cells. A thin layer of the inoculated agar slurry (0.5 milliliter) was then pipetted onto the test material and the untreated control material. Samples were tested in duplicate using Staphylococcus aureus (ATCC 6538) and Pseudomonas aeruginosa (ATCC 9027). After 24 hours, surviving microorganisms were recovered via elution of the agar slurry inoculum from the test substrate into D/E Neutralizing broth and extracted by sonication and vortexing. Serial dilutions were then made, and pour plates were made of each dilution. Agar plates were incubated for 48 hours at 28° C.±1° C. Bacterial colonies from each dilution series were then counted and recorded. Calculation of percent reduction of bacteria from treated versus untreated samples was then made. A percent reduction greater than 99.95% was reported as 100%.
  • Table 1 provides the microbial load reduction results for the antimicrobial films of Examples 1 and 2.
  • TABLE 1
    % Reduction
    Antimicrobial % Reduction S. aureus Ps. aeruginosa
    Example Agent (Gram Positive) (Gram Negative)
    Example 1 AgION 100 100
    Example 2 Triclosan 100 0
  • The results shown in Table 1 illustrate the good antimicrobial activity provided by the antimicrobial films of Examples 1 and 2. The antimicrobial film of Example 2 exhibited poor gram negative results, which is typical for Triclosan antimicrobial agents.
  • The antimicrobial films of Examples 1 and 2 were also tested for ease of removal with a remover composition. Synthetic wipes (commercially available under the trade designation “TX1009 ALPHAWIPE” from ITW Texwipe, Upper Saddle River, N.J.) were used for the evaluation. For each antimicrobial film, a 4″×4″ piece of a synthetic wipe was saturated with water at room temperature and rubbed over the antimicrobial film. For each antimicrobial film of Examples 1 and 2, the film was removed from the BOPP substrate after two strokes with the wet synthetic wipe. Based on visual observations, the first stroke appeared to wet and soften the antimicrobial film due to the antimicrobial film swelling, and the second stroke removed it in a solid form. This demonstrates that the antimicrobial film was swelled by water but did not dissolve in water and was durable enough to substantially withstand dissolution in water due to the relatively high molecular weight of PVOH that was used.
  • Examples 3-8
  • Antimicrobial films of Examples 3-8 were each prepared pursuant to the following procedure. A solution was prepared by dissolving PVP-K90 and an antimicrobial agent in a 50:50 solution of isopropanol and methyl ethyl ketone. The solution was then coated on a non-treated polyethylene terephthalate substrate using a Meyer rod #9. The coated film was dried at room temperature for 20 minutes and then dried at 80° C. for 10 minutes.
  • The antimicrobial films of Examples 3-8 were each tested for “microbial load reduction” pursuant to the procedure discussed above for Examples 1 and 2. A control coating of PVP-K90 without an antimicrobial agent was used as a control.
  • TABLE 2
    %
    Percent by Reduction % Reduction
    Weight of S. aureus Ps. aeruginosa
    Antimicrobial Antimicrobial (Gram (Gram
    Example Agent Agent Positive) Negative)
    Example 3 Lauricidin 6 100 0
    solution
    Example 4 Bardac 208M 6 100 100
    Example 5 Bardac 205M 6 100 100
    Example 6 Triclosan 6 100 0
    Example 7 AgION 5 100 100
    Example 8 Zn Pyrithione 6 83.8 97.7
  • The results shown in Table 2 illustrate the good antimicrobial activity provided by the antimicrobial films of Examples 3-8. Accordingly, a variety of antimicrobial agents may be used with the present invention.
  • Examples 9-15 and Comparative Examples A and B
  • Antimicrobial films of Examples 9-15 and Comparative Examples A and B were each prepared pursuant to the following procedure. A solution was prepared by combining an antimicrobial agent, a cross-linking agent, a polymer dispersion, and 5 parts of water. For the films of Examples 9-11 and Comparative Example A, the polymer dispersion was 20 parts of R-960, and for the films of Examples 12-15 and Comparative Example B, the polymer dispersion was 10 parts of RU21-075. Table 3 provides the antimicrobial agents and cross-linking agents combined in the solutions for the films of Examples 9-15 and Comparative Examples A and B.
  • TABLE 3
    Parts of
    Antimicrobial Antimicrobial Cross- Parts of
    Example Agent Agent Linker Cross-Linker
    Comparative None 0.0 None 0.0
    Example A
    Example 9 AgION 0.5 XR-2500 0.2
    Example 10 AgION 0.5 XL-A 4.0
    Example 11 Triclosan 5.0 XL-A 4.0
    Comparative None 0.0 None 0.0
    Example B
    Example 12 AgION 0.5 XL-A 2.0
    Example 13 AgION 0.5 XR-2500 0.1
    Example 14 Triclosan 1.0 XL-A 2.0
    Example 15 Triclosan 1.0 XR-2500 0.1
  • The resulting film-forming compositions were then coated onto a corona-treated BOPP film using a Meyer rod #6, and dried at 55° C. for 5 minutes to form the antimicrobial film. The antimicrobial films of Examples 9-15 and Comparative Examples A and B were then each tested for “microbial load reduction” pursuant to ASTM E2180-01, as discussed above for Examples 1 and 2. Table 4 provides the microbial load reduction results for the antimicrobial films of Examples 9-15 and Comparative Examples A and B.
  • TABLE 4
    % % Reduction
    Reduction Ps.
    Parts of S. aureus aeruginosa
    Antimicrobial Antimicrobial (Gram (Gram
    Example Agent Agent Positive) Negative)
    Comparative None 0.0 0.0 0.0
    Example A
    Example 9 AgION 0.5 99.7 100.0
    Example 10 AgION 0.5 99.4 100.0
    Example 11 Triclosan 5.0 69.7 0.0
    Comparative None 0.0 0.0 0.0
    Example B
    Example 12 AgION 0.5 98.9 100.0
    Example 13 AgION 0.5 96.0 100.0
    Example 14 Triclosan 1.0 89.0 0.0
    Example 15 Triclosan 1.0 41.0 19.0
  • The results shown in Table 4 further illustrate the good antimicrobial activity provided by the antimicrobial films of the present invention. As discussed above, the antimicrobial films containing Triclosan (i.e., Examples 11, 14, and 15) exhibited poor gram negative results, which is typical for Triclosan antimicrobial agents. In addition, the antimicrobial films containing Triclosan exhibited relatively poor gram positive results. This could be due to the triclosan interacting more strongly with the polymer of the antimicrobial film.
  • The antimicrobial films of Examples 9, 10, 12, and 13, and Comparative Examples A and B were also tested for ease of removal from the BOPP film with a remover composition pursuant to the following procedure. Each sample was sprayed with WINDEX-brand glass cleaner solution, which is commercially available from SC Johnson & Son, Inc., Racine, Wis. After a 30 second waiting period, the sample was then wiped three strokes under moderate force with a paper towel, and the amounts of the film removed were estimated by visual observation. Table 5 provides the percent removal for the antimicrobial films of Examples 9, 10, 12, and 13, and Comparative Examples A and B.
  • TABLE 5
    Polymer Matrix
    Example Material Cross-Linker % Removal
    Comparative Example A R-960 None 100%
    Example 9 R-960 XR-2500 10
    Example 10 R-960 XL-A 10
    Comparative Example B RU21-075 None 100
    Example 12 RU21-075 XL-A 100
    Example 13 RU21-075 XR-2500 90
  • The results shown in Table 5 illustrate the difference in removal based on the type of cross-linked polymer dispersion used. This is shown by the films of Examples 9 and 10, which used the R-960. Accordingly, a stronger solvent is more desirable for use with the films of Examples 9 and 10. In comparison, however, the films of Examples 12 and 13 exhibited low resistances to the alkali environment, and were readily removed. As such, ammonia-based solvents are suitable as remover compositions for antimicrobial films containing cross-linked RU21-075 polymer matrix materials.
  • Example 16
  • An antimicrobial film of Example 16, which is an example of a self cross-linking polymer, was prepared pursuant to the following procedure. A mixture was formed by combining 95 parts of NeoCryl XK-98 with 5 parts AgION. The mixture was then coated onto BOPP film using a Meyer rod #14 and dried in an oven at 60° C. for 5 minutes. While drying, the NeoCryl XK-98 polymer self cross-linked via a condensation reaction. The resulting antimicrobial film of Example 16 was then tested for “microbial load reduction” pursuant to ASTM E2180-01, as discussed above for Examples 1 and 2. The film of Example 16 exhibited a 100% microbial load reduction for both S. aureus (gram positive) and Ps. aeruginosa (gram negative).
  • The antimicrobial film of Example 16 was also tested for ease of removal from the BOPP film with remover compositions. A first sample of the film was sprayed with water and a second sample of the film was sprayed with WINDEX-brand glass cleaner solution, which is commercially available from SC Johnson & Son, Inc., Racine, Wis. After a 30 second waiting period, the samples were then wiped three strokes under moderate force with a paper towel, and the amount of the film removed was observed. For the water-sprayed sample, the film was unaffected by the water and was not removed. This is due to the cross-linked structure of the film. In contrast, for the WINDEX-sprayed sample, the film was readily removed. As a result, the antimicrobial film of Example 16 is suitable for use on a variety of surfaces that are treated with water. The cross-linked polymer matrix prevents the antimicrobial film of Example 16 from being removed during normal washing operations (e.g., washing a surface with a wetted towel or sponge), but is readily removed when a WINDEX-based remover composition is applied.
  • Example 17
  • An antimicrobial film of Example 17, which is an example of AgION silver in a solvent-borne formulation, was prepared pursuant to the following procedure. A mixture was prepared by combining 2 parts by weight of B66 acrylic resin, 0.2 parts AgION, and 8 parts Exxate 800 solvent. The mixture was stirred for one hour to dissolve the B66 acrylic resin and disperse the AgION. The resulting mixture was then coated on a BOPP film using a Meyer rod #26. The film was then dried in an oven at 55° C. for 5 minutes. The coating appearance was transparent, but non-uniform with a blotchy surface.
  • The resulting antimicrobial film of Example 17 was then tested for “microbial load reduction” pursuant to ASTM E2180-01, as discussed above for Examples 1 and 2. The film of Example 17 exhibited a 68.4% microbial load reduction for S. aureus (gram positive) and a 100.0% microbial load reduction for Ps. aeruginosa (gram negative). Additionally, a wipe was saturated with MEK (methyl ethyl ketone) and used to rub the film. After three strokes, about 80% of the film was removed, as estimated by visual observation.
  • Example 18
  • An antimicrobial film of Example 18, which is an example of AgION silver in a water-based formulation, was prepared pursuant to the following procedure. A mixture was prepared by combining 8.6 parts XK-90 (acrylic cross-linkable polymer dispersion in water), 0.6 parts XL-A cross-linker, and 0.4 parts AgION. The mixture was stirred for a few minutes until homogeneous in appearance. The composition was coated onto a BOPP film using a Meyer rod #14. The film was then dried at 55° C. for 5 minutes. The resulting film appearance was hazy, but uniform.
  • The resulting antimicrobial film of Example 18 was then tested for “microbial load reduction” pursuant to ASTM E2180-01, as discussed above for Examples 1 and 2. The film of Example 17 exhibited a 100.0% microbial load reduction for both S. aureus (gram positive) and Ps. aeruginosa (gram negative).
  • To assess the ease of film removal, a spray of water, WINDEX-brand glass cleaner solution, soapy warm water, and MEK were applied to the film. After allowing each solvent to interact with the film for 10 minutes, the film plus solvent was wiped using a KemWipe and applying moderate force. The film was unaffected under the areas saturated with water, WINDEX-brand glass cleaner solution, and soapy warm water. Most of the film was removed under the area saturated with MEK. This shows that the film-forming composition in this example exhibits high durability and requires an aggressive solvent for the remover composition.
  • Example 19
  • An antimicrobial film of Example 19 was prepared pursuant to the following procedure. A silver oxide solution was initially prepared by combining 5 parts ammonium carbonate salt with 95 parts water, and mixing until the salt was dissolved. To this solution, 1 part silver oxide was added. The mixture was stirred at 60° C. for one hour until the silver oxide was dissolved. A mixture was then prepared by combining 20 parts by weight of XK-90 binder material, 1 part silver oxide solution, 2 parts XL-A cross-linker, and 12 parts water. The mixture was shaken by hand to form a uniform dispersion, and then coated on a PET film using a Meyer rod #12. The film was then dried at in an oven at 55° C. for 5 minutes and cured. The resulting film appearance was transparent and uniform, with a slight brown tint due to the presence of the silver oxide. This color tint can be beneficial for allowing a user to visually determine the presence and uniformity of the coating.
  • The resulting antimicrobial film of Example 10 was then tested for “microbial load reduction” pursuant to ASTM E2180-01, as discussed above for Examples 1 and 2. The film of Example 28 exhibited a 51.2% microbial load reduction for S. aureus (gram positive) and a 100.0% microbial load reduction for Ps. aeruginosa (gram negative).
  • Example 20
  • An antimicrobial film of Example 20, which included a fast-acting antimicrobial agent, was prepared pursuant to the following procedure. A solvent of 60 parts ethyl alcohol and 40 parts water was initially prepared. A mixture was then prepared by adding 6 parts PVOH polymer to the solvent. The mixture was shaken in warm bath until the PVOH was dissolved, which was about 24 hours. After the shaking process, 1 part AgION was added to the mixture. The resulting mixture exhibited instant bacterial kill capabilities due to the high content of ethyl alcohol, while the coated composition also provided for longer-term antimicrobial activity after the alcohol evaporates as shown above in Example 1. This illustrates the versatility of the present invention for reducing pathogen contamination.
  • Examples 21-27
  • Examples 21-27 illustrate prophetic polymer-antimicrobial agent combinations that can be used to form water-insoluble, biocidal antimicrobial films according to the present invention. Table 6 provides the listing of the polymer-antimicrobial agent combinations for Examples 21-27. For each of Examples 21-27, a plurality of antimicrobial agents can be used alone or in combination and are listed in a comma-delimited manner to signify this. The following letter codes are used to abbreviate the antimicrobial agents in Table 6: A=Vantocil IB, B=Triclosan, C=AgION SilverClene 24, and D=CHG.
  • TABLE 6
    Antimicrobial
    Example Polymer Agent
    Example 21 Cornerstone (25% in water) A, B, C, D
    Example 22 Incorez 835/494 (5% in water) C, D
    Example 23 Incorez 835/140 (5% in water) C, D
    Example 24 Cydrothane HP 5035 (5% in water) C, D
    Example 25 Cydrothane HP 1035 (5% in water) C, D
    Example 26 GlossTek C, D
    Example 27 Stance A, B, C, D
  • The embodiments described above and illustrated in the figures are presented by way of example only and are not intended as a limitation upon the concepts and principles of the present invention. As such, it will be appreciated by one having ordinary skill in the art that various changes in form and detail are possible without departing from the spirit and scope of the present invention. Various features and aspects of the invention are set forth in the following claims.

Claims (10)

1. A film-forming composition comprising:
a polymer comprising at least one of polyvinyl alcohol having an effective molecular weight, acrylic, urethane, and a combination thereof;
an effective amount of an antimicrobial agent dispersed within the polymer, the antimicrobial agent comprising at least one of a fatty acid monoester, a fatty acid monoether, and a combination thereof; and
a solvent, wherein the film-forming composition includes a solid concentration of no greater than about 50% by weight,
the film-forming composition forming a water-insoluble, biocidal antimicrobial film when applied to a surface.
2. The film-forming composition of claim 1, wherein the antimicrobial agent constitutes about 0.1% by weight to about 20% by weight of the film-forming composition.
3. The film-forming composition of claim 1, wherein the antimicrobial agent constitutes about 1% by weight to about 10% by weight of the film-forming composition.
4. The film-forming composition of claim 1, wherein the film-forming composition further comprises a fast-acting antimicrobial agent selected from the group consisting of quaternary ammonium salts, benzalkonium chlorides, biguanide compounds, alcohols, bleach, hydrogen peroxide, urea hydrogen peroxide, hydrogen peroxide stabilized in a sodium pyrophosphate matrix, hydrogen peroxide chelated in polyvinylpyrrolidone, and combinations thereof.
5. An antimicrobial film comprising:
a polymer having an effective molecular weight, such that the antimicrobial film is water-insoluble; and
an effective amount of an antimicrobial agent, such that the antimicrobial film is biocidal, the antimicrobial agent comprising at least one of a fatty acid monoester, a fatty acid monoether, and a combination thereof,
wherein the antimicrobial film includes about 70% by weight to about 99.9% by weight of the polymer.
6. The antimicrobial film of claim 5, wherein the antimicrobial film exhibits microbial load reductions of at least about 99% for gram positive pathogens and gram negative pathogens, when tested pursuant to ASTM E2180-01.
7. The antimicrobial film of claim 5, wherein the antimicrobial film comprises a cross-linked polymer.
8. The antimicrobial film of claim 5, wherein the antimicrobial film comprises an end-of-service indicator.
9. A method of verifying the presence of an antimicrobial film, the method comprising:
providing the antimicrobial film of claim 5 applied to a surface;
wetting the surface; and
based on whether a color change occurred upon wetting the surface, determining whether the antimicrobial film is still intact on the surface.
10. The antimicrobial film of claim 5, wherein the antimicrobial film includes about 90% by weight to about 99% by weight of the polymer.
US13/284,032 2005-12-14 2011-10-28 Antimicrobial coating system Abandoned US20120045498A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/284,032 US20120045498A1 (en) 2005-12-14 2011-10-28 Antimicrobial coating system

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US74303805P 2005-12-14 2005-12-14
US74303705P 2005-12-14 2005-12-14
PCT/US2006/047779 WO2007070649A2 (en) 2005-12-14 2006-12-14 Antimicrobial coating system
US9733408A 2008-11-10 2008-11-10
US13/284,032 US20120045498A1 (en) 2005-12-14 2011-10-28 Antimicrobial coating system

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2006/047779 Continuation WO2007070649A2 (en) 2005-12-14 2006-12-14 Antimicrobial coating system
US12/097,334 Continuation US8124169B2 (en) 2005-12-14 2006-12-14 Antimicrobial coating system

Publications (1)

Publication Number Publication Date
US20120045498A1 true US20120045498A1 (en) 2012-02-23

Family

ID=38024179

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/097,334 Active 2028-10-30 US8124169B2 (en) 2005-12-14 2006-12-14 Antimicrobial coating system
US13/284,032 Abandoned US20120045498A1 (en) 2005-12-14 2011-10-28 Antimicrobial coating system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/097,334 Active 2028-10-30 US8124169B2 (en) 2005-12-14 2006-12-14 Antimicrobial coating system

Country Status (2)

Country Link
US (2) US8124169B2 (en)
WO (1) WO2007070649A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9131683B2 (en) 2011-09-30 2015-09-15 The Sherwin-Williams Company High quality antimicrobial paint composition
CN107629590A (en) * 2016-07-11 2018-01-26 斯巴坦化学公司 Antibacterial sacrificial floor coatings system
WO2018212351A1 (en) 2017-05-19 2018-11-22 Daikin America, Inc. Composition and method for producing composition
CN109771314A (en) * 2019-01-02 2019-05-21 青蛙王子(福建)婴童护理用品有限公司 Long-acting anti-, antibacterial wet tissue of one kind and preparation method thereof
DE102020002574A1 (en) 2020-04-29 2021-11-04 Aluminium Féron GmbH & Co. KG Plastic film, process for its manufacture and protective visor, protective wall
DE102020005401A1 (en) 2020-09-03 2022-03-03 Murat Abidin Bulut Wash paint / washable coating materials

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5801528B2 (en) 2005-12-14 2015-10-28 スリーエム イノベイティブ プロパティズ カンパニー Antibacterial adhesive film
US7989043B2 (en) * 2006-02-10 2011-08-02 Microbeguard Inc. Antimicrobial product and method for using the same
JP5478074B2 (en) 2006-02-23 2014-04-23 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Removable antimicrobial coating composition and method of use
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
GB2457470A (en) * 2008-02-13 2009-08-19 Pulse Medical Technologies Ltd Silver ion wound dressing with electromagnetic coil
US8981005B2 (en) 2009-02-12 2015-03-17 Ppg Industries Ohio, Inc. Coating compositions that include onium salt group containing polycarbodiimides
US8258202B2 (en) 2009-02-12 2012-09-04 Ppg Industries Ohio, Inc Antimicrobial coating compositions, related coatings and coated substrates
US9631045B2 (en) 2009-02-12 2017-04-25 Ppg Industries Ohio, Inc. Polycarbodiimides having onium salt groups
EP2398956A2 (en) * 2009-02-20 2011-12-28 3M Innovative Properties Company Antimicrobial electret web
US20100224129A1 (en) 2009-03-03 2010-09-09 Lockheed Martin Corporation System and method for surface treatment and barrier coating of fibers for in situ cnt growth
US20110079235A1 (en) * 2009-08-26 2011-04-07 Reed Gladys B System, apparatus, and method for hair weaving thread
US20140127276A1 (en) * 2010-02-15 2014-05-08 Philadelphia University Methods for Reducing Airborne Bacteria and Mycetes and Apparatus for the Same
KR101544259B1 (en) * 2010-06-01 2015-08-12 도요세이칸 그룹 홀딩스 가부시키가이샤 Resin composition containing ultrafine silver particles
CN102329548B (en) 2010-07-13 2014-12-31 罗门哈斯公司 Microbicidal coating
WO2012080918A2 (en) 2010-12-14 2012-06-21 Ecolab Usa Inc. Wear resistant antimicrobial compositions and methods of use
WO2012136757A1 (en) * 2011-04-08 2012-10-11 Basf Se Process for the treatment of synthetic textiles with cationic biocides
US8962738B2 (en) * 2011-08-30 2015-02-24 Ecolab Usa Inc. Stain-eating coatings
JP6141312B2 (en) * 2011-12-16 2017-06-07 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼーション Paint system
WO2013133862A1 (en) * 2012-03-07 2013-09-12 Avery Dennison Corporation Surface treated film and/or laminate
CN104583353B (en) 2012-03-30 2017-10-13 3M创新有限公司 Urea groups and polyurethanes based pressure-sensitive adhesive blend
EP2870213B1 (en) 2012-07-03 2018-12-19 3M Innovative Properties Company Heat-activatable siloxane-based adhesives
CN104812859B (en) 2012-07-26 2018-03-02 3M创新有限公司 Can hot unsticking adhesive article
EP2877883B1 (en) 2012-07-26 2017-08-23 3M Innovative Properties Company Heat de-bondable optical articles
US20140170238A1 (en) * 2012-12-18 2014-06-19 Basf Se Antimicrobial effects in polymers
US9549547B2 (en) * 2012-12-20 2017-01-24 Quick-Med Technologies Inc. Regeneration of antimicrobial coatings containing metal derivatives upon exposure to aqueous hydrogen peroxide
US9986742B2 (en) 2012-12-20 2018-06-05 Quick-Med Technologies, Inc. Durable antimicrobial treatments for textiles and other substrates
EP2938689B1 (en) 2012-12-28 2018-07-11 3M Innovative Properties Company Optically clear hot melt processable high refractive index adhesives
US9138000B2 (en) 2013-01-14 2015-09-22 Dmr International, Inc. Antimicrobial polymer systems using multifunctional organometallic additives for wax hosts
WO2014130740A1 (en) * 2013-02-21 2014-08-28 Cleanspot, Inc. Treatment of frequently touched surfaces to improve hygiene
US10455831B2 (en) 2013-03-15 2019-10-29 Dmr International, Inc. Liquid material systems with multifunctional organometallic additives
US9353269B2 (en) * 2013-03-15 2016-05-31 American Sterilizer Company Reactive surface coating having chemical decontamination and biocidal properties
WO2014197194A1 (en) 2013-06-06 2014-12-11 3M Innovative Properties Company Method for preparing structured adhesive articles
US10316226B2 (en) 2013-06-06 2019-06-11 3M Innovative Properties Company Method for preparing structured laminating adhesive articles
KR20160018654A (en) 2013-06-06 2016-02-17 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Method for preparing structured adhesive articles
US9586381B1 (en) 2013-10-25 2017-03-07 Steriplate, LLC Metal plated object with biocidal properties
WO2015173670A1 (en) * 2014-05-14 2015-11-19 Dmr International, Inc. Liquid material systems with multifunctional organometallic additives
US10982122B2 (en) 2014-09-05 2021-04-20 3M Innovative Properties Company Heat conformable curable adhesive films
US20160095876A1 (en) 2014-10-01 2016-04-07 Rochal Industries, Llp Composition and kits for inhibition of pathogenic microbial infection and methods of using the same
US10064273B2 (en) 2015-10-20 2018-08-28 MR Label Company Antimicrobial copper sheet overlays and related methods for making and using
TR201513357A2 (en) * 2015-10-26 2017-05-22 Univ Yeditepe SURFACE COATING MATERIAL WITH ANTIMICROBIAL FEATURES
US11242198B2 (en) * 2015-11-10 2022-02-08 Simplehuman, Llc Household goods with antimicrobial coatings and methods of making thereof
WO2017106448A1 (en) 2015-12-18 2017-06-22 3M Innovative Properties Company Metal-containing sorbents for nitrogen-containing compounds
WO2017112450A1 (en) 2015-12-22 2017-06-29 3M Innovative Properties Company Internally incorporated phenolic resins in water-based (meth)acrylate adhesive compositions, pre-adhesive reaction mixtures, methods, and articles
CN108779370B (en) 2015-12-22 2021-02-12 3M创新有限公司 Packaged pre-adhesive composition, adhesive and article comprising polylactic acid containing packaging material
US10759949B2 (en) 2016-07-11 2020-09-01 Spartan Chemical Company, Inc. Antimicrobial sacrificial floor coating systems
WO2019018347A2 (en) * 2017-07-17 2019-01-24 Tiax Llc Neutralization compositions and methods for their use
US20210213156A1 (en) * 2018-05-14 2021-07-15 The Regents Of The University Of Michigan Long lasting antimicrobial surfaces based on the cross-linking of natural oils within polymer networks
SG11202107355RA (en) * 2019-01-11 2021-08-30 Steven Kritzler Improved method and compositions for surface treatment
US11174395B2 (en) * 2019-01-25 2021-11-16 Bio Care Technology, Llc Two component aliphatic polyurethane/polyurea/polyaspartic coating
US11566116B2 (en) * 2019-08-19 2023-01-31 Cornell University Biologically active polymers prepared via reactive extrusion
US20210368889A1 (en) * 2020-05-28 2021-12-02 Parasol Medical, Llc Facemask including a silane quaternary ammonium ion or salt thereof disposed on the exposed surface and a method of treating a facemask to impart antimicrobial properties to the exposed surface
US11512818B2 (en) 2020-07-10 2022-11-29 Junming Ding Multi-mode portable lighting device with novel battery charging unit
WO2022066762A1 (en) * 2020-09-23 2022-03-31 Veri Nano Inc. Surface disinfectant and coating
CN113712028A (en) * 2020-10-21 2021-11-30 南京百思福医药科技有限公司 Photoluminescent long-acting film-forming disinfection composition and preparation method and application thereof
GB2608132A (en) * 2021-06-22 2022-12-28 Symphony Env Ltd Additive composition
WO2023027805A1 (en) * 2021-08-24 2023-03-02 Hrl Laboratories, Llc Phase-separated antimicrobial coatings, and methods of making and using the same
CN116285455A (en) * 2023-03-24 2023-06-23 广州卡帝斯科技有限公司 Automobile armrest box storage box with antibacterial function and preparation process thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5540853A (en) * 1994-10-20 1996-07-30 The Procter & Gamble Company Personal treatment compositions and/or cosmetic compositions containing enduring perfume
US6187327B1 (en) * 1999-05-19 2001-02-13 Kevin Stack Antimicrobial sanitizing lotion with skin protection properties

Family Cites Families (173)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2502881A (en) * 1945-10-17 1950-04-04 Parker Elizabeth Weston Household cleaning composition
US2537124A (en) * 1946-01-23 1951-01-09 Union Bay State Co Inc Latex adhesive containing phenolphthalein and method of using the same
US2449274A (en) 1946-05-27 1948-09-14 Fuld Bros Inc Self-indicating quaternary ammonium bacteriocidal composition
GB1073462A (en) 1963-05-23 1967-06-28 Nippon Comb Chemicals Mfg Co L A new cleaning solution
FR2043995A5 (en) 1969-05-12 1971-02-19 Protex Manuf Aqueous stable emulsions, polyvinyl ace- - tate
US7291570B1 (en) 2000-06-02 2007-11-06 Milliken & Company Yarns and fabrics having a wash-durable non-electrically conductive topically applied metal-based finish
US3926830A (en) 1970-11-25 1975-12-16 Dainichiswika Color & Chemical Detergent composition having polymer bonded indicator
US3832459A (en) 1971-03-18 1974-08-27 Hysan Corp Spray disinfectant-deodorant
AU4904672A (en) 1971-12-02 1974-05-23 Duralex Paints Pty Ltd Surface coating composition
US4070194A (en) * 1976-02-13 1978-01-24 Kinki Aerosol Industrial Co., Ltd. Ink for marking
FR2342074A1 (en) * 1976-02-26 1977-09-23 Salkin Nicolas REMANENT ACTION DISINFECTION PRODUCTS
US4070510A (en) * 1976-03-12 1978-01-24 Acme Chemical Company Aqueous polish composition
US4071645A (en) * 1976-03-12 1978-01-31 Acme Chemical Company Aqueous coating composition
JPS54131428A (en) * 1978-04-03 1979-10-12 Adger Kogyo Co Ltd Ink
US4308625A (en) * 1978-06-12 1982-01-05 The Procter & Gamble Company Article for sanitizing toilets
US4231370A (en) 1979-06-18 1980-11-04 The Procter & Gamble Company Disposable diaper type garment having wetness indicator
US4353866A (en) 1980-11-05 1982-10-12 The Procter & Gamble Company Activation of hypochlorite bleaching of dyes
US4384869A (en) * 1980-11-05 1983-05-24 The Procter & Gamble Company Activation of hypochlorite bleaching of dyes
US4420412A (en) 1980-11-05 1983-12-13 The Procter & Gamble Company Activation of hypochlorite bleaching of dyes
US4499001A (en) * 1981-04-03 1985-02-12 Warner-Lambert Company Controlled fade effervescing cleanser
EP0075934B1 (en) 1981-09-30 1986-04-23 Kiyoharu Kawashima Clay capable of changing colour and method for its production
US4578357A (en) * 1983-06-27 1986-03-25 Atlantic Richfield Company Stabilized water indicating paste composition
US4699885A (en) 1983-05-02 1987-10-13 Melpolder Frank W Composition and probe for detection of water
US4717671A (en) * 1983-06-27 1988-01-05 Pony Industries, Inc. Stabilized water indicating paste composition
US4584192A (en) * 1984-06-04 1986-04-22 Minnesota Mining & Manufacturing Company Film-forming composition containing an antimicrobial agent and methods of use
US4502605A (en) * 1984-06-29 1985-03-05 Denerik Creativity, Inc. Container closure integrity system
US5057303A (en) 1985-05-24 1991-10-15 Irene Casey Cleaner and disinfectant with dye
US4793988A (en) 1985-05-24 1988-12-27 Irene Casey Germicide and dye composition
US4965063A (en) 1985-05-24 1990-10-23 Irene Casey Cleaner and disinfectant with dye
US5064635A (en) 1985-05-24 1991-11-12 Irene Casey Cleaner and disinfectant with dye
US5110492A (en) * 1985-05-24 1992-05-05 Irene Casey Cleaner and disinfectant with dye
US5288486A (en) * 1985-10-28 1994-02-22 Calgon Corporation Alcohol-based antimicrobial compositions
GB8629640D0 (en) 1986-12-11 1987-01-21 Beecham Group Plc Composition & method
US4783340A (en) * 1987-04-29 1988-11-08 Ecolab Inc. Two-package co-sprayable film-forming sanitizer
US5196243A (en) * 1987-08-10 1993-03-23 Kiyoharu Kawashima Printed matter
US5656286A (en) * 1988-03-04 1997-08-12 Noven Pharmaceuticals, Inc. Solubility parameter based drug delivery system and method for altering drug saturation concentration
US5470585A (en) 1989-01-27 1995-11-28 Giltech Limited Medicinal substance for topical application
US4954544A (en) 1989-03-23 1990-09-04 Conros Corporation Modified adhesive composition which undergoes color changes upon application
JPH0639368B2 (en) * 1990-02-28 1994-05-25 株式会社萩原技研 Antibacterial organism based on silica gel
US5234974A (en) 1990-07-26 1993-08-10 S. C. Johnson & Son, Inc. Alkali-soluble hydrophilic polymer coatings
US5154917A (en) 1990-09-11 1992-10-13 Beecham Inc. Color change mouthrinse
US5223245A (en) * 1990-09-11 1993-06-29 Beecham Inc. Color change mouthrinse
DE69132661T9 (en) 1990-11-05 2005-06-09 Fina Research S.A. Use of acid-base indicators to improve the wet coverage of emulsion paints
GB2250817A (en) 1990-12-12 1992-06-17 Naresh Gathani Dental caries diagnostic floss.
CA2033107C (en) 1990-12-24 2001-06-12 Robert Edward Burrell Actively sterile surfaces
US5125956A (en) * 1991-02-25 1992-06-30 Monsanto Company Substituted pyridine compounds
JP3759600B2 (en) * 1991-08-09 2006-03-29 スリーエム カンパニー Removable gluetech
DE69227777T2 (en) 1991-08-23 1999-05-27 Gillette Co MATERIALS WITH DELAYED RELEASE FOR DENTAL PURPOSES
EP0537774B1 (en) * 1991-10-18 1998-01-07 Kuraray Co., Ltd. Antimicrobial polymerizable composition, the polymer and article obtained from the same
EP0549145A1 (en) 1991-12-20 1993-06-30 Rohm And Haas Company Method for increasing the hiding power of paint
US5421898A (en) * 1992-02-21 1995-06-06 Reckitt & Colman Inc. Method and element for controlling release of a disinfectant from a substrate
CA2134979A1 (en) * 1992-05-05 1993-11-11 Spencer Guang Lin Acne treating composition
GEP20002074B (en) 1992-05-19 2000-05-10 Westaim Tech Inc Ca Modified Material and Method for its Production
US5681575A (en) * 1992-05-19 1997-10-28 Westaim Technologies Inc. Anti-microbial coating for medical devices
US5478382A (en) 1992-07-31 1995-12-26 Binney & Smith Inc. Color changing compositions for use on non-porous surfaces
US5489331A (en) * 1992-07-31 1996-02-06 Binney & Smith Inc. Color changing compositions using acids
US5492558A (en) * 1992-07-31 1996-02-20 Binney & Smith Inc. Color changing compositions for highlighters
US5766615A (en) * 1992-11-13 1998-06-16 Isp Investments Inc. Compositions of insoluble film-forming polymers and uses therefor
US5532029A (en) * 1993-05-13 1996-07-02 Fuerst; Ronnie S. Materials and methods utilizing a temporary visual indicator
US5418013A (en) * 1993-06-21 1995-05-23 Rohm And Haas Company Method for decreasing drying time
US5547662A (en) 1993-08-27 1996-08-20 Becton, Dickinson And Company Preparation of a skin surface for a surgical procedure
GB9318170D0 (en) * 1993-09-02 1993-10-20 Kodak Ltd Antimicrobial polymers and compositions containing them
EP0719089B1 (en) 1993-09-14 1998-09-30 Minnesota Mining And Manufacturing Company Disinfectant composition
EP0646454B1 (en) * 1993-09-25 1998-03-18 Symalit Ag Fibre reinforced thermoplastic sheet
UA46720C2 (en) 1993-11-18 2002-06-17 Накріст Фармасьютікалз Корп. METHOD FOR PRODUCING ANTIMICROBIAL MATERIAL way to achieve antimicrobial effect, antimicrobial FORM SILVER MATERIAL grained antimicrobial materials and fine-grained antimicrobial METHOD FOR PRODUCING MATERIAL
US5454886A (en) 1993-11-18 1995-10-03 Westaim Technologies Inc. Process of activating anti-microbial materials
US5849311A (en) * 1996-10-28 1998-12-15 Biopolymerix, Inc. Contact-killing non-leaching antimicrobial materials
US5817325A (en) 1996-10-28 1998-10-06 Biopolymerix, Inc. Contact-killing antimicrobial devices
US5548010A (en) 1993-12-29 1996-08-20 Franer Victor R Color dissipatable paint
US5420197A (en) * 1994-01-13 1995-05-30 Hydromer, Inc. Gels formed by the interaction of polyvinylpyrrolidone with chitosan derivatives
JPH0880597A (en) 1994-07-14 1996-03-26 Kyodo Printing Co Ltd Anti-fungus laminate, and bag, container and formed cup using the same
US5460802A (en) 1994-07-18 1995-10-24 Minnesota Mining And Manufacturing Company Oral disinfectant for companion animals
US5482654A (en) * 1994-11-09 1996-01-09 Warnaway Corporation Safety indicator system
US5567420A (en) * 1994-11-16 1996-10-22 Mceleney; John Lotion which is temporarily colored upon application
US6239048B1 (en) * 1994-12-28 2001-05-29 Fibermark, Inc. Light-activated antimicrobial and antiviral materials
US5567753A (en) 1995-01-27 1996-10-22 Avery Dennison Corporation Adhesive composition which changes from colored to colorless upon application to a substrate
US5569461A (en) 1995-02-07 1996-10-29 Minnesota Mining And Manufacturing Company Topical antimicrobial composition and method
US5460647A (en) 1995-02-10 1995-10-24 Binney & Smith Inc. Color-changing marking composition system
US5464470A (en) 1995-02-10 1995-11-07 Binney & Smith Inc. Color-changing marking composition system
US5667303A (en) 1995-03-10 1997-09-16 Minnesota Mining And Manufacturing Company Time-temperature integrating indicator device
AUPN262595A0 (en) 1995-04-24 1995-05-18 Novapharm Research (Australia) Pty Limited Biocidal surface films
US6730294B1 (en) * 1995-04-24 2004-05-04 Novapharm Research (Australia) Pty Limited Method of forming a water soluble biocidal film on a solid surface
US5586643A (en) 1995-05-19 1996-12-24 Globe International Inc. Modular belting having antimicrobial characteristics and method of manufacture
US5585407A (en) 1995-07-13 1996-12-17 Minnesota Mining And Manufacturing Company Water-based coatable compositions comprising reaction products of acrylic emulsion polymers with organoalkoxysilanes
JP3628809B2 (en) 1996-06-10 2005-03-16 アルケア株式会社 Drug sustained-release medical preparation and method for producing the same
EP0935640B1 (en) * 1996-11-01 2007-12-05 Laboratoires Choisy Ltee Coating or sealing composition
US6290936B1 (en) 1996-11-25 2001-09-18 Schering-Plough Healthcare Products, Inc. Sunscreen with disappearing color indicator
US5747011A (en) * 1996-11-25 1998-05-05 Schering-Plough Healthcare Products, Inc. Sunscreen with disappering color indicator
US6261541B1 (en) * 1996-11-25 2001-07-17 Schering-Plough Healthcare Products, Inc. Sunless tanning emulsions with disappearing color indicator
US6197397B1 (en) * 1996-12-31 2001-03-06 3M Innovative Properties Company Adhesives having a microreplicated topography and methods of making and using same
US6667082B2 (en) 1997-01-21 2003-12-23 Cryovac, Inc. Additive transfer film suitable for cook-in end use
US6333093B1 (en) 1997-03-17 2001-12-25 Westaim Biomedical Corp. Anti-microbial coatings having indicator properties and wound dressings
US5746814A (en) * 1997-05-07 1998-05-05 Xerox Corporation Decurling compositions
US5929160A (en) * 1997-09-25 1999-07-27 Minnesota Mining And Manufacturing Company Method for reducing water uptake in silyl terminated sulfopoly(ester-urethanes)
US6102205A (en) 1997-10-08 2000-08-15 Medlogic Global Corporation Prepolymer compositions comprising an antimicrobial agent
WO1999018790A1 (en) * 1997-10-10 1999-04-22 Nvid International, Inc. Disinfectant and method of making
US6677287B1 (en) * 1998-05-18 2004-01-13 The Procter & Gamble Company Implement containing cleaning composition and disappearing dye
EP0966883A1 (en) 1998-06-26 1999-12-29 The Procter & Gamble Company The use of an anti-microbial compound for disinfection
US6007797A (en) 1998-08-06 1999-12-28 Ipa, Llc Disappearing color sunscreen compositions
GB9817457D0 (en) 1998-08-12 1998-10-07 Reckitt & Colman Inc Improvements in or related to organic compositions
US6504583B2 (en) * 1998-10-02 2003-01-07 3M Innovative Properties Company Anti-microbial touch panel and method of making same using homeotropic liquid crystal silanes
US6365130B1 (en) * 1998-11-23 2002-04-02 Agion Technologies L.L.C. Antimicrobial chewing gum
US6296863B1 (en) 1998-11-23 2001-10-02 Agion Technologies, Llc Antimicrobial fabric and medical graft of the fabric
DE19858554A1 (en) 1998-12-18 2000-06-21 Sueddeutsche Kalkstickstoff Self crosslinking hybrid polymer dispersion, for binder, e.g. in coating or sealing materials, contains fatty acid modified polyurethane
US6170564B1 (en) * 1998-12-30 2001-01-09 Unted Technologies Corporation Room temperature cure antimicrobial coating that demonstrates a balance of properties includes low dissolution and good cohesion and adhesion
US6653522B1 (en) 1999-04-09 2003-11-25 National Starch And Chemical Investment Holding Corporation Hot melt adhesives based on sulfonated polyesters comprising wetness indicator
US6482423B1 (en) 1999-04-13 2002-11-19 The Procter & Gamble Company Antimicrobial wipes which provide improved residual benefit versus gram positive bacteria
US6582715B1 (en) * 1999-04-27 2003-06-24 Agion Technologies, Inc. Antimicrobial orthopedic implants
US6299799B1 (en) 1999-05-27 2001-10-09 3M Innovative Properties Company Ceramer compositions and antistatic abrasion resistant ceramers made therefrom
DE19932603A1 (en) 1999-07-13 2001-01-25 Gruenenthal Gmbh Multi-layer film containing active substance made of in-situ cross-linked hydrophilic polymers
US6559116B1 (en) * 1999-09-27 2003-05-06 The Procter & Gamble Company Antimicrobial compositions for hard surfaces
US6340663B1 (en) * 1999-11-24 2002-01-22 The Clorox Company Cleaning wipes
US6267590B1 (en) 1999-11-24 2001-07-31 Agion Technologies, Llc Antimicrobial dental products
JP2003530489A (en) 1999-12-28 2003-10-14 キンバリー クラーク ワールドワイド インコーポレイテッド Wipes containing controlled release antimicrobial agents
US6306419B1 (en) 2000-02-23 2001-10-23 Aegis Biosciences, Llc Medical uses of styrene sulfonate polymers
AUPQ656300A0 (en) 2000-03-29 2000-04-20 Novapharm Research (Australia) Pty Ltd Biostatic filter
US6267976B1 (en) 2000-04-14 2001-07-31 Gojo Industries, Inc. Skin cleanser with photosensitive dye
US6741523B1 (en) * 2000-05-15 2004-05-25 3M Innovative Properties Company Microstructured time dependent indicators
US6461386B1 (en) 2000-05-17 2002-10-08 Milliken & Company Antimicrobial transfer substrates and methods of use therewith
US7279452B2 (en) 2000-06-12 2007-10-09 Commun-I-Tec, Ltd. Sanitizing applicator having a positively charged fabric cover
US6544621B1 (en) * 2000-09-01 2003-04-08 Milliken & Company Floor covering articles comprising antimicrobial adhesive latex components
US6342212B1 (en) * 2000-09-01 2002-01-29 Milliken & Company Antimicrobial adhesive latexes and methods of making thereof
US20020183233A1 (en) * 2000-12-14 2002-12-05 The Clorox Company, Delaware Corporation Bactericidal cleaning wipe
US6467897B1 (en) 2001-01-08 2002-10-22 3M Innovative Properties Company Energy curable inks and other compositions incorporating surface modified, nanometer-sized particles
GB0105811D0 (en) 2001-03-09 2001-04-25 Hilltout Alexander M Cleaning cloth
US20020146385A1 (en) 2001-04-10 2002-10-10 Lin Tung Liang Ionic antimicrobial coating
US6554156B1 (en) * 2001-05-17 2003-04-29 The Clorox Company Dispenser for cleaning wipes
DE10133399A1 (en) * 2001-07-13 2003-01-23 Cognis Deutschland Gmbh Low water-content wax-based composition for impregnating tissue paper or wet wipes to give body-care material contains dialkyl(ene) ether, dialkyl(ene) carbonate, dicarboxylic acid and/or hydroxyfatty alcohol
EP1275371A1 (en) * 2001-07-13 2003-01-15 Johnson and Johnson GmbH Dry products comprising a sheet and two phases
ES2356305T3 (en) * 2001-10-10 2011-04-06 Microban Products Company ANTIMICROBIAL COATING CURABLE BY RADIATION.
US6772708B2 (en) 2001-10-30 2004-08-10 The Procter And Gamble Company Wetness indicator having improved colorant retention
US20030118733A1 (en) * 2001-12-21 2003-06-26 Delwin Jackson Low-temperature method of producing an antimicrobial, durable coating for hard surface substrates
US6838078B2 (en) * 2002-01-16 2005-01-04 3M Innovative Properties Company Film-forming compositions and methods
US20030175438A1 (en) 2002-01-17 2003-09-18 Reeve John A. Treatments of solid substrates to enhance durability of treatments placed thereon
US6726584B2 (en) * 2002-01-22 2004-04-27 Jerry Iggulden Method and apparatus for temporarily marking a point of contact
US20030157147A1 (en) 2002-02-15 2003-08-21 William Hoge Anti-microbial utility and kitchen wipe utilizing metallic silver as an oligodynamic agent
US7053029B2 (en) * 2002-03-27 2006-05-30 Kimberly-Clark Worldwide, Inc. Use indicating soap
DE10216945A1 (en) * 2002-04-17 2003-11-06 Bayer Ag Self-crosslinking PUR dispersions
US6905711B1 (en) * 2002-05-02 2005-06-14 Smart Anti-Microbial Solutions, Llc Antimicrobial agents, products incorporating said agents and methods of making products incorporating antimicrobial agents
US6733766B2 (en) * 2002-05-06 2004-05-11 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Personal care composition with color change indicator
US6926745B2 (en) 2002-05-17 2005-08-09 The Clorox Company Hydroscopic polymer gel films for easier cleaning
US7829478B2 (en) 2002-06-11 2010-11-09 3M Innovative Properties Company Consumer scrubbing wipe article and method of making same
US6894095B2 (en) * 2002-07-17 2005-05-17 The Dial Corporation Color-changing wallpaper adhesive primer/activator
US6884741B2 (en) * 2002-07-23 2005-04-26 H.B. Fuller Licensing & Financing, Inc. Antimicrobial sheeting article
GB0219780D0 (en) 2002-08-23 2002-10-02 Bramley Christopher S Colour changing paint
US7183455B2 (en) * 2002-08-27 2007-02-27 Drdc Limited Adhesive dressing
GB0305222D0 (en) 2002-10-03 2003-04-09 Unilever Plc Indicator kit
GB2393911A (en) * 2002-10-12 2004-04-14 Reckitt Benckiser Inc Antimicrobial hard surface cleaner
US6641829B1 (en) 2002-10-22 2003-11-04 Milliken & Company Topical application of solid antimicrobials to carpet pile fibers during carpet manufacture
US7915184B2 (en) 2002-10-31 2011-03-29 Polymer Group, Inc. Anti-microbial nonwoven wipe
FR2846970B1 (en) * 2002-11-08 2006-08-11 Desarrollo Del Grafting S L METHOD FOR SURFACE TREATMENT BY PHOTOPOLYMERIZATION TO OBTAIN BIOCIDAL PROPERTIES
CA2547533A1 (en) * 2002-12-10 2004-06-24 Venture Management Alliance, Llc Encapsulated material released to generate perceivable sensorial indiciaof discrete event occurence
EP1443099A3 (en) 2003-01-17 2004-08-11 VIP Domotec S.A.R.L. Cleaning wipe having self-cleaning activity and use thereof
DE502004004117D1 (en) 2003-03-08 2007-08-02 Brillux Gmbh & Co Kg Coating agent with color change
US7491753B2 (en) * 2003-07-03 2009-02-17 Mallard Creek Polymers, Inc. Antimicrobial and antistatic polymers and methods of using such polymers on various substrates
US20050000642A1 (en) * 2003-07-03 2005-01-06 3M Innovative Properties Company Cling articles
US7070737B2 (en) * 2003-08-01 2006-07-04 The Clorox Company Disinfecting article with extended efficacy
US7008600B2 (en) * 2003-08-01 2006-03-07 The Clorox Company Disinfecting article and cleaning composition with extended stability
US20050058673A1 (en) * 2003-09-09 2005-03-17 3M Innovative Properties Company Antimicrobial compositions and methods
US20050101511A1 (en) * 2003-11-06 2005-05-12 Colgate-Palmolive Company Antimicrobial cleaning composition
US7306777B2 (en) * 2003-12-16 2007-12-11 Eastman Kodak Company Antimicrobial composition
US20050129742A1 (en) * 2003-12-16 2005-06-16 Eastman Kodak Company Antimicrobial article with diffusion control layer
US20050129937A1 (en) * 2003-12-16 2005-06-16 Eastman Kodak Company Antimicrobial web for application to a surface
US20050137540A1 (en) * 2003-12-23 2005-06-23 Kimberly-Clark Worldwide, Inc. Bacteria removing wipe
US20050191326A1 (en) 2004-02-27 2005-09-01 Melker Richard J. Materials and methods for creating customized compositions having a temporary visual indicator
US7320956B2 (en) 2004-04-01 2008-01-22 3M Innovative Properties Company Aqueous cleaning/treatment composition for fibrous substrates
US20050249791A1 (en) * 2004-05-07 2005-11-10 3M Innovative Properties Company Antimicrobial articles
US20060008912A1 (en) * 2004-07-09 2006-01-12 Simon Patrick L Temporary visual indicators for paint and other compositions
US20060030512A1 (en) * 2004-08-06 2006-02-09 Hart Eric R Cleaner leaving an anti-microbial film
WO2006023736A2 (en) * 2004-08-19 2006-03-02 Omniventions, Llc Cleansing system and method
DE602005011322D1 (en) * 2004-10-12 2009-01-08 3M Innovative Properties Co A PROTECTIVE FILM TRAINING ADHESIVE
US20060134163A1 (en) * 2004-12-16 2006-06-22 Bagwell Alison S Immobilizing anti-microbial compounds on elastomeric articles
JP5478074B2 (en) * 2006-02-23 2014-04-23 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Removable antimicrobial coating composition and method of use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5540853A (en) * 1994-10-20 1996-07-30 The Procter & Gamble Company Personal treatment compositions and/or cosmetic compositions containing enduring perfume
US6187327B1 (en) * 1999-05-19 2001-02-13 Kevin Stack Antimicrobial sanitizing lotion with skin protection properties

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Abraham, Erna Rafaela L., Phil J Microbial Infect Dis, 2000, 29(3) pgs. 128-135 *
Lubrizol, Carbopol Polymers, printed 3/29/2013, pgs. 1-2 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9131683B2 (en) 2011-09-30 2015-09-15 The Sherwin-Williams Company High quality antimicrobial paint composition
CN107629590A (en) * 2016-07-11 2018-01-26 斯巴坦化学公司 Antibacterial sacrificial floor coatings system
WO2018212351A1 (en) 2017-05-19 2018-11-22 Daikin America, Inc. Composition and method for producing composition
CN109771314A (en) * 2019-01-02 2019-05-21 青蛙王子(福建)婴童护理用品有限公司 Long-acting anti-, antibacterial wet tissue of one kind and preparation method thereof
DE102020002574A1 (en) 2020-04-29 2021-11-04 Aluminium Féron GmbH & Co. KG Plastic film, process for its manufacture and protective visor, protective wall
DE102020005401A1 (en) 2020-09-03 2022-03-03 Murat Abidin Bulut Wash paint / washable coating materials

Also Published As

Publication number Publication date
US20090155451A1 (en) 2009-06-18
WO2007070649A2 (en) 2007-06-21
US8124169B2 (en) 2012-02-28
WO2007070649A3 (en) 2008-07-10

Similar Documents

Publication Publication Date Title
US8124169B2 (en) Antimicrobial coating system
US20100240799A1 (en) Antimicrobial film-forming composition, antimicrobial film, and method of verifying the presence of an antimicrobial film
US8318282B2 (en) Microstructured antimicrobial film
AU2007221203B2 (en) Removable antimicrobial coating compositions and methods of use
AU2007221204B2 (en) Removable antimicrobial coating compositions and methods of use
CA2764434C (en) Removable antimicrobial coating compositions containing cationic rheology agent and methods of use
CN102329548B (en) Microbicidal coating
US6399560B1 (en) Biocide and biocidal cloth containing a metal pyridinethione and additional biocide
US20110177145A1 (en) In situ preparation of peracid-based removable antimicrobial coating compositions and methods of use
CN101374607A (en) Non-leaching surface-active film compositions for microbial adhesion prevention
JP2011511103A (en) Bactericidal alcohol-soluble quaternary ammonium polymer
US8968771B2 (en) Articles and methods for applying antimicrobial protection
WO2011017090A1 (en) Removable antimicrobial coating compositions containing acid-activated rheology agent and methods of use
WO2023075664A1 (en) A disinfectant film-forming composition and a dry disinfectant film formed on a surface from the film forming composition

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION