US20080216436A1 - Self-locking block and complementary pieces for the raising of pillars and free-standing walls - Google Patents

Self-locking block and complementary pieces for the raising of pillars and free-standing walls Download PDF

Info

Publication number
US20080216436A1
US20080216436A1 US12/123,783 US12378308A US2008216436A1 US 20080216436 A1 US20080216436 A1 US 20080216436A1 US 12378308 A US12378308 A US 12378308A US 2008216436 A1 US2008216436 A1 US 2008216436A1
Authority
US
United States
Prior art keywords
block
fit
walls
pillars
prefabricated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/123,783
Inventor
Alberto Rodriguez Carassus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20080216436A1 publication Critical patent/US20080216436A1/en
Priority to US13/073,232 priority Critical patent/US20110225909A1/en
Priority to US14/856,655 priority patent/US20160002917A1/en
Priority to US15/891,448 priority patent/US20180266105A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2/04Walls having neither cavities between, nor in, the solid elements
    • E04B2/06Walls having neither cavities between, nor in, the solid elements using elements having specially-designed means for stabilising the position
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2/42Walls having cavities between, as well as in, the elements; Walls of elements each consisting of two or more parts, kept in distance by means of spacers, at least one of the parts having cavities
    • E04B2/44Walls having cavities between, as well as in, the elements; Walls of elements each consisting of two or more parts, kept in distance by means of spacers, at least one of the parts having cavities using elements having specially-designed means for stabilising the position; Spacers for cavity walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0202Details of connections
    • E04B2002/0204Non-undercut connections, e.g. tongue and groove connections
    • E04B2002/0215Non-undercut connections, e.g. tongue and groove connections with separate protrusions
    • E04B2002/0217Non-undercut connections, e.g. tongue and groove connections with separate protrusions of prismatic shape

Definitions

  • the present invention relates to the field of civil engineering, particularly to fit in prefabricated blocks suitable for the raising of pillars and walls.
  • the technical field to which this invention refers, is continuously searching for obtaining firmness, stability, and high resistance in the prefabricated pieces destined to raise walls, as well as in the resulting walls.
  • the present invention proposes an alternative to solve these problems.
  • the mortar mixture absence allows affirming that the blocks and the derived and complementary pieces are self-locking.
  • the absence of additional structural elements, such as supports or metal beams, allows affirming that the pillars and walls are free-standing.
  • the pieces derived from the design of the block that complement it in the task of raising the pillars and walls are: a lintel beam which can also be used as a career beam or crown beam; a head block; and a semi-block.
  • the block and complementary derived pieces interact in a way that is described next, providing a technical alternative for the solution of the described technical problems.
  • pillars and walls having firmness, stability, and high resistance and free-standing capacity are constructed, obtaining a suitable finish in spaces destined to openings, doors and windows, as well as a suitable encounter between the right angle walls that offer a solid mechanical entailment between the convergent walls.
  • the present invention relates to a prefabricated block in Portland cement mortar reinforced with steel fiber fit in self-locking form, suitable for the raising of firm pillars and walls, stable and of high resistance, for interior or exterior.
  • the block and the complementary derived pieces interact allowing the raising of the pillars and walls by a dry method.
  • FIG. 1 illustrates a perspective view of the block in which the parallelepiped of rectangular base ( 1 ) and the two towers that overpass it ( 2 ) are shown. In the same figure a top view is shown where the hollow interiors of the towers ( 3 ) can be seen.
  • FIG. 2 illustrates a front view, longitudinal section, lateral view, and cross sectional view of the block showing the parallelepiped of rectangular base ( 1 ) of which the two towers ( 2 ) overpass.
  • the longitudinal and cross-sectional sections show the two hollow volumes of the towers ( 3 ), and the two hollow volumes symmetrically placed inside the parallelepiped of rectangular base each one with two segments of straight prismatic form of square base, having each one of them different segment dimensions ( 4 , 5 ).
  • FIG. 3 illustrates a vertical view, front view, and lateral view of the semi-block ( 6 ) showing a single tower ( 2 ).
  • FIG. 4 illustrates an inferior view of the head block ( 7 ) where the accesses to the two hollow volumes symmetrically placed are appraised ( 8 ); superior view ( 7 a ), horizontal ( 7 b ) and lateral ( 7 c ) of the head block.
  • a longitudinal section and a cross-sectional view of the head block ( 7 ) allow to appreciate the hollow volumes ( 8 ) and the solid superior part ( 9 ).
  • FIG. 5 illustrates a perspective view of the lintel beam ( 10 ) and of its two ends ( 11 ).
  • FIG. 6 illustraterate a vertical view of the lintel beam ( 10 ).
  • FIG. 7 illustrates a cross sectional view of one of the ends ( 11 ).
  • FIG. 8 illustrates a horizontal view of the lintel beam ( 10 ).
  • FIG. 9 illustrates a longitudinal view of the lintel beam ( 10 ) showing the stirrups ( 12 ), the main reinforcement ( 13 ) and the secondary reinforcement ( 14 ).
  • FIG. 10 Illustrates a vertical view of a pillar of square section ( 15 ) where two blocks ( 1 ) are placed one next to the other.
  • FIG. 11 illustrates a front view of a pillar of square section ( 15 ) showing the alternative disposition of layers of two blocks ( 1 ) that link with the superior layers when turning ninety degrees their direction.
  • FIG. 12 illustrates a lateral view of a pillar of square section ( 15 ) where can be appraised just like in FIG. 11 .
  • FIG. 13 illustrates a perspective view of the superior part of a pillar of square section ( 15 ).
  • FIG. 14 illustrates a wall ( 16 ) constructed on the basis of the present system with the use of the block ( 1 ), semi-block ( 6 ), head block ( 7 ), lintel beam ( 10 ). The pieces used are observed at the foot of the representation. Also, a pillar of square section ( 15 ) is shown.
  • the basic piece is constituted by a block. From the form of this piece, the other three mentioned pieces are derived.
  • the block basically comprises a parallelepiped of rectangular base whose length is double its width and its height is a third of the length, with two small identical towers that overpass its superior face.
  • the block comprises the parallelepiped and the towers that overpass the block. Nevertheless, in this chapter, for the single effects to give clarity to the description that follows, reference to the parallelepiped and the towers will be made separately.
  • the parallelepiped has in its interior two hollow volumes disposed symmetrically.
  • Each one of the hollow volumes is made up of two segments of square base straight prismatic form placed one on top of the other, having each one of the segments different dimensions.
  • the superior and inferior ends of the segments are opened.
  • the system to fit in the blocks between them is similar to the male/female system.
  • the inferior segments of each one or both hollow volumes in the parallelepiped are predicted to function like the cavities or female elements in this system.
  • Both hollow volumes provide the block a favorable contribution to thermal insulation that is desirable in a wall designed to serve as a closing outer wall.
  • the weight of the block is lightened, allowing easy work manipulation; thus, the approximated weight of the block may be 6.5 kg, for an example, in which the rectangular base blocks have a length of 30 cm, width of 15 cm and a height of 10 cm, obtaining in addition a wall with its own weight of approximately 217 kg/m 2 in walls of 15 cm, comparable to the weight of a plastered solid brick wall of the same thickness.
  • the two towers that overpass the superior face of the described parallelepiped are symmetrically arranged and have a square base straight prismatic form.
  • Each one of the towers is equipped with an interior hollow volume also with straight prismatic form of square base, being the hollow volumes symmetrically located.
  • the superior and inferior ends of the hollow prism are open.
  • the inferior ends of the hollow volumes of the towers are in communication with the superior ends of the hollow volumes of the parallelepiped, so that each one of the hollow volumes of the towers is continued in each one of the hollow volumes of the parallelepiped.
  • the main function of the towers is to serve as a mechanical bond between the blocks constituting the male element in the mentioned male/female system.
  • Each one of the blocks is fit in with another by introducing the towers of one of them in the inferior segments of the hollow volumes of the parallelepiped.
  • the fit in system allows to eliminate the necessity of a mortar mixture because their effects are replaced by the first, conferring to the wall, at the same time, stability and a monolithism similar to the obtained in a traditional wall with the use of a mortar mixture. It is for this reason that the block is called self-locking.
  • This fit in system allows in addition eliminating the necessity of additional structural elements, such as supports or metal beams, destined to equip the walls with the necessary raising capacity.
  • the pillars and the walls that are constructed are by design free-standing for important wall height and with capacity to support reinforced concrete slabs with usual design overloads. Without damage to it, in the case of being needed as a structural reinforcement destined to other aims, this one can be implemented by adding reinforcement and concrete in the continuous hollow columns that are formed in the walls as a product of placing the blocks in successive layers.
  • the two towers allow an average adult worker to take the block comfortably with a single hand, which facilitates its manipulation and positioning in the work area.
  • walls can be perfectly raised saving in manual labor from the qualitative point of view.
  • Non-specialized workers and people who work under the modality of auto-construction or mutual aid can execute the walls with professional finishing.
  • a result of the block design and placing them in successive layers is the formation of pillars and walls with continuous vertical hollow columns in its interior.
  • the pillars and walls do not need any fresh element that sets; they have high resistance which, along with the characteristics already mentioned, makes them suitable to offer immediately raising capacity.
  • the pillars are of square section with free-standing capacity, which is obtained by providing alternatively successive layers of two blocks that are linked to successive superior layers when turning ninety degrees their orientation. In the walls with free-standing capacity, somewhat, the standing capacity is obtained when successive block layers are placed and the link with the superior successive layers is made without the need to turn the direction of such.
  • the corners are conformed in the same hollow columns that are in the rest of the walls. These hollow columns can be used to produce reinforced concrete pillars in their interior if it is considered useful to the effects of providing additional stability.
  • the link between the blocks with each other causes the block to be set under compression forces, supported fundamentally by the mortar, and flexion and cut that are essentially supported by the steel fibers that integrate the mortar matrix.
  • the content of steel fiber additionally confers a high resistance to impacts.
  • the lintel beam is a piece having a cross-sectional section identical to the block, the length is equivalent to a multiple of the block length and the longitudinal section is equal to the one obtained by placing several aligned blocks.
  • the volume is equivalent to the volume of combining several blocks in which the hollow openings symmetrically placed have been filled up; thus, they are parallelepipeds having a solid rectangular base with solid towers that overpass them, joined among them.
  • the ends of the lintel beam have the same form of a block which confers a type of uniform fit in for the whole structure. These ends are those that link the lintel beam to the masonry allowing a fit in with the rest of the wall.
  • the lintel beam has main reinforcement, secondary reinforcement, and stirrups according to the usual design hypotheses in reinforced concrete, and they are made with the same material of the blocks including the steel fibers.
  • the piece of the head block is introduced.
  • This piece allows to easily construct a ledge, as well as to finish off the crowning of a wall or a crown beam in a uniform way offering a smooth surface when it is required for construction reasons.
  • the solid superior face is obtained by filling the superior prismatic segments of the hollow volumes of the mentioned parallelepiped.
  • inferior face where they are the two cavities or female elements constituted by the prismatic hollow volumes symmetrically placed that are equivalent to the inferior segments of the hollow volumes of the rectangular parallelepiped that forms part of a block.
  • the head block is fit in an inferior block by means of the previously mentioned male/female, because the towers of the inferior block are fit in the cavities that are opened in the inferior face of the head block.
  • a semi-block is added which, along with the lintel beam, allows forming a space suitable to tie down windows or doors by means of suitable adherences.
  • the semi-blocks are fit in blocks in order to complete the lateral closing of the wall in those places where they need to be implementing, for example, spaces destined to windows and doors, or joining of walls.
  • the semi-block allows producing a space suitable for armor of windows or doors by means of suitable adherences, for example, wall anchor.
  • the mentioned texture and consistency grant a suitable impermeability, making it only necessary to perform the sealing of the superficial junctions that form in the ornament between the pieces, with cement mortar or a suitable pastine.
  • This sealing may be applied by a person that does not have any technical skill in a similar way to the enforcement of joints, for example, ceramics pieces or floor tiles.
  • the rectangular base parallelepiped has a length of 30 cm, a width of 15 cm, and a height of 10 cm, whereas the towers has a length of 10 cm, a width of 10 cm and a height of 4.5 cm.
  • each one of these prismatic segments has a length of 11 cm, a width of 11 cm, and a height of 5 cm.
  • the prismatic superior segments of the hollow volumes symmetrically placed have a length of 7 cm, a width of 7 cm, and a height of 5 cm.
  • the towers measure 10 cm in length, 10 cm width, and 4.5 cm in height, whereas the inner hollow volumes measure 7 cm in length, 7 cm in width, and 4.5 cm in height.
  • the towers symmetrically placed in the superior face of the block have a separation among them of 5 cm, and each one of them moved away 2.5 cm of the respective lateral faces of the parallelepiped.
  • the thickness of the walls of the towers is of 1.5 cm.
  • the described measures constitute a preferred example by the inventor without for that reason limiting the reach of this request of patent.
  • the mentioned measures can change if the proportions are maintained.
  • layers or rows of blocks are formed that allow to raise as an example columns, inner or outer walls.
  • the height of the pillars and the walls is a multiple of the height of the block. In the above mentioned example it is a multiple of 10 cm. This is particularly useful in the case of using foundation stall, in which case the pillars may be placed as an additional ceiling support.
  • the beams may be made with a section of 15 cm of base by 10 cm of height, which limits the amount of reinforcement to be placed.
  • the lintel beams of two lengths that is to say: of 1.20 m for lintels of doors, and 1.50 ms for lintels of windows.
  • the fact that the beam door lintel has 1.20 m allows a free light of 90 cm to the effects to locate the door and the frame.
  • the length of the lintel beam of window of 1.50 m allows that the width of the window with the frame is 1.20 m.
  • the superior hollow segments of the parallelepiped that are filled up have a length of 7 cm, width of 7 cm and a height of 5 cm.
  • each one of these volumes has a length of 11 cm, width of 11 cm, and a height of 5 cm.
  • the blocks are feasible products to be produced exclusively at industrial level by means of matrix or molds, which facilitates the necessary quality control and made possible the desirable scale economies.
  • the semi-blocks which can be obtained by sectioning blocks with common equipment, are feasible industrially prefabricated by means of matrices or molds.
  • the head block and the beams can only be prefabricated industrially by means of matrices or molds obtaining the desirable standardization.

Abstract

The present invention refers to a prefabricated fit in blocks and derived and complementary pieces in cement mortar reinforced with steel fiber for raising of pillars and walls with no need to use mortar mixture or plasters. Pillars and resulting walls of the fit in of blocks and derived and complementary pieces do not require additional structural elements.

Description

    TECHNICAL FIELD
  • The present invention relates to the field of civil engineering, particularly to fit in prefabricated blocks suitable for the raising of pillars and walls.
  • BACKGROUND OF THE INVENTION
  • The technical field, to which this invention refers, is continuously searching for obtaining firmness, stability, and high resistance in the prefabricated pieces destined to raise walls, as well as in the resulting walls.
  • In parallel, the mentioned technical field has been known world-wide in the use of fit in prefabricated pieces of different designs in order to prevent the use of the mortar mixture.
  • Additionally, in many cases, the use of larger amounts of elements for the raising of walls has been avoided so the task becomes as simple as possible to be attainable by workers without qualification or even by the future occupants of the house.
  • The proposed solutions in the matter of prefabricated pieces that do not require the use of a mortar mixture provided until the moment did not offer the firmness, stability and high resistance at a satisfactory level. At the same time, the proposed solutions in the matter of fit in prefabricated pieces had demonstrated that the use of elements to help in the construction as metal supports or beams had not being totally avoided.
  • Additionally, the proposed solutions until this moment have not allowed obtaining a suitable finish in spaces destined to openings, doors and windows, or an easy encounter to right angle walls.
  • The present invention proposes an alternative to solve these problems.
  • It is presented a fit in prefabricated block and its derived and complementary pieces for the task of raising pillars and walls without the need of a mortar mixture or plaster, being the block and the derived and complementary pieces prefabricated in a Portland cement mortar reinforced with steel fiber. The resulting pillars and walls of the fit in blocks and complementary derived pieces do not require structural elements as metal supports or beams.
  • The mortar mixture absence allows affirming that the blocks and the derived and complementary pieces are self-locking. The absence of additional structural elements, such as supports or metal beams, allows affirming that the pillars and walls are free-standing.
  • The pieces derived from the design of the block that complement it in the task of raising the pillars and walls are: a lintel beam which can also be used as a career beam or crown beam; a head block; and a semi-block.
  • All these prefabricated pieces are made in Portland cement mortar reinforced with steel fibers and are fit in between them.
  • The block and complementary derived pieces interact in a way that is described next, providing a technical alternative for the solution of the described technical problems. By the interaction of these elements, pillars and walls having firmness, stability, and high resistance and free-standing capacity are constructed, obtaining a suitable finish in spaces destined to openings, doors and windows, as well as a suitable encounter between the right angle walls that offer a solid mechanical entailment between the convergent walls.
  • SUMMARY OF THE INVENTION
  • The present invention relates to a prefabricated block in Portland cement mortar reinforced with steel fiber fit in self-locking form, suitable for the raising of firm pillars and walls, stable and of high resistance, for interior or exterior.
  • It is also an objective of the present invention to provide three pieces derived from the design of the block that complements the block in the task of raising the pillars and walls. They are: lintel beam, head block, and semi-block.
  • The block and the complementary derived pieces interact allowing the raising of the pillars and walls by a dry method.
  • To the effects of the present invention, it is understood by dry method the one that allows raising a pillar or wall without the use of a mortar mixture, and without the necessity of other different structural elements.
  • The fact that neither the blocks nor the complementary derived pieces need the mortar mixture to raise pillars and walls allows describing the block and the derived complementary pieces as self-locking.
  • The fact that the pillars and the walls do not need additional structural elements to provide the necessary raising capacity allows describing the pillars and walls as free-standing.
  • Additionally, the high resistance design that the prefabricated material grants to the blocks and the derived complementary pieces does not require plaster neither in the pillars nor in the walls, which carries advantages that are detailed in this document.
  • DESCRIPTION WITH REFERENCE TO THE DRAWINGS
  • FIG. 1—illustrates a perspective view of the block in which the parallelepiped of rectangular base (1) and the two towers that overpass it (2) are shown. In the same figure a top view is shown where the hollow interiors of the towers (3) can be seen.
  • FIG. 2—illustrates a front view, longitudinal section, lateral view, and cross sectional view of the block showing the parallelepiped of rectangular base (1) of which the two towers (2) overpass.
  • The longitudinal and cross-sectional sections, show the two hollow volumes of the towers (3), and the two hollow volumes symmetrically placed inside the parallelepiped of rectangular base each one with two segments of straight prismatic form of square base, having each one of them different segment dimensions (4, 5).
  • FIG. 3—illustrates a vertical view, front view, and lateral view of the semi-block (6) showing a single tower (2).
  • FIG. 4—illustrates an inferior view of the head block (7) where the accesses to the two hollow volumes symmetrically placed are appraised (8); superior view (7 a), horizontal (7 b) and lateral (7 c) of the head block.
  • In same FIG. 4, a longitudinal section and a cross-sectional view of the head block (7) allow to appreciate the hollow volumes (8) and the solid superior part (9).
  • FIG. 5—illustrates a perspective view of the lintel beam (10) and of its two ends (11).
  • FIG. 6—illustrate a vertical view of the lintel beam (10).
  • FIG. 7—illustrates a cross sectional view of one of the ends (11).
  • FIG. 8—illustrates a horizontal view of the lintel beam (10).
  • FIG. 9—illustrates a longitudinal view of the lintel beam (10) showing the stirrups (12), the main reinforcement (13) and the secondary reinforcement (14).
  • FIG. 10—Illustrates a vertical view of a pillar of square section (15) where two blocks (1) are placed one next to the other.
  • FIG. 11—illustrates a front view of a pillar of square section (15) showing the alternative disposition of layers of two blocks (1) that link with the superior layers when turning ninety degrees their direction.
  • FIG. 12—illustrates a lateral view of a pillar of square section (15) where can be appraised just like in FIG. 11.
  • FIG. 13—illustrates a perspective view of the superior part of a pillar of square section (15).
  • FIG. 14—illustrates a wall (16) constructed on the basis of the present system with the use of the block (1), semi-block (6), head block (7), lintel beam (10). The pieces used are observed at the foot of the representation. Also, a pillar of square section (15) is shown.
  • DESCRIPTION OF THE INVENTION Block
  • The basic piece is constituted by a block. From the form of this piece, the other three mentioned pieces are derived.
  • The block basically comprises a parallelepiped of rectangular base whose length is double its width and its height is a third of the length, with two small identical towers that overpass its superior face.
  • The block comprises the parallelepiped and the towers that overpass the block. Nevertheless, in this chapter, for the single effects to give clarity to the description that follows, reference to the parallelepiped and the towers will be made separately.
  • The parallelepiped has in its interior two hollow volumes disposed symmetrically. Each one of the hollow volumes is made up of two segments of square base straight prismatic form placed one on top of the other, having each one of the segments different dimensions. The superior and inferior ends of the segments are opened.
  • The system to fit in the blocks between them is similar to the male/female system. The inferior segments of each one or both hollow volumes in the parallelepiped are predicted to function like the cavities or female elements in this system.
  • Both hollow volumes provide the block a favorable contribution to thermal insulation that is desirable in a wall designed to serve as a closing outer wall.
  • The weight of the block is lightened, allowing easy work manipulation; thus, the approximated weight of the block may be 6.5 kg, for an example, in which the rectangular base blocks have a length of 30 cm, width of 15 cm and a height of 10 cm, obtaining in addition a wall with its own weight of approximately 217 kg/m2 in walls of 15 cm, comparable to the weight of a plastered solid brick wall of the same thickness.
  • The two towers that overpass the superior face of the described parallelepiped are symmetrically arranged and have a square base straight prismatic form. Each one of the towers is equipped with an interior hollow volume also with straight prismatic form of square base, being the hollow volumes symmetrically located. The superior and inferior ends of the hollow prism are open.
  • The inferior ends of the hollow volumes of the towers are in communication with the superior ends of the hollow volumes of the parallelepiped, so that each one of the hollow volumes of the towers is continued in each one of the hollow volumes of the parallelepiped.
  • The main function of the towers is to serve as a mechanical bond between the blocks constituting the male element in the mentioned male/female system. Each one of the blocks is fit in with another by introducing the towers of one of them in the inferior segments of the hollow volumes of the parallelepiped.
  • The fit in system allows to eliminate the necessity of a mortar mixture because their effects are replaced by the first, conferring to the wall, at the same time, stability and a monolithism similar to the obtained in a traditional wall with the use of a mortar mixture. It is for this reason that the block is called self-locking.
  • This fit in system allows in addition eliminating the necessity of additional structural elements, such as supports or metal beams, destined to equip the walls with the necessary raising capacity. The pillars and the walls that are constructed are by design free-standing for important wall height and with capacity to support reinforced concrete slabs with usual design overloads. Without damage to it, in the case of being needed as a structural reinforcement destined to other aims, this one can be implemented by adding reinforcement and concrete in the continuous hollow columns that are formed in the walls as a product of placing the blocks in successive layers.
  • The two towers allow an average adult worker to take the block comfortably with a single hand, which facilitates its manipulation and positioning in the work area.
  • As the blocks are fit into one another, walls can be perfectly raised saving in manual labor from the qualitative point of view. Non-specialized workers and people who work under the modality of auto-construction or mutual aid can execute the walls with professional finishing.
  • A result of the block design and placing them in successive layers is the formation of pillars and walls with continuous vertical hollow columns in its interior.
  • Another result of both is the greater yield per time because walls can be raised with a non-possible speed by other methods.
  • The pillars and walls do not need any fresh element that sets; they have high resistance which, along with the characteristics already mentioned, makes them suitable to offer immediately raising capacity.
  • In a preferable embodiment, the pillars are of square section with free-standing capacity, which is obtained by providing alternatively successive layers of two blocks that are linked to successive superior layers when turning ninety degrees their orientation. In the walls with free-standing capacity, somewhat, the standing capacity is obtained when successive block layers are placed and the link with the superior successive layers is made without the need to turn the direction of such.
  • Another result of the block design and alternatively intercalating in the junction of the walls encounter the blocks so they are simultaneously fit in both walls; its right angle walls are obtained that allow achieving, at the same time, in the considered corner a monolithism of equal order of the one of each wall itself.
  • The corners are conformed in the same hollow columns that are in the rest of the walls. These hollow columns can be used to produce reinforced concrete pillars in their interior if it is considered useful to the effects of providing additional stability.
  • Also, it is distinguishable to the facility to implement the installation of lights, water, or other services by means of interior canals that use the vertical hollow spaces of the walls.
  • The link between the blocks with each other causes the block to be set under compression forces, supported fundamentally by the mortar, and flexion and cut that are essentially supported by the steel fibers that integrate the mortar matrix. The content of steel fiber additionally confers a high resistance to impacts.
  • Lintel Beam
  • For the effects to totally allow the raising of walls with prefabricated elements a lintel beam is introduced.
  • The lintel beam is a piece having a cross-sectional section identical to the block, the length is equivalent to a multiple of the block length and the longitudinal section is equal to the one obtained by placing several aligned blocks. The volume is equivalent to the volume of combining several blocks in which the hollow openings symmetrically placed have been filled up; thus, they are parallelepipeds having a solid rectangular base with solid towers that overpass them, joined among them.
  • Its reinforcement is equivalent to that of a traditional beam.
  • The ends of the lintel beam have the same form of a block which confers a type of uniform fit in for the whole structure. These ends are those that link the lintel beam to the masonry allowing a fit in with the rest of the wall.
  • Its function is double: they can serve as lintel beam in openings; but, in addition, placing them in series, can function as career beam or crown beam, according to the case.
  • They may be prefabricated of several lengths being advisable to limit them, for simplicity as well as for economy, in addition to the inherent conditioning to the work manipulation and design factors.
  • The lintel beam has main reinforcement, secondary reinforcement, and stirrups according to the usual design hypotheses in reinforced concrete, and they are made with the same material of the blocks including the steel fibers.
  • Head Block
  • To the effects of having a space of windows and doors that are adapted to the rapidity and convenience of the raising of walls according to this system, the piece of the head block is introduced.
  • This piece allows to easily construct a ledge, as well as to finish off the crowning of a wall or a crown beam in a uniform way offering a smooth surface when it is required for construction reasons.
  • It is prefabricated with the same material of the above identified block.
  • It derives from the design of the block because starting from the block design, the towers are eliminated and the rectangular base parallelepiped is provided with a solid superior face.
  • The solid superior face is obtained by filling the superior prismatic segments of the hollow volumes of the mentioned parallelepiped.
  • It is linked by means of the inferior face where they are the two cavities or female elements constituted by the prismatic hollow volumes symmetrically placed that are equivalent to the inferior segments of the hollow volumes of the rectangular parallelepiped that forms part of a block.
  • The head block is fit in an inferior block by means of the previously mentioned male/female, because the towers of the inferior block are fit in the cavities that are opened in the inferior face of the head block.
  • Semi-Block
  • In addition, a semi-block is added which, along with the lintel beam, allows forming a space suitable to tie down windows or doors by means of suitable adherences.
  • It is a piece derived from the block.
  • Starting from a block as it has been described; a transversal cross-sectional section is performed as previously described to obtain two identical semi-blocks.
  • The semi-blocks are fit in blocks in order to complete the lateral closing of the wall in those places where they need to be implementing, for example, spaces destined to windows and doors, or joining of walls.
  • Next to the lintel beam, the semi-block allows producing a space suitable for armor of windows or doors by means of suitable adherences, for example, wall anchor.
  • Characteristic of the Wall
  • The dosage of the elements of the mortar—cement, water, and sand including its mesh—allows obtaining a wall of texture comparable to texture of a plastered wall, that along with its resistance, allows leaving out the plaster for interior as well as for exterior.
  • The mentioned texture and consistency grant a suitable impermeability, making it only necessary to perform the sealing of the superficial junctions that form in the ornament between the pieces, with cement mortar or a suitable pastine. This sealing may be applied by a person that does not have any technical skill in a similar way to the enforcement of joints, for example, ceramics pieces or floor tiles.
  • The morphology of these pieces and link also grant facility and monolithism in the execution of the walls joints and the corners in right angle that prevail at general level.
  • From the point of view of the work schedule, it is obtained a shortening of the same by way of eliminating the necessary of habitual waiting times that assure a minimum structural resistance in traditional resistant elements, as well as to eliminate delays due to the incidence of the adverse weather in outdoor work.
  • The use of the block and the pieces derived from it, with the characteristics described for the raising of pillars and inner and outer walls, constitutes an integral constructive system. This system assures the fast emergence of complementary elements like doors, windows, or ceilings.
  • In addition, it is to emphasize the remarkable resistance to impact that confers the steel fiber content, important point for a wall that is designed to be without interior or exterior plaster.
  • A WORKING EMBODIMENT
  • Next a working embodiment is described without meaning in anyway some limitation in the reach of this request for patent, since it is possible to always give other measures to the block and other pieces obtaining the same results as long as the proportion between the measures is maintained.
  • Block
  • In a preferred form to obtain an easily manageable volume by the workers, by its dimensions as well as by its weight, and considering a suitable wall width, the rectangular base parallelepiped has a length of 30 cm, a width of 15 cm, and a height of 10 cm, whereas the towers has a length of 10 cm, a width of 10 cm and a height of 4.5 cm.
  • From the inferior face of the rectangular base parallelepiped it is possible to access the two cavities or female elements constituted by the prismatic inferior segments of the hollow volumes symmetrically placed. Each one of these prismatic segments has a length of 11 cm, a width of 11 cm, and a height of 5 cm.
  • Between the internal faces of the inferior segments of both hollow volumes there is a separation of 4 cm. From the external faces of the inferior segments of both hollow volumes there is a separation of 2 cm with respect to the lateral faces of the parallelepiped.
  • The prismatic superior segments of the hollow volumes symmetrically placed have a length of 7 cm, a width of 7 cm, and a height of 5 cm.
  • The towers measure 10 cm in length, 10 cm width, and 4.5 cm in height, whereas the inner hollow volumes measure 7 cm in length, 7 cm in width, and 4.5 cm in height.
  • The towers symmetrically placed in the superior face of the block have a separation among them of 5 cm, and each one of them moved away 2.5 cm of the respective lateral faces of the parallelepiped. The thickness of the walls of the towers is of 1.5 cm.
  • The described measures constitute a preferred example by the inventor without for that reason limiting the reach of this request of patent. The mentioned measures can change if the proportions are maintained.
  • When placing the blocks one next to another, and one fit in the other as a male/female, layers or rows of blocks are formed that allow to raise as an example columns, inner or outer walls.
  • The fit in between pieces allows forming square pillars of 30 cm of side with standing capacity, this is obtained by alternatively placing layers of two blocks that link with the superior layers when turning ninety degrees their direction.
  • The height of the pillars and the walls is a multiple of the height of the block. In the above mentioned example it is a multiple of 10 cm. This is particularly useful in the case of using foundation stall, in which case the pillars may be placed as an additional ceiling support.
  • Lintel Beam
  • For the case of rectangular base block type of a length of 30 cm, a width of 15 cm, and a height of 10 cm, the beams may be made with a section of 15 cm of base by 10 cm of height, which limits the amount of reinforcement to be placed.
  • Its weight must be so that it allows to manipulate it and to place it in the wall with facility, to such effects, in a manufacture example for the previously mentioned case, is considered to prefabricate the lintel beams of two lengths, that is to say: of 1.20 m for lintels of doors, and 1.50 ms for lintels of windows. The fact that the beam door lintel has 1.20 m allows a free light of 90 cm to the effects to locate the door and the frame. The length of the lintel beam of window of 1.50 m allows that the width of the window with the frame is 1.20 m.
  • In the case of the beams section lintels 15 cm by 10 cm and 1.50 cm of overall length, its total weight is approximately of 65 kg, which allows that two workers position it in work area without greater difficulty.
  • Head Block
  • Starting from the design of the block, and having eliminated the towers, the superior hollow segments of the parallelepiped that are filled up have a length of 7 cm, width of 7 cm and a height of 5 cm.
  • From the inferior face of the head block it is possible to access the two cavities or female elements constituted by the prismatic hollow volumes symmetrically placed. Each one of these volumes has a length of 11 cm, width of 11 cm, and a height of 5 cm.
  • Semi-Block
  • Starting from the block as it has been described; a cross-sectional section is performed in the block to obtain two identical semi-blocks.
  • Consequently, starting from the measures previously described for the block it is possible to easily deduce the measures of the semi-block.
  • INDUSTRIAL APPLICATION
  • The blocks are feasible products to be produced exclusively at industrial level by means of matrix or molds, which facilitates the necessary quality control and made possible the desirable scale economies.
  • The semi-blocks, which can be obtained by sectioning blocks with common equipment, are feasible industrially prefabricated by means of matrices or molds.
  • The head block and the beams can only be prefabricated industrially by means of matrices or molds obtaining the desirable standardization.

Claims (11)

1-11. (canceled)
12. A prefabricated fit in block of portland cement mortar reinforced with steel fiber for the raising of pillars and walls by dry method comprising:
1) a rectangular base parallelepiped having a top end, a bottom end, a length, a width, and a height, and an interior;
wherein the length is double of the width and a height that is a third of the length;
wherein the interior comprises two hollow volumes symmetrically placed;
wherein each one of the hollow volumes includes a first and a second prismatic segment of square base of different dimensions arranged one on top of the other, the first and second segments having a top end and a bottom end, wherein the top and the bottom ends are opened;
2) a first square base straight prismatic tower and a second square base straight prismatic tower, wherein the first and second towers are identical and are symmetrically placed to overpass the top end of the rectangular base parallelepiped;
wherein each tower has an interior hollow volume prismatic form of square base, a top end and a bottom end;
wherein the hollow volumes are symmetrically placed;
wherein the top end and the bottom end of each tower are open;
wherein the inferior ends of the towers are in communication with the superior segments of the hollow volumes of the parallelepiped.
13. The prefabricated fit in block according to claim 12 wherein the block being self-locking since each one of the towers is fit in to each one of the inferior segments of the hollow volumes of another block without the use of the mortar mixture.
14. The prefabricated fit in block according to claim 12 wherein the block is of light weight.
15. The prefabricated fit in block according to claim 12 wherein the blocks are fit in with each other forming the pillars and walls, wherein each one of the towers is fit in to each one of the inferior segments of the hollow volumes of another block without the use of a mortar mixture.
16. A prefabricated fit in block according to claims 15 wherein the pillars and walls are free-standing.
17. The prefabricated fit in block according to claim 15 wherein the pillars and walls comprise a plurality of inner channels for the installation of light fixtures, water fixture, electrical wiring or combination thereof.
18. The prefabricated fit in block according to claim 15 wherein the pillars and walls are stable and monolithic.
19. The prefabricated fit in block according to claim 15 wherein the pillars have a square section and are obtained by providing alternatively successive layers of the blocks, wherein the blocks are linked to successive superior layers when turning ninety degrees their orientation.
20. The prefabricated fit in block according to claim 15 wherein the walls are obtained by providing successive blocks layers.
21. A system for raising pillars and walls by dry method comprising:
1) at least two prefabricated fit in block of portland cement mortar reinforced with steel fiber;
wherein each block has a length, a cross section, a longitudinal section, and a volume;
wherein each block has a shape which comprises a rectangular base parallelepiped having a top end, a bottom end, a length, a width, and a height, and interior;
wherein the length is double the width and a height that is a third of the length;
wherein the interior comprises a two hollow volumes symmetrically placed;
a first square base straight prismatic tower and a second square base straight prismatic tower, wherein the first and second towers are identical and are symmetrically placed to overpass the top end of the rectangular base parallelepiped;
wherein each one of both symmetrical hollow volumes includes a first and a second prismatic segment of square base of different dimensions arranged one on top of the other, the first and second segments having a top end and a bottom end, wherein the top and the bottom ends are opened;
2) a lintel beam of portland cement mortar reinforced with steel fiber, the lintel beam having a length, a cross section, a longitudinal section, and a volume;
wherein the lintel beam is of identical cross-sectional section to the cross section of the block, wherein the length of the lintel beam is equivalent to a multiple of the length of the block, wherein the longitudinal section of the lintel beam is equal to the longitudinal section obtained by placing several blocks aligned; wherein the volume of the lintel beam is equivalent to the volume of several blocks united;
3) a prefabricated fit in head-block of portland cement mortar reinforced with steel fiber, the head block having a length, a cross section, a longitudinal section, and a volume;
wherein the head-block has a shape that derives from the shape of the block being eliminated the first and second towers and the rectangular base parallelepiped is provided with a solid superior face;
wherein the solid superior face is obtained by filling the superior prismatic segments of the hollow volumes of the parallelepiped;
4) at least one semi-block, wherein each semi-block has a length, a cross section, a longitudinal section, and a volume;
wherein the semi-block has a shape that derives from the shape of the block when a transversal cross-sectional section is performed; and
wherein the pillars and walls are free-standing since they are raised by connecting successive layers of blocks, semi-block, head block and lintel beams one in the other or one over others.
US12/123,783 2000-03-10 2008-05-20 Self-locking block and complementary pieces for the raising of pillars and free-standing walls Abandoned US20080216436A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/073,232 US20110225909A1 (en) 2000-03-10 2011-03-28 Self-locking block and complementary blocks for the construction of pillars, free-standing walls, rooms, and buildings
US14/856,655 US20160002917A1 (en) 2008-05-20 2015-09-17 Self-locking block and complementary pieces for the raising of pillars and free-standing walls
US15/891,448 US20180266105A1 (en) 2008-05-20 2018-02-08 Self-locking block

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
UY30955 2000-03-10
UY030955A UY30955A1 (en) 2008-03-10 2008-03-10 SELF-TREATMENT BLOCK AND COMPLEMENTARY PARTS FOR THE LIFTING OF PILLARS AND SELF-PORTABLE WALLS

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/073,232 Continuation-In-Part US20110225909A1 (en) 2000-03-10 2011-03-28 Self-locking block and complementary blocks for the construction of pillars, free-standing walls, rooms, and buildings

Publications (1)

Publication Number Publication Date
US20080216436A1 true US20080216436A1 (en) 2008-09-11

Family

ID=39740240

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/123,783 Abandoned US20080216436A1 (en) 2000-03-10 2008-05-20 Self-locking block and complementary pieces for the raising of pillars and free-standing walls

Country Status (2)

Country Link
US (1) US20080216436A1 (en)
UY (1) UY30955A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8495850B1 (en) * 2012-03-05 2013-07-30 Chia-Yen Lin Building block assembly
US20150159371A1 (en) * 2011-03-28 2015-06-11 Alberto Rodriguez Carassus Self-locking block and complementary pieces for the raising of pillars and free-standing walls
US10781588B1 (en) * 2018-01-25 2020-09-22 Marc R Nadeau Integrated, post-tensioned, building construction system
GB2583152A (en) * 2019-10-04 2020-10-21 Patel Rahul Stackable block
USD917723S1 (en) * 2019-08-21 2021-04-27 Versare Solutions Llc Wall frame component
USD922616S1 (en) * 2019-08-21 2021-06-15 Versare Solutions, Llc Wall frame corner component
US20210180283A1 (en) * 2019-12-12 2021-06-17 Robert Daggett Interlocking blocking system for retaining walls and other uses
US11408173B2 (en) * 2019-11-22 2022-08-09 Lazarian World Homes Foam as modular support

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3618279A (en) * 1970-10-26 1971-11-09 True F Sease Building block
US4026086A (en) * 1975-07-18 1977-05-31 Langley David T Building brick
US4107894A (en) * 1976-10-29 1978-08-22 Mullins Wayne L Interlocking cementitious building blocks
US4297816A (en) * 1979-07-12 1981-11-03 George Kella Interlocking construction block
US4314431A (en) * 1979-12-31 1982-02-09 S & M Block System Of U.S. Corporation Mortar-less interlocking building block system
US4651485A (en) * 1985-09-11 1987-03-24 Osborne Ronald P Interlocking building block system
US4965979A (en) * 1989-05-15 1990-10-30 Larrivee Ronald J Concrete block wall
US5082501A (en) * 1985-10-14 1992-01-21 Kurz Fredrik W A Method of preparing building materials
US5537796A (en) * 1993-02-22 1996-07-23 Kliethermes, Jr.; John C. Retaining wall block and system
US5715635A (en) * 1989-12-11 1998-02-10 Sherwood; Don T. Building block unit and method of manufacturing same
US5966889A (en) * 1997-07-07 1999-10-19 Zinner; Shaul After wet adhesion building block system
US5987840A (en) * 1998-05-28 1999-11-23 Leppert; Jeffrey K. Self-aligning block
US6088987A (en) * 1995-12-21 2000-07-18 Simmons; Scott Modular building materials
US6161357A (en) * 1998-09-25 2000-12-19 Altemus; Armin J. Bidirectionally interlocking, hollow brick wall system
US6423134B1 (en) * 1998-03-11 2002-07-23 Trottier Jean-Francois Fiber reinforced building materials
US6571525B2 (en) * 2001-08-01 2003-06-03 J. David Coleman Construction block
US6572697B2 (en) * 2000-03-14 2003-06-03 James Hardie Research Pty Limited Fiber cement building materials with low density additives
US6588168B2 (en) * 2001-04-17 2003-07-08 Donald L. Walters Construction blocks and structures therefrom
US6758020B2 (en) * 1997-09-08 2004-07-06 Cercorp Initiatives Incorporated Flexible interlocking wall system
US20040226246A1 (en) * 2003-05-16 2004-11-18 Doty Steven E. Self interlocking block system
US6948282B2 (en) * 2003-01-09 2005-09-27 Allan Block Corporation Interlocking building block
US7086811B2 (en) * 1999-12-29 2006-08-08 Cgl Systems Llc Pre-stressed modular retaining wall system and method
US20060201082A1 (en) * 2005-02-10 2006-09-14 Westblock Systems, Inc. Masonry block wall system
US20090314186A1 (en) * 2004-08-11 2009-12-24 Rodgers Michael S Retentive concrete material

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3618279A (en) * 1970-10-26 1971-11-09 True F Sease Building block
US4026086A (en) * 1975-07-18 1977-05-31 Langley David T Building brick
US4107894A (en) * 1976-10-29 1978-08-22 Mullins Wayne L Interlocking cementitious building blocks
US4297816A (en) * 1979-07-12 1981-11-03 George Kella Interlocking construction block
US4314431A (en) * 1979-12-31 1982-02-09 S & M Block System Of U.S. Corporation Mortar-less interlocking building block system
US4651485A (en) * 1985-09-11 1987-03-24 Osborne Ronald P Interlocking building block system
US5082501A (en) * 1985-10-14 1992-01-21 Kurz Fredrik W A Method of preparing building materials
US4965979A (en) * 1989-05-15 1990-10-30 Larrivee Ronald J Concrete block wall
US5715635A (en) * 1989-12-11 1998-02-10 Sherwood; Don T. Building block unit and method of manufacturing same
US5537796A (en) * 1993-02-22 1996-07-23 Kliethermes, Jr.; John C. Retaining wall block and system
US6088987A (en) * 1995-12-21 2000-07-18 Simmons; Scott Modular building materials
US5966889A (en) * 1997-07-07 1999-10-19 Zinner; Shaul After wet adhesion building block system
US6758020B2 (en) * 1997-09-08 2004-07-06 Cercorp Initiatives Incorporated Flexible interlocking wall system
US6423134B1 (en) * 1998-03-11 2002-07-23 Trottier Jean-Francois Fiber reinforced building materials
US5987840A (en) * 1998-05-28 1999-11-23 Leppert; Jeffrey K. Self-aligning block
US6161357A (en) * 1998-09-25 2000-12-19 Altemus; Armin J. Bidirectionally interlocking, hollow brick wall system
US7086811B2 (en) * 1999-12-29 2006-08-08 Cgl Systems Llc Pre-stressed modular retaining wall system and method
US6572697B2 (en) * 2000-03-14 2003-06-03 James Hardie Research Pty Limited Fiber cement building materials with low density additives
US6588168B2 (en) * 2001-04-17 2003-07-08 Donald L. Walters Construction blocks and structures therefrom
US6571525B2 (en) * 2001-08-01 2003-06-03 J. David Coleman Construction block
US6948282B2 (en) * 2003-01-09 2005-09-27 Allan Block Corporation Interlocking building block
US20040226246A1 (en) * 2003-05-16 2004-11-18 Doty Steven E. Self interlocking block system
US20090314186A1 (en) * 2004-08-11 2009-12-24 Rodgers Michael S Retentive concrete material
US20060201082A1 (en) * 2005-02-10 2006-09-14 Westblock Systems, Inc. Masonry block wall system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150159371A1 (en) * 2011-03-28 2015-06-11 Alberto Rodriguez Carassus Self-locking block and complementary pieces for the raising of pillars and free-standing walls
US9187895B2 (en) * 2011-03-28 2015-11-17 Alberto Rodriguez Carassus Self-locking block and complementary pieces for the raising of pillars and free-standing walls
US8495850B1 (en) * 2012-03-05 2013-07-30 Chia-Yen Lin Building block assembly
US10781588B1 (en) * 2018-01-25 2020-09-22 Marc R Nadeau Integrated, post-tensioned, building construction system
USD917723S1 (en) * 2019-08-21 2021-04-27 Versare Solutions Llc Wall frame component
USD922616S1 (en) * 2019-08-21 2021-06-15 Versare Solutions, Llc Wall frame corner component
USD978381S1 (en) * 2019-08-21 2023-02-14 Versare Solutions Llc Wall frame corner component
GB2583152A (en) * 2019-10-04 2020-10-21 Patel Rahul Stackable block
GB2583152B (en) * 2019-10-04 2021-06-09 Patel Rahul Stackable block
US11408173B2 (en) * 2019-11-22 2022-08-09 Lazarian World Homes Foam as modular support
US20210180283A1 (en) * 2019-12-12 2021-06-17 Robert Daggett Interlocking blocking system for retaining walls and other uses
US11686063B2 (en) * 2019-12-12 2023-06-27 Robert Daggett Interlocking blocking system for retaining walls and other uses

Also Published As

Publication number Publication date
UY30955A1 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
US20110225909A1 (en) Self-locking block and complementary blocks for the construction of pillars, free-standing walls, rooms, and buildings
US9187895B2 (en) Self-locking block and complementary pieces for the raising of pillars and free-standing walls
US20080216436A1 (en) Self-locking block and complementary pieces for the raising of pillars and free-standing walls
US6321498B1 (en) Formwork for building walls
US3905170A (en) Building wall unit
US6705057B2 (en) Modular block system and method of construction
CA2120472A1 (en) Building block
US2453466A (en) Building construction
WO2018143792A1 (en) Formwork structure for wall
EP0616091A1 (en) Cement blocks for masonry walls to buildings
US2038615A (en) Art of construction
EP0115886B1 (en) Wall formed by staggered stacking of plaster blocks, and plaster block for use in such a wall
RU18547U1 (en) INTERIOR BLOCK
RU78839U1 (en) FRONT BRICK FACING OF BUILDINGS
CN217079229U (en) Novel wall body
RU2148129C1 (en) Guarding wall structure
RU8715U1 (en) BRICK WALL ACCESS JUMPER
US2911817A (en) Prefabricated wall
RU199770U1 (en) Multi-layer wall panel
RU74403U1 (en) FULL ASSEMBLY FRAME BUILDING AND BINDING BEAM (TWO OPTIONS), DESIGNED FOR USE IN THIS BUILDING
EP1120505A2 (en) A building block suitable for the construction of dry-stacking high performance masonry walls
RU2402U1 (en) WALL DESIGN
AU2004293493B2 (en) A set of construction panels and building construction method
WO2005052271A1 (en) A set of construction panels and building construction method
Lourenço Masonry construction and forms

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION