US20110295200A1 - Drug-eluting medical device - Google Patents

Drug-eluting medical device Download PDF

Info

Publication number
US20110295200A1
US20110295200A1 US13/143,703 US201013143703A US2011295200A1 US 20110295200 A1 US20110295200 A1 US 20110295200A1 US 201013143703 A US201013143703 A US 201013143703A US 2011295200 A1 US2011295200 A1 US 2011295200A1
Authority
US
United States
Prior art keywords
balloon
paclitaxel
catheter
water
catheter balloon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/143,703
Inventor
Ulrich Speck
Silvio Schaffner
Magdalena Renke-gluszko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Invatec Technology Center GmbH
Original Assignee
Invatec Technology Center GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42060656&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20110295200(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Invatec Technology Center GmbH filed Critical Invatec Technology Center GmbH
Priority to US13/143,703 priority Critical patent/US20110295200A1/en
Assigned to INVATEC TECHNOLOGY CENTER GMBH reassignment INVATEC TECHNOLOGY CENTER GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SPECK, ULRICH
Publication of US20110295200A1 publication Critical patent/US20110295200A1/en
Assigned to INVATEC TECHNOLOGY CENTER GMGH reassignment INVATEC TECHNOLOGY CENTER GMGH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RENKE-GLUSZKO, MAGDALENA, SCHAFFNER, SILVIO, SPECK, ULRICH
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • A61L29/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1002Balloon catheters characterised by balloon shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1027Making of balloon catheters
    • A61M25/1029Production methods of the balloon members, e.g. blow-moulding, extruding, deposition or by wrapping a plurality of layers of balloon material around a mandril
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/216Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials with other specific functional groups, e.g. aldehydes, ketones, phenols, quaternary phosphonium groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/416Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/602Type of release, e.g. controlled, sustained, slow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/63Crystals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1002Balloon catheters characterised by balloon shape
    • A61M2025/1004Balloons with folds, e.g. folded or multifolded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1027Making of balloon catheters
    • A61M25/1029Production methods of the balloon members, e.g. blow-moulding, extruding, deposition or by wrapping a plurality of layers of balloon material around a mandril
    • A61M2025/1031Surface processing of balloon members, e.g. coating or deposition; Mounting additional parts onto the balloon member's surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/105Balloon catheters with special features or adapted for special applications having a balloon suitable for drug delivery, e.g. by using holes for delivery, drug coating or membranes

Definitions

  • the present invention relates to a drug-eluting medical device, in particular a balloon for angioplasty catheters with drug elution to prevent restenosis of the vessel subjected to angioplasty.
  • vascular atherosclerotic lesions are most often localized at predetermined portions of the blood vessels, of which they cause constrictions or also obstructions.
  • vascular atherosclerotic lesions are typically treated in angioplasty procedures by means of catheters provided with a balloon.
  • a catheter provided at the distal end thereof with a balloon is advanced, following a guidewire, to the ostium of the narrowed artery.
  • the balloon Once the balloon has been arranged at the artery narrowing, it is repeatedly inflated and deflated.
  • the insufflation, with successive deflation, of the balloon within the artery reduce the extent of the arterial luminal narrowing, and restore a suitable blood flow in the cardiac area, suffering from the stenosis.
  • it is necessary to arrange a so-called stent which provides to maintain the artery patent also after withdrawal of the catheter and the balloon.
  • paclitaxel taxol
  • the drug must be released for a sufficiently long time span, so as to inhibit the cell hyper-proliferation process caused by the constant presence of the stent implanted in the vessel.
  • the drug also induces an inhibition of the stent endothelization process, which is crucial to avoid the formation of thrombi.
  • drug eluting stent has some drawbacks.
  • the patent publication WO 02/076509 discloses drug-coated catheter balloons releasing such drug in an immediately bioavailable form during the short contact time of the balloon with the vessel wall.
  • the drug has to be, first of all, released from the balloon to the vessel wall in the very short contact time available during an angioplasty procedure. Once the drug has been released, it has to be absorbed by the cell wall, before the blood flow washes it off. Ideally, it is therefore desirable that the drug absorption occurs concomitantly to the release thereof from the balloon.
  • the drug is retained by the balloon surface in a manner sufficient to resist to all the handling operations which it is subjected to, both during the production step and during the preparation and carrying out of the angioplasty procedure, in any case, before the balloon reaches the site of intervention. This requires a perfect balance of such properties.
  • the present invention relates to a catheter balloon coated with paclitaxel in crystalline hydrated form, having an immediate release and bioavailability of the drug at the site of intervention.
  • a further object of the invention is a catheter balloon coated with paclitaxel in crystalline hydrated solvated form, having an immediate release and bioavailability of the drug at the site of intervention.
  • the catheter balloon coated with paclitaxel in crystalline hydrated or solvated hydrated form as defined before is made of a polyether-polyamide block copolymer, or “compound” thereof with a polyamide.
  • the catheter balloon coated with paclitaxel in crystalline hydrated or solvated hydrated form as defined before is made of a polyester amide.
  • the catheter balloon coated with paclitaxel in crystalline hydrated or crystalline solvated hydrated form as defined before is made of polyamide-12.
  • the catheter balloon surface is hydrophilic or made hydrophilic by treatment with a hydrophilizing agent.
  • paclitaxel in crystalline hydrated or solvated hydrated form as defined before is deposited from a urea-containing solution.
  • the balloon is inflated before coating with the paclitaxel solution and then it is folded when still wet.
  • the balloon is folded, then it is inflated before coating with the paclitaxel solution and it is finally folded again when still wet.
  • FIG. 1 shows a schematic side view of a device for rotating a catheter balloon during coating, according to an aspect of the invention.
  • the present invention relates in particular to a catheter balloon completely or partially coated with paclitaxel in hydrated crystalline form, having an immediate release and bioavailability of a therapeutically effective amount of paclitaxel at the site of intervention.
  • an immediate release and bioavailability is meant a release from the balloon surface in periods of time ranging between 1 second and 1.5 minutes, preferably between 20 seconds and 1 minute, and an absorption by the vascular tissue in periods of time ranging between 1 second and 25 minutes, preferably between 20 seconds and 25 minutes.
  • terapéuticaally effective amount is meant a drug amount capable of inducing a therapeutical or preventive effect against the restenosis of the treated vascular tissue in the patient.
  • site of intervention is meant the section of the blood vessel treated directly with the catheter balloon of the invention, and the adjacent portion of the tissues in which the post-procedure presence of paclitaxel can be detected. Generally, such section will extend for 2-10 mm down- and upstream the contact section with the balloon.
  • paclitaxel in hydrated crystalline form is meant paclitaxel with 2, 3 or 4 molecules of water of crystallization.
  • This crystalline form of paclitaxel can be obtained by dissolving paclitaxel in an aqueous solvent, by completely or partially wetting the balloon surface with such solution, and by letting the solvent to evaporate to a formation of a crystalline layer having a white, homogeneous, or partially inhomogeneous appearance.
  • aqueous solvent a mixture of solvents selected from acetone/ethanol/water, tetrahydrofuran/water, methanol/water, acetone/water, ethanol/water, acetonitrile/water, DMF/water is preferably used. More preferably, the solvent is a 9:1 tetrahydrofuran/water mixture or a tetrahydrofuran/water mixture with ratios ranging between 9.5:0.5 and 65:35, or an acetone/ethanol/water mixture in which the organic solvent is present in amounts not less than 50% by volume relative to water.
  • the concentration of paclitaxel in the solution may range from 4 to 6 mg/ml, preferably about 5 mg/ml.
  • the balloon wetting step can be performed in several ways, known to those skilled in the art, such as, for example, dipping the balloon into the paclitaxel solution, spraying the paclitaxel solution on the balloon, or depositing the paclitaxel solution on the balloon by means of a syringe, a micropipette, or other similar dispensing device.
  • the balloon can be wetted with the paclitaxel solution in a deployed and inflated condition, or in a folded condition. It has been observed that in this second case also, the paclitaxel solution penetrates by capillarity under the folds, so as to form a drug depot which remains protected during the introduction step of the folded balloon into the blood vessel by means of the catheter, until reaching the site of intervention and the inflation thereof.
  • Methods are also known to selectively coat the area under the balloon folds, leaving the outer surface substantially free from the drug.
  • Such methods can comprise, for example, the introduction into the balloon folds of a cannula bearing a series of micro-nozzles, through which the paclitaxel solution is deposited on the inner surface of the folds.
  • Such a method is described, for example, in the international application No. PCT/IT2007/000816, filed on Nov. 21 2007, the contents of which are incorporated herein by reference.
  • the folded balloon will preferably have 3 to 6 folds.
  • a preferred wetting method for the balloon is the deposition of the paclitaxel solution on the folded balloon surface by means of a syringe, micropipette, or other similar dispensing means.
  • the dispensing means will be made to slide on the surface from an end to the other one, and vice versa, while rotating the balloon around the longitudinal axis thereof, so as to establish a zigzag path.
  • the dispensing means will be made to slide on the balloon surface starting from a substantially central position relative to the longitudinal extent thereof, and it will be made to slide towards a first end thereof and, subsequently, towards the second end thereof, so as to establish a substantially zigzag path.
  • the coating step is performed directly during the manufacturing process of the balloon catheter and the coating step is indeed part of the balloon catheter manufacturing process. Therefore, the production of a coated balloon catheter according to this method is advantageously quicker.
  • step (g) The use of an already folded balloon according to step (g) is advantageous because the material may keep some memory of the folds even after inflation in step (h), so that the subsequent re-folding of step (k) can take place easily and in a short time, without manipulating too much the coated balloon.
  • the said predetermined pressure in step (b) or (h) is a pressure below the nominal pressure (RBP pressure) of the balloon.
  • RBP pressure nominal pressure
  • the said predetermined pressure is between 5 and 9 bar.
  • the inflated balloon of step (b) or (h) is preferably disconnected from the pressurised air source before coating. In such a way, the balloon is still inflated, but it is not tensioned and the coating step advantageously benefits from this state condition. In the case of long balloons, inflation step (b) or (h) is prolonged for less than 1 minute.
  • Coating of step (c) or (i) is preferably performed by delivering the drug solution over the inflated balloon surface.
  • a micropipette can be used, as described above for the coating of the folded balloons.
  • the same protocol can be followed, i.e. starting delivery of the solution from the mid of the balloon length and moving to an end of the balloon, then to the opposite end, while the balloon is rotated. It is important that substantially the whole balloon surface is wetted.
  • the rotation of the balloon is not too fast.
  • a rotational speed of the balloon during coating from about 5 rpm to about 30, preferably from about 10 rpm to about 20 rpm, is used, but different values may be set without departing from the scope of the invention.
  • the delivery time of the drug solution may range from about 10 seconds to about 500 seconds.
  • the rotation of the balloon may preferably be accomplished by means of a device as shown in FIG. 1 and as described below.
  • Step (d) or (j) of deflation of the coated balloon is accomplished by applying vacuum to the catheter balloon opening and/or by pressing the balloon from the exterior. Application of vacuum is preferred, in particular for long balloons.
  • Step (e) or (k) of folding and re-folding respectively is performed by means of conventional devices for folding balloons.
  • folding (e) and re-folding (k) are performed when the balloon surface is still wet. This allows a better adherence of drug onto the balloon surface to be obtained.
  • the said folding (e) or re-folding (k) is performed within 20 minutes from the end of the coating step (c) or (i) respectively, preferably between 1 minute and 10 minutes, more preferably between 1 minute and 5 minutes.
  • step (f) or step (l) are accomplished by inserting over the folded or re-folded balloon a protective cover, typically a sleeve that envelops the balloon surface that has been coated with the drug.
  • a protective cover typically a sleeve that envelops the balloon surface that has been coated with the drug.
  • a sleeve is preferably made of a low friction material.
  • a low friction material polytetrafluoroethylene (PTFE) may conveniently be used.
  • PTFE polytetrafluoroethylene
  • the use of a low friction material allows to minimize the removal of the drug adhered onto the balloon surface.
  • the low friction material should have a friction coefficient below the friction coefficient of the material of which the balloon is made.
  • a suitable device for rotating a catheter balloon 2 is indicated with the numeral 1 .
  • the catheter balloon 2 comprises a catheter section 3 and a balloon section 4 , that is shown in the inflated condition.
  • the device 1 comprises a basement 4 , a first motor unit 5 and a second motor unit 6 .
  • Each motor unit 5 , 6 comprises clamping means 8 , 8 ′ to clamp the two ends of the catheter balloon 2 .
  • the distal clamping means 8 acts upon the guide wire (not shown) on which the catheter balloon is loaded.
  • the proximal clamping means 8 ′ acts upon the connector (luer) (not shown) the catheter balloon is provided with.
  • the motor units 5 , 6 are preferably brushless motors.
  • the motor units 5 , 6 are synchronously operated.
  • a command and control unit 7 provides for the synchronous operation of the two motor units 5 , 6 . This is important, in order to avoid torsion of the catheter balloon 2 .
  • One or more supporting means 9 are also provided in order to keep the catheter balloon 2 in an horizontal position.
  • the invention relates to a catheter balloon completely or partially coated with paclitaxel in crystalline hydrated solvated form, having an immediate release and bioavailability of a therapeutically effective amount of paclitaxel at the site of intervention.
  • paclitaxel in crystalline hydrated solvated form is meant paclitaxel with 2 to 3 molecules of water of crystallization and with 1 to 3 molecules of solvent.
  • paclitaxel tends to form dimers which take in water and/or the solvent into the crystalline structure. Therefore, it is possible that the number of molecules of water of crystallization or solvent into the solvate per molecule of paclitaxel is not defined by an integer, but by a decimal.
  • a dimer can be obtained, which takes in 5 water molecules and 3 dioxane molecules: in this case, therefore, there will be 2.5 molecules of water of crystallization and 1.5 molecules dioxane per molecule of paclitaxel.
  • the crystalline hydrated solvated form of paclitaxel can be obtained from an aqueous solvent preferably selected from dioxane/water, DMF/water, DMSO/water, N-methylpyrrolidone/water, acetonitrile/water, N,N-dimethylacetamide/water, 1,3-dimethyl-3,4,5,6-tetrahydro-2-(1H)-pyrimidinone/water, 1,3-dimethyl-2-imidazolidinone/water mixtures, or mixtures thereof, by operating under suitable conditions, such as those described in the patent publication WO 03/0475078 in the name of Bristol-Myers Squibb Co., the content of which, relatively to such preparation methods, is incorporated herein by reference.
  • an aqueous solvent preferably selected from dioxane/water, DMF/water, DMSO/water, N-methylpyrrolidone/water, acetonitrile/water, N,N-dimethylacetamide/water,
  • a catheter balloon completely or partially coated with paclitaxel in crystalline hydrated or crystalline solvated hydrated form, having an immediate release and bioavailability of a therapeutically effective amount of paclitaxel at the site of intervention can be obtained by dissolving paclitaxel in an aqueous solvent, as defined before, in the presence of urea, by completely or partially wetting the balloon surface with such solution, and by letting the solvent to evaporate to the formation of a crystalline layer having a white, homogeneous, or partially inhomogeneous appearance.
  • Urea can be used in amounts ranging between 1 and 100 mg per mL solvent, preferably between 4 and 10 mg per mL solvent, more preferably about 7 mg per mL solvent.
  • a catheter balloon completely or partially coated with paclitaxel in crystalline hydrated or crystalline solvated hydrated form having an immediate release and bioavailability of a therapeutically effective amount of paclitaxel at the site of intervention, in which said balloon is made of a polyether-polyamide block copolymer or “compound” thereof with a polyamide.
  • the polyether-polyamide block copolymer according to the invention is an elastomer comprising polyamide block-forming monomers, representing the hard portion of the material, modified with a group representing the soft portion.
  • This elastomer is obtained by polymerization of a polyamide block-forming compound selected from the group consisting of an aminocarboxylic acid according to the formula (1) and a lactam according to the formula (2):
  • each of the R1, R2, and R3 groups represents linking groups comprising a hydrocarbon chain therein, optionally interrupted by one or more amide groups.
  • R1 and R2 independently comprise an alkylene group having 2 to 20 carbon atoms and amide bonds
  • R3 comprises an alkylene group having 1 to 20 carbon atoms
  • x can vary between 1 and 20, preferably between 1 and 18, more preferably between 1 and 16; y can vary between 4 and 50, preferably between 5 and 45, more preferably between 8 and 30, and z can vary between 1 and 20, preferably between 1 and 18, more preferably between 1 and 12;
  • m 0 or 1.
  • the polymerization is carried out by using 15 to 70% by weight of the compound of formula (1) and/or (2), and a mixture of compounds of formulae (3) and (4) in an overall weight percentage between 30 and 85%.
  • This polymerization is carried out in a reactor at a temperature ranging between 150 and 300° C., preferably between 160 and 280° C., more preferably between 180 and 250° C.
  • Compounds of such copolymers with polyamides can be obtained by mixing, according to known techniques, the copolymer in amounts from 10 to 90% by weight, preferably 75 to 25%, more preferably 60 to 40% by weight, with an amount of polyamide to completion of 100%.
  • the polyamide is polyamide-12.
  • a catheter balloon completely or partially coated with paclitaxel in crystalline hydrated or crystalline solvated hydrated form having an immediate release and bioavailability of a therapeutically effective amount of paclitaxel at the site of intervention, in which said balloon is made of polyamide-12.
  • a catheter balloon completely or partially coated with paclitaxel in crystalline hydrated or crystalline solvated hydrated form having an immediate release and bioavailability of a therapeutically effective amount of paclitaxel at the site of intervention, in which said balloon is made of polyester amide.
  • polyester amide used in the present invention can be described by the following general formula:
  • PA is a polyamide segment
  • PF is a diol segment comprising OH-terminating dimer diol segments
  • n is a number ranging between 5 and 20.
  • the content of the diol component within the polyester-amide copolymer is 5-50% by weight.
  • the concentration of the diol component ranges between 10 to 30% by weight, still more preferably between 10 and 20% by weight of the total formulation.
  • a catheter balloon completely or partially coated with paclitaxel in crystalline hydrated or crystalline solvated hydrated form having an immediate release and bioavailability of a therapeutically effective amount of paclitaxel at the site of intervention, in which said balloon has a surface which is hydrophilic or hydrophilized by suitable hydrophilizing treatment.
  • the catheter balloon surface according to the invention can be made hydrophilic by treatment with plasma-activated oxygen.
  • paclitaxel is present in the catheter balloon coating layer in amounts ranging between 1 and 20 ⁇ g/mm 2 , preferably between 2 and 7 ⁇ g/mm 2 , more preferably between 3 and 5 ⁇ g/mm 2 .
  • Paclitaxel solutions have been prepared at a 50 mg/mL concentration in the following solvents:
  • paclitaxel in a crystalline hydrated or solvated hydrated form according to the invention is not obtained by crystallization from acetic acid. Instead, amorphous paclitaxel is obtained by precipitation from dichloromethane.
  • Some balloons made of a polyamide-12+polyether-polyamide block copolymer compound (70% UBESTA® XPA9063+30% UBESTA® 3030XA) and in a folded condition—have been coated with paclitaxel by wetting the surface thereof with equal volumes of the solutions (1)-(6) by means of a Hamilton syringe, according to the previously described modes. For each solution, several balloons have been used.
  • the appearance of the coating was white, not always homogeneous.
  • example 1A has been repeated using coating solution (2), by inflating first the folded balloons at 7 bar, then removing the pressurised air source and coating the inflated balloons by means of a Hamilton syringe.
  • the coated balloons have then been re-folded after about 1 minute after the coating step, while the surface thereof was still wet.
  • the appearance of the coating was white, substantially homogeneous.
  • the balloons prepared according to the example 1 have been subjected to some assessments, in order to determine the drug adhesion under the various conditions.
  • the dry adhesion has been assessed, which is useful to determine the paclitaxel loss which can occur in the production or handling steps of the balloon. Such determination has been carried out by dry expanding the balloon and shaking the inflated balloon within a tube.
  • the paclitaxel content in the tube was determined by HPLC/UV.
  • the drug was taken up with ethanol, the tubes were closed and vigorously vortexed for at least 30 seconds, followed by a treatment in an ultrasound bath for 30 minutes. At least 70 ⁇ l of extract were injected into the HPLC, together with a paclitaxel standard solution (concentration of about 20 ⁇ g/mL). The results are reported in Table I.
  • paclitaxel at the site of intervention has been assessed in experiments on castrated male pigs, approximately 3 months old, and weighing about 30 kg.
  • the pigs were sedated by intramuscular injection of ketamine and xylazine. Anaesthesia was started by intravenous injection of propofol, followed by orotracheal intubation, and was maintained with 1-2 vol % isoflurane, vol % N 2 O 2 , and 30 vol % oxygen. All the animals received 5.000 IU heparin, 250 mg aspirine, and 200 mg nitroglicerine via the intracoronary route.
  • the coronary arteries were monitored by means of a standard angiography technique through the left carotid artery.
  • the animals were treated with the paclitaxel-coated balloons (solutions (1)-(6)) mounted on catheter.
  • the coating in the inflated state, followed by re-folding while still wet, allows a better adherence of the drug onto the balloon surface.
  • Paclitaxel in crystalline hydrated form was identified by IR analysis under the conditions reported in the literature, thus obtaining a spectrum which was equivalent to what has been described in Jeong Hoon Lee et al., Bull. Korean Chem. Soc. 2001, vol. 22, No. 8, 925-928.

Abstract

The present invention relates to a drug-eluting medical device, in particular a balloon for angioplasty catheters with drug elution to prevent the restenosis of the vessel subjected to angioplasty. More particularly, the present invention relates to a catheter balloon completely or partially coated with paclitaxel in hydrated crystalline form or in hydrated solvated crystalline form, having an immediate release and bioavailability of a therapeutically effective amount of paclitaxel at the site of intervention. The balloon can be made of a polyether-polyamide block copolymer, or a polyester amide, or polyamide-12.

Description

  • The present invention relates to a drug-eluting medical device, in particular a balloon for angioplasty catheters with drug elution to prevent restenosis of the vessel subjected to angioplasty.
  • BACKGROUND OF THE INVENTION
  • The treatment of vascular atherosclerotic lesions is a widespread therapy. Such lesions are most often localized at predetermined portions of the blood vessels, of which they cause constrictions or also obstructions. Vascular atherosclerotic lesions are typically treated in angioplasty procedures by means of catheters provided with a balloon.
  • A catheter provided at the distal end thereof with a balloon is advanced, following a guidewire, to the ostium of the narrowed artery. Once the balloon has been arranged at the artery narrowing, it is repeatedly inflated and deflated. The insufflation, with successive deflation, of the balloon within the artery reduce the extent of the arterial luminal narrowing, and restore a suitable blood flow in the cardiac area, suffering from the stenosis. In some cases, it is necessary to arrange a so-called stent, which provides to maintain the artery patent also after withdrawal of the catheter and the balloon.
  • In both cases, success of the intervention is not complete. In fact, after a few months, some patients develop a new narrowing of the vessel wall at the intervention point. Such narrowing, known under the name of restenosis, is not due to the formation of new atherosclerotic plaques, but to a cell hyperproliferation process, particularly of the vascular smooth muscle cells, probably due to the dilating action operated by the foreign body, stent or balloon.
  • It has been observed that restenosis can be treated by coating a stent with a drug having antiproliferative action. Among the drugs usually employed to such aim, paclitaxel (taxol) has proved to be particularly efficient. The drug must be released for a sufficiently long time span, so as to inhibit the cell hyper-proliferation process caused by the constant presence of the stent implanted in the vessel. However, the drug also induces an inhibition of the stent endothelization process, which is crucial to avoid the formation of thrombi. For this reasons, the use of a stent with drug elution (“drug eluting stent”) has some drawbacks.
  • More recently, antiproliferative drug-coated catheter balloons have been proposed. However, in almost all cases, forms of slow release of the drug at the site of intervention after the drug has been transferred from the balloon to the vessel wall have been described.
  • However, it has been noticed that a drug elution over a prolonged time frame to inhibit the restenosis phenomenon is neither necessary nor desirable, but that it is sufficient, and rather more convenient, a time limited contact between drug and vessel surface, for example, from a few seconds to one minute. These are typically the contact times of a catheter balloon as described before.
  • The patent publication WO 02/076509 discloses drug-coated catheter balloons releasing such drug in an immediately bioavailable form during the short contact time of the balloon with the vessel wall.
  • It will be recognized that an approach such as the one described herein above poses completely different problems compared to those previously dealt with. In fact, while a prolonged drug elution can be obtained by various solutions, such as, for example, incorporation of the drug in a polymeric matrix or microcapsules, the immediate release will depend on several factors, of which the main ones are:
      • The nature of the drug, in particular the hydrophilicity or hydrophobicity thereof;
      • The form in which the drug is administered, in particular, the crystalline or amorphous form thereof;
      • The presence of possible excipients or “enhancers”;
      • Optionally, the nature of the balloon surface on which the drug is deposited.
  • In fact, it should be understood that the drug has to be, first of all, released from the balloon to the vessel wall in the very short contact time available during an angioplasty procedure. Once the drug has been released, it has to be absorbed by the cell wall, before the blood flow washes it off. Ideally, it is therefore desirable that the drug absorption occurs concomitantly to the release thereof from the balloon.
  • However, it is just as well necessary that the drug is retained by the balloon surface in a manner sufficient to resist to all the handling operations which it is subjected to, both during the production step and during the preparation and carrying out of the angioplasty procedure, in any case, before the balloon reaches the site of intervention. This requires a perfect balance of such properties.
  • Therefore, it is an object of the present invention to provide a catheter balloon coated with a drug which allows an immediate release and bioavailability of the drug at the site of intervention.
  • It is a further object of the present invention to provide a method of coating of a catheter balloon with a drug in order to reach a good adherence of the drug on the balloon surface and at the same time a fast release of the drug upon contact of the said balloon surface with a blood vessel wall.
  • SUMMARY OF THE INVENTION
  • The present invention relates to a catheter balloon coated with paclitaxel in crystalline hydrated form, having an immediate release and bioavailability of the drug at the site of intervention.
  • A further object of the invention is a catheter balloon coated with paclitaxel in crystalline hydrated solvated form, having an immediate release and bioavailability of the drug at the site of intervention.
  • According to another aspect of the invention, the catheter balloon coated with paclitaxel in crystalline hydrated or solvated hydrated form as defined before is made of a polyether-polyamide block copolymer, or “compound” thereof with a polyamide.
  • According to a further aspect, the catheter balloon coated with paclitaxel in crystalline hydrated or solvated hydrated form as defined before is made of a polyester amide.
  • According to a further aspect, the catheter balloon coated with paclitaxel in crystalline hydrated or crystalline solvated hydrated form as defined before is made of polyamide-12.
  • According to a further aspect, the catheter balloon surface is hydrophilic or made hydrophilic by treatment with a hydrophilizing agent.
  • According to a further aspect of the invention, paclitaxel in crystalline hydrated or solvated hydrated form as defined before is deposited from a urea-containing solution.
  • According to an aspect of the invention, the balloon is inflated before coating with the paclitaxel solution and then it is folded when still wet.According to a further aspect of the invention, the balloon is folded, then it is inflated before coating with the paclitaxel solution and it is finally folded again when still wet.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a schematic side view of a device for rotating a catheter balloon during coating, according to an aspect of the invention.
  • DESCRIPTION OF THE INVENTION
  • The present invention relates in particular to a catheter balloon completely or partially coated with paclitaxel in hydrated crystalline form, having an immediate release and bioavailability of a therapeutically effective amount of paclitaxel at the site of intervention.
  • By the term “an immediate release and bioavailability” is meant a release from the balloon surface in periods of time ranging between 1 second and 1.5 minutes, preferably between 20 seconds and 1 minute, and an absorption by the vascular tissue in periods of time ranging between 1 second and 25 minutes, preferably between 20 seconds and 25 minutes.
  • By the term “therapeutically effective amount” is meant a drug amount capable of inducing a therapeutical or preventive effect against the restenosis of the treated vascular tissue in the patient.
  • By the term “site of intervention” is meant the section of the blood vessel treated directly with the catheter balloon of the invention, and the adjacent portion of the tissues in which the post-procedure presence of paclitaxel can be detected. Generally, such section will extend for 2-10 mm down- and upstream the contact section with the balloon.
  • With “paclitaxel in hydrated crystalline form” is meant paclitaxel with 2, 3 or 4 molecules of water of crystallization.
  • This crystalline form of paclitaxel can be obtained by dissolving paclitaxel in an aqueous solvent, by completely or partially wetting the balloon surface with such solution, and by letting the solvent to evaporate to a formation of a crystalline layer having a white, homogeneous, or partially inhomogeneous appearance.
  • As the aqueous solvent, a mixture of solvents selected from acetone/ethanol/water, tetrahydrofuran/water, methanol/water, acetone/water, ethanol/water, acetonitrile/water, DMF/water is preferably used. More preferably, the solvent is a 9:1 tetrahydrofuran/water mixture or a tetrahydrofuran/water mixture with ratios ranging between 9.5:0.5 and 65:35, or an acetone/ethanol/water mixture in which the organic solvent is present in amounts not less than 50% by volume relative to water.
  • The concentration of paclitaxel in the solution may range from 4 to 6 mg/ml, preferably about 5 mg/ml.
  • The balloon wetting step can be performed in several ways, known to those skilled in the art, such as, for example, dipping the balloon into the paclitaxel solution, spraying the paclitaxel solution on the balloon, or depositing the paclitaxel solution on the balloon by means of a syringe, a micropipette, or other similar dispensing device.
  • The balloon can be wetted with the paclitaxel solution in a deployed and inflated condition, or in a folded condition. It has been observed that in this second case also, the paclitaxel solution penetrates by capillarity under the folds, so as to form a drug depot which remains protected during the introduction step of the folded balloon into the blood vessel by means of the catheter, until reaching the site of intervention and the inflation thereof.
  • Methods are also known to selectively coat the area under the balloon folds, leaving the outer surface substantially free from the drug. Such methods can comprise, for example, the introduction into the balloon folds of a cannula bearing a series of micro-nozzles, through which the paclitaxel solution is deposited on the inner surface of the folds. Such a method is described, for example, in the international application No. PCT/IT2007/000816, filed on Nov. 21 2007, the contents of which are incorporated herein by reference.
  • The folded balloon will preferably have 3 to 6 folds.
  • A preferred wetting method for the balloon is the deposition of the paclitaxel solution on the folded balloon surface by means of a syringe, micropipette, or other similar dispensing means. Typically, the dispensing means will be made to slide on the surface from an end to the other one, and vice versa, while rotating the balloon around the longitudinal axis thereof, so as to establish a zigzag path. Alternatively, the dispensing means will be made to slide on the balloon surface starting from a substantially central position relative to the longitudinal extent thereof, and it will be made to slide towards a first end thereof and, subsequently, towards the second end thereof, so as to establish a substantially zigzag path.
  • According to a further method, the following steps are performed:
      • (a) Providing a balloon;
      • (b) Inflating the said balloon to a predetermined pressure;
      • (c) Coating the said inflated balloon of step (b) with a paclitaxel solution;
      • (d) Deflating the coated balloon of step (c);
      • (e) Folding the deflated balloon of step (d) when still wet;
      • (f) Optionally, applying to the said folded balloon a protective cover.
  • According to this method the coating step is performed directly during the manufacturing process of the balloon catheter and the coating step is indeed part of the balloon catheter manufacturing process. Therefore, the production of a coated balloon catheter according to this method is advantageously quicker.
  • According to a further preferred method, the following steps are performed:
      • (g) Providing a folded balloon, for example a balloon having 3 or 6 folds;
      • (h) Inflating the said folded balloon to a predetermined pressure;
      • (i) Coating the said inflated balloon of step (h) with a paclitaxel solution;
      • (j) Deflating the coated balloon of step (i);
      • (k) Re-folding the deflated balloon of step (j) when still wet;
      • (l) Optionally, applying to the said re-folded balloon a protective cover.
  • The use of an already folded balloon according to step (g) is advantageous because the material may keep some memory of the folds even after inflation in step (h), so that the subsequent re-folding of step (k) can take place easily and in a short time, without manipulating too much the coated balloon.
  • The said predetermined pressure in step (b) or (h) is a pressure below the nominal pressure (RBP pressure) of the balloon. For example, for balloon diameters between 4 and 7 mm and balloon length between 40 and 80 mm, the said predetermined pressure is between 5 and 9 bar.
  • The inflated balloon of step (b) or (h) is preferably disconnected from the pressurised air source before coating. In such a way, the balloon is still inflated, but it is not tensioned and the coating step advantageously benefits from this state condition. In the case of long balloons, inflation step (b) or (h) is prolonged for less than 1 minute.
  • Coating of step (c) or (i) is preferably performed by delivering the drug solution over the inflated balloon surface. Typically, a micropipette can be used, as described above for the coating of the folded balloons. The same protocol can be followed, i.e. starting delivery of the solution from the mid of the balloon length and moving to an end of the balloon, then to the opposite end, while the balloon is rotated. It is important that substantially the whole balloon surface is wetted.
  • Preferably, the rotation of the balloon is not too fast. Typically, a rotational speed of the balloon during coating from about 5 rpm to about 30, preferably from about 10 rpm to about 20 rpm, is used, but different values may be set without departing from the scope of the invention. Preferably, the delivery time of the drug solution may range from about 10 seconds to about 500 seconds.
  • The rotation of the balloon may preferably be accomplished by means of a device as shown in FIG. 1 and as described below.
  • Step (d) or (j) of deflation of the coated balloon is accomplished by applying vacuum to the catheter balloon opening and/or by pressing the balloon from the exterior. Application of vacuum is preferred, in particular for long balloons.
  • Step (e) or (k) of folding and re-folding respectively is performed by means of conventional devices for folding balloons.
  • According to the processes mentioned above, folding (e) and re-folding (k) are performed when the balloon surface is still wet. This allows a better adherence of drug onto the balloon surface to be obtained.
  • Typically, the said folding (e) or re-folding (k) is performed within 20 minutes from the end of the coating step (c) or (i) respectively, preferably between 1 minute and 10 minutes, more preferably between 1 minute and 5 minutes.
  • If performed, step (f) or step (l) are accomplished by inserting over the folded or re-folded balloon a protective cover, typically a sleeve that envelops the balloon surface that has been coated with the drug. Such a sleeve is preferably made of a low friction material. As a low friction material, polytetrafluoroethylene (PTFE) may conveniently be used. The use of a low friction material allows to minimize the removal of the drug adhered onto the balloon surface. The low friction material should have a friction coefficient below the friction coefficient of the material of which the balloon is made.
  • In general, independently from the method used, it is possible to repeat several times the balloon wetting step with the paclitaxel solution, as a function of the drug amount which is intended to be deposited.
  • As shown in FIG. 1, a suitable device for rotating a catheter balloon 2 is indicated with the numeral 1. The catheter balloon 2 comprises a catheter section 3 and a balloon section 4, that is shown in the inflated condition.
  • The device 1 comprises a basement 4, a first motor unit 5 and a second motor unit 6. Each motor unit 5, 6 comprises clamping means 8, 8′ to clamp the two ends of the catheter balloon 2.
  • Preferably, the distal clamping means 8 acts upon the guide wire (not shown) on which the catheter balloon is loaded. Preferably, the proximal clamping means 8′ acts upon the connector (luer) (not shown) the catheter balloon is provided with.
  • The motor units 5, 6 are preferably brushless motors. The motor units 5, 6 are synchronously operated. A command and control unit 7 provides for the synchronous operation of the two motor units 5, 6. This is important, in order to avoid torsion of the catheter balloon 2.
  • One or more supporting means 9, depending on the balloon length, are also provided in order to keep the catheter balloon 2 in an horizontal position.
  • According to another aspect, the invention relates to a catheter balloon completely or partially coated with paclitaxel in crystalline hydrated solvated form, having an immediate release and bioavailability of a therapeutically effective amount of paclitaxel at the site of intervention.
  • With “paclitaxel in crystalline hydrated solvated form” is meant paclitaxel with 2 to 3 molecules of water of crystallization and with 1 to 3 molecules of solvent.
  • It shall be noted that, both in the case of the hydrated crystalline form and the hydrated solvated crystalline form as defined before, paclitaxel tends to form dimers which take in water and/or the solvent into the crystalline structure. Therefore, it is possible that the number of molecules of water of crystallization or solvent into the solvate per molecule of paclitaxel is not defined by an integer, but by a decimal. For example, if a hydrated solvate is formed by crystallization from a solvent such as dioxane/water, a dimer can be obtained, which takes in 5 water molecules and 3 dioxane molecules: in this case, therefore, there will be 2.5 molecules of water of crystallization and 1.5 molecules dioxane per molecule of paclitaxel.
  • The crystalline hydrated solvated form of paclitaxel can be obtained from an aqueous solvent preferably selected from dioxane/water, DMF/water, DMSO/water, N-methylpyrrolidone/water, acetonitrile/water, N,N-dimethylacetamide/water, 1,3-dimethyl-3,4,5,6-tetrahydro-2-(1H)-pyrimidinone/water, 1,3-dimethyl-2-imidazolidinone/water mixtures, or mixtures thereof, by operating under suitable conditions, such as those described in the patent publication WO 03/0475078 in the name of Bristol-Myers Squibb Co., the content of which, relatively to such preparation methods, is incorporated herein by reference.
  • The preparation modes of the balloon completely or partially coated with paclitaxel in crystalline hydrated solvated form are completely similar to those described above for the hydrated crystalline form; therefore, they will not be further described.
  • According to a further aspect of the invention, a catheter balloon completely or partially coated with paclitaxel in crystalline hydrated or crystalline solvated hydrated form, having an immediate release and bioavailability of a therapeutically effective amount of paclitaxel at the site of intervention, can be obtained by dissolving paclitaxel in an aqueous solvent, as defined before, in the presence of urea, by completely or partially wetting the balloon surface with such solution, and by letting the solvent to evaporate to the formation of a crystalline layer having a white, homogeneous, or partially inhomogeneous appearance.
  • It has been noticed that the presence of urea in the coating layer of paclitaxel on the balloon surface promotes the release of the drug from such surface. Urea can be used in amounts ranging between 1 and 100 mg per mL solvent, preferably between 4 and 10 mg per mL solvent, more preferably about 7 mg per mL solvent.
  • It is a further object of the present invention a catheter balloon completely or partially coated with paclitaxel in crystalline hydrated or crystalline solvated hydrated form, having an immediate release and bioavailability of a therapeutically effective amount of paclitaxel at the site of intervention, in which said balloon is made of a polyether-polyamide block copolymer or “compound” thereof with a polyamide.
  • The polyether-polyamide block copolymer according to the invention is an elastomer comprising polyamide block-forming monomers, representing the hard portion of the material, modified with a group representing the soft portion.
  • This elastomer is obtained by polymerization of a polyamide block-forming compound selected from the group consisting of an aminocarboxylic acid according to the formula (1) and a lactam according to the formula (2):
  • Figure US20110295200A1-20111201-C00001
  • with a triblock polyetherdiamine compound of formula (3):
  • Figure US20110295200A1-20111201-C00002
      • and with a dicarboxylic acid according to the formula (4):

  • HOOC—(R3)m-COOH   (4)
  • In the above-mentioned formulae, each of the R1, R2, and R3 groups represents linking groups comprising a hydrocarbon chain therein, optionally interrupted by one or more amide groups.
  • Preferably, R1 and R2 independently comprise an alkylene group having 2 to 20 carbon atoms and amide bonds, and R3 comprises an alkylene group having 1 to 20 carbon atoms;
  • x can vary between 1 and 20, preferably between 1 and 18, more preferably between 1 and 16; y can vary between 4 and 50, preferably between 5 and 45, more preferably between 8 and 30, and z can vary between 1 and 20, preferably between 1 and 18, more preferably between 1 and 12;
  • m is 0 or 1.
  • Generally, the polymerization is carried out by using 15 to 70% by weight of the compound of formula (1) and/or (2), and a mixture of compounds of formulae (3) and (4) in an overall weight percentage between 30 and 85%. This polymerization is carried out in a reactor at a temperature ranging between 150 and 300° C., preferably between 160 and 280° C., more preferably between 180 and 250° C.
  • Compounds of such copolymers with polyamides can be obtained by mixing, according to known techniques, the copolymer in amounts from 10 to 90% by weight, preferably 75 to 25%, more preferably 60 to 40% by weight, with an amount of polyamide to completion of 100%.
  • Preferably, the polyamide is polyamide-12.
  • Such copolymers and the compounds thereof with polyamides are known, and have been described in detail in the patent publication WO 2007/132485 A1, the content of which, relatively to the structure of such materials, and obtaining thereof, is incorporated herein by reference.
  • It has been observed that the use of such material in the construction of the catheter balloon of the invention provides optimal characteristics of paclitaxel release, while balancing the necessary ability of retaining the drug during the processing and use steps far from the site of intervention with the easiness to release the paclitaxel layer to the vascular cell wall in the short contact time between this and the inflated balloon surface, at the site of intervention.
  • It is a further object of the present invention a catheter balloon completely or partially coated with paclitaxel in crystalline hydrated or crystalline solvated hydrated form, having an immediate release and bioavailability of a therapeutically effective amount of paclitaxel at the site of intervention, in which said balloon is made of polyamide-12.
  • It is a further object of the present invention a catheter balloon completely or partially coated with paclitaxel in crystalline hydrated or crystalline solvated hydrated form, having an immediate release and bioavailability of a therapeutically effective amount of paclitaxel at the site of intervention, in which said balloon is made of polyester amide.
  • The polyester amide used in the present invention can be described by the following general formula:

  • H—(O—PF—OOC—PA—COO—PF—OOC—PA—CO)n—OH
  • in which PA is a polyamide segment, PF is a diol segment comprising OH-terminating dimer diol segments, and n is a number ranging between 5 and 20.
  • The content of the diol component within the polyester-amide copolymer is 5-50% by weight. Preferably, the concentration of the diol component ranges between 10 to 30% by weight, still more preferably between 10 and 20% by weight of the total formulation.
  • These polymers are known, and have been described in detail in the patent publication WO 2005/037337 A1, the content of which, relatively to the chemical structure and the preparation methods of such materials, is incorporated herein by reference.
  • It is a further object of the present invention a catheter balloon completely or partially coated with paclitaxel in crystalline hydrated or crystalline solvated hydrated form, having an immediate release and bioavailability of a therapeutically effective amount of paclitaxel at the site of intervention, in which said balloon has a surface which is hydrophilic or hydrophilized by suitable hydrophilizing treatment.
  • For example, the catheter balloon surface according to the invention can be made hydrophilic by treatment with plasma-activated oxygen.
  • In all the above-described embodiments, paclitaxel is present in the catheter balloon coating layer in amounts ranging between 1 and 20 μg/mm2, preferably between 2 and 7 μg/mm2, more preferably between 3 and 5 μg/mm2.
  • The invention will now be further described by means of the following examples, given by way of non-limiting example.
  • EXAMPLE 1A Coating of Catheter Balloons with Crystalline Hydrated or Crystalline Hydrated Solvated Paclitaxel
  • Paclitaxel solutions have been prepared at a 50 mg/mL concentration in the following solvents:
  • (1) 9:1 THF/water
  • (2) 9:1 THF/water with addition of 15 mg/mL urea
  • (3) 6.5:3.5 THF/water
  • (4) Acetone/ethanol/water
  • (5) Acetic acid (comparative solution)
  • (6) Dichloromethane (comparative solution)
  • It shall be noted that paclitaxel in a crystalline hydrated or solvated hydrated form according to the invention is not obtained by crystallization from acetic acid. Instead, amorphous paclitaxel is obtained by precipitation from dichloromethane.
  • Some balloons—made of a polyamide-12+polyether-polyamide block copolymer compound (70% UBESTA® XPA9063+30% UBESTA® 3030XA) and in a folded condition—have been coated with paclitaxel by wetting the surface thereof with equal volumes of the solutions (1)-(6) by means of a Hamilton syringe, according to the previously described modes. For each solution, several balloons have been used.
  • Then, the balloons have been dried under vacuum.
  • The appearance of the coating was white, not always homogeneous.
  • EXAMPLE 1B Coating of Catheter Balloons with Crystalline Hydrated or Crystalline Hydrated Solvated Paclitaxel (Coating in an Unfolded Condition)
  • The procedure of example 1A has been repeated using coating solution (2), by inflating first the folded balloons at 7 bar, then removing the pressurised air source and coating the inflated balloons by means of a Hamilton syringe. The coated balloons have then been re-folded after about 1 minute after the coating step, while the surface thereof was still wet.
  • The appearance of the coating was white, substantially homogeneous.
  • EXAMPLE 2 Assessment of Paclitaxel Adhesion on the Surface of the Catheter Balloons
  • The balloons prepared according to the example 1 have been subjected to some assessments, in order to determine the drug adhesion under the various conditions.
  • Test A
  • First, the dry adhesion has been assessed, which is useful to determine the paclitaxel loss which can occur in the production or handling steps of the balloon. Such determination has been carried out by dry expanding the balloon and shaking the inflated balloon within a tube.
  • The paclitaxel content in the tube was determined by HPLC/UV. The drug was taken up with ethanol, the tubes were closed and vigorously vortexed for at least 30 seconds, followed by a treatment in an ultrasound bath for 30 minutes. At least 70 μl of extract were injected into the HPLC, together with a paclitaxel standard solution (concentration of about 20 μg/mL). The results are reported in Table I.
  • Test B
  • Release of paclitaxel at the site of intervention has been assessed in experiments on castrated male pigs, approximately 3 months old, and weighing about 30 kg. The pigs were sedated by intramuscular injection of ketamine and xylazine. Anaesthesia was started by intravenous injection of propofol, followed by orotracheal intubation, and was maintained with 1-2 vol % isoflurane, vol % N2O2, and 30 vol % oxygen. All the animals received 5.000 IU heparin, 250 mg aspirine, and 200 mg nitroglicerine via the intracoronary route. The coronary arteries were monitored by means of a standard angiography technique through the left carotid artery.
  • The animals were treated with the paclitaxel-coated balloons (solutions (1)-(6)) mounted on catheter.
  • Some balloons, once the site of intervention has been reached, were kept floating in the blood flow for 1 minute without expanding them, then they were retracted, introduced into suitable tubes, inflated, and separated from the catheter. After that, they were extracted with ethanol as described in test A, and finally subjecting the tube to centrifugation for 10 minutes. The extracts were analyzed by HPLC/UV as previously described, so as to determine the paclitaxel amount which is dispersed in the blood flow. The results are reported in Table I.
  • Other balloons, on which stents had been mounted, have instead been introduced, inflated, and then deflated and retracted, then undergoing the same extraction treatment of those non-inflated. In this case, the residual paclitaxel amount left on the balloon after contacting the vessel wall was determined.
  • After a period of time ranging between 15 and 25 minutes, the animals were sacrificed by administration of 20% KCl under deep anaesthesia. Hearts were quickly removed, and the arterial segments on which the stent was arranged, plus a portion 5 mm down- and upstream the stent, were sectioned, placed in pre-weighted tubes to determine the weight thereof, and subjected to extraction with a predetermined amount of ethanol to achieve a >50% concentration. After 30 minutes of extraction at room temperature with ultrasounds and centrifugation for 10 minutes, the extracts were analyzed by HPLC/UV as described before, so as to determine the paclitaxel amount absorbed by the vascular tissue. The results are reported in Table I.
  • TABLE I
    Results of drug adhesion, release, and uptake by the vascular tissue
    % paclitaxel % paclitaxel % paclitaxel
    % paclitaxel lost in blood not released absorbed by
    Deposition lost by dry flow (non- to the site of the vascular
    solution expansion inflated ballon) intervention tissue
    (1) 4 ± 3 22 ± 3  32 ± 9  13.3 ± 7.3 
    (2)/EX. 1A 24 ± 1  42 ± 3  13 ± 3  19.7 ± 11.3
    (2)/EX. 1B 7 ± 4 27 ± 17 16 ± 8  17.7 ± 11.9
    (3) 10 ± 5  26 ± 11 30 ± 6  17.4 ± 5.5 
    (4) 11 ± 11 33 ± 13 9 ± 4 23.4 ± 8.1 
    (5) 3 ± 2 5 ± 4 64 ± 5  5.2 ± 3.2
    (6) 4 ± 3 41 ± 26 11 ± 7  17.4 ± 7.2 
  • Data reported in Table I show that paclitaxel release is noticeably higher when the drug is present in crystalline hydrated or solvated hydrated form (lines (1) to (4)) compared to the non-hydrated form (line (5)). In fact, in the latter case, most paclitaxel (64%±5%) remains adhered to the balloon surface, and the drug amount absorbed by the vascular tissue is only 5.2%±3.2%.
  • As regards paclitaxel in the amorphous form (line (6)), although data show a high amount of drug released by the balloon and absorbed into the tissues, further experiments for the restenosis inhibition assessment demonstrated an inactivity of such form. In such further experiments, paclitaxel in crystalline hydrated or solvated hydrated form (lines (1)-(4)) exhibited, instead, a restenosis inhibition action in the animal.
  • Data also show that the presence of urea in the deposition solution (line (2)) produces a higher paclitaxel release and a higher amount of drug absorbed in the vascular tissue, compared to the same solution without the presence of urea (line (1)).
  • The coating in the inflated state, followed by re-folding while still wet, allows a better adherence of the drug onto the balloon surface.
  • Further investigations demonstrated that the material of which the balloon is made has also a considerable impact on the paclitaxel release properties, the polyether-polyamide block copolymer, or the compound thereof with polyamides giving the best results for drug elution.
  • EXAMPLE 3 Determination of the Crystalline Rorm of Paclitaxel
  • Paclitaxel in crystalline hydrated form was identified by IR analysis under the conditions reported in the literature, thus obtaining a spectrum which was equivalent to what has been described in Jeong Hoon Lee et al., Bull. Korean Chem. Soc. 2001, vol. 22, No. 8, 925-928.

Claims (41)

1. A catheter balloon completely or partially coated with paclitaxel in crystalline hydrated form, having an immediate release and bioavailability of a therapeutically effective amount of paclitaxel at the site of intervention.
2. The catheter balloon completely or partially coated with paclitaxel in crystalline hydrated solvated form, having an immediate release and bioavailability of a therapeutically effective amount of paclitaxel at the site of intervention.
3. The catheter balloon according to claim 1, wherein said crystalline hydrated form comprises water of crystallization in a molar ratio expressed by an integer or a decimal ranging between 2 and 4 per molecule of paclitaxel.
4. The catheter balloon according to claim 2, wherein said crystalline hydrated solvated form comprises water of crystallization in a molar ratio expressed by an integer or a decimal from 2 to 3, and solvating solvent in a molar ratio expressed by an integer or a decimal from 1 to 3 per molecule of paclitaxel.
5. The catheter balloon according to any one of the claims 1 to 4, wherein said release of a therapeutically effective amount of paclitaxel occurs in a period of time ranging between 1 second and 1.5 minutes, preferably between 20 seconds and 1 minute.
6. The catheter balloon according to any one of the claims 1 to 5, wherein said bioavailability of a therapeutically effective amount of paclitaxel occurs in periods of time ranging between 1 second and 25 minutes, preferably between 20 seconds and 25 minutes.
7. The catheter balloon according to any one of the claims 1 to 6, wherein said paclitaxel in crystalline hydrated or crystalline solvated hydrated form can be obtained by means of a method comprising:
i) dissolving paclitaxel in an aqueous solvent so as to form a paclitaxel solution;
ii) completely or partially wetting the balloon surface with such solution; and
iii) letting the solvent to evaporate.
8. The catheter balloon according to claim 7, wherein said aqueous solvent is selected from acetone/ethanol/water, tetrahydrofuran/water, methanol/water, acetone/water, ethanol/water, acetonitrile/water, DMF/water mixtures for crystalline hydrated paclitaxel, and from dioxane/water, DMF/water, DMSO/water, N-methylpyrrolidone/water, acetonitrile/water, N,N-dimethylacetamide/water, 1,3-dimethyl-3,4,5,6-tetrahydro-2-(1H)-pyrimidinone/water, 1,3-dimethyl-2-imidazolidinone/water mixtures, or mixtures thereof, for crystalline hydrated solvated paclitaxel.
9. The catheter balloon according to claim 8, wherein said aqueous solvent for the formation of paclitaxel in crystalline hydrated form is selected from a 9:1 tetrahydrofuran/water mixture, or a tetrahydrofuran/water mixture with ratios ranging between 9.5:0.5 and 65:35, or an acetone/ethanol/water mixture, in which the organic solvent is present in an amount not less than 50% by volume relative to water.
10. The catheter balloon according to any one of the claims 7 to 9, wherein said balloon can be obtained by depositing said paclitaxel solution on the folded balloon surface or on the surface of the balloon in inflated condition by means of a syringe, micropipette, or other similar dispensing means, and by making said dispensing means to slide on the surface from an end to the other one, and vice versa, while rotating the balloon around the longitudinal axis thereof, so as to establish a zigzag path.
11. The catheter balloon according to any one of the claims 7 to 10, wherein said paclitaxel solution of the step i) comprises urea, preferably in amounts ranging between 1 and 100 mg/mL, or between 4 and 10 mg per mL solvent, or about 7 mg per mL solvent.
12. The catheter balloon according to any one of claims 7 to 11, wherein the said paclitaxel has a concentration between 4 and 6 mg/ml in the said paclitaxel solution.
13. The catheter balloon according to any one of the claims 1 to 12, wherein said balloon is made of a polyether-polyamide block copolymer, or compound thereof with a polyamide.
14. The catheter balloon according to claim 13, wherein said polyether-polyamide block copolymer can be obtained by polymerization of a polyamide block-forming compound selected from the group consisting of an aminocarboxylic acid according to the formula (1), and a lactam according to the formula (2):
Figure US20110295200A1-20111201-C00003
with a triblock polyetherdiamine compound of formula (3):
Figure US20110295200A1-20111201-C00004
and with a dicarboxylic acid according to the formula (4):

HOOC—(R3)m-COOH   (4)
wherein each of the R1, R2, and R3 groups represents linking groups comprising a hydrocarbon chain therein, optionally interrupted by one or more amide groups.
15. The catheter balloon according to claim 14, wherein: R1 and R2 independently comprise an alkylene group having 2 to 20 carbon atoms and amide bonds; R3 comprises an alkylene group having 1 to 20 carbon atoms; x can vary between 1 and 20, or between 1 and 18, or between 1 and 16; y can vary between 4 and 50, or between 5 and 45, or between 8 and 30; z can vary between 1 and 20, or between 1 and 18, or between 1 and 12; m is 0 or 1.
16. The catheter balloon according to claim 14 or 15, wherein said polymerization is carried out by using 15 to 70% by weight of the compound of formula (1) and/or (2), and a mixture of compounds of formulae (3) and (4) in an overall weight percentage between 30 and 85%, at a temperature ranging between 150 and 300° C., or between 160 and 280° C., or between 180 and 250° C.
17. The catheter balloon according to any one of the claims 13 to 16, wherein said compounds of the polyether-polyamide block copolymer with a polyamide can be obtained by mixing the copolymer in amounts from 10 to 90% by weight, or 75 to 25%, or 60 to 40% by weight, with an amount of polyamide to completion of 100%.
18. The catheter balloon according to claim 17, wherein said polyamide is polyamide-12.
19. The catheter balloon according to any one of the claims 1 to 12, wherein said balloon is made of polyamide-12.
20. The catheter balloon according to any one of the claims 1 to 12, wherein said balloon is made of polyester amide.
21. The catheter balloon according to claim 20, wherein said polyester amide can be described by the following general formula:

H—(O—PF—OOC—PA—COO—PF—OOC—PA—CO)n—OH
wherein PA is a polyamide segment, PF is a diol segment comprising OH-terminating dimer diol segments, and n is a number ranging between 5 and 20.
22. The catheter balloon according to claim 21, wherein the content of the diol component within the polyester-amide copolymer is 5-50% by weight, or 10 to 30% by weight, or between 10 and 20% by weight of the total formulation.
23. The catheter balloon according to any one of the claims 1 to 22, wherein said balloon has a surface which is hydrophilic or hydrophilized by suitable hydrophilizing treatment.
24. The catheter balloon according to any one of the claims 1 to 23, wherein paclitaxel is present in the catheter balloon coating layer in amounts ranging between 1 and 20 μg/mm2, or between 2 and 7 μg/mm2, or between 3 and 5 μg/mm2.
25. A method of coating a catheter balloon with a drug, the said method comprising the following steps:
(a) Providing a balloon;
(b) Inflating the said balloon to a predetermined pressure;
(c) Coating the said inflated balloon of step (b) with a paclitaxel solution;
(d) Deflating the coated balloon of step (c);
(e) Folding the deflated balloon of step (d) when still wet;
(f) Optionally, applying to the said folded balloon a protective cover.
26. A method of coating a catheter balloon with a drug, the said method comprising the following steps:
(g) Providing a folded balloon, for example a balloon having 3 or 6 folds;
(h) Inflating the said folded balloon to a predetermined pressure;
(i) Coating the said inflated balloon of step (h) with a paclitaxel solution;
(j) Deflating the coated balloon of step (i);
(k) Re-folding the deflated balloon of step (j) when still wet;
(l) Optionally, applying to the said re-folded balloon a protective cover.
27. The method of claim 25 or 26, wherein in step (b) or (h) the said predetermined pressure is a pressure below the RBP pressure of the catheter balloon.
28. The method of claim 25 or 26, wherein the said predetermined pressure is between 5 and 9 bar.
29. The method according to any one of claims 25 to 28, wherein the said catheter balloon is disconnected from the pressurised air source before coating.
30. The method according to any one of claims 25 to 29, wherein the said inflating step (b) or (h) is prolonged for 20 to 40 seconds.
31. The method according to any one of claims 25 to 30, wherein step (c) or (i) of coating is performed by delivering the drug solution over the inflated balloon surface, starting delivery of the solution from the mid of the balloon length and moving to an end of the balloon, then to the opposite end, while the balloon is rotated.
32. The method according to claim 31, wherein the balloon catheter is rotated at a speed from about 5 rpm to about 30, preferably from about 10 rpm to about 20 rpm and the delivery time of the drug solution ranges from about 10 seconds to about 500 seconds.
33. The method according to any one of claims 25 to 32, wherein step (d) or (j) of deflation of the coated balloon is accomplished by applying vacuum to the catheter balloon opening and/or by pressing the balloon from the exterior.
34. The method according to any one of claims 25 to 33, wherein step (e) or (k) or folding or of re-folding, respectively, is performed within 20 minutes from the end of the coating step (c), or between 1 minute and 10 minutes, or between 1 minute and 5 minutes.
35. The method according to any one of claims 25 to 34, wherein step (f) or (l) is accomplished by inserting over the re-folded balloon a protective cover, typically a sleeve that envelops the balloon surface that has been coated with the drug.
36. The method according to claim 35, wherein the said sleeve is made of a low friction material having a friction coefficient below the friction coefficient of the material of which the balloon is made.
37. The method according to claim 36, wherein the said low friction material is polytetrafluoroethylene (PTFE).
38. A device (1) for rotating a catheter balloon (2) during the coating step with a drug, the said device (1) comprising a first motor unit (5) and a second motor unit (6) that rotate synchronously, the said first and second motor units (5, 6) comprising respective clamp means (8, 8′) to clamp opposite ends of a catheter balloon (2).
39. The device of claim 38, comprising a command and control unit (7) that operates synchronously the said first and second motor units (5, 6).
40. The device according to claim 38 or 39, wherein the said first and second motor units (5, 6) are brushless motors.
41. The device according to any one of claims 38 to 40, comprising one or more supporting means (9) for the catheter balloon (2).
US13/143,703 2009-01-09 2010-01-08 Drug-eluting medical device Abandoned US20110295200A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/143,703 US20110295200A1 (en) 2009-01-09 2010-01-08 Drug-eluting medical device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
ITMI2009A000014 2009-01-09
ITMI2009A000014A IT1394522B1 (en) 2009-01-09 2009-01-09 MEDICAL DEVICE WITH DRUG RELEASE
US15950309P 2009-03-12 2009-03-12
US61/159503 2009-03-12
PCT/EP2010/050162 WO2010079218A2 (en) 2009-01-09 2010-01-08 Drug-eluting medical device
US13/143,703 US20110295200A1 (en) 2009-01-09 2010-01-08 Drug-eluting medical device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/050162 A-371-Of-International WO2010079218A2 (en) 2009-01-09 2010-01-08 Drug-eluting medical device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/440,960 Continuation US10029032B2 (en) 2009-01-09 2017-02-23 Drug-eluting medical device

Publications (1)

Publication Number Publication Date
US20110295200A1 true US20110295200A1 (en) 2011-12-01

Family

ID=42060656

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/143,703 Abandoned US20110295200A1 (en) 2009-01-09 2010-01-08 Drug-eluting medical device
US15/440,960 Active US10029032B2 (en) 2009-01-09 2017-02-23 Drug-eluting medical device
US16/042,598 Active US10596303B2 (en) 2009-01-09 2018-07-23 Drug-eluting medical device
US16/824,138 Active US10874770B2 (en) 2009-01-09 2020-03-19 Drug-eluting medical device

Family Applications After (3)

Application Number Title Priority Date Filing Date
US15/440,960 Active US10029032B2 (en) 2009-01-09 2017-02-23 Drug-eluting medical device
US16/042,598 Active US10596303B2 (en) 2009-01-09 2018-07-23 Drug-eluting medical device
US16/824,138 Active US10874770B2 (en) 2009-01-09 2020-03-19 Drug-eluting medical device

Country Status (7)

Country Link
US (4) US20110295200A1 (en)
EP (3) EP2962706B1 (en)
JP (1) JP5647147B2 (en)
CN (1) CN102307602B (en)
ES (1) ES2539326T3 (en)
IT (1) IT1394522B1 (en)
WO (1) WO2010079218A2 (en)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014047379A1 (en) * 2012-09-21 2014-03-27 Merit Medical Systems, Inc. Drug-eluting rotational spun coatings and methods of use
US9011896B2 (en) 2010-04-19 2015-04-21 Angioscore, Inc. Coating formulations for scoring or cutting balloon catheters
US9034362B2 (en) 2008-09-15 2015-05-19 The Spectranetics Corporation Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens
US20150231308A1 (en) * 2012-07-10 2015-08-20 Bayer Pharma Aktiengesellschaft Catheter with drug coating
US9132211B2 (en) 2008-09-15 2015-09-15 The Spectranetics Corporation Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens
US9198968B2 (en) 2008-09-15 2015-12-01 The Spectranetics Corporation Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens
CN105188789A (en) * 2013-04-01 2015-12-23 泰尔茂株式会社 Drug coating layer
WO2016015874A1 (en) * 2014-08-01 2016-02-04 Lvd Biotech S.L. Paclitaxel-eluting balloon and method for manufacturing the same
US20160310708A1 (en) * 2015-04-23 2016-10-27 Terumo Kabushiki Kaisha Balloon coating method, balloon rotating method and balloon coating apparatus
US20160310990A1 (en) * 2015-04-23 2016-10-27 Terumo Kabushiki Kaisha Balloon coating method, balloon rotating method and balloon coating apparatus
US9586031B2 (en) 2005-05-11 2017-03-07 Angioscore, Inc. Methods and systems for delivering substances into luminal walls
US9592322B2 (en) 2012-03-27 2017-03-14 Terumo Kabushiki Kaisha Coating composition and medical device
WO2017046193A1 (en) 2015-09-15 2017-03-23 W. L. Gore & Associates, Inc. Drug composition and coating
US9603974B2 (en) 2012-03-27 2017-03-28 Terumo Kabushiki Kaisha Coating composition and medical device
US9655710B2 (en) 2011-01-28 2017-05-23 Merit Medical Systems, Inc. Process of making a stent
US20170281912A1 (en) * 2016-04-04 2017-10-05 Medtronic Vascular, Inc. Drug coated balloon
US9827703B2 (en) 2013-03-13 2017-11-28 Merit Medical Systems, Inc. Methods, systems, and apparatuses for manufacturing rotational spun appliances
US9901955B2 (en) 2014-04-01 2018-02-27 Terumo Kabushiki Kaisha Balloon coating method
US9901719B2 (en) * 2015-04-23 2018-02-27 Terumo Kabushiki Kaisha Balloon coating method, balloon rotating method and balloon coating apparatus
US9901720B2 (en) 2014-04-01 2018-02-27 Terumo Kabushiki Kaisha Positioning method for balloon coating
US9937328B2 (en) 2014-04-01 2018-04-10 Terumo Kabushiki Kaisha Positioning method for balloon coating
US9956385B2 (en) 2012-06-28 2018-05-01 The Spectranetics Corporation Post-processing of a medical device to control morphology and mechanical properties
US9987833B2 (en) 2012-01-16 2018-06-05 Merit Medical Systems, Inc. Rotational spun material covered medical appliances and methods of manufacture
US10028852B2 (en) 2015-02-26 2018-07-24 Merit Medical Systems, Inc. Layered medical appliances and methods
US10029032B2 (en) 2009-01-09 2018-07-24 Invatec Technology Center Gmbh Drug-eluting medical device
EP3351274A1 (en) * 2017-01-20 2018-07-25 Covidien LP Drug eluting medical device
EP3251720A4 (en) * 2015-04-23 2018-10-03 Terumo Kabushiki Kaisha Balloon coating method, balloon rotation method, and balloon coating device
US10143779B2 (en) 2014-05-16 2018-12-04 Terumo Kabushiki Kaisha Method of inhibiting thickening of vascular intima
US10149925B2 (en) 2014-05-16 2018-12-11 Terumo Kabushiki Kaisha Method of reducing the risk of embolization of peripheral blood vessels
US10188771B2 (en) 2014-05-16 2019-01-29 Terumo Kabushiki Kaisha Method of treating peripheral artery diseases in lower limbs
US10195311B2 (en) 2009-12-18 2019-02-05 Interface Biologics, Inc. Local delivery of drugs from self assembled coatings
EP3413964A4 (en) * 2016-02-08 2019-12-04 Orbusneich Medical Pte. Ltd Drug eluting balloon
US10507268B2 (en) 2012-09-19 2019-12-17 Merit Medical Systems, Inc. Electrospun material covered medical appliances and methods of manufacture
US10525171B2 (en) 2014-01-24 2020-01-07 The Spectranetics Corporation Coatings for medical devices
US10569061B2 (en) 2014-04-01 2020-02-25 Terumo Kabushiki Kaisha Balloon coating method, coat layer control method and balloon coating device
US10668188B2 (en) 2012-10-26 2020-06-02 Urotronic, Inc. Drug coated balloon catheters for nonvascular strictures
US10737075B2 (en) 2016-02-08 2020-08-11 Orbusneich Medical Pte. Ltd. Drug eluting balloon
US10799617B2 (en) 2013-03-13 2020-10-13 Merit Medical Systems, Inc. Serially deposited fiber materials and associated devices and methods
US10806830B2 (en) 2012-10-26 2020-10-20 Urotronic, Inc. Drug-coated balloon catheters for body lumens
US10850076B2 (en) 2012-10-26 2020-12-01 Urotronic, Inc. Balloon catheters for body lumens
US10881839B2 (en) 2012-10-26 2021-01-05 Urotronic, Inc. Drug-coated balloon catheters for body lumens
US10888640B2 (en) 2015-04-24 2021-01-12 Urotronic, Inc. Drug coated balloon catheters for nonvascular strictures
US10898700B2 (en) 2012-10-26 2021-01-26 Urotronic, Inc. Balloon catheters for body lumens
US11219436B2 (en) 2020-01-24 2022-01-11 PatchClamp Medtech, Inc. Tissue repair and sealing devices having a detachable graft and clasp assembly and methods for the use thereof
US11318232B2 (en) 2018-05-22 2022-05-03 Interface Biologics, Inc. Compositions and methods for delivering drugs to a vessel wall
US11478245B2 (en) 2019-05-08 2022-10-25 Covidien Lp Surgical stapling device
US11504450B2 (en) 2012-10-26 2022-11-22 Urotronic, Inc. Drug-coated balloon catheters for body lumens
US11596403B2 (en) 2019-05-08 2023-03-07 Covidien Lp Surgical stapling device
US11730864B2 (en) 2015-04-24 2023-08-22 Urotronic, Inc. Drug coated balloon catheters for nonvascular strictures
US11938287B2 (en) 2012-10-26 2024-03-26 Urotronic, Inc. Drug-coated balloon catheters for body lumens

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2458710C2 (en) 2007-01-21 2012-08-20 Хемотек Аг Medical device for treating lumen obturations and preventing threatening recurrent obturations
US9192697B2 (en) 2007-07-03 2015-11-24 Hemoteq Ag Balloon catheter for treating stenosis of body passages and for preventing threatening restenosis
EP2451496B1 (en) 2009-07-10 2015-07-22 Boston Scientific Scimed, Inc. Use of nanocrystals for a drug delivery balloon
EP2453938B1 (en) 2009-07-17 2015-08-19 Boston Scientific Scimed, Inc. Nucleation of drug delivery balloons to provide improved crystal size and density
EP2611476B1 (en) 2010-09-02 2016-08-10 Boston Scientific Scimed, Inc. Coating process for drug delivery balloons using heat-induced rewrap memory
US8669360B2 (en) 2011-08-05 2014-03-11 Boston Scientific Scimed, Inc. Methods of converting amorphous drug substance into crystalline form
WO2013028208A1 (en) 2011-08-25 2013-02-28 Boston Scientific Scimed, Inc. Medical device with crystalline drug coating
US11167063B2 (en) * 2013-03-14 2021-11-09 W. L. Gore & Associates, Inc. Porous composites with high-aspect ratio crystals
WO2014163092A1 (en) * 2013-04-01 2014-10-09 テルモ株式会社 Drug coat layer, method for controlling morphological form of drug coat layer, and medical device
JP6442135B2 (en) * 2013-04-01 2018-12-19 テルモ株式会社 Balloon coating method
DE102013014821A1 (en) * 2013-09-10 2015-03-12 Alexander Rübben Gefäßendoprothesenbeschichtung
US11147952B2 (en) * 2016-04-28 2021-10-19 Medtronic Vascular, Inc. Drug coated inflatable balloon having a thermal dependent release layer
AU2017280351B2 (en) * 2016-06-24 2020-09-03 W. L. Gore & Associates, Inc. Drug coated balloons and techniques for increasing vascular permeability
CN112933301B (en) * 2019-11-26 2023-01-24 上海微创医疗器械(集团)有限公司 Medicine-carrying implantation medical apparatus and preparation method thereof
CN116585602B (en) * 2023-07-18 2023-10-03 上海威高医疗技术发展有限公司 Method for improving utilization rate of medicine on surface of balloon and prepared balloon

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070178136A1 (en) * 2006-01-31 2007-08-02 Boston Scientific Scimed, Inc. Medical devices for therapeutic agent delivery with polymeric regions that contain copolymers having both soft segments and uniform length hard segments

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09108357A (en) * 1995-10-24 1997-04-28 Buaayu:Kk Balloon catheter
CA2255891C (en) * 1996-05-24 2007-12-04 Angiotech Pharmaceuticals, Inc. Compositions and methods for treating or preventing diseases of body passageways
CA2353606A1 (en) * 1998-12-03 2000-06-08 Boston Scientific Limited Stent having drug crystals thereon
DE10115740A1 (en) 2001-03-26 2002-10-02 Ulrich Speck Preparation for restenosis prophylaxis
IL161372A0 (en) 2001-11-30 2004-09-27 Bristol Myers Squibb Co Crystalline solvates of paclitaxel
JP2005511038A (en) 2001-11-30 2005-04-28 エモリー ユニバーシテイ Variant of factor VIII C2 domain
DE10244847A1 (en) * 2002-09-20 2004-04-01 Ulrich Prof. Dr. Speck Medical device for drug delivery
US7025752B2 (en) * 2002-11-06 2006-04-11 Advanced Cardiovascular Systems, Inc. Reduced slippage balloon catheter and method of using same
ES2309337T3 (en) * 2003-10-17 2008-12-16 Invatec S.R.L CATETER BALLS.
US7919108B2 (en) * 2006-03-10 2011-04-05 Cook Incorporated Taxane coatings for implantable medical devices
US7875284B2 (en) 2006-03-10 2011-01-25 Cook Incorporated Methods of manufacturing and modifying taxane coatings for implantable medical devices
AU2006343743A1 (en) 2006-05-12 2007-11-22 Invatec S.R.L. Angioplasty medical devices made of elastomeric material
US8414525B2 (en) 2006-11-20 2013-04-09 Lutonix, Inc. Drug releasing coatings for medical devices
US8425459B2 (en) * 2006-11-20 2013-04-23 Lutonix, Inc. Medical device rapid drug releasing coatings comprising a therapeutic agent and a contrast agent
RU2458710C2 (en) 2007-01-21 2012-08-20 Хемотек Аг Medical device for treating lumen obturations and preventing threatening recurrent obturations
DE102007003184A1 (en) * 2007-01-22 2008-07-24 Orlowski, Michael, Dr. Method for loading structured surfaces
DE102007036685A1 (en) * 2007-08-03 2009-02-05 Innora Gmbh Improved drug-coated medical devices their manufacture and use
JP5667559B2 (en) 2008-03-28 2015-02-12 サーモディクス,インコーポレイティド Insertable medical device having an elastic matrix with microparticles disposed thereon, and drug delivery method
IT1394522B1 (en) 2009-01-09 2012-07-05 Invatec Technology Ct Gmbh MEDICAL DEVICE WITH DRUG RELEASE

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070178136A1 (en) * 2006-01-31 2007-08-02 Boston Scientific Scimed, Inc. Medical devices for therapeutic agent delivery with polymeric regions that contain copolymers having both soft segments and uniform length hard segments

Cited By (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10342960B2 (en) 2005-05-11 2019-07-09 Angioscore, Inc. Methods and systems for delivering substances into luminal walls
US9586031B2 (en) 2005-05-11 2017-03-07 Angioscore, Inc. Methods and systems for delivering substances into luminal walls
US11420030B2 (en) 2005-05-11 2022-08-23 Angioscore, Inc. Methods and systems for delivering substances into luminal walls
US10076641B2 (en) 2005-05-11 2018-09-18 The Spectranetics Corporation Methods and systems for delivering substances into luminal walls
US9034362B2 (en) 2008-09-15 2015-05-19 The Spectranetics Corporation Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens
US10314948B2 (en) 2008-09-15 2019-06-11 The Spectranetics Coporation Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens
US10046093B2 (en) 2008-09-15 2018-08-14 The Spectranetics Corporation Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens
US10117970B2 (en) 2008-09-15 2018-11-06 The Spectranetics Corporation Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens
US9603973B2 (en) 2008-09-15 2017-03-28 The Spectranetics Corporation Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens
US9198968B2 (en) 2008-09-15 2015-12-01 The Spectranetics Corporation Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens
US9132211B2 (en) 2008-09-15 2015-09-15 The Spectranetics Corporation Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens
US10987452B2 (en) 2008-09-15 2021-04-27 The Spectranetics Corporation Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens
US10029032B2 (en) 2009-01-09 2018-07-24 Invatec Technology Center Gmbh Drug-eluting medical device
US10874770B2 (en) 2009-01-09 2020-12-29 Invatec Technology Center Gmbh Drug-eluting medical device
US10596303B2 (en) 2009-01-09 2020-03-24 Invatec Technology Center Gmbh Drug-eluting medical device
US10195311B2 (en) 2009-12-18 2019-02-05 Interface Biologics, Inc. Local delivery of drugs from self assembled coatings
US10314947B2 (en) 2010-04-19 2019-06-11 Angioscore, Inc. Coating formulations for scoring or cutting balloon catheters
US9173977B2 (en) 2010-04-19 2015-11-03 Angioscore, Inc. Coating formulations for scoring or cutting balloon catheters
US9011896B2 (en) 2010-04-19 2015-04-21 Angioscore, Inc. Coating formulations for scoring or cutting balloon catheters
US10583225B2 (en) 2010-04-19 2020-03-10 Angioscore, Inc. Method of coating scoring or cutting balloon catheters
US9072812B2 (en) 2010-04-19 2015-07-07 Angioscore, Inc. Coating formulations for scoring or cutting balloon catheters
US9078951B2 (en) 2010-04-19 2015-07-14 Angioscore, Inc. Coating formulations for scoring or cutting balloon catheters
US9770536B2 (en) 2010-04-19 2017-09-26 Angioscore, Inc. Coating formulations for scoring or cutting balloon catheters
US9101684B2 (en) 2010-04-19 2015-08-11 Angioscore, Inc. Coating formulations for scoring or cutting balloon catheters
US10471184B2 (en) 2010-04-19 2019-11-12 Angioscore, Inc. Coating formulations for scoring or cutting balloon catheters
US10383982B2 (en) 2010-04-19 2019-08-20 Angioscore, Inc. Coating formulations for scoring or cutting balloon catheters
US10046092B2 (en) 2010-04-19 2018-08-14 The Spectranetics Corporation Coating formulations for scoring or cutting balloon catheters
US10653512B2 (en) 2011-01-28 2020-05-19 Merit Medical Systems, Inc. Electrospun PTFE coated stent and method of use
US9655710B2 (en) 2011-01-28 2017-05-23 Merit Medical Systems, Inc. Process of making a stent
US10653511B2 (en) 2011-01-28 2020-05-19 Merit Medical Systems, Inc. Electrospun PTFE coated stent and method of use
US9987833B2 (en) 2012-01-16 2018-06-05 Merit Medical Systems, Inc. Rotational spun material covered medical appliances and methods of manufacture
US10005269B2 (en) 2012-01-16 2018-06-26 Merit Medical Systems, Inc. Rotational spun material covered medical appliances and methods of manufacture
US10675850B2 (en) 2012-01-16 2020-06-09 Merit Medical Systems, Inc. Rotational spun material covered medical appliances and methods of manufacture
US11623438B2 (en) 2012-01-16 2023-04-11 Merit Medical Systems, Inc. Rotational spun material covered medical appliances and methods of manufacture
US9592322B2 (en) 2012-03-27 2017-03-14 Terumo Kabushiki Kaisha Coating composition and medical device
US9603974B2 (en) 2012-03-27 2017-03-28 Terumo Kabushiki Kaisha Coating composition and medical device
US10045960B2 (en) 2012-03-27 2018-08-14 Terumo Kabushiki Kaisha Coating composition and medical device
US9956385B2 (en) 2012-06-28 2018-05-01 The Spectranetics Corporation Post-processing of a medical device to control morphology and mechanical properties
US20150231308A1 (en) * 2012-07-10 2015-08-20 Bayer Pharma Aktiengesellschaft Catheter with drug coating
US10064981B2 (en) * 2012-07-10 2018-09-04 Bayer Pharma Aktiengesellschaft Catheter with drug coating
US11541154B2 (en) 2012-09-19 2023-01-03 Merit Medical Systems, Inc. Electrospun material covered medical appliances and methods of manufacture
US10507268B2 (en) 2012-09-19 2019-12-17 Merit Medical Systems, Inc. Electrospun material covered medical appliances and methods of manufacture
US9198999B2 (en) 2012-09-21 2015-12-01 Merit Medical Systems, Inc. Drug-eluting rotational spun coatings and methods of use
WO2014047379A1 (en) * 2012-09-21 2014-03-27 Merit Medical Systems, Inc. Drug-eluting rotational spun coatings and methods of use
US11471655B2 (en) 2012-10-26 2022-10-18 Urotronic, Inc. Drug-coated balloon catheters for body lumens
US11648337B2 (en) 2012-10-26 2023-05-16 Urotronic, Inc. Drug-coated balloon catheters for body lumens
US10994103B2 (en) 2012-10-26 2021-05-04 Urotronic, Inc. Drug-coated balloon catheters for body lumens
US11439801B2 (en) 2012-10-26 2022-09-13 Urotronic, Inc. Balloon catheters for body lumens
US11471656B2 (en) 2012-10-26 2022-10-18 Urotronic, Inc. Drug-coated balloon catheters for body lumens
US10675386B2 (en) 2012-10-26 2020-06-09 Urotronic, Inc. Drug coated balloon catheters for nonvascular strictures
US10987451B2 (en) 2012-10-26 2021-04-27 Urotronic, Inc. Drug-coated balloon catheters for body lumens
US11504450B2 (en) 2012-10-26 2022-11-22 Urotronic, Inc. Drug-coated balloon catheters for body lumens
US10668188B2 (en) 2012-10-26 2020-06-02 Urotronic, Inc. Drug coated balloon catheters for nonvascular strictures
US11938287B2 (en) 2012-10-26 2024-03-26 Urotronic, Inc. Drug-coated balloon catheters for body lumens
US10898700B2 (en) 2012-10-26 2021-01-26 Urotronic, Inc. Balloon catheters for body lumens
US10881839B2 (en) 2012-10-26 2021-01-05 Urotronic, Inc. Drug-coated balloon catheters for body lumens
US11925729B2 (en) 2012-10-26 2024-03-12 Urotronic, Inc. Drug-coated balloon catheters for body lumens
US10994104B2 (en) 2012-10-26 2021-05-04 Urotronic, Inc. Balloon catheters for body lumens
US11648338B2 (en) 2012-10-26 2023-05-16 Urotronic, Inc. Drug-coated balloon catheters for body lumens
US10806830B2 (en) 2012-10-26 2020-10-20 Urotronic, Inc. Drug-coated balloon catheters for body lumens
US10850076B2 (en) 2012-10-26 2020-12-01 Urotronic, Inc. Balloon catheters for body lumens
US11826532B2 (en) 2012-10-26 2023-11-28 Urotronic, Inc. Balloon catheters for body lumens
US11826533B2 (en) 2012-10-26 2023-11-28 Urotronic, Inc. Balloon catheters for body lumens
US9827703B2 (en) 2013-03-13 2017-11-28 Merit Medical Systems, Inc. Methods, systems, and apparatuses for manufacturing rotational spun appliances
US10953586B2 (en) 2013-03-13 2021-03-23 Merit Medical Systems, Inc. Methods, systems, and apparatuses for manufacturing rotational spun appliances
US10799617B2 (en) 2013-03-13 2020-10-13 Merit Medical Systems, Inc. Serially deposited fiber materials and associated devices and methods
US10835643B2 (en) 2013-04-01 2020-11-17 Terumo Kabushiki Kaisha Drug coating layer
US9872940B2 (en) 2013-04-01 2018-01-23 Terumo Kabushiki Kaisha Drug coating layer
CN105188789A (en) * 2013-04-01 2015-12-23 泰尔茂株式会社 Drug coating layer
US10525171B2 (en) 2014-01-24 2020-01-07 The Spectranetics Corporation Coatings for medical devices
US9937328B2 (en) 2014-04-01 2018-04-10 Terumo Kabushiki Kaisha Positioning method for balloon coating
US10328245B2 (en) 2014-04-01 2019-06-25 Terumo Kabushiki Kaisha Positioning method for balloon coating
US9901720B2 (en) 2014-04-01 2018-02-27 Terumo Kabushiki Kaisha Positioning method for balloon coating
US10799909B2 (en) 2014-04-01 2020-10-13 Terumo Kabushiki Kaisha Balloon coating method
US9901955B2 (en) 2014-04-01 2018-02-27 Terumo Kabushiki Kaisha Balloon coating method
US10569061B2 (en) 2014-04-01 2020-02-25 Terumo Kabushiki Kaisha Balloon coating method, coat layer control method and balloon coating device
US10143779B2 (en) 2014-05-16 2018-12-04 Terumo Kabushiki Kaisha Method of inhibiting thickening of vascular intima
US10149925B2 (en) 2014-05-16 2018-12-11 Terumo Kabushiki Kaisha Method of reducing the risk of embolization of peripheral blood vessels
US10188771B2 (en) 2014-05-16 2019-01-29 Terumo Kabushiki Kaisha Method of treating peripheral artery diseases in lower limbs
WO2016015874A1 (en) * 2014-08-01 2016-02-04 Lvd Biotech S.L. Paclitaxel-eluting balloon and method for manufacturing the same
US10028852B2 (en) 2015-02-26 2018-07-24 Merit Medical Systems, Inc. Layered medical appliances and methods
US11026777B2 (en) 2015-02-26 2021-06-08 Merit Medical Systems, Inc. Layered medical appliances and methods
US20160310990A1 (en) * 2015-04-23 2016-10-27 Terumo Kabushiki Kaisha Balloon coating method, balloon rotating method and balloon coating apparatus
JP2016202915A (en) * 2015-04-23 2016-12-08 テルモ株式会社 Balloon coating method, balloon rotating method, and balloon coating device
US10391284B2 (en) * 2015-04-23 2019-08-27 Terumo Kabushiki Kaisha Balloon coating method, balloon rotating method and balloon coating apparatus
US10350394B2 (en) * 2015-04-23 2019-07-16 Terumo Kabushiki Kaisha Balloon coating method, balloon rotating method, and balloon coating device
US10427184B2 (en) * 2015-04-23 2019-10-01 Terumo Kabushiki Kaisha Balloon coating method, balloon rotating method and balloon coating apparatus
US9901719B2 (en) * 2015-04-23 2018-02-27 Terumo Kabushiki Kaisha Balloon coating method, balloon rotating method and balloon coating apparatus
US10646697B2 (en) * 2015-04-23 2020-05-12 Terumo Kabushiki Kaisha Balloon coating method, balloon rotating method and balloon coating apparatus
US20160310708A1 (en) * 2015-04-23 2016-10-27 Terumo Kabushiki Kaisha Balloon coating method, balloon rotating method and balloon coating apparatus
EP3251720A4 (en) * 2015-04-23 2018-10-03 Terumo Kabushiki Kaisha Balloon coating method, balloon rotation method, and balloon coating device
US10888640B2 (en) 2015-04-24 2021-01-12 Urotronic, Inc. Drug coated balloon catheters for nonvascular strictures
US11484628B2 (en) 2015-04-24 2022-11-01 Urotronic, Inc. Drug coated balloon catheters for nonvascular strictures
US11904072B2 (en) 2015-04-24 2024-02-20 Urotronic, Inc. Drug coated balloon catheters for nonvascular strictures
US11730864B2 (en) 2015-04-24 2023-08-22 Urotronic, Inc. Drug coated balloon catheters for nonvascular strictures
US10561766B2 (en) 2015-09-15 2020-02-18 W. L. Gore & Associates, Inc. Drug composition and coating
EP3349810B1 (en) * 2015-09-15 2020-07-01 W. L. Gore & Associates, Inc. Drug composition and coating
US11529441B2 (en) 2015-09-15 2022-12-20 W. L. Gore & Associates, Inc. Drug composition and coating
WO2017046193A1 (en) 2015-09-15 2017-03-23 W. L. Gore & Associates, Inc. Drug composition and coating
US10792477B2 (en) 2016-02-08 2020-10-06 Orbusneich Medical Pte. Ltd. Drug eluting balloon
US10737075B2 (en) 2016-02-08 2020-08-11 Orbusneich Medical Pte. Ltd. Drug eluting balloon
EP3413964A4 (en) * 2016-02-08 2019-12-04 Orbusneich Medical Pte. Ltd Drug eluting balloon
US11559671B2 (en) 2016-02-08 2023-01-24 Orbusneich Medical Pte. Ltd. Drug eluting balloon
US10695542B2 (en) * 2016-04-04 2020-06-30 Medtronic Vascular, Inc. Drug coated balloon
US20200324092A1 (en) * 2016-04-04 2020-10-15 Medtronic Vascular, Inc. Drug coated balloon
US20170281912A1 (en) * 2016-04-04 2017-10-05 Medtronic Vascular, Inc. Drug coated balloon
CN114632193A (en) * 2017-01-20 2022-06-17 柯惠Lp公司 Drug eluting medical device
US11571498B2 (en) 2017-01-20 2023-02-07 Covidien Lp Drug eluting medical device
EP3351274A1 (en) * 2017-01-20 2018-07-25 Covidien LP Drug eluting medical device
CN108325053A (en) * 2017-01-20 2018-07-27 柯惠Lp公司 Drug eluting medical device
US10874768B2 (en) 2017-01-20 2020-12-29 Covidien Lp Drug eluting medical device
US11318232B2 (en) 2018-05-22 2022-05-03 Interface Biologics, Inc. Compositions and methods for delivering drugs to a vessel wall
US11596403B2 (en) 2019-05-08 2023-03-07 Covidien Lp Surgical stapling device
US11478245B2 (en) 2019-05-08 2022-10-25 Covidien Lp Surgical stapling device
US11219436B2 (en) 2020-01-24 2022-01-11 PatchClamp Medtech, Inc. Tissue repair and sealing devices having a detachable graft and clasp assembly and methods for the use thereof

Also Published As

Publication number Publication date
ES2539326T3 (en) 2015-06-29
EP4019059A1 (en) 2022-06-29
EP2962706B1 (en) 2022-03-23
EP2385848A2 (en) 2011-11-16
US20190015562A1 (en) 2019-01-17
CN102307602A (en) 2012-01-04
US10874770B2 (en) 2020-12-29
EP2962706A1 (en) 2016-01-06
US20200215234A1 (en) 2020-07-09
EP2385848B1 (en) 2015-03-18
US10596303B2 (en) 2020-03-24
JP5647147B2 (en) 2014-12-24
WO2010079218A3 (en) 2011-04-28
US10029032B2 (en) 2018-07-24
CN102307602B (en) 2014-12-10
IT1394522B1 (en) 2012-07-05
ITMI20090014A1 (en) 2010-07-10
US20170173220A1 (en) 2017-06-22
WO2010079218A2 (en) 2010-07-15
JP2012514510A (en) 2012-06-28

Similar Documents

Publication Publication Date Title
US10874770B2 (en) Drug-eluting medical device
US20100233228A1 (en) Drug-Eluting Medical Device
EP2538990B1 (en) Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens
EP2337584B1 (en) Local delivery of hydrophobic therapeutic agents to the surface of body lumens
JP6849725B2 (en) Removable cover for drug-releasing medical devices
US20130190725A1 (en) Medical device having tissue engaging member and method for delivery of a therapeutic agent
US20100285085A1 (en) Balloon coating with drug transfer control via coating thickness
US20120316496A1 (en) Use of compositions to coat catheter balloons and coated catheter balloons
US20160184560A1 (en) Balloon Catheter With Elastomeric Sheath and Methods
KR20150008432A (en) Coated medical devices comprising a water-insoluble therapeutic agent and an additive
AU2015209714B2 (en) Coatings for medical devices
JP6307492B2 (en) Drug administration balloon catheter and method for manufacturing the same
ITMI20090015A1 (en) MEDICAL DEVICE WITH DRUG RELEASE
US20210346658A1 (en) Active-substance coating for balloons of balloon catheters

Legal Events

Date Code Title Description
AS Assignment

Owner name: INVATEC TECHNOLOGY CENTER GMBH, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SPECK, ULRICH;REEL/FRAME:026774/0122

Effective date: 20110715

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION

AS Assignment

Owner name: INVATEC TECHNOLOGY CENTER GMGH, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SPECK, ULRICH;SCHAFFNER, SILVIO;RENKE-GLUSZKO, MAGDALENA;SIGNING DATES FROM 20110715 TO 20110802;REEL/FRAME:046405/0048