Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20110094951 A1
Publication typeApplication
Application numberUS 12/984,145
Publication date28 Apr 2011
Filing date4 Jan 2011
Priority date12 Apr 2006
Also published asCN101073730A, CN101623571A, CN101623572A, CN101623572B, CN101623573A, CN101623573B, EP1844836A2, EP1844836A3, EP2027907A2, EP2027907A3, EP2229991A1, EP2260918A2, EP2260918A3, EP2260919A2, EP2260919A3, EP2260920A2, EP2260920A3, US8007568, US8221522, US20070240492, US20110016953, US20110017062, US20110083491, US20110100134, US20110247429, US20110247971
Publication number12984145, 984145, US 2011/0094951 A1, US 2011/094951 A1, US 20110094951 A1, US 20110094951A1, US 2011094951 A1, US 2011094951A1, US-A1-20110094951, US-A1-2011094951, US2011/0094951A1, US2011/094951A1, US20110094951 A1, US20110094951A1, US2011094951 A1, US2011094951A1
InventorsAnthony DiLeo, John Dana Hubbard
Original AssigneeMillipore Corporation
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Filter with memory, communication and pressure sensor
US 20110094951 A1
Abstract
The present invention describes a system and method for accurately measuring the pressure within a filter housing. A pressure sensor and a communications device are coupled so as to be able to measure and transmit the pressure within the filter housing while in use. This system can comprise a single component, integrating both the communication device and the pressure sensor. Alternatively, the system can comprise separate sensor and transmitter components, in communication with one another. In yet another embodiment, a storage element can be added to the system, thereby allowing the device to store a set of pressure values. The use of this device is beneficial to many applications. For example, the ability to read pressure values in situ allows integrity tests to be performed without additional equipment. In addition, integrity testing for individual filters within multi-filter configurations is possible.
Images(6)
Previous page
Next page
Claims(14)
1. An apparatus for monitoring the pressure within a filter housing having at least one filtering element, comprising:
said filtering element,
a pressure sensor embedded in said filtering element, and
a transmitter, in communication with said sensor.
2. The apparatus of claim 1, further comprising a storage element adapted to store measurements from said sensor.
3. The apparatus of claim 1, wherein said sensor is selected from the group consisting of a MEMS device, a piezoelectric device, a conductive polymer device, an elastomer device, and an ink device.
4. The apparatus of claim 1, wherein said transmitter utilizes wireless communication.
5. The apparatus of claim 4, wherein said wireless transmitter comprises an RFID tag.
6. The apparatus of claim 1, wherein said pressure sensor and said transmitter are provided in a single enclosure.
7. The apparatus of claim 4, further comprising a wireless receiver, adapted to receive signals transmitted from said wireless transmitter.
8. The apparatus of claim 1, wherein said pressure sensor comprises a differential pressure sensor.
9. A Tangential Flow Filtration (TFF) device comprising at least one connecting port; a filtering element and at least one sensor located in at least one of said at least one connecting port.
10. The device of claim 9, wherein said sensor comprises a pressure sensor.
11. The device of claim 9, wherein said sensor comprises a flow rate sensor.
12. A Tangential Flow Filtration (TFF) device comprising a plurality of modules and at least one pressure sensor located between adjacent ones of said plurality of modules.
13. The device of claim 12, further comprising at least one additional pressure sensor within a membrane stack in one of said plurality of modules.
14. The device of claim 12, further comprising a transmitter in communication with said pressure sensor.
Description
  • [0001]
    This application is a divisional application of U.S. patent application Ser. No. 11/402,438, filed Apr. 12, 2006, the disclosure of which are incorporated herein by reference in its entirety.
  • BACKGROUND OF THE INVENTION
  • [0002]
    The use of RFID tags has become prevalent, especially in the management of assets, particularly those applications associated with inventory management. For example, the use of RFID tags permits the monitoring of the production line and the movement of assets or components through the supply chain.
  • [0003]
    To further illustrate this concept, a manufacturing entity may adhere RFID tags to components as they enter the production facility. These components are then inserted into the production flow, forming sub-assemblies in combination with other components, and finally resulting in a finished product. The use of RFID tags allows the personnel within the manufacturing entity to track the movement of the specific component throughout the manufacturing process. It also allows the entity to be able to identify the specific components that comprise any particular assembly or finished product.
  • [0004]
    In addition, the use of RFID tags has also been advocated within the drug and pharmaceutical industries. In February 2004, the United States Federal and Drug Administration issued a report advocating the use of RFID tags to label and monitor drugs. This is an attempt to provide pedigree and to limit the infiltration of counterfeit prescription drugs into the market and to consumers.
  • [0005]
    Since their introduction, RFID tags have been used in many applications, such as to identify and provide information for process control in filter products. U.S. Pat. No. 5,674,381, issued to Den Dekker in 1997, discloses the use of “electronic labels” in conjunction with filtering apparatus and replaceable filter assemblies. Specifically, the patent discloses a filter having an electronic label that has a read/write memory and an associated filtering apparatus that has readout means responsive to the label. The electronic label is adapted to count and store the actual operating hours of the replaceable filter. The filtering apparatus is adapted to allow use or refusal of the filter, based on this real-time number. The patent also discloses that the electronic label can be used to store identification information about the replaceable filter.
  • [0006]
    A patent application by Baker et al, published in 2005 as U.S. Patent Application Publication No. US2005/0205658, discloses a process equipment tracking system. This system includes the use of RFID tags in conjunction with process equipment. The RFID tag is described as capable of storing “at least one trackable event”. These trackable events are enumerated as cleaning dates, and batch process dates. The publication also discloses an RFID reader that is connectable to a PC or an internet, where a process equipment database exists. This database contains multiple trackable events and can supply information useful in determining “a service life of the process equipment based on the accumulated data”. The application includes the use of this type of system with a variety of process equipment, such as valves, pumps, filters, and ultraviolet lamps.
  • [0007]
    Another patent application, filed by Jornitz et al and published in 2004 as U.S. Patent Application Publication No. 2004/0256328, discloses a device and method for monitoring the integrity of filtering installations. This publication describes the use of filters containing an onboard memory chip and communications device, in conjunction with a filter housing. The filter housing acts as a monitoring and integrity tester. That application also discloses a set of steps to be used to insure the integrity of the filtering elements used in multi-round housings. These steps include querying the memory element to verify the type of filter that is being used, its limit data, and its production release data.
  • [0008]
    Patent No. 6,936,160, issued to Moscaritolo in 2005, describes a wireless MEMS sensing device, for use with filtering elements. Moscaritolo describes a MEMS device, having at least two different sensors in a single assembly package. The patent discloses use of this MEMS device in the end cap of a filter, preferably for measuring differential pressure of a fluid, thereby allowing it to monitor the operating conditions within the housing. Related patents also describe the use of this MEMS device to estimate and predict a filter's life.
  • [0009]
    Despite the improvements that have occurred through the use of RFID tags, there are additional areas that have not been satisfactorily addressed. For example, there are a number of applications, such as in-situ filter integrity testing and filter life monitoring via transmembrane pressure changes, in which real time monitoring of the pressure at various points within the filter housing would be extremely beneficial.
  • SUMMARY OF THE INVENTION
  • [0010]
    The shortcomings of the prior art are overcome by the present invention, which describes a system and method for accurately measuring the pressure and/or flow at various points within a filter housing. In one embodiment, a sensor, capable of measuring the pressure at a specific point is used. In a second embodiment, a differential pressure sensor, capable of measuring the difference in pressure between two points, is employed. In a third embodiment, a gas flow meter is incorporated into the nose of a filter for directly measuring the flow of gas through that point in the filter. Similarly, a differential pressure sensor or a liquid flow sensor can be incorporated in a TFF module to measure the flow of critical fluids, like cleaning fluids, within a system. These sensors are in communication with a communications device so that the combination is able to measure and transmit the pressure measurement, while the filter is in use. This system can comprise a single component, integrating both the communication device and the pressure sensor. Alternatively, the system can comprise separate sensor and transmitter components, in communication with one another. The transmitter component can utilize either wired or wireless communication. In yet another embodiment, a storage element can be added to the system, thereby allowing the device to store a set of pressure values.
  • [0011]
    The use of this device is beneficial to many applications. For example, the ability to monitor transmembrane pressure across each filter individually in a multiple filter configuration improves the reliability and validity of an integrity test. This also allows the integrity of each filtering element to be individually determined in situ. The ability to monitor the transmembrane pressure within the filter housing also enables the plugging of multi-layer filters to be monitored, allowing the life of the filter to be estimated.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0012]
    FIG. 1 is a representative embodiment of the present invention;
  • [0013]
    FIG. 2 is a representative embodiment of the present invention as used in a multi-element filter configuration;
  • [0014]
    FIG. 3 is a first representative embodiment of the present invention as used to perform in situ integrity testing within multi-element filter configurations;
  • [0015]
    FIG. 4 is a second representative embodiment of the present invention as used to perform in situ integrity testing within multi-element filter configurations; and
  • [0016]
    FIG. 5 is a representative embodiment of the present invention as used to perform in situ integrity testing of tangential flow filters.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0017]
    FIG. 1 illustrates a representative filtering system in accordance with the present invention. The filter element 10 is enclosed with a housing 20. The filter element can be simply a porous material, such as pleated paper or PVDF (Polyvinylidene fluoride) membrane. In an alternative embodiment, shown in FIG. 2, multiple filter elements 10 are enclosed within one housing 20. Alternatively, the filter element may comprise a frame, such as of plastic, and a porous material. Located in close proximity of, preferably affixed to, and most preferably embedded in, the end cap of filter element 10 is a pressure sensor 30. This sensor 30 is capable of generating an output, which varies as a function of the pressure of the surrounding environment. In another embodiment, the sensor is a differential sensor, whereby its output is a function of the difference is pressure between two areas. This output can be in the form of an analog voltage or current, or can be a digital value or pulse. In the preferred embodiment, the output varies linearly with the pressure, however this is not a requirement. Any output having a known relationship, such as logarithmic or exponential, to the surrounding pressure, can be employed. In such a situation, a transformation of the output can be performed to determine the actual measured pressure.
  • [0018]
    The pressure sensor 30 is preferably a differential sensor, and is mounted on, or preferably embedded in, the end cap of the filter element 10. The sensor is positioned such that it is capable of measuring both the upstream and downstream pressure. In some applications, the temperature of the filter element may exceed 145 C., therefore a sensor that is stable at these temperatures should be employed. Similarly, a transmitter capable of withstanding this temperature should be employed. Finally, the temperature with the housing 20 may cycle from lower temperatures to higher temperatures and back, therefore the pressure sensor should be able to withstand temperature cycling.
  • [0019]
    There are multiple embodiments of this pressure sensor. For example, this sensor can be constructed using micro-electro-mechanical system (MEMS) technology, a piezoelectric element, a conductive or resistive polymer, including elastomers and inks, or a transducer. While a differential pressure sensor is preferred, since it is the difference between the upstream pressure and the downstream pressure that is of interest, separate pressure sensors, one on either side of the filter, may also be employed. These examples are intended to be illustrative of some of the types of sensors that can be used; this is not intended to be an exhaustive list of all such suitable pressure sensors.
  • [0020]
    The pressure sensor 30 is in communication with a transmitter 40, which can be either wired or wireless. Mechanisms for transmitting wireless signals outside the housing have been disclosed and are known in the art. United States Patent Application Publication 2004/0256328 describes the use of an antenna to relay information between transponders located on the filter housing to a monitoring and test unit external to the housing.
  • [0021]
    For flow measuring applications, such as those shown in FIG. 3, the pressure sensor 30 may optionally be combined with a restriction orifice to achieve the sensitivity needed for the application. This orifice or venturi restriction device is typically used to measure liquid flow, but it may also be used to measure gas flow when higher sensitivity than can be achieved by measurement within the dimensions of the main flow path, like the core of a filter, is required. For example, the flow rate typically experienced during diffusion is 10 cc/min. In contrast, the flow rate during convection is 500 cc/min to 1000 cc/min.
  • [0022]
    FIG. 4 shows the use of flow rate sensors 70, instead of pressure sensors. There are multiple embodiments of direct flow rate measuring sensors. In gas flow measuring applications, flow measurement is typically determined by monitoring changes in temperature. These devices can be based upon an anemometer within which a current is passed and the anemometer wire heated. The anemometer is cooled due to the gas flow and this is measured as a current change in the sensor. Alternately, a slip stream of gas is passed through a narrow capillary within which are two thermal coils, one pulses heat into the flowing gas the other detects the time for the temperature pulse to reach it. This is correlated to total gas flow by properly designing the capillary to mail gas flow tube diameters. Other methods of measuring flow rate are known in the art, and are within the scope of the invention, as this list is not meant to be exhaustive. The location of the flow rate sensor is important, as certain locations within the filter housing are not subjected to the full flow. For example, a flow rate sensor near the end cap of the filter element would experience very little flow, especially as compared to one near the open end of the filter element.
  • [0023]
    A transmitter 40 is also located near, or integrated with, the sensor 30. In one embodiment, the transmitter 40 and the pressure sensor 30 are encapsulated in a single integrated component. Alternatively, the transmitter 40 and the sensor 30 can be separated, and in communication with each other, such as via electrical signals. Various types of communication are possible, such as wired and wireless. Various wireless communication devices are possible, although the use of an RFID tag is preferred. An active RFID tag allows regular communication with the reader. Alternatively, a passive RFID tag can be used, whereby the energy to transmit and sense the temperature is obtained from the electromagnetic field transmitted by the RFID reader.
  • [0024]
    Optionally, a storage element 50 can be used in conjunction with the transmitter 40 and the pressure sensor 30. This storage element 50, which is preferably a random access memory (RAM) or FLASH EPROM device, can be used to store a set of pressure readings, such as may be generated by regular sampling of the sensor.
  • [0025]
    This allows the rate at which the transmitter 40 sends data to be different from the rate at which the pressure is sampled. For example, the pressure may be sampled 10 times per second, while the data is transmitted only once per second.
  • [0026]
    A wireless receiver, 60, optionally located outside the filter housing 20, is used to communicate with the wireless transmitter. In the preferred embodiment, an RFID reader or base station is used. The reader can be configured such that it queries the transmitter at regular intervals. Alternatively, the reader can be manually operated so that readings are made when requested by the equipment operator. In another embodiment, the wireless receiver 60 also includes a storage element. This reduces the complexity required of the device within the housing. In this embodiment, the wireless receiver queries the wireless transmitter/pressure sensor at preferably regular intervals. It receives from the wireless transmitter the current pressure sensor measurement as determined at that time. The wireless receiver 60 then stores this value in its storage element. The capacity of the storage element can vary, and can be determined based on a variety of factors. These include, but are not limited to, the rate at which measurements are received, the rate at which the stored data is processed, and the frequency with which this storage element is in communication with its outside environment.
  • [0027]
    As an example, consider a filter element having a wireless transmitter 40, such as an RFID tag, coupled with a pressure sensor 30. In this embodiment, the RFID tag is passive, that is, it only sends data upon receipt of a query from the wireless receiver, or base station. Upon receipt of that query, the transmitter transmits the value currently available from the pressure sensor 30. In one scenario, the wireless receiver, which is coupled to a computing device, such as a computer, then stores these values, optionally with an associated timestamp, such as in a log file. In a different scenario, if the wireless receiver is separated from the computer, the receiver will need to store a number of pressure measurements internally, until such time as it is connected to the main computing and/or storage device. In this case, a storage element needs to be integrated with the receiver.
  • [0028]
    In another embodiment, a wireless transmitter and receiver are not used; rather, the output of the pressure sensor is hard wired to the outside of the housing.
  • [0029]
    Having defined the physical structure of the present invention, there are a number of applications in which it is beneficial. The following is meant to illustrate some of those applications, however it is not intended as a recitation of all such applications.
  • [0030]
    In one embodiment, the present invention is used in conjunction with in situ Integrity Testing. This process allows the operator to certify the integrity of the filters within the filter housing at the customer site without additional equipment. Specifically, a gas, typically air, is pressurized to a predetermined pressure upstream of a liquid wetted filter contained within an air tight housing. The pressure within the housing will decay over time as a result of diffusional and potentially convective flow of gas through the filter. The rate of pressure decay is used to establish the integrity of the filter element. In one embodiment, as shown in FIG. 3, a differential pressure sensor is preferably positioned in the nose of the filter. This sensor, preferably in combination with an orifice or venture is able to measure the gas flow through the filter via the venturi effect. As mentioned above, preferably an orifice is positioned in the nose of the filter 10 such that the pressure drop, such as at 10 cc/min, is measurable with a high degree of accuracy. This orifice is preferably removable and only needs to be placed in the flow path during this integrity test. In a second embodiment, as shown in FIG. 4, a gas flow measuring device, such as an anemometer or mass flow device, is employed to measure the gas flow directly.
  • [0031]
    For multi-round systems, multiple pressure sensors can be introduced, so as to be able to determine the diffusion rate for each individual filtering element. Currently, systems where multiple filters are used in parallel are difficult to test. In this situation, the specifications are multiplied by the number of filters in the housing. Therefore, the ability to detect defects is significantly reduced, because the errors are also multiplied. Additionally, if a defect is found, it is not easily discernible which filter was defective and each would need to be tested individually. The use of pressure or flow sensors in each filter improves the sensitivity of the test and allows each filter to be independently tested. In addition, the preferred bubblepoint integrity test, which measures gas flow over a broad range of increasing pressures, can be measured on each filter individually; a test protocol which is not possible currently.
  • [0032]
    In one embodiment, a plastic filter housing is utilized, allowing the wireless transmitter to transmit pressure data through the housing at any time.
  • [0033]
    The present invention also enables the monitoring of transmembrane pressure. This monitoring of transmembrane pressure has several benefits and applications. For example, the preferred start up procedure for microfiltration (MF) filters is to ramp the operating pressure, rather than opening to full operating pressure immediately. This approach avoids air locks within the filter and increases the filter's useful life. Internal pressure sensors can be utilized to monitor the pressure within the housing and thus, affect the proper ramp of operating pressure. In the preferred embodiment, a differential pressure sensor is located in the end cap of each filtering element, thereby allowing both the upstream and downstream pressure to be observed. In one embodiment, the pressure readings are transmitted via an RFID tag through the plastic housing to an external wireless receiver.
  • [0034]
    Once the assembly has reached its operating pressure, the internal pressure sensors allow continued monitoring of the filters. For example, plugging of the filter will lead to a reduction in flow rate and thus a corresponding reduction in pressure on the downstream side of the filter. Based on the rate at which the transmembrane pressure changes, an estimate of the useful life of the filter can be made. If the pressure is sampled on a continuous basis, any aberrant pressure fluctuations are observable and these can be accounted for in estimating the remaining useful life of the filter.
  • [0035]
    The above procedure is also applicable to multi-element filter arrangements. In the preferred embodiment, a pressure sensor is used to measure the upstream and downstream pressure of each filtering element by affixing the sensor to the end cap of each filter. The pressure measurements allow the operator to understand better the operation of each filter within the filter housing individually. For example, if a pressure drop were detected between the upstream and downstream sides of a filtering element, it typically would indicate a plugging or fouling of that element. As explained above, the rate at which the transmembrane pressure changes allows an estimation of useful filter life to be made. Similarly, if the pressure across each filter is sampled on a continuous basis, any aberrant pressure fluctuations are observable and these can be accounted for in estimating the remaining useful life of that particular filter.
  • [0036]
    Additionally, the present invention may be used to monitor specific operating parameters, such as transmembrane pressure, in tangential flow filtration (TFF) devices. These devices are typically used in milti-filter, module, configurations. Traditionally, the pressure drops between modules in TFF devices are not monitored. This monitoring can be performed by introducing pressure sensors between modules, as shown in FIG. 5. By monitoring the pressure drop between modules, the flow rate can be estimated. This flow rate can help determine that all modules are operating as designed, especially during cleaning. The cleaning operation can be verified when the individual membrane flux is recovered in each module individually. Additionally, pressure sensors can be employed within the membrane stacks in a module to monitor the transmembrane pressure or the transchannel pressure to ensure even flow access to each channel and to ensure that the module flux is uniform across the module. Additionally, by monitoring the pressure at various points within the housing, it is possible to determine internal flows. Once this is known, this information can be then used to regulate the flow within the channels so as to ensure that the entire module is used in a uniform manner. Finally, the integrity of a TFF module as measured by a diffusion test, can be determined for each module individually by measuring the gas flow in the outlet port of each module. The pressure measurements recorded by the pressure sensors are transmitted outside the filter housing through the use of the transmitter.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2131509 *22 Apr 193727 Sep 1938Patrick F DonahueCoupling connection for pipe joints and method of making same
US3698556 *30 Oct 197017 Oct 1972Envirotech CorpApparatus for steam drying filter cake
US3877893 *10 May 197315 Apr 1975Allied ChemAbsorption and separation of normally liquid gas contaminants
US4052176 *29 Sep 19754 Oct 1977Texaco Inc.Production of purified synthesis gas H2 -rich gas, and by-product CO2 -rich gas
US4211075 *19 Oct 19788 Jul 1980General Motors CorporationDiesel engine exhaust particulate filter with intake throttling incineration control
US4272109 *29 May 19799 Jun 1981Vetco, Inc.Ring gasket retainer for flanged connectors
US4552572 *26 Jul 198312 Nov 1985Bechtel International CorporationProcess for desulfurization of fuel gas
US4568364 *22 Mar 19844 Feb 1986Bechtel International CorporationProcess for desulfurization of fuel gas
US4840648 *14 Mar 198820 Jun 1989Metallgesellschaft AktiengesellschaftProcess for regenerating absorbents containing CO2 and COS
US4957515 *3 Nov 198818 Sep 1990Air Products And Chemicals, Inc.Process for sulfur removal and recovery from fuel gas using physical solvent
US5040805 *2 Nov 198920 Aug 1991Oiles CorporationSpherical sealing body used for exhaust pipe joint and manufacturing method thereof
US5121929 *24 Jun 199116 Jun 1992Fel-Pro IncorporatedGasket with encased load sensor
US5240476 *7 Sep 199031 Aug 1993Air Products And Chemicals, Inc.Process for sulfur removal and recovery from a power generation plant using physical solvent
US5240612 *13 Feb 199231 Aug 1993TechsepFiltration of liquid media under conditions of non-steady tangential flow
US5246235 *25 Feb 199221 Sep 1993Ralph HeinzenSeal with embedded wire
US5256294 *17 Sep 199026 Oct 1993Genentech, Inc.Tangential flow filtration process and apparatus
US5367910 *12 Mar 199229 Nov 1994Curtin Matheson Scientific, Inc.Method and apparatus for measuring gas flow using Boyle's law
US5476592 *26 Apr 199419 Dec 1995Hospal IndustrieMethod and device for injection of a sterile and antipyrogenic fluid
US5540448 *31 Aug 199330 Jul 1996Heinzen; RalphSeal with electrical conductor wear indicator
US5560278 *11 Oct 19941 Oct 1996Caterpillar Inc.Hydraulic cylinder with an electrical contacting and sealing ring
US5581017 *2 Jun 19953 Dec 1996Millipore Investment Holdings LimitedIntegrity test for porous structures using acoustic emission
US5581019 *23 Aug 19933 Dec 1996W. L. Gore & Associates, Inc.Gasket/insertable member and method for making and using same
US5624537 *20 Sep 199429 Apr 1997The University Of British Columbia - University-Industry Liaison OfficeBiosensor and interface membrane
US5674381 *29 Mar 19947 Oct 1997Doctro A.V.V.Assembly of filtering apparatus and replaceable filter; and filtering apparatus and filter for use therein
US5683119 *10 Sep 19964 Nov 1997Metex CorporationPipe joint and seal therefor
US5786528 *10 Sep 199628 Jul 1998Millipore CorporationWater intrusion test for filters
US5947689 *7 May 19977 Sep 1999Scilog, Inc.Automated, quantitative, system for filtration of liquids having a pump controller
US6003872 *16 Dec 199421 Dec 1999Nord; Klaus JuergenMethod of monitoring a seal for correct operation, and monitoring device for carrying out the method
US6077435 *15 Mar 199620 Jun 2000Usf Filtration And Separations Group Inc.Filtration monitoring and control system
US6090187 *3 Apr 199818 Jul 2000Mitsubishi Jidosha Kogyo Kabushiki KaishaApparatus and method for removing particulates in exhaust gas of an internal combustion engine collected by exhaust particulate remover apparatus
US6090356 *10 Sep 199818 Jul 2000Texaco Inc.Removal of acidic gases in a gasification power system with production of hydrogen
US6265973 *16 Apr 199924 Jul 2001Transguard Industries, Inc.Electronic security seal
US6296770 *9 Dec 19992 Oct 2001Eastman Kodak CompanyConstant concentration at the UF membrane wall UF process control and apparatus
US6333699 *6 Apr 199925 Dec 2001Marathon Oil CompanyMethod and apparatus for determining position in a pipe
US6350382 *23 Jun 200026 Feb 2002Scilog, Inc.Enhancing filtration yields in tangential flow filtration
US6365395 *3 Nov 20002 Apr 2002Millipore CorporationProcess for removing protein aggregates and virus from a protein solution
US6471853 *22 Nov 200029 Oct 2002Pti Technologies, Inc.Prognostic health monitoring of fluidic systems using MEMS technology
US6485703 *9 Jul 199926 Nov 2002The Texas A&M University SystemCompositions and methods for analyte detection
US6595523 *3 Jun 199822 Jul 2003Ralph HeinzenSelf monitoring mechanical seal
US6615639 *3 Jun 19989 Sep 2003Ralph HeinzenSelf monitoring static seal
US6649829 *21 May 200218 Nov 2003Colder Products CompanyConnector apparatus and method for connecting the same for controlling fluid dispensing
US6652740 *10 Sep 200125 Nov 2003Honeywell International Inc.Pressure sensing fluid filter system
US6694727 *3 Sep 200224 Feb 2004Arvin Technologies, Inc.Exhaust processor
US6853203 *26 Feb 20038 Feb 2005Mann & Hummel GmbhOil quality measurement device
US6897374 *31 Oct 200324 May 2005Colder Products CompanyConnector apparatus and method for connecting the same
US6936160 *28 Oct 200230 Aug 2005Pti Technologies, Inc.Wireless MEMS sensing device
US6983504 *2 Oct 200310 Jan 2006Sartorius AgMethod for carrying out an integrity test for filter elements
US7009409 *9 Jul 20027 Mar 2006Davie Neil RDetermination of gasket integrity by capacitance measurement
US7048775 *14 Oct 200223 May 2006Sartorius AgDevice and method for monitoring the integrity of filtering installations
US7198303 *31 Mar 20033 Apr 2007Metex Mfg. CorporationExhaust pipe joint and seal
US7264649 *23 Jul 20044 Sep 2007Advanced Design Consulting Usa, Inc.System for allergen reduction through indoor humidity control
US7398692 *24 Sep 200415 Jul 2008Tokyo Electron LimitedSealing ring and its managing system
US7594425 *10 Oct 200629 Sep 2009Millipore CorporationMethods and systems for integrity testing of porous materials
US7901627 *27 May 20098 Mar 2011Millipore CorporationFilter with memory, communication and concentration sensor
US20010006485 *23 Feb 20015 Jul 2001Kubiak James M.Automated liquid manufacturing system
US20010042684 *26 Jul 200122 Nov 2001Abdeltif EssalikGas component sensor for gas oxides
US20010042707 *21 Jun 200122 Nov 2001Niers Louis Antonius Hubertus MariaFilter, more particularly liquid filter, provided with a filter element with an identification label
US20020093431 *21 Dec 200118 Jul 2002Zierolf Joseph A.Method and apparatus for determining position in a pipe
US20020096467 *3 Dec 200125 Jul 2002Jean-Marc CappiaChemical process system with multi-functional barrier filter
US20020144938 *5 Apr 200110 Oct 2002Charles HawkinsReplaceable-cartridge filter with data transmission feature
US20030042688 *9 Jul 20026 Mar 2003Davie Neil R.Determination of gasket integrity by capacitance measurement
US20030047517 *10 Sep 200113 Mar 2003Honeywell International Inc.Pressure sensing fluid filter system, apparatus and method
US20030090390 *18 Dec 200215 May 2003Snider Philip M.Method and system for performing operations and for improving production in wells
US20030116487 *4 Oct 200226 Jun 2003Cristopher PetersenAutomated fluid filtration system for conducting separation processes, and for acquiring and recording data thereabout
US20030168408 *11 Feb 200311 Sep 2003The Board Of Trustees Of The University Of IllinoisMethods and systems for membrane testing
US20030179002 *26 Feb 200325 Sep 2003Filterwerk Mann & Hummel GmbhOil quality measurement device
US20040079686 *28 Oct 200229 Apr 2004Pti Technologies, Inc.Wireless MEMS sensing device
US20040112529 *8 Oct 200317 Jun 2004Cellectricon AbMethods for interfacing macroscale components to microscale devices
US20040130438 *6 Oct 20038 Jul 2004Colder Products CompanyData collision detection device and method
US20040135684 *21 Jul 200315 Jul 2004Cyrano Sciences Inc.Non-specific sensor array detectors
US20040172210 *28 Feb 20032 Sep 2004Rothfuss Kevin A.Systems and methods for diagnosing and predicting fluid flow systems using sensors
US20040188331 *5 Apr 200430 Sep 2004Pti Technologies, Inc.Prognostic health monitoring of fluidic systems using MEMS technology
US20040239521 *6 Jul 20042 Dec 2004Zierolf Joseph A.Method and apparatus for determining position in a pipe
US20040256328 *14 Oct 200223 Dec 2004Maik JornitzDevice and method for monitoring the integrity of filtering installations
US20050039749 *8 Sep 200324 Feb 2005Emerson George P.Insufflation-exsufflation system for removal of broncho-pulmonary secretions with automatic triggering of inhalation phase
US20050156487 *16 Jan 200421 Jul 2005Taiwan Semiconductor Manufacturing Co.Piezoelectric o-ring transducer
US20050211934 *9 Feb 200529 Sep 2005Colder Products CompanyConnector apparatus and method for connecting the same for controlling fluid dispensing
US20050224577 *8 Apr 200513 Oct 2005Rozenblat Gary DMethod and apparatus for automated identifying, monitoring the use of, and assessing the effective life span of process manufacturing components
US20050247114 *7 May 200410 Nov 2005Sensicore, Inc.Multi-sensor system for fluid monitoring with selective exposure of sensors
US20060060512 *4 Nov 200523 Mar 20063M Innovative PropertiesSystem for monitoring the performance of fluid treatment cartridges
US20070193361 *20 Feb 200623 Aug 2007Davie/Coffee Technologies, LLCCompressive load sensor by capacitive measurement
US20070241510 *12 Apr 200618 Oct 2007Dileo AnthonyFilter seating monitor
US20080041165 *19 Oct 200721 Feb 2008Coffey E MCompressive load sensor by capacitive measurement
US20080258401 *12 Aug 200523 Oct 2008Martin CottonSeal Arrangement
Classifications
U.S. Classification210/87, 210/90
International ClassificationB01D35/143, B01D35/14
Cooperative ClassificationB01D35/143, B01D65/104, B01D2313/44, B01D2201/52, B01D2311/14, B01D2201/56, B01D61/147, B01D65/102, B01D61/22, B01D2201/291
European ClassificationB01D61/14F, B01D65/10D, B01D61/22, B01D35/143, B01D65/10B