US20110290189A1 - Modular Aquaculture System and Method of Use - Google Patents

Modular Aquaculture System and Method of Use Download PDF

Info

Publication number
US20110290189A1
US20110290189A1 US12/791,793 US79179310A US2011290189A1 US 20110290189 A1 US20110290189 A1 US 20110290189A1 US 79179310 A US79179310 A US 79179310A US 2011290189 A1 US2011290189 A1 US 2011290189A1
Authority
US
United States
Prior art keywords
aquaculture
filter
tank
water
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/791,793
Other versions
US8813686B2 (en
Inventor
Gary Myers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dakota Fisheries Inc
Original Assignee
Dakota Fisheries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dakota Fisheries Inc filed Critical Dakota Fisheries Inc
Priority to US12/791,793 priority Critical patent/US8813686B2/en
Priority to PCT/US2011/000981 priority patent/WO2011152862A1/en
Publication of US20110290189A1 publication Critical patent/US20110290189A1/en
Priority to US14/312,405 priority patent/US9497941B2/en
Application granted granted Critical
Publication of US8813686B2 publication Critical patent/US8813686B2/en
Active - Reinstated legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish

Definitions

  • the present invention relates to aquaculture ponds and systems and more particularly pertains to a new Modular Aquaculture System and Method of Use for providing a flexible cost effective system and method for producing aquaculture.
  • aquaculture ponds and systems are known in the prior art. More specifically, aquaculture ponds and systems heretofore devised and utilized are known to consist basically of familiar, expected and obvious structural configurations, notwithstanding the myriad of designs encompassed by the crowded prior art which have been developed for the fulfillment of countless objectives and requirements.
  • a wide range of aquaculture systems are known in the prior art including irrigation ditch and pond systems, cage systems, and indoor systems. Ditch and pond systems are not well suited to much of the available land mass because of climate related issues, such as extreme cold, lack of rainfall, and other issues. Cage systems are not suitable for areas that do not have large bodies of water to support the caged aquaculture. Indoor systems typically have significant problems with water quality, parasites, and waste dispersal. Additionally indoor systems typically require large amounts of water with high flow rates and have very high capital costs, limiting their commercial practicality in most instances.
  • the Modular Aquaculture System substantially departs from the conventional concepts and designs of the prior art, and in so doing provides an apparatus primarily developed for the purpose of providing a flexible cost effective system and method for producing aquaculture.
  • the present invention provides a new Modular Aquaculture System and Method of Use construction wherein the same can be utilized for providing a flexible cost effective system and method for producing aquaculture.
  • the present invention generally comprises a plurality of aquaculture holding tanks for at least facilitating the grow-out of the aquaculture species, at least one oxygenation apparatus operationally couples to each one of the aquaculture holding tanks, and a filter apparatus operationally coupled to the aquaculture holding tanks.
  • One significant advantage of the present invention is the adaptability of the module system for use with multiple aquaculture species.
  • modules may be used individually, or in multiple instances for large highly integrated facilities.
  • Still another significant advantage of the present invention is its ability to be used in a zero discharge system.
  • Yet another significant advantage of the present invention is its ability to support organic aquaculture production.
  • Still a further significant advantage of the present invention is its ability to be scaled to larger production sizes without changes in design principle.
  • FIG. 1 is a schematic functional diagram of a new Modular Aquaculture System and Method of Use according to the present invention.
  • FIG. 2 is a schematic functional diagram of the aquaculture holding tanks of the present invention.
  • FIG. 3 is a schematic functional diagram of the filter apparatus of the present invention.
  • FIG. 4 is a schematic functional diagram of the waste treatment assembly of the present invention.
  • FIG. 5 is a schematic functional diagram of the oxygenation system of the present invention.
  • FIG. 6 is a schematic functional diagram of the present invention.
  • FIGS. 1 through 6 a new Modular Aquaculture System and Method of Use embodying the principles and concepts of the present invention and generally designated by the reference numeral 10 will be described.
  • the modular aquaculture system 10 and method of use 10 generally comprises a plurality of aquaculture holding tank 20 for at least facilitating the grow-out of the aquaculture species, at least one oxygenation apparatus 40 operationally couples to each one of the aquaculture holding tanks 20 , and a filter apparatus 60 operationally coupled to the aquaculture holding tanks 20 .
  • the aquaculture system 10 includes multiple aquaculture holding tanks 20 and an aquaculture moving channel which may be used to selectively coupling at lease a pair of aquaculture holding tanks 20 . Additionally, the aquaculture moving channel may also connect at least one of the aquaculture holding tanks 20 to a harvest area.
  • each one of the aquaculture holding tanks 20 also includes a first drain member 23 and a second drain member 25 .
  • the first drain member 23 is operationally coupled between an interior of the aquaculture holding tank 20 and the filter apparatus 60 .
  • the second drain member 25 is preferably positioned adjacent and below the first drain member 23 .
  • the second drain member 25 preferably has a conical intake section 26 .
  • a 2 by N array provides specific advantages for minimizing the piping required for the system 10 . Additionally, when the filter apparatus 60 is positioned adjacent to the N side of the array, the efficiency of the filter apparatus 60 is improved.
  • the first drain member 23 of the aquaculture holding tank 20 is environmentally coupled to a switch valve 27 for selectively routing the output of the first drain member 23 to the filter apparatus 60 or to a purge system.
  • the switch valve 27 comprises a first 28 and second tube member 29 and a first 30 and second vertical channel 31 .
  • the first vertical channel 30 can be environmentally coupled to the filter apparatus 60 .
  • the second vertical channel 31 can be environmentally coupled to the purge system.
  • the first tube member 28 can be selectively positioned within at least a position of the first vertical channel 30 substantially closing the first vertical channel 30 .
  • the second tube member 29 can be selectively positioned within at least a position of the second vertical channel 31 substantially closing the second vertical channel 31 .
  • a single tube member could be positioned in the non-selected vertical channel to substantially close off the non-selected vertical channel.
  • gate valves could be used to control the water flow.
  • each one of the plurality of aquaculture holding tanks 20 is generally cylindrical and has approximately the same diameter.
  • the plurality of aquaculture holding tanks 20 include a subset of aquaculture holding tanks 22 having a smaller diameter, which can be positioned in the space of one aquaculture holding tank 20 having the normal diameter.
  • each oxygenation apparatus 40 further comprises at least one oxygen source 41 , at least one oxygen diffusions tank 42 , and at least one water source.
  • the oxygen diffusion tank 42 is substantially cylindrical and has a height between 15 and 150 feet. More preferably, the tank 42 has a height between 60 and 100 feet.
  • the oxygen source 41 is environmentally coupled to a dispersion member 43 positioned adjacent to a lower end of the oxygen diffusion tank 42 via an oxygen tube member 44 .
  • the oxygen tube member 44 is preferably at least partially routed along an interior of the oxygen diffusion tank 42 .
  • the water source is preferably operationally coupled to a water-inlet 45 which is at least partially positioned within and near the top of the oxygen diffusion tank 42 .
  • ozone may be added to the oxygen stream prior to routing into the oxygen diffusion tank 42 .
  • the dispersion member 43 is positioned slightly above the water outlet 45 such that oxygen released from the dispersion member 43 rises along an interior of the oxygen diffusion tank 42 .
  • a rate of flow of water from the water source through the water inlet 45 creates a downward water flow in the diffusion tank 42 that is slightly less than a rate of rise of oxygen bubbles through the water from the dispersion member 43 .
  • oxygenated water collected from adjacent to a bottom end of the oxygen diffusion tank 42 has a dissolved oxygen content of approximately 1 mg of oxygen per 1 liter of water per foot of height of the oxygen diffusion tank 42 .
  • oxygenated water is routed from adjacent to a top end of the at least one oxygenation apparatus 40 into the at least one aquaculture holding tank 20 .
  • water flow from the source at the inlet 45 is gravity flow to the aquaculture holding tank 20 .
  • the system 10 may also include a source of liquid oxygen generally stored in a tank.
  • the liquid oxygen may be used as a backup source of oxygen in the event that one or more of the oxygenation apparatuses fails.
  • the oxygen level of the water in the aquaculture holding tanks may be maintained until the failure of the oxygenation apparatus is corrected.
  • oxygen from any of the sources may be routed through an ozone generation system prior to distribution to at least one oxygenation apparatus 40 .
  • the filter apparatus 60 further comprises a distribution channel 61 , a settling filter 66 , and a biological filter 73 .
  • the distribution channel 61 may be environmentally coupled to a first drain member 23 of each one of the aquaculture holding tanks 20 .
  • the distribution channel 61 is primarily for receiving waste water from the aquaculture holding tanks 20 .
  • the settling filter 66 may be environmentally coupled to the distribution channel 61 for allowing at least a portion of particulate matter present in the waste water to settle out of the waste water.
  • the biological filter 73 may be environmentally coupled to the settling filter 66 , for removing at least a portion of ammonia, biological oxygen demand (BOD), and carbon dioxide from the waste water.
  • the distribution channel 61 substantially extends along a length of the filter apparatus 60 and is subdivided into distribution channel segments 62 .
  • An interior of each one of the distribution channel segments 62 may be selectively separable from an adjacent distribution channel segment 62 .
  • each distribution channel segment 62 also includes a plurality of pipe members 63 .
  • Each one of the pipe members 63 may be used for selectively directing waste water from the distribution channel segment 62 into the settling filter 66 .
  • the flow rate of each one of the plurality of pipe members 63 is adjustable.
  • a pipe may be used for this functional.
  • the settling filter 66 extends along a length of the filter apparatus 60 , is positioned adjacent to the distribution channel 61 , and is subdivided into settling filter segments 67 . An interior of each one of the settling filter segments 67 may be separated from an adjacent settling filter segment 67 .
  • each settling filter segment 67 includes a plurality of pipe members 68 for selectively directing waste water from the settling filter segment 67 into the biological filter 73 .
  • the flow rate of each one of the plurality of pipe members 68 is adjustable.
  • the settling filter 66 further comprises at least one weir gate 69 for directing waste water from the settling filter 66 into the biological filter 73 .
  • the settling filter 66 has a sloped base 70 for directing settled particulate matter towards a drain 71 .
  • the biological filter 73 substantially extends along a length of the filter apparatus 60 .
  • the biological filter 73 is generally positioned adjacent to the settling filter 66 .
  • the biological filter 73 further comprises a plurality of spray nozzles 74 , a plurality of biomedia assemblies 75 , an air space 77 , and a water collection area 78 .
  • Each one of the spray nozzles 74 may be environmentally coupled to an associated pipe member 68 of the settling filter 66 .
  • Each biomedia assembly 75 is at least partially positioned below at least one of the spray nozzles 74 such that waste water directed out of the spray nozzle 74 is applied to at least a portion of the biomedia assembly 75 .
  • the air space 77 is positioned substantially below the plurality of biomedia assemblies 75 .
  • the water collection 78 area positioned below the air space 77 .
  • At least one of the biomedia assemblies 75 is positioned at an oblique angle to a plane defined by the plurality of spray nozzles 74 .
  • each one of said plurality of biomedia assemblies 75 are positioned at an oblique angle relative to a plane defined by said plurality of spray nozzles 74 , with every other biomedia assembly 75 being positioned substantially at a right angle to the biomedia assembly 75 immediately proceeding and immediately following the biomedia assembly 75 .
  • each one of the biomedia assemblies 75 further comprises a porous frame assembly 79 and a quantity of biomedia 80 applied to a surface of the frame assembly 79 .
  • the pourous nature of the frame assembly 79 allows waste water to flow through the biomedia 80 to the next biomedia assembly 75 . It is understood that a wire frame or similar structure for the frame assembly 79 may be used for media that does not have the frame structure as an integral part of the media construction.
  • the biomedia assemblies 75 maybe constructed in relatively compact blocks, which may be stacked or otherwise arrayed for a variety of physical configurations.
  • the biomedia 75 includes culture of at least one species of nitrosomonas and at least one species of nitrobacter.
  • the nitrosomonas aids in the conversion of NH4 to NO, that is ammonia to nitrite.
  • the nitrobacter will aid in the conversion of NO2 to NO3, which is nitrite to nitrate. It is understood by those skilled in the art that other bacteria will also be present in the biomedia.
  • plurality of the biomedia assemblies 75 extend at the oblique angle over a vertical height of between 6 and 20 feet.
  • the plurality of the biomedia assemblies 75 extends at the oblique angle over a vertical height of approximately 9 feet.
  • the waste water directed from the settling filter into the biological filter may be directed over a subset of the biological filter.
  • the specific subset used maybe adjusted on an interval basis.
  • An illustrative example of such an interval basis for water distribution may be a slow sweep of water across the entire length of the biological filter, or switching between segments of the biological filter over time.
  • the interval used or the percentage of the total biological filter used at any given time may be determined at least in part on the biological health of the biomedia bacterial community, the amount of nitrogen removed, or the amount of carbon dioxide removed.
  • the biofilter facilitates the removal of carbon dioxide in not only the dissolved gas form (CO2), but also in the form of Ca(HCO 3 ) 2 .
  • This improved efficacy is one advantage of the present invention which allows for lower water flow throughout the system.
  • the airspace 77 has a vertical height of between 6 and 24 inches. More preferably, the airspace 77 has a vertical height of approximately 12 inches.
  • An air blower is preferably environmentally coupleable to the air space 77 for directing a flow of air into the air space 77 and upwardly through the plurality of biomedia assemblies. This process helps to remove the Carbon Dioxide gas and Nitrogen gases from the biomedia and thus the waste water.
  • the biological filter 73 further comprises a sloped floor 84 for directing solid wastes towards a drain member positioned substantial at a base of the sloped floor 84 .
  • the system may also include a pump assembly 86 which may be environmentally coupled to the water collection area 78 of the biological filter 73 for directing filtered water collected in the water collection area 78 to the oxygenation apparatuses 40 .
  • system 10 may also include a second distribution channel 90 which may be environmentally coupled between the settling filter 66 and the biological filter 73 for facilitating direction of waste water from the settling filter 66 to various portions of the biological filter 73 , even if a distribution channel segment 62 is closed or blocked off.
  • a second distribution channel 90 which may be environmentally coupled between the settling filter 66 and the biological filter 73 for facilitating direction of waste water from the settling filter 66 to various portions of the biological filter 73 , even if a distribution channel segment 62 is closed or blocked off.
  • the system 10 may include a waste treatment assembly 100 which may be environmentally coupled to waste outputs of the settling filter 66 and the biological filter 73 .
  • the waste treatment assembly 100 is particularly advantageous for zero discharge implementations of the system.
  • the waste treatment assembly 100 includes a solids digestions system 110 , a phosphate precipitation system 120 , a water filtration system 140 , and a processed water collection system 150 .
  • the solids digestion system 110 includes a waste input 111 , a solids digestion tank 112 , an impeller 115 , an anaerobic digestions culture 116 , and a waste water output 117 .
  • the waste input is typically environmentally coupled to a drain of the settling filter and a drain of the biological filter and directs solid and liquid waste into the solids digestion system.
  • the solids digestion tank 112 preferably has a sloped floor 113 with a waste drain 114 positioned at a base of the sloped floor 113 .
  • the impeller 115 is preferably positioned at least partially within the solids digestion tank 112 and at least intermittently stirs the solid and liquid waste positioned within the solids digestion tank 112 .
  • the anaerobic digestion culture 116 is preferably positioned within the solids digestion tank 112 for digesting at least a portion of the solid waste.
  • the waste water output 117 is preferably environmentally coupled to the phosphate precipitation system 120 .
  • the waste drain 114 in the solids digestion tank 112 primarily collects minerals and salts after the anaerobic digestion process. The minerals may be washed to remove the salts. The salts may be returned to the system before the minerals are disposed.
  • the phosphate precipitation system 120 further comprises a precipitation tank 122 , an impeller 125 , and a waste water output 126 .
  • the precipitation tank 122 has a sloped floor 123 with a waste drain 124 positioned at a base of the sloped floor 123 .
  • the impeller 125 is preferably positioned at least partially within the precipitation tank 122 and at least intermittently stirs the solid and liquid waste positioned within the precipitation tank 122 .
  • the waste water output 126 may be environmentally coupled to the water filtration system 140 .
  • the phosphate precipitation system 120 also includes the use of a precipitation agent added at least intermittently to the precipitation tank 122 .
  • the precipitation agent may be processed fish scales, alum, other metal salt coagulants or polymers. Alternately, the precipitation agent may be a bacterial composition.
  • waste drain 124 in the phosphate precipitation tank 122 primarily collects phosphates after the precipitation process
  • the water filtration system 140 further comprises a sand filter 141 environmentally coupled to a waste water output 124 of the phosphate precipitation system 120 .
  • the sand filter 141 generally has a processed water output 142 for directing processed water out of the solids digestion system 110 .
  • the water filtration system 140 may also incorporate an ozone treatment system 150 for applying ozone to waste water being conducted through the sand filter 141 .
  • a protein skimmer 160 may environmentally coupled to the processed water output of the water filtration system 140 .
  • the protein skimmer 160 aids in the removal of single cell organisms, bacteria, and nitrates, and may be particularly useful in saltwater implementations of the system.
  • a screen filter 170 may be incorporated into the system and positioned after the biological filter 73 .
  • the screen filter may be implemented on a selective basis for aquaculture species preferring very clean water, such as salmon.
  • UV light may be within the system 10 for further conditioning the water.
  • the UV light is incorporated into the system after the biological filter 73 .

Abstract

A modular aquaculture system and method of use for providing a flexible cost effective system and method for producing aquaculture. The modular aquaculture system and method of use includes aquaculture holding tank for at least facilitating the grow-out of the aquaculture species, at least one oxygenation apparatus operationally couples to each one of the aquaculture holding tanks, and a filter apparatus operationally coupled to the aquaculture holding tanks.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to aquaculture ponds and systems and more particularly pertains to a new Modular Aquaculture System and Method of Use for providing a flexible cost effective system and method for producing aquaculture.
  • 2. Description of the Prior Art
  • The use of aquaculture ponds and systems is known in the prior art. More specifically, aquaculture ponds and systems heretofore devised and utilized are known to consist basically of familiar, expected and obvious structural configurations, notwithstanding the myriad of designs encompassed by the crowded prior art which have been developed for the fulfillment of countless objectives and requirements.
  • A wide range of aquaculture systems are known in the prior art including irrigation ditch and pond systems, cage systems, and indoor systems. Ditch and pond systems are not well suited to much of the available land mass because of climate related issues, such as extreme cold, lack of rainfall, and other issues. Cage systems are not suitable for areas that do not have large bodies of water to support the caged aquaculture. Indoor systems typically have significant problems with water quality, parasites, and waste dispersal. Additionally indoor systems typically require large amounts of water with high flow rates and have very high capital costs, limiting their commercial practicality in most instances.
  • In these respects, the Modular Aquaculture System according to the present invention substantially departs from the conventional concepts and designs of the prior art, and in so doing provides an apparatus primarily developed for the purpose of providing a flexible cost effective system and method for producing aquaculture.
  • SUMMARY OF THE INVENTION
  • In view of the foregoing disadvantages inherent in the known types of aquaculture ponds and systems now present in the prior art, the present invention provides a new Modular Aquaculture System and Method of Use construction wherein the same can be utilized for providing a flexible cost effective system and method for producing aquaculture.
  • To attain this, the present invention generally comprises a plurality of aquaculture holding tanks for at least facilitating the grow-out of the aquaculture species, at least one oxygenation apparatus operationally couples to each one of the aquaculture holding tanks, and a filter apparatus operationally coupled to the aquaculture holding tanks.
  • There has thus been outlined, rather broadly, the more important features of the invention in order that the detailed description thereof that follows may be better understood, and in order that the present contribution to the art may be better appreciated. There are additional features of the invention that will be described hereinafter and which will form the subject matter of the claims appended hereto.
  • In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting.
  • As such, those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
  • One significant advantage of the present invention is the adaptability of the module system for use with multiple aquaculture species.
  • Another significant advantage of the present invention is that the modules may be used individually, or in multiple instances for large highly integrated facilities.
  • Still another significant advantage of the present invention is its ability to be used in a zero discharge system.
  • Even still a further significant advantage of the present invention is its ability to reduce the water flow rate necessary to remove waste products, and maintain appropriate oxygen level for optimal aquaculture production.
  • Yet another significant advantage of the present invention is its ability to support organic aquaculture production.
  • Still a further significant advantage of the present invention is its ability to be scaled to larger production sizes without changes in design principle.
  • Further advantages of the invention, along with the various features of novelty which characterize the invention, are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and the specific objects attained by its uses, reference should be made to the accompanying drawings and descriptive matter in which there are illustrated preferred embodiments of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will be better understood and objects of the invention will become apparent when consideration is given to the following detailed description thereof. Such description makes reference to the annexed drawings wherein:
  • FIG. 1 is a schematic functional diagram of a new Modular Aquaculture System and Method of Use according to the present invention.
  • FIG. 2 is a schematic functional diagram of the aquaculture holding tanks of the present invention.
  • FIG. 3 is a schematic functional diagram of the filter apparatus of the present invention.
  • FIG. 4 is a schematic functional diagram of the waste treatment assembly of the present invention.
  • FIG. 5 is a schematic functional diagram of the oxygenation system of the present invention.
  • FIG. 6 is a schematic functional diagram of the present invention.
  • DESCRIPTION OF PREFERRED EMBODIMENTS
  • With reference now to the drawings, and in particular to FIGS. 1 through 6 thereof, a new Modular Aquaculture System and Method of Use embodying the principles and concepts of the present invention and generally designated by the reference numeral 10 will be described.
  • As best illustrated in FIGS. 1 through 6, the modular aquaculture system 10 and method of use 10 generally comprises a plurality of aquaculture holding tank 20 for at least facilitating the grow-out of the aquaculture species, at least one oxygenation apparatus 40 operationally couples to each one of the aquaculture holding tanks 20, and a filter apparatus 60 operationally coupled to the aquaculture holding tanks 20.
  • In a more preferred embodiment the aquaculture system 10 includes multiple aquaculture holding tanks 20 and an aquaculture moving channel which may be used to selectively coupling at lease a pair of aquaculture holding tanks 20. Additionally, the aquaculture moving channel may also connect at least one of the aquaculture holding tanks 20 to a harvest area.
  • Typically each one of the aquaculture holding tanks 20 also includes a first drain member 23 and a second drain member 25. The first drain member 23 is operationally coupled between an interior of the aquaculture holding tank 20 and the filter apparatus 60. The second drain member 25 is preferably positioned adjacent and below the first drain member 23. The second drain member 25 preferably has a conical intake section 26.
  • While the modular system 10 may accommodate a wide range in the number of aquaculture holding tanks 20, and a broad number of physical configurations of holding tanks, a 2 by N array provides specific advantages for minimizing the piping required for the system 10. Additionally, when the filter apparatus 60 is positioned adjacent to the N side of the array, the efficiency of the filter apparatus 60 is improved.
  • In a further embodiment the first drain member 23 of the aquaculture holding tank 20 is environmentally coupled to a switch valve 27 for selectively routing the output of the first drain member 23 to the filter apparatus 60 or to a purge system.
  • In at least one embodiment the switch valve 27 comprises a first 28 and second tube member 29 and a first 30 and second vertical channel 31. The first vertical channel 30 can be environmentally coupled to the filter apparatus 60. The second vertical channel 31 can be environmentally coupled to the purge system. The first tube member 28 can be selectively positioned within at least a position of the first vertical channel 30 substantially closing the first vertical channel 30. The second tube member 29 can be selectively positioned within at least a position of the second vertical channel 31 substantially closing the second vertical channel 31. Alternately, a single tube member could be positioned in the non-selected vertical channel to substantially close off the non-selected vertical channel. In still a further alternative, gate valves could be used to control the water flow.
  • In an embodiment each one of the plurality of aquaculture holding tanks 20 is generally cylindrical and has approximately the same diameter.
  • In an alternate embodiment, the plurality of aquaculture holding tanks 20 include a subset of aquaculture holding tanks 22 having a smaller diameter, which can be positioned in the space of one aquaculture holding tank 20 having the normal diameter.
  • In a further preferred embodiment each oxygenation apparatus 40 further comprises at least one oxygen source 41, at least one oxygen diffusions tank 42, and at least one water source.
  • Typically, the oxygen diffusion tank 42 is substantially cylindrical and has a height between 15 and 150 feet. More preferably, the tank 42 has a height between 60 and 100 feet.
  • In at least one embodiment the oxygen source 41 is environmentally coupled to a dispersion member 43 positioned adjacent to a lower end of the oxygen diffusion tank 42 via an oxygen tube member 44. The oxygen tube member 44 is preferably at least partially routed along an interior of the oxygen diffusion tank 42. The water source is preferably operationally coupled to a water-inlet 45 which is at least partially positioned within and near the top of the oxygen diffusion tank 42.
  • In at least one further embodiment, ozone may be added to the oxygen stream prior to routing into the oxygen diffusion tank 42.
  • In still a further embodiment, the dispersion member 43 is positioned slightly above the water outlet 45 such that oxygen released from the dispersion member 43 rises along an interior of the oxygen diffusion tank 42.
  • In a preferred embodiment a rate of flow of water from the water source through the water inlet 45 creates a downward water flow in the diffusion tank 42 that is slightly less than a rate of rise of oxygen bubbles through the water from the dispersion member 43.
  • In an embodiment oxygenated water collected from adjacent to a bottom end of the oxygen diffusion tank 42 has a dissolved oxygen content of approximately 1 mg of oxygen per 1 liter of water per foot of height of the oxygen diffusion tank 42.
  • In still a further embodiment oxygenated water is routed from adjacent to a top end of the at least one oxygenation apparatus 40 into the at least one aquaculture holding tank 20.
  • In an additional embodiment water flow from the source at the inlet 45 is gravity flow to the aquaculture holding tank 20.
  • The system 10 may also include a source of liquid oxygen generally stored in a tank. The liquid oxygen may be used as a backup source of oxygen in the event that one or more of the oxygenation apparatuses fails. Thus, the oxygen level of the water in the aquaculture holding tanks may be maintained until the failure of the oxygenation apparatus is corrected.
  • Further oxygen from any of the sources may be routed through an ozone generation system prior to distribution to at least one oxygenation apparatus 40.
  • Most typically, the filter apparatus 60 further comprises a distribution channel 61, a settling filter 66, and a biological filter 73. The distribution channel 61 may be environmentally coupled to a first drain member 23 of each one of the aquaculture holding tanks 20. The distribution channel 61 is primarily for receiving waste water from the aquaculture holding tanks 20. The settling filter 66 may be environmentally coupled to the distribution channel 61 for allowing at least a portion of particulate matter present in the waste water to settle out of the waste water. Similarly, the biological filter 73 may be environmentally coupled to the settling filter 66, for removing at least a portion of ammonia, biological oxygen demand (BOD), and carbon dioxide from the waste water.
  • In an embodiment the distribution channel 61 substantially extends along a length of the filter apparatus 60 and is subdivided into distribution channel segments 62. An interior of each one of the distribution channel segments 62 may be selectively separable from an adjacent distribution channel segment 62.
  • In yet a further embodiment each distribution channel segment 62 also includes a plurality of pipe members 63. Each one of the pipe members 63 may be used for selectively directing waste water from the distribution channel segment 62 into the settling filter 66. Preferably, the flow rate of each one of the plurality of pipe members 63 is adjustable.
  • While the channel form factor is preferred for the distribution function within the filter apparatus 60, a pipe may be used for this functional.
  • Similar to the distribution channel 61, in still a further preferred embodiment, the settling filter 66 extends along a length of the filter apparatus 60, is positioned adjacent to the distribution channel 61, and is subdivided into settling filter segments 67. An interior of each one of the settling filter segments 67 may be separated from an adjacent settling filter segment 67.
  • Preferably, each settling filter segment 67 includes a plurality of pipe members 68 for selectively directing waste water from the settling filter segment 67 into the biological filter 73. The flow rate of each one of the plurality of pipe members 68 is adjustable.
  • Further, in at least one embodiment the settling filter 66 further comprises at least one weir gate 69 for directing waste water from the settling filter 66 into the biological filter 73.
  • In a preferred embodiment the settling filter 66 has a sloped base 70 for directing settled particulate matter towards a drain 71.
  • Preferably, and similar to the settling filter 66 and the distribution channel 61, the biological filter 73 substantially extends along a length of the filter apparatus 60. The biological filter 73 is generally positioned adjacent to the settling filter 66.
  • In an embodiment the biological filter 73 further comprises a plurality of spray nozzles 74, a plurality of biomedia assemblies 75, an air space 77, and a water collection area 78. Each one of the spray nozzles 74 may be environmentally coupled to an associated pipe member 68 of the settling filter 66. Each biomedia assembly 75 is at least partially positioned below at least one of the spray nozzles 74 such that waste water directed out of the spray nozzle 74 is applied to at least a portion of the biomedia assembly 75. The air space 77 is positioned substantially below the plurality of biomedia assemblies 75. The water collection 78 area positioned below the air space 77.
  • In an embodiment at least one of the biomedia assemblies 75 is positioned at an oblique angle to a plane defined by the plurality of spray nozzles 74.
  • In still a further embodiment, each one of said plurality of biomedia assemblies 75 are positioned at an oblique angle relative to a plane defined by said plurality of spray nozzles 74, with every other biomedia assembly 75 being positioned substantially at a right angle to the biomedia assembly 75 immediately proceeding and immediately following the biomedia assembly 75.
  • In an embodiment each one of the biomedia assemblies 75 further comprises a porous frame assembly 79 and a quantity of biomedia 80 applied to a surface of the frame assembly 79. The pourous nature of the frame assembly 79 allows waste water to flow through the biomedia 80 to the next biomedia assembly 75. It is understood that a wire frame or similar structure for the frame assembly 79 may be used for media that does not have the frame structure as an integral part of the media construction.
  • The biomedia assemblies 75 maybe constructed in relatively compact blocks, which may be stacked or otherwise arrayed for a variety of physical configurations.
  • Preferrably, the biomedia 75 includes culture of at least one species of nitrosomonas and at least one species of nitrobacter. The nitrosomonas aids in the conversion of NH4 to NO, that is ammonia to nitrite. Similarly, the nitrobacter will aid in the conversion of NO2 to NO3, which is nitrite to nitrate. It is understood by those skilled in the art that other bacteria will also be present in the biomedia.
  • In still a further embodiment plurality of the biomedia assemblies 75 extend at the oblique angle over a vertical height of between 6 and 20 feet.
  • In a preferred embodiment the plurality of the biomedia assemblies 75 extends at the oblique angle over a vertical height of approximately 9 feet.
  • The waste water directed from the settling filter into the biological filter may be directed over a subset of the biological filter. The specific subset used maybe adjusted on an interval basis. An illustrative example of such an interval basis for water distribution may be a slow sweep of water across the entire length of the biological filter, or switching between segments of the biological filter over time. The interval used or the percentage of the total biological filter used at any given time may be determined at least in part on the biological health of the biomedia bacterial community, the amount of nitrogen removed, or the amount of carbon dioxide removed.
  • As those skilled in the art may readily appreciate when carbon dioxide is present in water an equilibrium is reached, based in part upon the pH of the solution in which:

  • CO2+H2O
    Figure US20110290189A1-20111201-P00001
    CO3+H++HCO3
  • Additionally when Calcium is present Calcium Carbonate and Calcium Bicarbonate is formed and the following equilibrium is present (again dependent in part upon pH)

  • CaCO3+CO2+H2O
    Figure US20110290189A1-20111201-P00001
    Ca(HCO3)2
  • The biofilter facilitates the removal of carbon dioxide in not only the dissolved gas form (CO2), but also in the form of Ca(HCO3)2. This improved efficacy is one advantage of the present invention which allows for lower water flow throughout the system.
  • In at least one embodiment the airspace 77 has a vertical height of between 6 and 24 inches. More preferably, the airspace 77 has a vertical height of approximately 12 inches.
  • An air blower is preferably environmentally coupleable to the air space 77 for directing a flow of air into the air space 77 and upwardly through the plurality of biomedia assemblies. This process helps to remove the Carbon Dioxide gas and Nitrogen gases from the biomedia and thus the waste water.
  • In an embodiment the biological filter 73 further comprises a sloped floor 84 for directing solid wastes towards a drain member positioned substantial at a base of the sloped floor 84.
  • The system may also include a pump assembly 86 which may be environmentally coupled to the water collection area 78 of the biological filter 73 for directing filtered water collected in the water collection area 78 to the oxygenation apparatuses 40.
  • In a further embodiment, the system 10 may also include a second distribution channel 90 which may be environmentally coupled between the settling filter 66 and the biological filter 73 for facilitating direction of waste water from the settling filter 66 to various portions of the biological filter 73, even if a distribution channel segment 62 is closed or blocked off.
  • In still a further embodiment, the system 10 may include a waste treatment assembly 100 which may be environmentally coupled to waste outputs of the settling filter 66 and the biological filter 73. The waste treatment assembly 100 is particularly advantageous for zero discharge implementations of the system. Typically, the waste treatment assembly 100 includes a solids digestions system 110, a phosphate precipitation system 120, a water filtration system 140, and a processed water collection system 150.
  • In at least one embodiment the solids digestion system 110 includes a waste input 111, a solids digestion tank 112, an impeller 115, an anaerobic digestions culture 116, and a waste water output 117. The waste input is typically environmentally coupled to a drain of the settling filter and a drain of the biological filter and directs solid and liquid waste into the solids digestion system. The solids digestion tank 112 preferably has a sloped floor 113 with a waste drain 114 positioned at a base of the sloped floor 113. The impeller 115 is preferably positioned at least partially within the solids digestion tank 112 and at least intermittently stirs the solid and liquid waste positioned within the solids digestion tank 112. The anaerobic digestion culture 116 is preferably positioned within the solids digestion tank 112 for digesting at least a portion of the solid waste. The waste water output 117 is preferably environmentally coupled to the phosphate precipitation system 120. The waste drain 114 in the solids digestion tank 112 primarily collects minerals and salts after the anaerobic digestion process. The minerals may be washed to remove the salts. The salts may be returned to the system before the minerals are disposed.
  • In a further embodiment the phosphate precipitation system 120 further comprises a precipitation tank 122, an impeller 125, and a waste water output 126. Preferably, the precipitation tank 122 has a sloped floor 123 with a waste drain 124 positioned at a base of the sloped floor 123. The impeller 125 is preferably positioned at least partially within the precipitation tank 122 and at least intermittently stirs the solid and liquid waste positioned within the precipitation tank 122. The waste water output 126 may be environmentally coupled to the water filtration system 140. Typically, the phosphate precipitation system 120 also includes the use of a precipitation agent added at least intermittently to the precipitation tank 122. The precipitation agent may be processed fish scales, alum, other metal salt coagulants or polymers. Alternately, the precipitation agent may be a bacterial composition.
  • In an embodiment the waste drain 124 in the phosphate precipitation tank 122 primarily collects phosphates after the precipitation process
  • In an embodiment the water filtration system 140 further comprises a sand filter 141 environmentally coupled to a waste water output 124 of the phosphate precipitation system 120. The sand filter 141 generally has a processed water output 142 for directing processed water out of the solids digestion system 110.
  • In even still a further embodiment the water filtration system 140 may also incorporate an ozone treatment system 150 for applying ozone to waste water being conducted through the sand filter 141.
  • In yet still a further embodiment, a protein skimmer 160 may environmentally coupled to the processed water output of the water filtration system 140. The protein skimmer 160 aids in the removal of single cell organisms, bacteria, and nitrates, and may be particularly useful in saltwater implementations of the system.
  • Still additionally, a screen filter 170 may be incorporated into the system and positioned after the biological filter 73. The screen filter may be implemented on a selective basis for aquaculture species preferring very clean water, such as salmon.
  • In yet a further possible water treatment step, UV light may be within the system 10 for further conditioning the water. Preferably, the UV light is incorporated into the system after the biological filter 73.
  • With respect to the above description then, it is to be realized that the optimum dimensional relationships for the parts of the invention, to include variations in size, materials, shape, form, function and manner of operation, assembly and use, are deemed readily apparent and obvious to one skilled in the art, and all equivalent relationships to those illustrated in the drawings and described in the specification are intended to be encompassed by the present invention.
  • Therefore, the foregoing is considered as illustrative only of the principles of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.

Claims (83)

1. An aquaculture system comprising:
at least one aquaculture holding tank;
at least one oxygenation apparatus operationally coupleable to said at least one aquaculture holding tank; and
at least one filter apparatus operationally coupleable to said at least one aquaculture holding tank.
2. The aquaculture system of claim 1, wherein said at least one aquaculture holding tank further comprises:
a plurality of aquaculture holding tanks; and
an aquaculture moving channel, said aquaculture moving channel selectively coupling at least a pair of aquaculture holding tanks.
3. The aquaculture system of claim 2, wherein at least one of said plurality of aquaculture holding tanks further comprises:
a first drain member operationally coupled between an interior of said at least one aquaculture holding tank and said at least one filter apparatus;
a second drain member positioned adjacent and below said first drain member, said second drain member having a conical intake section.
4. The aquaculture system of claim 1, wherein said at least one aquaculture holding tank further comprises a plurality of aquaculture holding tanks, said plurality comprising an even number of aquaculture holding tanks deployed in a 2 by N array, wherein N is the number of aquaculture holding tanks comprising the plurality of aquaculture holding tanks divided by 2.
5. The aquaculture system of claim 4, wherein said at least one filter apparatus is positioned adjacent to the plurality of aquaculture holding tanks along the N side of the array of aquaculture holding tanks.
6. The aquaculture system of claim 4, wherein each one of said plurality of aquaculture holding tanks further comprises:
a first drain member operationally coupled between an interior of said at least one aquaculture holding tank and said at least one filter apparatus;
a second drain member positioned adjacent and below said first drain member, said second drain member having a conical intake section.
7. The aquaculture system of claim 6, wherein said first drain member of at least one aquaculture holding tank is environmentally coupled to a switch valve, said switch valve selectively routing an output of said first drain member to said at least one filter apparatus, said switch valve selectively routing an output of said first drain member to a purge system.
8. The aquaculture system of claim 7, wherein said switch valve comprises:
a first vertical channel environmentally coupleable to said at least one filter apparatus;
a first tube member selectively positionable within at least a position of said first vertical channel, said first tube member substantially closing said first vertical channel when positioned within at least a portion of said first vertical channel;
a second vertical channel environmentally coupleable to said purge system; and
a second tube member selectively positionable within at least a position of said second vertical channel, said second tube member substantially closing said second vertical channel when positioned within at least a portion of said second vertical channel.
9. The aquaculture system of claim 7, wherein said switch valve comprises at least one gate valve.
10. The aquaculture system of claim 4, wherein each one of said plurality of aquaculture holding tanks is generally cylindrical.
11. The aquaculture system of claim 10, wherein each one of said plurality of aquaculture holding tanks has approximately the same diameter.
12. The aquaculture system of claim 10, wherein a subset of said plurality of aquaculture holding tanks has a reduced diameter whereby said subset may accommodate approximately the same physical space as one of the aquaculture holding tanks not in the subset.
13. The aquaculture system of claim 1, wherein said at least one oxygenation apparatus further comprises:
at least one oxygen source;
at least one oxygen diffusions tank; and
at least one water source.
14. The aquaculture system of claim 13, wherein said oxygen diffusion tank further comprises a tank having a height between 15 and 150 feet.
15. The aquaculture system of claim 13, wherein said oxygen diffusion tank further comprises a tank having a height between 60 and 100 feet.
16. The aquaculture system of claim 13, wherein said at least one oxygen source is environmentally coupled to a dispersion member positioned at least partially-in the lower end of said oxygen diffusion tanks.
17. The aquaculture system of claim 13, further comprising:
said at least one oxygen diffusion tank being substantially cylindrical and having a height between 15 and 150 feet;
said at least one oxygen source being environmentally coupled to a dispersion member positioned to a lower end of said oxygen diffusion tanks via an oxygen tube member, said oxygen tube member being at least partially routed along an interior of said oxygen diffusion tank
said at least one water source being operationally coupled to a water inlet said water outlet being at least partially positioned within and near the bottom of said oxygen diffusion tank.
18. The aquaculture system of claim 17, further comprising said dispersion member being positioned in said oxygen diffusion tank such that oxygen released from said dispersion member rises along an interior of said oxygen diffusion tank.
19. The aquaculture system of claim 18, wherein a rate of flow of water from said at least one water source through said water inlet results in water flow in said oxygen diffusion tank slightly less than a rate of rise of oxygen bubbles through said water in said oxygen diffusion tank.
20. The aquaculture system of claim 19, wherein oxygenated water collected from adjacent to a bottom end of the oxygenation tank has a dissolved oxygen content of approximately 1 mg of oxygen per 1 liter of water per foot of height of the oxygenation tank.
21. The aquaculture system of claim 13, wherein oxygenated water is routed from adjacent to a top end of said at least one oxygenation system into said at least one aquaculture holding tank.
22. An aquaculture system comprising:
at least one aquaculture holding tank;
at least one oxygenation apparatus operationally coupleable to said at least one aquaculture holding tank;
at least one filter apparatus operationally coupleable to said at least one aquaculture holding tank.
wherein said at least one aquaculture holding tank further comprises a plurality of aquaculture holding tanks, said plurality comprising an even number of aquaculture holding tanks deployed in a 2 by N array, wherein N is the number of aquaculture holding tanks comprising the plurality of aquaculture holding tanks divided by 2;
wherein said at least one filter apparatus is positioned adjacent to the plurality of aquaculture holding tanks along the N side of the array of aquaculture holding tanks;
wherein each one of said plurality of aquaculture holding tanks further comprises:
a first drain member operationally coupled between an interior of said at least one aquaculture holding tank and said at least one filter apparatus;
a second drain member positioned adjacent and below said first drain member, said second drain member having a conical intake section;
wherein said first drain member of at least one aquaculture holding tank is environmentally coupled to a switch valve, said switch valve selectively routing an output of said first drain member to said at least one filter apparatus, said switch valve selectively routing an output of said first drain member to a purge system
wherein said at least one oxygenation apparatus further comprises:
at least one oxygen source;
at least one oxygen diffusions tank;
at least one water source;
said at least one oxygen diffusion tank being substantially cylindrical and having a height between 15 and 150 feet;
said at least one oxygen source being environmentally coupled to a dispersion member positioned to a lower end of said oxygen diffusion tanks via an oxygen tube member, said oxygen tube member being at least partially routed along an interior of said oxygen diffusion tank
said at least one water source being operationally coupled to a water inlet said water inlet being at least partially positioned within said oxygen diffusion tank;
said dispersion member being positioned at least partially in said oxygen distribution tank such that oxygen released from said dispersion member rises along an interior of said oxygen diffusion tank;
wherein a rate of flow of water from said at least one water source through said oxygen diffusion tank is slightly less than a rate of rise of oxygen bubbles through said water from said dispersion member; and
wherein oxygenated water is routed from adjacent to a top end of said at least one oxygenation system into said at least one aquaculture holding tank.
23. The aquaculture system of claim 1, wherein said at least one filter apparatus further comprises:
a distribution channel environmentally coupleable to a first drain member of said at least one aquaculture holding system, said distribution channel being for receiving waste water from said at least one aquaculture holding system;
a settling filter environmentally coupleable to said distribution channel, said settling filter being for allowing at least a portion of particulate matter present in the waste water to settle out of said waste water; and
a biological filter environmentally coupleable to said settling filter, said biological filter being for removing at least a portion of ammonia, biological oxygen demand (BOD), and carbon dioxide from said waste water.
24. The aquaculture system of claim 23, wherein said distribution channel substantially extends along a length of said at least one filter apparatus.
25. The aquaculture system of claim 24, wherein said distribution channel is subdivided into distribution channel segments, an interior of each one of said distribution channel segments being selectively separable from an adjacent distribution channel segment.
26. The aquaculture system of claim 25, wherein each distribution channel segment further comprises a plurality of pipe members, each one of said pipe members being for selectively directing waste water from said distribution channel segment into said settling filter.
27. The aquaculture system of claim 26, wherein a flow rate of each one of said plurality of pipe members is adjustable.
28. The aquaculture system of claim 23, wherein said settling filter substantially extends along a length of said at least one filter apparatus, said settling filter being positioned adjacent to said distribution channel.
29. The aquaculture system of claim 28, wherein said settling filter is subdivided into settling filter segments, an interior of each one of said settling filter segments being selectively separable from an adjacent settling filter segment.
30. The aquaculture system of claim 29, wherein each settling filter segment further comprises a plurality of pipe members, each one of said pipe members being for selectively directing waste water from said settling filter segment into said biological filter.
31. The aquaculture system of claim 30, wherein a flow rate of each one of said plurality of pipe members is adjustable.
32. The aquaculture system of claim 31, wherein said settling filter further comprises at least one weir gate for directing waste water from said settling filter into said biological filter.
33. The aquaculture system of claim 28, wherein said settling filter further comprises a sloped base for directing settled particulate matter towards a drain.
34. The aquaculture system of claim 23, wherein said biological filter substantially extends along a length of said filter apparatus and is adjacent to said settling filter.
35. The aquaculture system of claim 23, wherein said biological filter further comprises:
a plurality of spray nozzles, each one of said spray nozzles being environmentally coupled to an associated pipe member of said settling filter;
a plurality of biomedia assemblies, each biomedia assembly being at least partially positioned below at least one of said spray nozzles such that waste water directed out of said at least one spray nozzle is applied to at least a portion of said biomedia assembly;
an air space positioned substantially below said plurality of biomedia assemblies; and
a water collection area positioned below said air space.
36. The aquaculture system of claim 35, wherein at least one of said biomedia assemblies is positioned at an oblique angle to a plane defined by the plurality of spray nozzles.
37. The aquaculture system of claim 36, wherein each one of said biomedia assemblies further comprises a porous frame assembly and a quantity of biomedia applied to a surface of said frame assembly.
38. The aquaculture system of claim 37, wherein said biomedia further comprises a culture of species of Nitrosomonas.
39. The aquaculture system of claim 37, wherein said biomedia further comprises a cultures of species of Nitrobacter.
40. The aquaculture system of claim 37, wherein said at least one of said biomedia assemblies extend at said oblique angle over a vertical height of between 6 and 20 feet
41. The aquaculture system of claim 37, wherein said at least one of said biomedia assemblies extends at said oblique angle over a vertical height of approximately 9 feet.
42. The aquaculture system of claim 35, wherein said airspace comprises a vertical height of between 6 and 24 inches.
43. The aquaculture system of claim 35, wherein said airspace comprises a vertical height of approximately 12 inches.
44. The aquaculture system of claim 35, further comprise an air blower environmentally coupleable to said air space, said air blower directing a flow of air into said air space and upwardly through said plurality of biomedia assemblies.
45. The aquaculture system of claim 35, wherein said biological filter further comprises a sloped floor for directing solid wastes towards a drain member positioned substantial at a base of said sloped floor.
46. The aquaculture system of claim 35, further comprising a pump assembly, said pump assembly being environmentally coupleable to said water collection area of said biological filter, said pump assembly directing filtered water collected in said water collection area to said at least one oxygenation apparatus.
47. The aquaculture system of claim 35, further comprising a second distribution channel, said second distribution channel being environmentally coupleable between said settling filter and said biological filter, said distribution channel facilitating direction of waste water from said settling filter to various portions of said biological filter, even if a distribution channel segment is closed or blocked off.
48. The aquaculture system of claim 35, further comprising a waste treatment assembly environmentally coupleable to waste outputs of said settling filter and said biological filters.
49. The aquaculture system of claim 48, wherein said waste treatment assembly further comprises:
a solids digestions system;
a phosphate precipitation system;
a water filtration system; and
a processed water collection system.
50. The aquaculture system of claim 49, wherein said solids digestion system further comprises:
a waste input environmentally coupleable to a drain of said settling filter and a drain of said biological filter, said waste input directing solid and liquid waste into said solids digestion system;
a solids digestion tank having a sloped floor with a waste drain positioned at a base of said sloped floor;
an impeller positioned at least partially within said solids digestion tank, said impeller at least intermittently stirring the solid and liquid waste positioned within said solids digestion tank;
an anaerobic digestion culture positioned adjacent said solids digestion tank, said anaerobic digestion culture digesting at least a portion of said solid waste; and
a waste water output environmentally coupleable to said phosphate precipitation system.
51. The aquaculture system of claim 50 wherein said waste drain in said solids digestion tank primarily collects minerals and salts after the anaerobic digestion process.
52. The aquaculture system of claim 49, wherein said phosphate precipitation system further comprises:
a precipitation tank having a sloped floor with a waste drain positioned at a base of said sloped floor;
an impeller positioned at least partially within said solids digestion tank, said impeller at least intermittently stirring the solid and liquid waste positioned within said precipitation tank; and
a waste water output environmentally coupleable to said water filtration system.
53. The aquaculture system of claim 52, further comprising a precipitation agent added at least intermittently to said precipitation tank.
54. The aquaculture system of claim 53, wherein said precipitation agent comprises processed fish scales.
55. The aquaculture system of claim 53, wherein said precipitation agent comprises alum.
56. The aquaculture system of claim 53, wherein said precipitation agent comprises at least one metal salt coagulant or polymer.
57. The aquaculture system of claim 53, wherein said precipitation agent comprises a bacterial composition.
58. The aquaculture system of claim 57, wherein said bacterial composition is alternately substantially aerobic and anaerobic.
59. The aquaculture system of claim 52, wherein said waste drain in said phosphate precipitation tank primarily collects phosphates after the precipitation process
60. The aquaculture system of claim 49, wherein said water filtration system further comprises a sand filter environmentally coupleable to a waste water output of said phosphate precipitation system, said sand filter having a processed water output for directing processed water out of said solids digestion system.
61. The aquaculture system of claim 60, wherein said water filtration system further comprises an ozone treatment system for applying ozone to waste water being conducted through said sand filter.
62. The aquaculture system of claim 49, further comprising a protein skimmer environmentally coupleable to a processed water output of said water filtration system.
63. The aquaculture system of claim 49, wherein said waste treatment assembly is positioned substantially adjacent to said biological filter.
64. The aquaculture system of claim 49, further comprising a screen filter positioned after said biological filter.
65. A method of producing aquaculture comprising:
providing a plurality of aquaculture holding tanks;
providing a quantity of water positioned at least partially in said plurality of aquaculture holding tanks;
providing a plurality of oxygenation apparatuses, at least one of said oxygenation apparatuses being operationally coupled to an associated one of said plurality of aquaculture holding tanks;
providing at least one filter apparatus operationally coupled to said plurality of aquaculture holding tanks;
providing a aquaculture species moving means operationally coupled to said plurality of aquaculture holding tanks;
providing a starting quantity of at least one aquaculture species;
providing feed for said at least one aquaculture species;
thermally conditioning at least a portion of said quantity of water to a temperature suitable for promoting growth of said at least one aquaculture species;
allowing said at least one aquaculture species to grow for a period of time;
circulating at least a portion of said quantity of water;
removing solid wastes from said plurality of aquaculture holding tanks at least intermittently;
directing at least a portion of said quantity of water from said plurality of aquaculture holding tanks into said at least one filter apparatus at least intermittently;
harvesting at least a portion of said starting quantity of at least one aquaculture species.
66. The method of claim 65, wherein the step of providing a plurality of oxygenation apparatuses further comprises:
providing at least one oxygen source;
providing at least one oxygen diffusions tank for each one of said plurality of oxygenation apparatus;
providing at least one water source;
wherein said oxygen diffusion tank further comprises a tank having a height between 15 and 150 feet;
wherein said at least one oxygen source being environmentally coupled to a dispersion member positioned to a lower end of said oxygen diffusion tanks via an oxygen tube member, said oxygen tube member being at least partially routed along an interior of said oxygen diffusion tank;
wherein said at least one water source being operationally coupled to a water inlet said water inlet being at least partially positioned within said oxygen diffusion tank;
wherein said dispersion member being positioned in said oxygen diffusion tank such that oxygen released from said dispersion member rises along an interior of said oxygen diffusion tank; and
wherein oxygenated water collected from adjacent to a top end of the oxygenation tank has a dissolved oxygen content of approximately 1 mg of oxygen per 1 liter of water per foot of height of the oxygenation tank below the water collection point.
67. The method of claim 66, wherein said step of providing at least one oxygen source further comprises providing at least one tank of liquid oxygen environmentally coupled to said at least one source of oxygen.
68. The method of claim 66, wherein said step of providing a plurality of oxygenation apparatuses further comprises providing two oxygenation apparatuses for each one of said plurality of aquaculture holding tanks.
69. The method of claim 66, wherein said step of circulating at least a portion of said quantity of water further comprises adjusting a circulation rate based at least in part on oxygen content in the water.
70. The method of claim 65, wherein said step of providing a plurality of aquaculture holding tanks further comprises providing a first drain member and a second drain member for each one of said plurality of aquaculture holding tanks, said first drain member being operationally coupled between an interior of said aquaculture holding tank and said at least one filter apparatus, said second drain member positioned adjacent and below said first drain member, said second drain member having a conical intake section.
71. The method of claim 70, wherein said second drain member is drained intermittently.
72. The method of claim 70, wherein said step of providing a plurality of aquaculture holding tanks further comprises providing a plurality of aquaculture holding tanks each comprising fiberglass.
73. The method of claim 70, wherein said step of providing a plurality of aquaculture holding tanks further comprises providing a plurality of aquaculture holding tanks each comprising concrete.
74. The method of claim 65, wherein said step of providing at least one filter apparatus further comprises:
providing a distribution channel environmentally coupleable to a first drain member of said at least one aquaculture holding system, said distribution channel being for receiving waste water from said at least one aquaculture holding system;
providing a settling filter environmentally coupleable to said distribution channel, said settling filter being for allowing at least a portion of particulate matter present in the waste water to settle out of said waste water;
providing a biological filter environmentally coupleable to said settling filter, said biological filter being for removing at least a portion of ammonia from said waste water;
wherein said distribution channel is subdivided into distribution channel segments, an interior of each one of said distribution channel segments being selectively separable from an adjacent distribution channel segment;
wherein each distribution channel segment further comprises a plurality of pipe members, each one of said pipe members being for selectively directing waste water from said distribution channel segment into said settling filter;
wherein said settling filter is subdivided into settling filter segments, an interior of each one of said settling filter segments being selectively separable from an adjacent settling filter segment;
wherein each settling filter segment further comprises a plurality of pipe members, each one of said pipe members being for selectively directing waste water from said settling filter segment into said biological filter;
wherein a flow rate of each one of said plurality of pipe members is adjustable; and
wherein said settling filter further comprises a sloped base for directing settled particulate matter towards a drain.
75. The method of claim 74, further comprising the step of managing said drain of said settling filter based at least in part on the amount of denitrification accomplished within said settling filter.
76. The method of claim 74, further comprising the step of managing said drain of said settling filter based at least in part on the amount of nitrogen gas produced within said settling filter.
77. The method of claim 74, wherein said step of providing a biological filter further comprises:
providing a plurality of spray nozzles, each one of said spray nozzles being environmentally coupled to an associated pipe member of said settling filter;
providing a plurality of biomedia assemblies, each biomedia assembly being at least partially positioned below at least one of said spray nozzles such that waste water directed out of said at least one spray nozzle is applied to at least a portion of said biomedia assembly;
providing an air space positioned substantially below said plurality of biomedia assemblies; and
providing a water collection area positioned below said air space.
78. The method of claim 77, wherein said step of providing a plurality of biomedia assemblies further comprises the step of positioning each one of said plurality of biomedia assemblies at an oblique angle to a plane defined by the plurality of spray nozzles.
79. The method of claim 78, wherein said step of providing a plurality of biomedia assemblies further comprises:
providing a plurality of porous frame assemblies;
providing a quantity of biomedia;
applying a portion of said quantity of biomedia to an associated one of said frame assemblies.
80. The method of claim 79, wherein said quantity of biomedia comprises a culture of species of Nitrosomonas.
81. The method of claim 80, wherein said quantity of biomedia comprises a culture of species of Nitrobacter.
82. The method of claim 81, wherein said step of directing at least a portion of said quantity of water from said plurality of aquaculture holding tanks into said at least one filter apparatus at least intermittently further comprises adjusting a quantity of water directed into at least one filter apparatus based at least in part on the biological health of said biomedia.
83. The aquaculture system of claim 82, further comprising the steps of:
providing an air blower environmentally coupleable to said air space;
directing a flow of air from said air blower into said air space and upwardly through said plurality of biomedia assemblies.
US12/791,793 2010-06-01 2010-06-01 Modular aquaculture system and method of use Active - Reinstated 2031-04-29 US8813686B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/791,793 US8813686B2 (en) 2010-06-01 2010-06-01 Modular aquaculture system and method of use
PCT/US2011/000981 WO2011152862A1 (en) 2010-06-01 2011-06-01 Modular aquaculture system and method of use
US14/312,405 US9497941B2 (en) 2010-06-01 2014-06-23 Modular aqaculture system and method of use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/791,793 US8813686B2 (en) 2010-06-01 2010-06-01 Modular aquaculture system and method of use

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/312,405 Division US9497941B2 (en) 2010-06-01 2014-06-23 Modular aqaculture system and method of use

Publications (2)

Publication Number Publication Date
US20110290189A1 true US20110290189A1 (en) 2011-12-01
US8813686B2 US8813686B2 (en) 2014-08-26

Family

ID=45021020

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/791,793 Active - Reinstated 2031-04-29 US8813686B2 (en) 2010-06-01 2010-06-01 Modular aquaculture system and method of use

Country Status (2)

Country Link
US (1) US8813686B2 (en)
WO (1) WO2011152862A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015143292A1 (en) * 2014-03-21 2015-09-24 Limcaco Christopher A Aquaculture system
US20160050893A1 (en) * 2012-09-14 2016-02-25 Nick L. Lari Fish Display and Water Circulation Apparatus Having Individually Removable Live Fish Containers
US9693538B2 (en) 2013-03-14 2017-07-04 Pentair Water Pool And Spa, Inc. Carbon dioxide control system for aquaculture
US9693537B2 (en) 2011-12-08 2017-07-04 Pentair Water Pool And Spa, Inc. Aquaculture pump system and method
US10219491B2 (en) 2013-03-15 2019-03-05 Pentair Water Pool And Spa, Inc. Dissolved oxygen control system for aquaculture
CN110915744A (en) * 2019-12-12 2020-03-27 浙江省海洋水产养殖研究所 Family synchronization salinity adjusting device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014205588A1 (en) * 2013-06-24 2014-12-31 Ingenieria Y Construccion Biofiltro Limitada Treatment for domestic and industrial waste water
FR3114249B1 (en) 2020-09-22 2022-11-18 Pure Salmon Ltd Water treatment process for fish farming, and installation for implementing this process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3661262A (en) * 1970-08-25 1972-05-09 Oceanography Mariculture Ind Filtration and circulation system for maintaining water quality in mariculture tank
US4988436A (en) * 1989-10-11 1991-01-29 Larry Cole Aquarium filtration system with liquid distributor and protein skimmer
US5038715A (en) * 1989-04-14 1991-08-13 Fahs Ii Richard W Aquaculture system
US5961831A (en) * 1996-06-24 1999-10-05 Board Of Regents, The University Of Texas System Automated closed recirculating aquaculture filtration system and method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK166984B1 (en) 1991-02-12 1993-08-16 Lauritz Nicolai Balsle Klausen PLANT FOR COMMISSION OF FISH
CA2118783C (en) 1994-03-10 2000-02-29 J. Wayne Vantoever Water treatment system particularly for use in aquaculture
AUPP244698A0 (en) 1998-03-18 1998-04-09 Mcrobert, Ian Aquaculture system
KR100352166B1 (en) 2000-05-08 2002-09-12 주식회사 환경비젼이십일 Process and plant for the efficiency solubility of gas and sludge mixing
US20060162667A1 (en) 2005-01-26 2006-07-27 Papadoyianis Ernest D Aquatic habitat and ecological tank
CA2611176A1 (en) 2005-07-05 2007-01-11 Aquatic Technologies Oxygenation of aqueous systems
US8117992B2 (en) 2007-08-22 2012-02-21 Aqua Culture Joint Venture Aquatic farming systems
US7910001B2 (en) 2007-12-13 2011-03-22 Mote Marine Laboratory Arrangement of denitrification reactors in a recirculating aquaculture system
GB2464686A (en) 2008-10-21 2010-04-28 Pisces Engineering Ltd Filtration system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3661262A (en) * 1970-08-25 1972-05-09 Oceanography Mariculture Ind Filtration and circulation system for maintaining water quality in mariculture tank
US5038715A (en) * 1989-04-14 1991-08-13 Fahs Ii Richard W Aquaculture system
US4988436A (en) * 1989-10-11 1991-01-29 Larry Cole Aquarium filtration system with liquid distributor and protein skimmer
US5961831A (en) * 1996-06-24 1999-10-05 Board Of Regents, The University Of Texas System Automated closed recirculating aquaculture filtration system and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9693537B2 (en) 2011-12-08 2017-07-04 Pentair Water Pool And Spa, Inc. Aquaculture pump system and method
US20160050893A1 (en) * 2012-09-14 2016-02-25 Nick L. Lari Fish Display and Water Circulation Apparatus Having Individually Removable Live Fish Containers
US9655350B2 (en) * 2012-09-14 2017-05-23 New PCA, LLC Fish display and water circulation apparatus having individually removable live fish containers
US9693538B2 (en) 2013-03-14 2017-07-04 Pentair Water Pool And Spa, Inc. Carbon dioxide control system for aquaculture
US10219491B2 (en) 2013-03-15 2019-03-05 Pentair Water Pool And Spa, Inc. Dissolved oxygen control system for aquaculture
WO2015143292A1 (en) * 2014-03-21 2015-09-24 Limcaco Christopher A Aquaculture system
US9380766B2 (en) 2014-03-21 2016-07-05 Christopher A. Limcaco Aquaculture system
CN110915744A (en) * 2019-12-12 2020-03-27 浙江省海洋水产养殖研究所 Family synchronization salinity adjusting device

Also Published As

Publication number Publication date
WO2011152862A1 (en) 2011-12-08
US8813686B2 (en) 2014-08-26

Similar Documents

Publication Publication Date Title
US9497941B2 (en) Modular aqaculture system and method of use
US8813686B2 (en) Modular aquaculture system and method of use
KR102242705B1 (en) Recirculating aquaculture system use of Biofloc Technology
KR100706273B1 (en) recirculating culture system and filtering method of recirculating for shrimp
US5158037A (en) Device for raising aquatic animals
KR100912344B1 (en) Eliminating apparatus of floating matters and organic compound in water tank
US20050109697A1 (en) Waste water treatment system and process
US6065430A (en) Fish culturing system
KR101682589B1 (en) Flow-direction exchangable type bio-filter with solid removal function
CN203692217U (en) Sedimentation separation type culture pond
JP2000312542A (en) Circulatory filtration apparatus for culturing fishes and shellfishes
US20120279919A1 (en) Multistage biological reactor
JPH04503323A (en) Methods and equipment for treating water
CN101708890B (en) Micro pollution source water in-situ purification system
RU86406U1 (en) WATER SYSTEM MODULE FOR FISHING
KR101499675B1 (en) Bio-filtering apparatus and bio-filtering system for the design capable of variable scale and feature of biofilter for the culture water treatment in fish farm
JP2007159507A (en) Shellfish culture tank and shellfish culture method
WO2016159870A1 (en) Moving bed bioreactor and water treatment process
WO1988009615A1 (en) Fish cultivation tank
TWI611758B (en) High-density culture circulating water treatment equipment
KR100893674B1 (en) Internal recirculating vegetative filter and filter system having the same
JP5077874B2 (en) Water purifier
LV15092A (en) Fish-rearing complex and method for regenerating water in such a complex
CN103130319A (en) Aeration carrier and biological sewage treatment device with the same
RU2798282C1 (en) Unit for closed water supply for growing fish

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.)

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20180826

PRDP Patent reinstated due to the acceptance of a late maintenance fee

Effective date: 20191220

FEPP Fee payment procedure

Free format text: SURCHARGE, PETITION TO ACCEPT PYMT AFTER EXP, UNINTENTIONAL. (ORIGINAL EVENT CODE: M2558); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PMFG); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 8