US20080219276A1 - Methods and apparatus for automated edge device configuration in a heterogeneous network - Google Patents

Methods and apparatus for automated edge device configuration in a heterogeneous network Download PDF

Info

Publication number
US20080219276A1
US20080219276A1 US12/126,249 US12624908A US2008219276A1 US 20080219276 A1 US20080219276 A1 US 20080219276A1 US 12624908 A US12624908 A US 12624908A US 2008219276 A1 US2008219276 A1 US 2008219276A1
Authority
US
United States
Prior art keywords
devices
local
data link
information
address
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/126,249
Inventor
Himanshu Shah
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enterasys Networks Inc
Original Assignee
Enterasys Networks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enterasys Networks Inc filed Critical Enterasys Networks Inc
Priority to US12/126,249 priority Critical patent/US20080219276A1/en
Publication of US20080219276A1 publication Critical patent/US20080219276A1/en
Assigned to WELLS FARGO TRUST CORPORATION LIMITED, AS SECURITY AGENT reassignment WELLS FARGO TRUST CORPORATION LIMITED, AS SECURITY AGENT GRANT OF SECURITY INTEREST IN U.S. PATENTS Assignors: ENTERASYS NETWORKS INC.
Assigned to ENTERASYS NETWORKS INC. reassignment ENTERASYS NETWORKS INC. TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS AT REEL/FRAME NO. 25339/0875 Assignors: WELLS FARGO TRUST CORPORATION LIMITED
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4641Virtual LANs, VLANs, e.g. virtual private networks [VPN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/10Mapping addresses of different types
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/08Protocols for interworking; Protocol conversion

Abstract

A PE device learns the address of a local CE device by monitoring the control messages, such as address resolution messages, originating from those local devices. In one embodiment, automated configuration of the PE devices participating in a Layer 2 VPN is facilitated by permitting a PE device to share the addresses for its locally-attached CE devices with the remote PE devices in the VPN. A PE device may share the addresses of the remote CE devices with the local CE devices by initiating its own control message or responding to an control message issued by one of its local CE devices. This latter mechanism in effect hides the distributed, heterogeneous nature of the network from a local CE device.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims the benefit of the co-pending application having Attorney Docket No. TEN-008, filed herewith, the entire disclosure of which is incorporated by reference as if set forth in its entirety herein.
  • FIELD OF THE INVENTION
  • The invention relates generally to the interworking of customer edge devices in a heterogeneous network and, in particular, to methods and apparatus that assist or automatically configure the provider edge devices in that network.
  • BACKGROUND OF THE INVENTION
  • One application for multi-protocol label switching (MPLS) is the implementation of Layer 2 virtual private networks (VPN) using MPLS tunneling. Referring to FIG. 1, a typical wide area network (WAN) includes customer edge (CE) devices 100, 104, 108, and 112, and provider edge (PE) devices 116, 120 and 124. In general, an edge device is a device, e.g., a router, that sits on the edge of a network cloud such as the Internet or a private network. The customer edge devices connect a customer to a provider network using a data link technology, such as frame relay, while the provider edge devices reside on the edge of the provider network and aggregate connections from the customer sites. In many traditional configurations, the CE “devices” 100, 104, 108, and 112 are actually groups of homogeneous CE devices—i.e., multiple CE devices that are connected to their PE device using the same data link or data link type—that share the same edge of their connected PE device.
  • Each CE device 100, 104, 108, and 112 communicates with its connected PE device 116, 120, and 124 using a data link 128, 132, 136, or 144. In the illustrated network, data link 128 is a gigabit Ethernet data link connecting CE device 100 to PE device 116, data link 144 is a gigabit Ethernet data link connecting CE device 112 to PE device 116, data link 132 is an ATM data link connecting CE device 104 to PE device 120, and data link 136 is a frame relay data link connecting CE device 108 to PE device 124. The WAN of FIG. 1 is a heterogeneous network in that the CE devices in the WAN communicate with their associated PE devices using different data link layer protocols.
  • Each CE device may be said to be “local” to the PE device it is attached to, and “remote” to the other PE devices in the WAN. For example, CE devices 100 and 112 are local to PE device 116 and remote to PE devices 120 and 124. Similarly, CE device 104 is local to PE device 120 and remote to PE devices 116 and 124.
  • The PE devices 116, 120, and 124 may communicate with each other through a network cloud 140 using various methods based on Border Gateway Protocol (BGP), Label Distribution Protocol (LDP), Layer 2 Tunneling Protocol (L2TP), etc. For example, using BGP through the cloud 140, the PE devices 116, 120, and 124 may exchange information that describes the blocks of Layer 2 virtual circuits connected to each PE device. After this exchange of information and/or through configuration, each PE device is aware of the CE devices that belong to its own virtual private network (VPN) and the identifiers for the data links that connect those CE devices.
  • In operation, for example, when CE device 100 transmits information to CE device 104 across their VPN, CE device 100 first transmits its frame of information to its connected PE device 116. The PE device 116 reads the Layer 2 header in the frame to identify the destination CE device 104. The PE device 116 removes the Layer 2 header from the frame and concatenates the raw IP packet with a VPN label that identifies the destination CE device 104 and its associated PE device, i.e., PE device 120. Then, the PE device 116 transmits the data using an MPLS tunnel through the network cloud 140 to the destination CE device's attached PE device 120. The PE device 120 receives this information and removes the VPN identifier from the packet. The PE device 120 prepends a Layer 2 header that identifies the destination CE device 104 to the packet before transmitting it to the destination CE device 104 over the data link 132.
  • This MPLS-based Layer 2 VPN is scalable, in that a new CE device may be added to the WAN by physically connecting the CE device to an existing PE device, and then manually reconfiguring the PE device. However, it fails to provide a mechanism whereby the PE device would automatically configure itself and its peer PE devices to add the new CE device to the network. Such a mechanism is desirable in that it reduces the amount of human intervention required to add a new CE device to the network. Moreover, this VPN does not provide a mechanism for satisfying control messages, such as address resolution messages (e.g., an ARP request), sent from one CE device using one type of data link (e.g., a frame relay link) that is attempting to discover the address of a second CE device across the VPN that uses a different type of data link (e.g., an ATM link).
  • SUMMARY OF THE INVENTION
  • The present invention relates to methods and apparatus that permit a PE device to learn the address of a local CE device by monitoring the control messages, such as address resolution messages, originating from those local CE devices. In one embodiment, the invention facilitates the automated configuration of the PE devices participating in a Layer 2 VPN by permitting a PE device to share the addresses for its locally-attached CE devices with the remote PE devices in the VPN. In accordance with this embodiment, a PE device may share the addresses of the remote CE devices with the local CE devices by initiating its own control messages or responding to a control message issued by one of its local CE devices. This latter mechanism in effect hides the distributed, heterogeneous nature of the network from a local CE device.
  • In one aspect, therefore, the present invention provides a method of resolving network addresses between network devices on a heterogeneous network in a device bridging data link layer protocols and network layer protocols. Information concerning a first device in communication with a first data link is gathered from a control message, such as an address resolution message. Packets are received from a second device in communication with a second data link, the first and second data links utilizing different data link layer protocols. The gathered information is provided to a third device in communication with the second device through the second data link, e.g., by transmitting an MP-BGP NLRI message to the third device. The packets are transmitted to the first device using the gathered information concerning the first device. The step of transmitting the packets may include prepending a header identifying the second device to a received packet. Optionally, information may be received from the third device concerning a fourth device and this received information may be provided to the first device, for example, by responding to a control message or initiating a control message.
  • The gathered information may be the first device's IP address, circuit information, a VC or VPN MPLS label, or the IP address for the second device associated with that label. The data links may utilize, for example, gigabit Ethernet, frame relay, point-to-point protocol (PPP), asynchronous transfer mode (ATM), or high-level data link control protocol (HDLC). Accordingly, depending on the type of data link, the control message may be, respectively, an RDP message, an IARP message, an IPCP message, or an INATMARP message. In one embodiment, message responses may be generated using a placeholder value. In another embodiment, the NLRI message includes an IP address sub-TLV.
  • In another aspect, the present invention provides a system that resolves network addresses between network devices on a heterogeneous network. The system includes a first device bridging data link layer protocols and network layer protocols and a second device in communication with the first device using a first data link. A third device bridging data link layer protocols and network layer protocols is in communication with a fourth device using a second data link. The second data link uses a different data link layer protocol from the first data link.
  • The first device gathers information concerning the second device from control messages—such as address resolution messages—sent by the second device and provides the gathered information to the third device. The third device may utilize the information from the first device to route packets from the fourth device to the second device. Suitable data links include gigabit Ethernet data links, frame relay data links, PPP data links, ATM data links, and HDLC data links.
  • The foregoing and other features and advantages of the present invention will be made more apparent from the description, drawings, and claims that follow.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The advantages of the invention may be better understood by referring to the following description taken in conjunction with the accompanying drawings in which:
  • FIG. 1 depicts a WAN having CE devices connected locally to their respective PE devices and remotely to other PE devices through a network cloud; and
  • FIG. 2 is a flowchart illustrating one embodiment of a method for the automatic configuration of the PE devices of FIG. 1.
  • In the drawings, like reference characters generally refer to corresponding parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed on the principles and concepts of the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • In brief overview, the present invention permits a PE device in a heterogeneous network to learn the address information for its locally-connected CE devices by monitoring the control messages sent by the CE devices. In one embodiment, the PE device then shares this learned address information with other PE devices. These remote PE devices may then provide their own locally-connected CE devices with the shared address information they have received. Using this information, the PE devices transparently route communications between CE devices that are connected to their PE devices using different types of data links.
  • As discussed above, one or more PE devices 116, 120, and 124 in the heterogeneous WAN of FIG. 1 participate in IP interworking by changing the Layer 2 encapsulation of the IP protocol data units (PDUs) flowing to and from the CE devices that are local to it. Referring to FIG. 2, the PE devices gather information concerning their locally-connected CE devices by monitoring the control messages sent by the CE devices (Step 200). Once this information is gathered, each PE device may share the information concerning its locally-connected CE devices with the other PE devices in the network using a PE protocol such as BGP, LDP, L2TP, etc. (Step 204). With the receipt of this shared information, a PE device in the VPN has address information concerning both its own locally-connected CE devices and those CE devices that are remote to it, but local to another PE device in the VPN. The PE device may now share the information concerning the remote CE devices with its locally-connected CE devices, either directly or indirectly (Step 208). Using the exchanged address information, the PE device may now participate in interworking as described above (Step 212).
  • In one embodiment, the control messages from the local CE devices (Step 200) are address resolution messages, as discussed in detail below. The information gathered from the control messages may include, but is not limited to, one or more of a local CE device's IP address, circuit information, a virtual channel (VC) or VPN MPLS label, or the IP address for the remote CE associated with that label. Once gathered, this information may be stored as a tuple or other data structure in a volatile memory, such as a random-access memory (RAM), and/or a nonvolatile memory, such as a hard disk. In a Layer 2 interworking VPN there is typically one tuple for each circuit that the CE device has attached to its local PE device. Although the process for gathering information (Step 200) varies among the various types of data links connecting CE devices to their local PE devices, it typically includes the receipt of a control message from a local CE device, the extraction of information concerning the local CE device from the control message and, optionally, the storage of this information in a volatile or a non-volatile memory.
  • Gathering Local CE Device Information
  • When the data link is a gigabit Ethernet data link, e.g., data link 128, the PE device may learn the address of a local CE device (Step 200) on a given Ethernet circuit using router discovery protocol (RDP), as set forth in IETF RFC 1256 and incorporated by reference as if set forth fully herein. If the PE device is connected to the local CE device using gigabit Ethernet with virtual local-area network (VLAN) tagging (as described in IEEE standard 802.1Q and incorporated by reference as if set forth fully herein), then the VLAN tag may represent an IP subnet and the circuit information will then consist of Ethernet interface information and the VLAN tag. If the PE device does not use IEEE 802.1Q VLAN tagging, then the entire Ethernet port is treated as a single endpoint that is connected to one remote endpoint through a pair of PE devices, the Ethernet interface is the IP subnet, and the circuit information only includes Ethernet interface information. Regardless of whether the PE device supports IEEE 802.1Q tagging, only one CE device—in this case the Ethernet router end station—is presumed to participate within the IP interworking-based Layer 2 VPN.
  • When the data link is a frame relay data link, e.g., data link 136, a newly-attached CE device may generate an inverse address resolution protocol (IARP) request—defined in IETF RFC 2390 and incorporated by reference as if set forth in its entirety herein—to obtain the IP addresses of its neighboring devices when the data link connection identifier (DLCI) associated with the IP interface becomes active. Typically, the DLCI will become active when the local PE device has learned cross-connect-related information from a remote PE device using BGP, presenting a stalemate problem that may be resolved as discussed below. Once the local CE device issues the IARP request, the attached PE device may determine the local CE device's IP address and DLCI information from the IARP request (Step 200).
  • When the data link uses point-to-point protocol (PPP), then the attached CE device participates in internet protocol control protocol (IPCP, defined in IETF RFC 1332 and incorporated by reference as if set forth in its entirety herein) to obtain the IP addresses for its neighbor devices. By examining the local CE device's IPCP request, the PE device may determine the CE device's IP address (Step 200).
  • When the data link is an asynchronous transfer mode (ATM) link, an attached CE device treats each virtual circuit (VC) as an IP subnet. The attached CE device may participate in inverse ATM ARP (INATMARP, defined in IETF RFC 1577 and incorporated by reference as if set forth in its entirety herein) to obtain the IP addresses for its neighbor devices. The PE device may learn the local CE device's IP address from the local CE device's INATMARP request (Step 200).
  • The high-level data link control protocol (HDLC, described in ISO Standard 3309 and incorporated by reference as if set forth in its entirety herein) does not specify a protocol mechanism for obtaining the IP address of a neighboring device. Instead, a device using HDLC receives IP data frames from a single remote endpoint and, therefore, implicitly assumes the presence of a single IP address. Therefore, when the data link connecting the PE device to its local CE device is an HDLC data link, the PE device is manually configured with the IP address of the local CE device to permit the local PE device to distribute cross-connect information to remote PE devices (Step 200).
  • Sharing Remote CE Device Information with Remote PE Device
  • Having gathered information from the control messages, such as address resolution messages, sent by the local CE devices (Step 200), a PE device may now share information concerning its local CE devices with another PE device (Step 204). These cross-connect advertisements may include, for example, one or more of the local CE device's IP address, circuit information, a virtual channel (VC) or VPN MPLS label, or the IP address for the remote CE associated with that label. In various embodiments of the invention, the PE devices may communicate using Border Gateway Protocol (BGP), Label Distribution Protocol (LDP), Layer 2 Tunneling Protocol (L2TP), etc.
  • In one embodiment, the information may be sent to a PE device at the edge of the network cloud using multiprotocol BGP (MP-BGP) network layer reachability information (NLRI) messages. A typical NLRI message includes a label block offset, a label base, and a length of the circuit status vector sub-TLV. The NLRI messages sent to the remote PE device provide a set of contiguous labels starting from the label base value that correspond to a set of remote CE identifiers starting from the label block offset.
  • In accord with the present invention, the NLRI message may also include a second sub-TLV of type TBD that contains an IP address. A PE device advertises this new IP address sub-TLV when the VPN's encapsulation type is IP interworking. This second sub-TLV has the same length as the circuit status vector sub-TLV. The length field of the sub-TLV specifies the number of 4-byte fields contained in the value field of the IP address sub-TLV, where each field is an IP address that has a one-to-one correspondence with the labels represented by the label base and length field. By iterating through each IP field value in order, a receiving PE device may determine the association between a label and an IP address.
  • Sharing Remote CE Device Information with Local CE Device
  • Once a PE device has received these cross-connect advertisements, e.g., an IP address-to-label association, the PE device may provide this information to its local CE devices (Step 208). Although the process for sharing the information (Step 208) varies depending on the type of data link between the local CE devices and their PE devices, the process is typically either active, e.g., the PE device transmits an control message to its local CE devices, or passive, e.g., the PE device responds to its local CE device's control message with the remote CE device's address information.
  • When the data link is a gigabit Ethernet data link, the PE device may generate an address resolution protocol request (ARP, defined in IETF RFC 826 and incorporated by reference as if set forth in its entirety herein) to present the IP address of the remote CE device as a neighbor to the local CE device (Step 208). If the PE device supports IEEE 802.1Q tagging, then the request must be generated within the VLAN scope. The PE device may also respond to the local CE device's ARP request with its own MAC address as the target hardware address when the WAN IP address of the cross-connected remote CE device is known (Step 208). To make communications with the remote CE device transparent, the local PE device may optionally provide its MAC address in the source hardware address field of the ARP request and the target hardware address field of the ARP reply. If two CE devices are locally attached to their PE device on gigabit Ethernet data links, then the local PE device may propagate an ARP request or an ARP response with VLAN tag translation directly to the second CE device.
  • When the data link is a frame relay data link and the PE device has received cross-connect information from a remote PE device, then the corresponding DLCI at the local PE device is inactive. The local PE device may initiate an IARP request providing the address information for the cross-connected remote CE device, or it may wait for the attached CE device to generate an IARP request and then respond with the address information (Step 208).
  • When the data link uses PPP, the PE device may respond to IPCP requests from its local CE devices with the IP address information for the remote CE devices when that information becomes available (Step 208). If the IP address information and the cross-connect information are available, the PE device may also initiate an IPCP request to provide the local CE device with address information for the cross-connected remote CE devices (Step 208).
  • When the data link is an ATM data link, the PE device may generate an INATMARP message for its local CE devices when the address information for the remote cross-connected CE devices becomes available. If the local PE device has received the cross-connect information and the associated IP address information from a remote PE device, then the local PE device may optionally respond to an INATMARP request received from its local CE devices (Step 208).
  • As discussed above, the address information for a remote CE device may not be available to a particular PE device when that PE device receives a control message, such as an address resolution message; from its local CE device. In that event; if the remote CE device's information is not available, then the PE device may advertise the cross-connect information to its local CE devices without the remote CE device's address by using a dummy value (such as zero) in the new IP address sub-TLV (Step 208). When the address information for the remote CE device becomes available, the PE device may generate a new advertisement to its local CE devices with an updated IP address field value (Step 208). This behavior prevents a stalemate situation, e.g., in a frame relay data link, where the local CE device will not transmit a control message that will eventually be conveyed as cross-connect information until its attached PE device signals its readiness, and the attached PE device will not signal its readiness until it receives cross-connect information that originates with a remote CE device that is waiting for its own PE device to signal its readiness.
  • Many alterations and modifications may be made without departing from the spirit and scope of the invention. Therefore, it is to be understood that these embodiments have been shown by way of example and should not be taken as limiting the invention, which is defined by the following claims. These claims are thus to be read as not only including literally what is set forth by the claims but also to include those equivalents which are insubstantially different, even though not identical in other respects to what is shown and described in the above illustrations.

Claims (2)

1. In a device bridging data link layer protocols and network layer protocols, a method of resolving network addresses between network devices on a heterogeneous network, the method comprising:
gathering information from a control message concerning a first device in communication with a first data link;
receiving packets from a second device in communication with a second data link, the first and second data links using different data link layer protocols;
providing the gathered information to a third device, the third device in communication with the second device through the second data link; and
transmitting the packets to the first device using the gathered information concerning the first device.
2-28. (canceled)
US12/126,249 2002-11-05 2008-05-23 Methods and apparatus for automated edge device configuration in a heterogeneous network Abandoned US20080219276A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/126,249 US20080219276A1 (en) 2002-11-05 2008-05-23 Methods and apparatus for automated edge device configuration in a heterogeneous network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/288,261 US7386605B2 (en) 2002-11-05 2002-11-05 Methods and apparatus for automated edge device configuration in a heterogeneous network
US12/126,249 US20080219276A1 (en) 2002-11-05 2008-05-23 Methods and apparatus for automated edge device configuration in a heterogeneous network

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/288,261 Continuation US7386605B2 (en) 2002-11-05 2002-11-05 Methods and apparatus for automated edge device configuration in a heterogeneous network

Publications (1)

Publication Number Publication Date
US20080219276A1 true US20080219276A1 (en) 2008-09-11

Family

ID=32175876

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/288,261 Active 2024-12-08 US7386605B2 (en) 2002-11-05 2002-11-05 Methods and apparatus for automated edge device configuration in a heterogeneous network
US12/126,249 Abandoned US20080219276A1 (en) 2002-11-05 2008-05-23 Methods and apparatus for automated edge device configuration in a heterogeneous network

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/288,261 Active 2024-12-08 US7386605B2 (en) 2002-11-05 2002-11-05 Methods and apparatus for automated edge device configuration in a heterogeneous network

Country Status (1)

Country Link
US (2) US7386605B2 (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080267198A1 (en) * 2007-04-27 2008-10-30 Cisco Technology, Inc. Support of C-tagged service interface in an IEEE 802.1ah bridge
US8201237B1 (en) 2008-12-10 2012-06-12 Amazon Technologies, Inc. Establishing secure remote access to private computer networks
US8230050B1 (en) * 2008-12-10 2012-07-24 Amazon Technologies, Inc. Providing access to configurable private computer networks
US9137209B1 (en) 2008-12-10 2015-09-15 Amazon Technologies, Inc. Providing local secure network access to remote services
US20160315912A1 (en) * 2015-04-13 2016-10-27 Ajit Ramachandra Mayya Method and system of establishing a virtual private network in a cloud service for branch networking
US9524167B1 (en) 2008-12-10 2016-12-20 Amazon Technologies, Inc. Providing location-specific network access to remote services
CN107959613A (en) * 2016-10-18 2018-04-24 华为技术有限公司 Message forwarding method and device
US10027589B1 (en) * 2016-06-30 2018-07-17 Juniper Network, Inc. Apparatus, system, and method for achieving redundancy and load-balancing across communication layers within networks
US10425382B2 (en) * 2015-04-13 2019-09-24 Nicira, Inc. Method and system of a cloud-based multipath routing protocol
US10454714B2 (en) 2013-07-10 2019-10-22 Nicira, Inc. Method and system of overlay flow control
US10498652B2 (en) 2015-04-13 2019-12-03 Nicira, Inc. Method and system of application-aware routing with crowdsourcing
US10523539B2 (en) 2017-06-22 2019-12-31 Nicira, Inc. Method and system of resiliency in cloud-delivered SD-WAN
US10574528B2 (en) 2017-02-11 2020-02-25 Nicira, Inc. Network multi-source inbound quality of service methods and systems
US10594516B2 (en) 2017-10-02 2020-03-17 Vmware, Inc. Virtual network provider
US10749711B2 (en) 2013-07-10 2020-08-18 Nicira, Inc. Network-link method useful for a last-mile connectivity in an edge-gateway multipath system
US10778528B2 (en) 2017-02-11 2020-09-15 Nicira, Inc. Method and system of connecting to a multipath hub in a cluster
US10959098B2 (en) 2017-10-02 2021-03-23 Vmware, Inc. Dynamically specifying multiple public cloud edge nodes to connect to an external multi-computer node
US10992558B1 (en) 2017-11-06 2021-04-27 Vmware, Inc. Method and apparatus for distributed data network traffic optimization
US10992568B2 (en) 2017-01-31 2021-04-27 Vmware, Inc. High performance software-defined core network
US10999100B2 (en) 2017-10-02 2021-05-04 Vmware, Inc. Identifying multiple nodes in a virtual network defined over a set of public clouds to connect to an external SAAS provider
US10999137B2 (en) 2019-08-27 2021-05-04 Vmware, Inc. Providing recommendations for implementing virtual networks
US10999165B2 (en) 2017-10-02 2021-05-04 Vmware, Inc. Three tiers of SaaS providers for deploying compute and network infrastructure in the public cloud
US11044190B2 (en) 2019-10-28 2021-06-22 Vmware, Inc. Managing forwarding elements at edge nodes connected to a virtual network
US11089111B2 (en) 2017-10-02 2021-08-10 Vmware, Inc. Layer four optimization for a virtual network defined over public cloud
US11115480B2 (en) 2017-10-02 2021-09-07 Vmware, Inc. Layer four optimization for a virtual network defined over public cloud
US11121962B2 (en) 2017-01-31 2021-09-14 Vmware, Inc. High performance software-defined core network
US11223514B2 (en) 2017-11-09 2022-01-11 Nicira, Inc. Method and system of a dynamic high-availability mode based on current wide area network connectivity
US11245641B2 (en) 2020-07-02 2022-02-08 Vmware, Inc. Methods and apparatus for application aware hub clustering techniques for a hyper scale SD-WAN
US11252079B2 (en) 2017-01-31 2022-02-15 Vmware, Inc. High performance software-defined core network
US11343146B1 (en) 2021-01-14 2022-05-24 Dell Products L.P. Automatically determining configuration-based issue resolutions across multiple devices using machine learning models
US11363124B2 (en) 2020-07-30 2022-06-14 Vmware, Inc. Zero copy socket splicing
US11375005B1 (en) 2021-07-24 2022-06-28 Vmware, Inc. High availability solutions for a secure access service edge application
US11381499B1 (en) 2021-05-03 2022-07-05 Vmware, Inc. Routing meshes for facilitating routing through an SD-WAN
US11394640B2 (en) 2019-12-12 2022-07-19 Vmware, Inc. Collecting and analyzing data regarding flows associated with DPI parameters
US11418997B2 (en) 2020-01-24 2022-08-16 Vmware, Inc. Using heart beats to monitor operational state of service classes of a QoS aware network link
US11444865B2 (en) 2020-11-17 2022-09-13 Vmware, Inc. Autonomous distributed forwarding plane traceability based anomaly detection in application traffic for hyper-scale SD-WAN
US11489783B2 (en) 2019-12-12 2022-11-01 Vmware, Inc. Performing deep packet inspection in a software defined wide area network
US11489720B1 (en) 2021-06-18 2022-11-01 Vmware, Inc. Method and apparatus to evaluate resource elements and public clouds for deploying tenant deployable elements based on harvested performance metrics
US11575600B2 (en) 2020-11-24 2023-02-07 Vmware, Inc. Tunnel-less SD-WAN
US11601356B2 (en) 2020-12-29 2023-03-07 Vmware, Inc. Emulating packet flows to assess network links for SD-WAN
US11606286B2 (en) 2017-01-31 2023-03-14 Vmware, Inc. High performance software-defined core network
US11706126B2 (en) 2017-01-31 2023-07-18 Vmware, Inc. Method and apparatus for distributed data network traffic optimization
US11706127B2 (en) 2017-01-31 2023-07-18 Vmware, Inc. High performance software-defined core network
US11729065B2 (en) 2021-05-06 2023-08-15 Vmware, Inc. Methods for application defined virtual network service among multiple transport in SD-WAN
US11792127B2 (en) 2021-01-18 2023-10-17 Vmware, Inc. Network-aware load balancing
US11909815B2 (en) 2022-06-06 2024-02-20 VMware LLC Routing based on geolocation costs
US11943146B2 (en) 2021-10-01 2024-03-26 VMware LLC Traffic prioritization in SD-WAN

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7136374B1 (en) * 2001-03-19 2006-11-14 Juniper Networks, Inc. Transport networks supporting virtual private networks, and configuring such networks
GB0227614D0 (en) * 2002-11-27 2002-12-31 3Com Corp Packet-switched network and network switches having a network layer forwarding by data link switching
US7707307B2 (en) * 2003-01-09 2010-04-27 Cisco Technology, Inc. Method and apparatus for constructing a backup route in a data communications network
US7760701B2 (en) * 2003-05-06 2010-07-20 Cisco Technology, Inc. Arrangement in a router for distributing a routing rule used to generate routes based on a pattern of a received packet
US7864708B1 (en) * 2003-07-15 2011-01-04 Cisco Technology, Inc. Method and apparatus for forwarding a tunneled packet in a data communications network
US7731660B2 (en) 2003-07-25 2010-06-08 Siemens Medical Solutions Usa, Inc. Phase selection for cardiac contrast assessment
US7447212B2 (en) * 2003-09-03 2008-11-04 At&T Intellectual Property I, L.P. Method and system for automating membership discovery in a distributed computer network
US8024437B2 (en) * 2003-10-30 2011-09-20 Paul Unbehagen Autodiscovery for virtual networks
CN100359876C (en) * 2004-06-25 2008-01-02 信息产业部电信研究院 Realization of virtual special network in IP telecommunication network system
US7869382B2 (en) * 2004-12-06 2011-01-11 Hewlett-Packard Development Company, L.P. Network management assisted discovery
US7535926B1 (en) 2005-01-07 2009-05-19 Juniper Networks, Inc. Dynamic interface configuration for supporting multiple versions of a communication protocol
CN100396039C (en) * 2005-01-07 2008-06-18 华为技术有限公司 Method for realizing MPLS network intercommunication based on heterogeneous medium
US7606232B1 (en) 2005-11-09 2009-10-20 Juniper Networks, Inc. Dynamic virtual local area network (VLAN) interface configuration
CN100550814C (en) * 2005-12-01 2009-10-14 华为技术有限公司 A kind of system and method based on two layer VPN foreign medium communication
CN100571202C (en) * 2006-01-27 2009-12-16 华为技术有限公司 A kind of transfer approach and transfer system that carries the data of routing iinformation
US7492766B2 (en) * 2006-02-22 2009-02-17 Juniper Networks, Inc. Dynamic building of VLAN interfaces based on subscriber information strings
US7808994B1 (en) * 2006-02-22 2010-10-05 Juniper Networks, Inc. Forwarding traffic to VLAN interfaces built based on subscriber information strings
EP2023544A1 (en) * 2007-08-06 2009-02-11 Nokia Siemens Networks Oy Method and device for distributing address information and communication system comprising such device
US7953097B2 (en) * 2009-01-09 2011-05-31 Alcatel Lucent Neighbour discovery protocol mediation
US20100329258A1 (en) * 2009-06-30 2010-12-30 Alcatel-Lucent Usa Inc. Dynamically enabling mpls stations and ports using an arp database
US8144575B2 (en) 2009-06-30 2012-03-27 Juniper Networks, Inc. Redundant pseudowires for border gateway patrol-based virtual private local area network service multi-homing environments
DE102009041821A1 (en) * 2009-09-18 2011-03-24 Phoenix Contact Gmbh & Co. Kg network
CA2781060C (en) * 2010-05-28 2016-03-08 Huawei Technologies Co., Ltd. Virtual layer 2 and mechanism to make it scalable
CN104396192B (en) 2010-06-29 2018-03-06 华为技术有限公司 Dissymmetric network address encapsulates
EP2589208A1 (en) 2010-06-29 2013-05-08 Huawei Technologies Co., Ltd. Delegate gateways and proxy for target hosts in large layer 2 and address resolution with duplicated internet protocol addresses
ES2410366B1 (en) * 2011-06-10 2014-02-28 Telefónica, S.A. METHOD FOR EXCHANGING INFORMATION ON NETWORK RESOURCES
EP2732586A4 (en) * 2011-07-13 2015-04-15 Celeno Comm Israel Ltd Wlan home networking with multi-room dvr direct link
CN103326915A (en) * 2012-03-23 2013-09-25 华为技术有限公司 Method, device and system for achieving three-layer VPN
CN104869063B (en) 2014-02-21 2019-02-12 华为技术有限公司 Host routes processing method and relevant device and communication system in virtual subnet
US9906442B2 (en) * 2015-04-17 2018-02-27 Dell Products Lp Systems and methods for increasing the multiprotocol label switching stack
CN106936939B (en) * 2015-12-31 2020-06-02 华为技术有限公司 Message processing method, related device and NVO3 network system
US10063666B2 (en) * 2016-06-14 2018-08-28 Futurewei Technologies, Inc. Modular telecommunication edge cloud system
US10938599B2 (en) * 2017-05-22 2021-03-02 Futurewei Technologies, Inc. Elastic VPN that bridges remote islands
US11218360B2 (en) 2019-12-09 2022-01-04 Quest Automated Services, LLC Automation system with edge computing
US11595302B2 (en) 2020-09-23 2023-02-28 Ciena Corporation Controlling routing behavior during router table-memory exhaustion events
US11563675B2 (en) 2021-05-14 2023-01-24 Ciena Corporation Bgp Lu resiliency using an anycast SID and BGP driven anycast path selection
US11658900B2 (en) 2021-06-16 2023-05-23 Ciena Corporation Responding to operator commands in a multi-homing ethernet virtual private network (EVPN)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6070187A (en) * 1998-03-26 2000-05-30 Hewlett-Packard Company Method and apparatus for configuring a network node to be its own gateway
US20030118036A1 (en) * 2001-12-21 2003-06-26 Mark Gibson Routing traffic in a communications network
US20030185233A1 (en) * 2002-03-29 2003-10-02 Fujitsu Limited Method, apparatus, and medium for migration across link technologies
US6717944B1 (en) * 1999-11-10 2004-04-06 Nortel Networks Corporation System, device, and method for allocating virtual circuits in a communication network
US20040202171A1 (en) * 2000-11-27 2004-10-14 Daisuke Hama Network and edge router
US7159235B2 (en) * 2000-01-28 2007-01-02 Sedna Patent Services, Llc Method and apparatus for content distribution via non-homogeneous access networks
US7274704B1 (en) * 2000-07-14 2007-09-25 Nortel Networks Limited Piggybacking VPN information in BGP for network based VPN architectures
US7376125B1 (en) * 2002-06-04 2008-05-20 Fortinet, Inc. Service processing switch
US7469294B1 (en) * 2002-01-15 2008-12-23 Cisco Technology, Inc. Method and system for providing authorization, authentication, and accounting for a virtual private network

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309437A (en) 1990-06-29 1994-05-03 Digital Equipment Corporation Bridge-like internet protocol router
US5420862A (en) 1991-06-14 1995-05-30 Digital Equipment Corporation Router using remote address resolution to enable bridge like data forwarding
US5500860A (en) 1991-06-14 1996-03-19 Digital Equipment Corporation Router using multiple hop redirect messages to enable bridge like data forwarding
US6023563A (en) * 1996-08-20 2000-02-08 Shani; Ron Networking switch having the network presence of a bridge
JPH10303965A (en) * 1997-04-23 1998-11-13 Nec Commun Syst Ltd Routing system for router device
US6115385A (en) 1998-03-11 2000-09-05 Cisco Technology, Inc. Method and system for subnetting in a switched IP network
JP3490286B2 (en) 1998-03-13 2004-01-26 株式会社東芝 Router device and frame transfer method
JP4007690B2 (en) 1998-06-30 2007-11-14 富士通株式会社 End device and router
DE69934192T2 (en) * 1998-10-27 2007-08-30 Hewlett-Packard Development Co., L.P., Houston Method and device for network connection by means of bridges
US6721353B1 (en) * 2000-06-21 2004-04-13 Cisco Technology, Inc. Network compatibility
US7221675B2 (en) 2001-12-07 2007-05-22 Nortel Networks Limited Address resolution method for a virtual private network, and customer edge device for implementing the method
US7009983B2 (en) * 2002-11-05 2006-03-07 Enterasys Networks, Inc. Methods and apparatus for broadcast domain interworking

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6070187A (en) * 1998-03-26 2000-05-30 Hewlett-Packard Company Method and apparatus for configuring a network node to be its own gateway
US6717944B1 (en) * 1999-11-10 2004-04-06 Nortel Networks Corporation System, device, and method for allocating virtual circuits in a communication network
US7159235B2 (en) * 2000-01-28 2007-01-02 Sedna Patent Services, Llc Method and apparatus for content distribution via non-homogeneous access networks
US7274704B1 (en) * 2000-07-14 2007-09-25 Nortel Networks Limited Piggybacking VPN information in BGP for network based VPN architectures
US20040202171A1 (en) * 2000-11-27 2004-10-14 Daisuke Hama Network and edge router
US20030118036A1 (en) * 2001-12-21 2003-06-26 Mark Gibson Routing traffic in a communications network
US7469294B1 (en) * 2002-01-15 2008-12-23 Cisco Technology, Inc. Method and system for providing authorization, authentication, and accounting for a virtual private network
US20030185233A1 (en) * 2002-03-29 2003-10-02 Fujitsu Limited Method, apparatus, and medium for migration across link technologies
US7376125B1 (en) * 2002-06-04 2008-05-20 Fortinet, Inc. Service processing switch

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. Postel, RFC 925: Multi-LAN Address Resolution, Network Working Group, October 1984. *

Cited By (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080267198A1 (en) * 2007-04-27 2008-10-30 Cisco Technology, Inc. Support of C-tagged service interface in an IEEE 802.1ah bridge
US7646778B2 (en) * 2007-04-27 2010-01-12 Cisco Technology, Inc. Support of C-tagged service interface in an IEEE 802.1ah bridge
US9524167B1 (en) 2008-12-10 2016-12-20 Amazon Technologies, Inc. Providing location-specific network access to remote services
US9756018B2 (en) 2008-12-10 2017-09-05 Amazon Technologies, Inc. Establishing secure remote access to private computer networks
US8578003B2 (en) 2008-12-10 2013-11-05 Amazon Technologies, Inc. Providing access to configurable private computer networks
US8844020B2 (en) 2008-12-10 2014-09-23 Amazon Technologies, Inc. Establishing secure remote access to private computer networks
US9137209B1 (en) 2008-12-10 2015-09-15 Amazon Technologies, Inc. Providing local secure network access to remote services
US9374341B2 (en) 2008-12-10 2016-06-21 Amazon Technologies, Inc. Establishing secure remote access to private computer networks
US11290320B2 (en) 2008-12-10 2022-03-29 Amazon Technologies, Inc. Providing access to configurable private computer networks
US9521037B2 (en) 2008-12-10 2016-12-13 Amazon Technologies, Inc. Providing access to configurable private computer networks
US10728089B2 (en) 2008-12-10 2020-07-28 Amazon Technologies, Inc. Providing access to configurable private computer networks
US8230050B1 (en) * 2008-12-10 2012-07-24 Amazon Technologies, Inc. Providing access to configurable private computer networks
US8201237B1 (en) 2008-12-10 2012-06-12 Amazon Technologies, Inc. Establishing secure remote access to private computer networks
US10868715B2 (en) 2008-12-10 2020-12-15 Amazon Technologies, Inc. Providing local secure network access to remote services
US10951586B2 (en) 2008-12-10 2021-03-16 Amazon Technologies, Inc. Providing location-specific network access to remote services
US11831496B2 (en) 2008-12-10 2023-11-28 Amazon Technologies, Inc. Providing access to configurable private computer networks
US10454714B2 (en) 2013-07-10 2019-10-22 Nicira, Inc. Method and system of overlay flow control
US11050588B2 (en) 2013-07-10 2021-06-29 Nicira, Inc. Method and system of overlay flow control
US11804988B2 (en) 2013-07-10 2023-10-31 Nicira, Inc. Method and system of overlay flow control
US11212140B2 (en) 2013-07-10 2021-12-28 Nicira, Inc. Network-link method useful for a last-mile connectivity in an edge-gateway multipath system
US10749711B2 (en) 2013-07-10 2020-08-18 Nicira, Inc. Network-link method useful for a last-mile connectivity in an edge-gateway multipath system
US10498652B2 (en) 2015-04-13 2019-12-03 Nicira, Inc. Method and system of application-aware routing with crowdsourcing
US20160315912A1 (en) * 2015-04-13 2016-10-27 Ajit Ramachandra Mayya Method and system of establishing a virtual private network in a cloud service for branch networking
US20220337553A1 (en) * 2015-04-13 2022-10-20 Nicira, Inc. Method and system of a cloud-based multipath routing protocol
US10425382B2 (en) * 2015-04-13 2019-09-24 Nicira, Inc. Method and system of a cloud-based multipath routing protocol
US11374904B2 (en) * 2015-04-13 2022-06-28 Nicira, Inc. Method and system of a cloud-based multipath routing protocol
US11444872B2 (en) 2015-04-13 2022-09-13 Nicira, Inc. Method and system of application-aware routing with crowdsourcing
US10135789B2 (en) * 2015-04-13 2018-11-20 Nicira, Inc. Method and system of establishing a virtual private network in a cloud service for branch networking
US10805272B2 (en) * 2015-04-13 2020-10-13 Nicira, Inc. Method and system of establishing a virtual private network in a cloud service for branch networking
US20230308421A1 (en) * 2015-04-13 2023-09-28 Nicira, Inc. Method and system of establishing a virtual private network in a cloud service for branch networking
US11677720B2 (en) * 2015-04-13 2023-06-13 Nicira, Inc. Method and system of establishing a virtual private network in a cloud service for branch networking
US10027589B1 (en) * 2016-06-30 2018-07-17 Juniper Network, Inc. Apparatus, system, and method for achieving redundancy and load-balancing across communication layers within networks
CN107959613A (en) * 2016-10-18 2018-04-24 华为技术有限公司 Message forwarding method and device
US10992568B2 (en) 2017-01-31 2021-04-27 Vmware, Inc. High performance software-defined core network
US11121962B2 (en) 2017-01-31 2021-09-14 Vmware, Inc. High performance software-defined core network
US11700196B2 (en) 2017-01-31 2023-07-11 Vmware, Inc. High performance software-defined core network
US11706126B2 (en) 2017-01-31 2023-07-18 Vmware, Inc. Method and apparatus for distributed data network traffic optimization
US11252079B2 (en) 2017-01-31 2022-02-15 Vmware, Inc. High performance software-defined core network
US11706127B2 (en) 2017-01-31 2023-07-18 Vmware, Inc. High performance software-defined core network
US11606286B2 (en) 2017-01-31 2023-03-14 Vmware, Inc. High performance software-defined core network
US10574528B2 (en) 2017-02-11 2020-02-25 Nicira, Inc. Network multi-source inbound quality of service methods and systems
US11349722B2 (en) 2017-02-11 2022-05-31 Nicira, Inc. Method and system of connecting to a multipath hub in a cluster
US10778528B2 (en) 2017-02-11 2020-09-15 Nicira, Inc. Method and system of connecting to a multipath hub in a cluster
US10523539B2 (en) 2017-06-22 2019-12-31 Nicira, Inc. Method and system of resiliency in cloud-delivered SD-WAN
US10938693B2 (en) 2017-06-22 2021-03-02 Nicira, Inc. Method and system of resiliency in cloud-delivered SD-WAN
US11533248B2 (en) 2017-06-22 2022-12-20 Nicira, Inc. Method and system of resiliency in cloud-delivered SD-WAN
US10959098B2 (en) 2017-10-02 2021-03-23 Vmware, Inc. Dynamically specifying multiple public cloud edge nodes to connect to an external multi-computer node
US10999100B2 (en) 2017-10-02 2021-05-04 Vmware, Inc. Identifying multiple nodes in a virtual network defined over a set of public clouds to connect to an external SAAS provider
US11855805B2 (en) 2017-10-02 2023-12-26 Vmware, Inc. Deploying firewall for virtual network defined over public cloud infrastructure
US11102032B2 (en) 2017-10-02 2021-08-24 Vmware, Inc. Routing data message flow through multiple public clouds
US11089111B2 (en) 2017-10-02 2021-08-10 Vmware, Inc. Layer four optimization for a virtual network defined over public cloud
US11895194B2 (en) 2017-10-02 2024-02-06 VMware LLC Layer four optimization for a virtual network defined over public cloud
US11894949B2 (en) 2017-10-02 2024-02-06 VMware LLC Identifying multiple nodes in a virtual network defined over a set of public clouds to connect to an external SaaS provider
US11005684B2 (en) 2017-10-02 2021-05-11 Vmware, Inc. Creating virtual networks spanning multiple public clouds
US10686625B2 (en) 2017-10-02 2020-06-16 Vmware, Inc. Defining and distributing routes for a virtual network
US10999165B2 (en) 2017-10-02 2021-05-04 Vmware, Inc. Three tiers of SaaS providers for deploying compute and network infrastructure in the public cloud
US11516049B2 (en) 2017-10-02 2022-11-29 Vmware, Inc. Overlay network encapsulation to forward data message flows through multiple public cloud datacenters
US11115480B2 (en) 2017-10-02 2021-09-07 Vmware, Inc. Layer four optimization for a virtual network defined over public cloud
US10608844B2 (en) 2017-10-02 2020-03-31 Vmware, Inc. Graph based routing through multiple public clouds
US10958479B2 (en) 2017-10-02 2021-03-23 Vmware, Inc. Selecting one node from several candidate nodes in several public clouds to establish a virtual network that spans the public clouds
US10666460B2 (en) 2017-10-02 2020-05-26 Vmware, Inc. Measurement based routing through multiple public clouds
US10841131B2 (en) 2017-10-02 2020-11-17 Vmware, Inc. Distributed WAN security gateway
US10594516B2 (en) 2017-10-02 2020-03-17 Vmware, Inc. Virtual network provider
US11606225B2 (en) 2017-10-02 2023-03-14 Vmware, Inc. Identifying multiple nodes in a virtual network defined over a set of public clouds to connect to an external SAAS provider
US10805114B2 (en) 2017-10-02 2020-10-13 Vmware, Inc. Processing data messages of a virtual network that are sent to and received from external service machines
US10778466B2 (en) 2017-10-02 2020-09-15 Vmware, Inc. Processing data messages of a virtual network that are sent to and received from external service machines
US10992558B1 (en) 2017-11-06 2021-04-27 Vmware, Inc. Method and apparatus for distributed data network traffic optimization
US11323307B2 (en) 2017-11-09 2022-05-03 Nicira, Inc. Method and system of a dynamic high-availability mode based on current wide area network connectivity
US11902086B2 (en) 2017-11-09 2024-02-13 Nicira, Inc. Method and system of a dynamic high-availability mode based on current wide area network connectivity
US11223514B2 (en) 2017-11-09 2022-01-11 Nicira, Inc. Method and system of a dynamic high-availability mode based on current wide area network connectivity
US11252106B2 (en) 2019-08-27 2022-02-15 Vmware, Inc. Alleviating congestion in a virtual network deployed over public clouds for an entity
US11252105B2 (en) 2019-08-27 2022-02-15 Vmware, Inc. Identifying different SaaS optimal egress nodes for virtual networks of different entities
US11212238B2 (en) 2019-08-27 2021-12-28 Vmware, Inc. Providing recommendations for implementing virtual networks
US11831414B2 (en) 2019-08-27 2023-11-28 Vmware, Inc. Providing recommendations for implementing virtual networks
US11171885B2 (en) 2019-08-27 2021-11-09 Vmware, Inc. Providing recommendations for implementing virtual networks
US11258728B2 (en) 2019-08-27 2022-02-22 Vmware, Inc. Providing measurements of public cloud connections
US11310170B2 (en) 2019-08-27 2022-04-19 Vmware, Inc. Configuring edge nodes outside of public clouds to use routes defined through the public clouds
US11606314B2 (en) 2019-08-27 2023-03-14 Vmware, Inc. Providing recommendations for implementing virtual networks
US10999137B2 (en) 2019-08-27 2021-05-04 Vmware, Inc. Providing recommendations for implementing virtual networks
US11018995B2 (en) 2019-08-27 2021-05-25 Vmware, Inc. Alleviating congestion in a virtual network deployed over public clouds for an entity
US11153230B2 (en) 2019-08-27 2021-10-19 Vmware, Inc. Having a remote device use a shared virtual network to access a dedicated virtual network defined over public clouds
US11121985B2 (en) 2019-08-27 2021-09-14 Vmware, Inc. Defining different public cloud virtual networks for different entities based on different sets of measurements
US11044190B2 (en) 2019-10-28 2021-06-22 Vmware, Inc. Managing forwarding elements at edge nodes connected to a virtual network
US11611507B2 (en) 2019-10-28 2023-03-21 Vmware, Inc. Managing forwarding elements at edge nodes connected to a virtual network
US11716286B2 (en) 2019-12-12 2023-08-01 Vmware, Inc. Collecting and analyzing data regarding flows associated with DPI parameters
US11394640B2 (en) 2019-12-12 2022-07-19 Vmware, Inc. Collecting and analyzing data regarding flows associated with DPI parameters
US11489783B2 (en) 2019-12-12 2022-11-01 Vmware, Inc. Performing deep packet inspection in a software defined wide area network
US11689959B2 (en) 2020-01-24 2023-06-27 Vmware, Inc. Generating path usability state for different sub-paths offered by a network link
US11438789B2 (en) 2020-01-24 2022-09-06 Vmware, Inc. Computing and using different path quality metrics for different service classes
US11722925B2 (en) 2020-01-24 2023-08-08 Vmware, Inc. Performing service class aware load balancing to distribute packets of a flow among multiple network links
US11606712B2 (en) 2020-01-24 2023-03-14 Vmware, Inc. Dynamically assigning service classes for a QOS aware network link
US11418997B2 (en) 2020-01-24 2022-08-16 Vmware, Inc. Using heart beats to monitor operational state of service classes of a QoS aware network link
US11477127B2 (en) 2020-07-02 2022-10-18 Vmware, Inc. Methods and apparatus for application aware hub clustering techniques for a hyper scale SD-WAN
US11245641B2 (en) 2020-07-02 2022-02-08 Vmware, Inc. Methods and apparatus for application aware hub clustering techniques for a hyper scale SD-WAN
US11363124B2 (en) 2020-07-30 2022-06-14 Vmware, Inc. Zero copy socket splicing
US11709710B2 (en) 2020-07-30 2023-07-25 Vmware, Inc. Memory allocator for I/O operations
US11575591B2 (en) 2020-11-17 2023-02-07 Vmware, Inc. Autonomous distributed forwarding plane traceability based anomaly detection in application traffic for hyper-scale SD-WAN
US11444865B2 (en) 2020-11-17 2022-09-13 Vmware, Inc. Autonomous distributed forwarding plane traceability based anomaly detection in application traffic for hyper-scale SD-WAN
US11575600B2 (en) 2020-11-24 2023-02-07 Vmware, Inc. Tunnel-less SD-WAN
US11929903B2 (en) 2020-12-29 2024-03-12 VMware LLC Emulating packet flows to assess network links for SD-WAN
US11601356B2 (en) 2020-12-29 2023-03-07 Vmware, Inc. Emulating packet flows to assess network links for SD-WAN
US11343146B1 (en) 2021-01-14 2022-05-24 Dell Products L.P. Automatically determining configuration-based issue resolutions across multiple devices using machine learning models
US11792127B2 (en) 2021-01-18 2023-10-17 Vmware, Inc. Network-aware load balancing
US11637768B2 (en) 2021-05-03 2023-04-25 Vmware, Inc. On demand routing mesh for routing packets through SD-WAN edge forwarding nodes in an SD-WAN
US11582144B2 (en) 2021-05-03 2023-02-14 Vmware, Inc. Routing mesh to provide alternate routes through SD-WAN edge forwarding nodes based on degraded operational states of SD-WAN hubs
US11381499B1 (en) 2021-05-03 2022-07-05 Vmware, Inc. Routing meshes for facilitating routing through an SD-WAN
US11509571B1 (en) 2021-05-03 2022-11-22 Vmware, Inc. Cost-based routing mesh for facilitating routing through an SD-WAN
US11388086B1 (en) 2021-05-03 2022-07-12 Vmware, Inc. On demand routing mesh for dynamically adjusting SD-WAN edge forwarding node roles to facilitate routing through an SD-WAN
US11729065B2 (en) 2021-05-06 2023-08-15 Vmware, Inc. Methods for application defined virtual network service among multiple transport in SD-WAN
US11489720B1 (en) 2021-06-18 2022-11-01 Vmware, Inc. Method and apparatus to evaluate resource elements and public clouds for deploying tenant deployable elements based on harvested performance metrics
US11375005B1 (en) 2021-07-24 2022-06-28 Vmware, Inc. High availability solutions for a secure access service edge application
US11943146B2 (en) 2021-10-01 2024-03-26 VMware LLC Traffic prioritization in SD-WAN
US11909815B2 (en) 2022-06-06 2024-02-20 VMware LLC Routing based on geolocation costs

Also Published As

Publication number Publication date
US7386605B2 (en) 2008-06-10
US20040088389A1 (en) 2004-05-06

Similar Documents

Publication Publication Date Title
US7386605B2 (en) Methods and apparatus for automated edge device configuration in a heterogeneous network
US7009983B2 (en) Methods and apparatus for broadcast domain interworking
CN110832813B (en) Ethernet virtual private network using segmented routing
US9992154B2 (en) Layer 3 convergence for EVPN link failure
US8098656B2 (en) Method and apparatus for implementing L2 VPNs on an IP network
EP3595248B1 (en) Static route advertisement
US9166807B2 (en) Transmission of layer two (L2) multicast traffic over multi-protocol label switching networks
EP1563644B1 (en) System and method for interconnecting heterogeneous layer 2 vpn applications
EP1475942A2 (en) Address Resolution in IP Internetworking Layer 2 point-to-point connections
EP3264694A1 (en) Signaling ip address mobility in ethernet virtual private networks
US20070214241A1 (en) Method and system for remote access to universal plug and play devices
US7953097B2 (en) Neighbour discovery protocol mediation
JPH1141272A (en) Lan internet connection
WO2005081464A1 (en) Access network system, subscriber station device, and network terminal device
US20220272028A1 (en) Packet Forwarding Method, First Network Device, and First Device Group
WO2021073357A1 (en) Packet processing method, device, system and apparatus as well as storage medium
JP2022074129A (en) Method for sending bierv6 packet and first network device
US11671897B2 (en) Distributed wireless gateway
EP3932023B1 (en) Evpn signaling, ng-vpls e-tree signaling, vpws signaling, and l3vpn signaling using segment routing or mpls
JP3936319B2 (en) Communication confirmation method, data relay device, data relay system
Eastlake 3rd et al. Transparent Interconnection of Lots of Links (TRILL): Adjacency

Legal Events

Date Code Title Description
AS Assignment

Owner name: WELLS FARGO TRUST CORPORATION LIMITED, AS SECURITY

Free format text: GRANT OF SECURITY INTEREST IN U.S. PATENTS;ASSIGNOR:ENTERASYS NETWORKS INC.;REEL/FRAME:025339/0875

Effective date: 20101109

AS Assignment

Owner name: ENTERASYS NETWORKS INC., MASSACHUSETTS

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS AT REEL/FRAME NO. 25339/0875;ASSIGNOR:WELLS FARGO TRUST CORPORATION LIMITED;REEL/FRAME:031558/0677

Effective date: 20131031

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION