US20080041691A1 - Delivery System for Use in Motor Vehicles - Google Patents

Delivery System for Use in Motor Vehicles Download PDF

Info

Publication number
US20080041691A1
US20080041691A1 US11/767,923 US76792307A US2008041691A1 US 20080041691 A1 US20080041691 A1 US 20080041691A1 US 76792307 A US76792307 A US 76792307A US 2008041691 A1 US2008041691 A1 US 2008041691A1
Authority
US
United States
Prior art keywords
linear motion
power drive
conveyor track
power
motion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/767,923
Inventor
Louis LoRusso
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/767,923 priority Critical patent/US20080041691A1/en
Publication of US20080041691A1 publication Critical patent/US20080041691A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G9/00Apparatus for assisting manual handling having suspended load-carriers movable by hand or gravity
    • B65G9/008Rails or switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R2011/0001Arrangements for holding or mounting articles, not otherwise provided for characterised by position
    • B60R2011/0003Arrangements for holding or mounting articles, not otherwise provided for characterised by position inside the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R2011/0001Arrangements for holding or mounting articles, not otherwise provided for characterised by position
    • B60R2011/0003Arrangements for holding or mounting articles, not otherwise provided for characterised by position inside the vehicle
    • B60R2011/0028Ceiling, e.g. roof rails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R2011/0042Arrangements for holding or mounting articles, not otherwise provided for characterised by mounting means
    • B60R2011/0049Arrangements for holding or mounting articles, not otherwise provided for characterised by mounting means for non integrated articles
    • B60R2011/0064Connection with the article
    • B60R2011/0075Connection with the article using a containment or docking space
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R2011/0042Arrangements for holding or mounting articles, not otherwise provided for characterised by mounting means
    • B60R2011/008Adjustable or movable supports
    • B60R2011/0084Adjustable or movable supports with adjustment by linear movement in their operational position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R2011/0042Arrangements for holding or mounting articles, not otherwise provided for characterised by mounting means
    • B60R2011/008Adjustable or movable supports
    • B60R2011/0092Adjustable or movable supports with motorization

Definitions

  • any parent or caretaker with small children knows, keeping your eyes on the road while operating a motor vehicle, and attending to the small children in the rear of the vehicle can be quite a taxing challenge. To that end, any parent or caretaker of a small child would be benefited with a system to assist moving items from the front of a vehicle to the rear of the vehicle with the minimal distraction.
  • the conveyance system is anchored to the interior roofline of a vehicle; it has a conveyor such as a pulley, track or slide, a holding apparatus such as a basket or similar object for stowing items in, and a method of moving the conveying device and basket from the front of the vehicle to the rear of the vehicle.
  • the device is comprised of three major sub-assemblies. These include the power drive and electronic control box, the conveyor guide rail, and the saddle nut with hanging carrier. It is powered by the vehicle's electrical system and comprises an electronic control circuit that allows the safe operation of the device from one to several simple push button(s).
  • the device is designed to allow a person in the front seat of a vehicle to deliver items to the passengers in the rear seats, without having to reach back, get out of the vehicle, and most importantly take their attention away from driving the vehicle in a safe manner.
  • FIG. 1 depicts the entire device (although foreshortened), including a sample carrier, in a three dimensional, isometric view.
  • FIG. 2 depicts the underside of the conveyor track, including the Acme lead screw; the power drive and electronics control board uncovered and the travel limit switches.
  • FIG. 3 depicts a side view of the conveyor track including the guide rail end cap
  • FIG. 4 depicts the Acme lead screw, the power drive lead screw coupling, and the saddle nut follower and basket hanger.
  • FIG. 5 depicts the power drive motor, the power drive gear reduction box and the power drive motor shaft with Weldon coupling flat.
  • FIG. 6 depicts an example carrier and the basket hanging hooks.
  • the device is comprised of three major sub-assemblies. These include the power drive and electronics control box system ( FIGS. 1, 3 and 5 ), the conveyor guide rail system ( FIGS. 1, 2 , and 3 ) and the saddle nut with hanging carrier system ( FIGS. 1, 3 and 4 ). Each sub-system will be described in kind.
  • the power drive and electronics control box 1 (as shown in FIGS. 1, 3 ) and the power drive and electronic control box cover 5 (as shown in FIGS. 1, 2 ) house the power drive motor 7 (as shown in FIGS. 2, 5 ), the gear reduction 8 (as shown in FIGS. 2, 5 ) and the control circuit board 9 (as shown in FIG. 2 ), which provides the operational logic for the device.
  • control logic circuit board 9 (as shown in FIG. 2 ) and the power drive motor 7 (as shown in FIGS. 2, 5 ) and the gear reduction 8 (as shown in FIGS. 2, 5 ) are located and attached to the inside of the power drive and electronics control box 1 (as shown in FIGS. 1, 3 ).
  • the control logic circuit board 9 (as shown in FIG. 2 ) is wired to the power drive motor 7 (as shown in FIGS. 2, 5 ) and is connected to the vehicle's power system through a fused circuit. Additionally, the control logic circuit board 9 (as shown in FIG. 2 ) is connected to the two limit switches 6 , 12 (as shown in FIGS. 1, 2 ) as well as the start/stop button, located elsewhere in the vehicle, for operational control input.
  • a removable power drive and electronics control box cover 5 (as shown in FIG. 1 ) is attached to the bottom of the power drive and electronics control box 1 (as shown in FIGS. 1, 3 ) with four counter sunk screws located in each corner. This seals the power drive electronic control box 1 (as shown in FIGS. 1, 3 ) from all access and outside elements.
  • the power drive and electronics control box 1 (as shown in FIGS. 1, 3 ) is mounted to the end of the conveyor track 2 (as shown in FIGS. 1, 3 ) using counter sunk screws located inside the power drive and electronics control box wall, and provide proper registration of the power drive motor shaft 17 (as shown in FIG. 5 ) with the lead screw coupling 10 (as shown in FIGS. 2, 4 ).
  • start/stop buttons There may be from one to several start/stop buttons provided. These buttons are simple normally open contact buttons used to either start or stop the operation of the device.
  • the start/stop button is wired to the control logic circuit board 9 (as shown in FIG. 2 ) located in the power drive and electronics control box 1 (as shown in FIGS. 1, 3 ). When more then one button is used they are to be wired in parallel. As the name implies, this button, when pressed, will either start or stop the operation of the device.
  • the control logic circuit board 9 (as shown in FIG. 2 ) provides electronic circuitry that will control the operation of the power drive motor 7 (as shown in FIGS. 2, 5 ) and gear reduction 8 (as shown in FIGS. 2, 5 ) through the input from either limit switches 6 , 12 (as shown in FIGS. 1, 2 ) or start/stop buttons.
  • Both the limit switches 6 , 12 (as shown in FIGS. 1, 2 ) and the start/stop buttons are wired to the control logic circuit board 9 (as shown in FIG. 2 ).
  • the control logic circuit board 9 (as shown in FIG. 2 ) will stop the power drive motor 7 (as shown in FIGS. 2, 5 ) and gear reduction 8 (as shown in FIGS. 2, 5 ) if currently running. If the start/stop button is pressed while the power drive motor 7 (as shown in FIGS. 2, 5 ) and gear reduction 8 (as shown in FIGS. 2, 5 ) is stopped, the device will start and the saddle nut 4 (as shown in FIGS. 1, 3 , 4 ) will move in the opposite direction it was last stopped in.
  • the conveyor track 2 (as shown in FIGS. 1, 3 ) is the principal element in this design. It provides housing for the power drive Acme lead screw 11 (as shown in FIGS. 2, 4 ) and saddle nut 4 (as shown in FIGS. 1, 3 , 4 ). It also holds one of the two limit switches 6 , 12 (as shown in FIGS. 1, 2 ) used to stop the power drive 7 (as shown in FIGS. 2, 5 ) and gear reduction 8 (as shown in FIGS. 2, 5 ) when the saddle nut 4 (as shown in FIGS. 1, 3 , 4 ) reaches the end of the conveyor track 2 (as shown in FIGS. 1, 3 ).
  • the conveyor track 2 (as shown in FIGS.
  • the Acme lead screw 11 (as shown in FIGS. 2, 4 ) is comprised of a self-lubricating composite material such as Ultra High Molecular Weight Polyethylene (UHMW-PE). This material also allows the Acme lead screw 11 (as shown in FIGS. 2, 4 ) to conform to irregular curves in the above-mentioned conveyor track 2 (as shown in FIGS. 1, 3 ).
  • UHMW-PE Ultra High Molecular Weight Polyethylene
  • the conveyor track 2 (as shown in FIGS. 1, 3 ) provides the housing for the Acme lead screw 11 (as shown in FIGS. 2, 4 ) and the saddle nut 4 (as shown in FIGS. 1, 3 , 4 ). It also provides locations for the limit switches 6 , 12 (as shown in FIGS. 1, 2 ), limit switch end cap 3 (as shown in FIGS. 1, 3 ), the power drive and electronics control box 1 (as shown in FIGS. 1, 3 ) and device's mounting holes 13 (as shown in FIGS. 1, 2 ).
  • An end cap 3 (as shown in FIGS. 1, 2 , 3 ) is pressed into and attached to the opposite end of the conveyor track 2 (as shown in FIGS. 1, 3 ) from the power drive and electronics control box 1 (as shown in FIGS. 1, 3 ).
  • This end cap 3 (as shown in FIGS. 1, 2 , 3 ) also centers the Acme lead screw 11 (as shown in FIGS. 2, 4 ) in the conveyor track 2 (as shown in FIGS. 1, 3 ) as well as provides a mounting place for the end-limit switch assembly 12 (as shown in FIGS. 1, 2 ).
  • limit switches 6 , 12 are wired to the control logic circuit board 9 (as shown in FIG. 2 ) to provide for automatic stopping of the device.
  • a traveler button spring 12 (as shown in FIGS. 1, 3 ) is located in the limit switch end cap 3 (as shown in FIGS. 1, 3 ) to provide a compressible action for the end-limit switch 12 (as shown in FIGS. 1, 3 ).
  • This traveler button spring 12 (as shown in FIGS. 1, 3 ) provides relief between the switch closure 12 (as shown in FIGS. 1, 2 ) and the stopping of the saddle nut 4 (as shown in FIGS. 1, 3 , 4 ) movement.
  • FIGS. 1, 2 Another limit switch 6 (as shown in FIGS. 1, 2 ) is mounted into the conveyor track 2 (as shown in FIGS. 1, 3 ) just short of the power drive and electronics control box 1 (as shown in FIGS. 1, 3 ).
  • This switch assembly 6 (as shown in FIGS. 1, 2 ) consists of a traveler spring arm 6 (as shown in FIGS. 1, 2 ) that passes through the channel that the saddle nut 4 (as shown in FIGS. 1, 3 , 4 ) travels through.
  • This traveler spring arm 6 (as shown in FIGS. 1, 2 ) provides some timing relief between the switch closure 6 (as shown in FIGS. 1, 2 ) and the stopping of the saddle nut 4 (as shown in FIGS. 1, 3 , 4 ) movement.
  • the Acme lead screw 11 (as shown in FIGS. 2, 4 ) is affixed to the power drive motor shaft 17 (as shown in FIG. 5 ) using a fixed coupling and a socket head setscrew located in the lead screw coupling 10 (as shown in FIGS. 2, 4 ).
  • This setscrew affixes the Acme lead screw 11 (as shown in FIGS. 2, 4 ) to the power drive motor shaft 17 (as shown in FIG. 5 ) by tightening to the surface of a Weldon flat located on one side of the power drive motor shaft 17 (as shown in FIG. 5 ).
  • the Acme lead screw 11 (as shown in FIGS. 2, 4 ) is captured inside the conveyor track cavity 2 (as shown in FIGS. 1, 3 ) and held in place by the limit switch end cap 3 (as shown in FIGS. 1, 3 ), power drive motor shaft 17 (as shown in FIG. 5 ) and the saddle nut 4 (as shown in FIGS. 1, 3 , 4 ).
  • the Acme lead screw 11 (as shown in FIGS. 2, 4 ) is driven in either direction by the power drive motor 7 (as shown in FIGS. 2, 5 ) and gear reduction 8 (as shown in FIGS. 2, 5 ) located in the power drive and electronics control logic box 1 (as shown in FIGS. 1, 3 ).
  • the functional mechanism of the device is the saddle nut 4 (as shown in FIGS. 1, 3 , 4 ), which rides along an Acme lead screw 11 (as shown in FIGS. 2, 4 ).
  • the saddle nut 4 (as shown in FIGS. 1, 3 , 4 ) is threaded onto the Acme lead screw 11 (as shown in FIGS. 2, 4 ) and travels the length of the Acme lead screw 11 (as shown in FIGS. 2, 4 ) until contact with either limit switch 6 , 12 (as shown in FIGS. 1, 2 ) located in the conveyor track 2 (as shown in FIGS. 1, 3 ) or in the limit switch end cap 3 (as shown in FIGS. 1, 3 ).
  • Using a Acme lead screw 11 (as shown in FIGS. 2, 4 ) and a saddle nut (as shown in FIGS. 1, 3 , 4 ) allows the reduction in the RPM of a motor to a more useful rotational speed and provides an increased amount of torque.
  • the saddle nut 4 (as shown in FIGS. 1, 3 , 4 ) is captured between the inside cavity of the conveyor track 2 (as shown in FIGS. 1, 3 ) and the Acme lead screw 11 (as shown in FIGS. 2, 4 ).
  • a saddle nut flange 4 (as shown in FIGS. 1, 3 , 4 ) is allowed to protrude through a slot, which runs the length of the conveyor track 2 (as shown in FIGS. 1, 3 ), and provides access between the Acme lead screw 11 (as shown in FIGS. 2, 4 ) cavity and the outside hanger hook holes 4 (as shown in FIGS. 1, 3 , 4 ).
  • the carrier 14 (as shown in FIGS. 1, 6 ) is a simple wire framed basket outfitted with two hanger hooks 15 (as shown in FIG. 6 ) that allow it to be hung from the saddle nut 4 (as shown in FIGS. 1, 3 , 4 ).
  • the carrier 14 (as shown in FIGS. 1, 6 ) is used to transport items from one end of the device to the other. This is only one of many types of containers that may be affixed to the device saddle nut. Other types may include coat hangers, mesh bags with drawstrings, or carabineers attached to any type of container whose contents weighs a minimal amount.
  • the basket 14 (as shown in FIGS. 1, 6 ) is made from a wire mesh and comprises a pair of hanger handles, which capture a pair of hanger hooks 15 (as shown in FIG. 6 ).
  • the two basket hanger hooks are placed through two hanger hook holes located in the sides of the saddle nut flange 4 (as shown in FIGS. 1, 3 , 4 ).
  • the operational control of the device is identical to that of a common garage door opener. Pushing any of the start/stop buttons will initiate the device to move the carrier and its contents in the direction away from either end of the conveyor track 2 (as shown in FIGS. 1, 3 ). When the carrier 14 (as shown in FIGS. 1, 6 ) reaches the opposite end of the conveyor track the device will automatically stop. Upon pressing the start/stop button the carrier 14 (as shown in FIGS. 1, 6 ) will move back to the opposite end of the conveyor track 2 (as shown in FIGS. 1, 3 ).
  • the start/stop button may also be used to stop the travel of the carrier 14 (as shown in FIGS. 1, 6 ) at any point in its cycle. When pressed again after stopping, it will resume in the opposite direction and return back to its starting point unless the start/stop button is yet again pressed.
  • the device is affixed to the roof liner of the vehicle using small screws located at the rib points in the vehicles roof. Power for the device may be obtained from the vehicles electrical system by tapping into the fuse box. The device may share the same fuse with the vehicles widow wipers or other comparable systems that use a fused circuit.
  • the device is also designed such that it may be customized to the correct length as needed in any given vehicle by removing the guide rail limit switch end cap 3 (as shown in FIGS. 1, 3 ) and trimming the non-power drive end of the conveyor track 2 (as shown in FIGS. 1, 3 ) and Acme lead screw 11 (as shown in FIGS. 2, 4 ).

Abstract

This is a device that is designed as a conveyance system for use in the interior of any type of vehicle and other myriad uses such as a home, warehouse, closet, etc. The conveyance system is anchored to the interior roofline of a vehicle; it has a conveyor such as a pulley, track or slide, a holding apparatus such as a basket or similar object for stowing items in, and a method of moving the conveying device and basket from the front of the vehicle to the rear of the vehicle.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of application of and claims priority to Ser. No. 10/877,416 filed on Jun. 25, 2004, the contents of which are hereby incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • As any parent or caretaker with small children knows, keeping your eyes on the road while operating a motor vehicle, and attending to the small children in the rear of the vehicle can be quite a taxing challenge. To that end, any parent or caretaker of a small child would be benefited with a system to assist moving items from the front of a vehicle to the rear of the vehicle with the minimal distraction.
  • Thus was born the Delivery System for Use in Motor Vehicles device. It is simple in concept and can be adapted to a wide variety of usages and configurations. The inventor initially installed two weighted stanchions in the front and rear or his van. Strung between the two stanchions was a simple “clothesline” like rope and pulley system. A basket was attached to the lower portion of the rope. When his children requested something from the front seat, such as juice boxes, snack or books the inventor simply put the requested item in the basket and let the children “pulley” it back to them where they could extricate the requested item.
  • Since that time many other methods of employing the device have been contemplated. For instance, one could employ a lead screw design and a molded plastic sheath for said lead screw that could be easily retrofitted to the roof of any vehicle. Other methods include a pneumatic tube, or chain drive, or belt drive, or other such means of delivery.
  • SUMMARY OF THE INVENTION
  • This is a device that is designed as a conveyance system for use in the interior of any type of vehicle. The conveyance system is anchored to the interior roofline of a vehicle; it has a conveyor such as a pulley, track or slide, a holding apparatus such as a basket or similar object for stowing items in, and a method of moving the conveying device and basket from the front of the vehicle to the rear of the vehicle.
  • The device is comprised of three major sub-assemblies. These include the power drive and electronic control box, the conveyor guide rail, and the saddle nut with hanging carrier. It is powered by the vehicle's electrical system and comprises an electronic control circuit that allows the safe operation of the device from one to several simple push button(s).
  • The device is designed to allow a person in the front seat of a vehicle to deliver items to the passengers in the rear seats, without having to reach back, get out of the vehicle, and most importantly take their attention away from driving the vehicle in a safe manner.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 depicts the entire device (although foreshortened), including a sample carrier, in a three dimensional, isometric view.
  • FIG. 2 depicts the underside of the conveyor track, including the Acme lead screw; the power drive and electronics control board uncovered and the travel limit switches.
  • FIG. 3 depicts a side view of the conveyor track including the guide rail end cap
  • FIG. 4 depicts the Acme lead screw, the power drive lead screw coupling, and the saddle nut follower and basket hanger.
  • FIG. 5 depicts the power drive motor, the power drive gear reduction box and the power drive motor shaft with Weldon coupling flat.
  • FIG. 6 depicts an example carrier and the basket hanging hooks.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The terminology used herein should be interpreted in its broadest reasonable manner, even though it is being utilized in conjunction with a detailed description of a certain specific preferred embodiment of the present invention. This is further emphasized below with respect to some particular terms used herein. Any terminology that the reader should interpret in any restricted manner will be overtly and specifically defined as such in this specification. The preferred embodiment of the present invention will now be described with reference to the accompanying drawings, wherein like reference characters designate like or similar parts throughout.
  • As mentioned in the Summary of Invention, the device is comprised of three major sub-assemblies. These include the power drive and electronics control box system (FIGS. 1, 3 and 5), the conveyor guide rail system (FIGS. 1, 2, and 3) and the saddle nut with hanging carrier system (FIGS. 1, 3 and 4). Each sub-system will be described in kind.
  • Power Drive and Electronics Control Box System
  • The power drive and electronics control box 1 (as shown in FIGS. 1, 3) and the power drive and electronic control box cover 5 (as shown in FIGS. 1, 2) house the power drive motor 7 (as shown in FIGS. 2, 5), the gear reduction 8 (as shown in FIGS. 2, 5) and the control circuit board 9 (as shown in FIG. 2), which provides the operational logic for the device.
  • The control logic circuit board 9 (as shown in FIG. 2) and the power drive motor 7 (as shown in FIGS. 2, 5) and the gear reduction 8 (as shown in FIGS. 2, 5) are located and attached to the inside of the power drive and electronics control box 1 (as shown in FIGS. 1, 3).
  • The control logic circuit board 9 (as shown in FIG. 2) is wired to the power drive motor 7 (as shown in FIGS. 2, 5) and is connected to the vehicle's power system through a fused circuit. Additionally, the control logic circuit board 9 (as shown in FIG. 2) is connected to the two limit switches 6,12 (as shown in FIGS. 1, 2) as well as the start/stop button, located elsewhere in the vehicle, for operational control input.
  • A removable power drive and electronics control box cover 5 (as shown in FIG. 1) is attached to the bottom of the power drive and electronics control box 1 (as shown in FIGS. 1, 3) with four counter sunk screws located in each corner. This seals the power drive electronic control box 1 (as shown in FIGS. 1, 3) from all access and outside elements.
  • The power drive and electronics control box 1 (as shown in FIGS. 1, 3) is mounted to the end of the conveyor track 2 (as shown in FIGS. 1, 3) using counter sunk screws located inside the power drive and electronics control box wall, and provide proper registration of the power drive motor shaft 17 (as shown in FIG. 5) with the lead screw coupling 10 (as shown in FIGS. 2, 4).
  • Start/Stop Button
  • There may be from one to several start/stop buttons provided. These buttons are simple normally open contact buttons used to either start or stop the operation of the device. The start/stop button is wired to the control logic circuit board 9 (as shown in FIG. 2) located in the power drive and electronics control box 1 (as shown in FIGS. 1, 3). When more then one button is used they are to be wired in parallel. As the name implies, this button, when pressed, will either start or stop the operation of the device.
  • Control Logic Circuit Board
  • The control logic circuit board 9 (as shown in FIG. 2) provides electronic circuitry that will control the operation of the power drive motor 7 (as shown in FIGS. 2, 5) and gear reduction 8 (as shown in FIGS. 2, 5) through the input from either limit switches 6, 12 (as shown in FIGS. 1, 2) or start/stop buttons.
  • Both the limit switches 6, 12 (as shown in FIGS. 1, 2) and the start/stop buttons are wired to the control logic circuit board 9 (as shown in FIG. 2). When either of the limit switches 6, 12 (as shown in FIGS. 1, 2) or a start/stop button is closed, the control logic circuit board 9 (as shown in FIG. 2) will stop the power drive motor 7 (as shown in FIGS. 2, 5) and gear reduction 8 (as shown in FIGS. 2, 5) if currently running. If the start/stop button is pressed while the power drive motor 7 (as shown in FIGS. 2, 5) and gear reduction 8 (as shown in FIGS. 2, 5) is stopped, the device will start and the saddle nut 4 (as shown in FIGS. 1, 3, 4) will move in the opposite direction it was last stopped in.
  • This allows the device to be started and stopped at any point in its travel as well as automatically stopping when the saddle nut 4 (as shown in FIGS. 1, 3, 4) arrives at either limit switch 6, 12 (as shown in FIGS. 1, 2) located at the ends of the conveyor track 2 (as shown in FIGS. 1, 3).
  • Conveyor Track System
  • The conveyor track 2 (as shown in FIGS. 1, 3) is the principal element in this design. It provides housing for the power drive Acme lead screw 11 (as shown in FIGS. 2, 4) and saddle nut 4 (as shown in FIGS. 1, 3, 4). It also holds one of the two limit switches 6, 12 (as shown in FIGS. 1, 2) used to stop the power drive 7 (as shown in FIGS. 2, 5) and gear reduction 8 (as shown in FIGS. 2, 5) when the saddle nut 4 (as shown in FIGS. 1, 3, 4) reaches the end of the conveyor track 2 (as shown in FIGS. 1, 3). The conveyor track 2 (as shown in FIGS. 1, 3) can be made from an extruded composite material that provides a minimum amount of conformity to irregular mounting surfaces. The Acme lead screw 11 (as shown in FIGS. 2, 4) is comprised of a self-lubricating composite material such as Ultra High Molecular Weight Polyethylene (UHMW-PE). This material also allows the Acme lead screw 11 (as shown in FIGS. 2, 4) to conform to irregular curves in the above-mentioned conveyor track 2 (as shown in FIGS. 1, 3).
  • Conveyor Track
  • The conveyor track 2 (as shown in FIGS. 1, 3) provides the housing for the Acme lead screw 11 (as shown in FIGS. 2, 4) and the saddle nut 4 (as shown in FIGS. 1, 3, 4). It also provides locations for the limit switches 6, 12 (as shown in FIGS. 1, 2), limit switch end cap 3 (as shown in FIGS. 1, 3), the power drive and electronics control box 1 (as shown in FIGS. 1, 3) and device's mounting holes 13 (as shown in FIGS. 1, 2).
  • An end cap 3 (as shown in FIGS. 1, 2, 3) is pressed into and attached to the opposite end of the conveyor track 2 (as shown in FIGS. 1, 3) from the power drive and electronics control box 1 (as shown in FIGS. 1, 3). This end cap 3 (as shown in FIGS. 1, 2, 3) also centers the Acme lead screw 11 (as shown in FIGS. 2, 4) in the conveyor track 2 (as shown in FIGS. 1, 3) as well as provides a mounting place for the end-limit switch assembly 12 (as shown in FIGS. 1, 2).
  • There are two limit switches 6, 12 (as shown in FIGS. 1, 2) used to automatically stop the movement of the saddle nut 4 (as shown in FIGS. 1, 3, 4) when it arrives at either end of the conveyor track 2 (as shown in FIGS. 1, 2, 3). These limit switches 6, 12 (as shown in FIGS. 1, 2) are wired to the control logic circuit board 9 (as shown in FIG. 2) to provide for automatic stopping of the device.
  • Additionally, a traveler button spring 12 (as shown in FIGS. 1, 3) is located in the limit switch end cap 3 (as shown in FIGS. 1, 3) to provide a compressible action for the end-limit switch 12 (as shown in FIGS. 1, 3). This traveler button spring 12 (as shown in FIGS. 1, 3) provides relief between the switch closure 12 (as shown in FIGS. 1, 2) and the stopping of the saddle nut 4 (as shown in FIGS. 1, 3, 4) movement.
  • Another limit switch 6 (as shown in FIGS. 1, 2) is mounted into the conveyor track 2 (as shown in FIGS. 1, 3) just short of the power drive and electronics control box 1 (as shown in FIGS. 1, 3). This switch assembly 6 (as shown in FIGS. 1, 2) consists of a traveler spring arm 6 (as shown in FIGS. 1, 2) that passes through the channel that the saddle nut 4 (as shown in FIGS. 1, 3, 4) travels through. This traveler spring arm 6 (as shown in FIGS. 1, 2) provides some timing relief between the switch closure 6 (as shown in FIGS. 1, 2) and the stopping of the saddle nut 4 (as shown in FIGS. 1, 3, 4) movement.
  • Acme Lead Screw
  • The Acme lead screw 11 (as shown in FIGS. 2, 4) is affixed to the power drive motor shaft 17 (as shown in FIG. 5) using a fixed coupling and a socket head setscrew located in the lead screw coupling 10 (as shown in FIGS. 2, 4). This setscrew affixes the Acme lead screw 11 (as shown in FIGS. 2, 4) to the power drive motor shaft 17 (as shown in FIG. 5) by tightening to the surface of a Weldon flat located on one side of the power drive motor shaft 17 (as shown in FIG. 5).
  • The Acme lead screw 11 (as shown in FIGS. 2, 4) is captured inside the conveyor track cavity 2 (as shown in FIGS. 1, 3) and held in place by the limit switch end cap 3 (as shown in FIGS. 1, 3), power drive motor shaft 17 (as shown in FIG. 5) and the saddle nut 4 (as shown in FIGS. 1, 3, 4). The Acme lead screw 11 (as shown in FIGS. 2, 4) is driven in either direction by the power drive motor 7 (as shown in FIGS. 2, 5) and gear reduction 8 (as shown in FIGS. 2, 5) located in the power drive and electronics control logic box 1 (as shown in FIGS. 1, 3).
  • Carrier System Saddle Nut
  • The functional mechanism of the device is the saddle nut 4 (as shown in FIGS. 1, 3, 4), which rides along an Acme lead screw 11 (as shown in FIGS. 2, 4). The saddle nut 4 (as shown in FIGS. 1, 3, 4) is threaded onto the Acme lead screw 11 (as shown in FIGS. 2, 4) and travels the length of the Acme lead screw 11 (as shown in FIGS. 2, 4) until contact with either limit switch 6, 12 (as shown in FIGS. 1, 2) located in the conveyor track 2 (as shown in FIGS. 1, 3) or in the limit switch end cap 3 (as shown in FIGS. 1, 3). Using a Acme lead screw 11 (as shown in FIGS. 2, 4) and a saddle nut (as shown in FIGS. 1, 3, 4) allows the reduction in the RPM of a motor to a more useful rotational speed and provides an increased amount of torque.
  • The saddle nut 4 (as shown in FIGS. 1, 3, 4) is captured between the inside cavity of the conveyor track 2 (as shown in FIGS. 1, 3) and the Acme lead screw 11 (as shown in FIGS. 2, 4). A saddle nut flange 4 (as shown in FIGS. 1, 3, 4) is allowed to protrude through a slot, which runs the length of the conveyor track 2 (as shown in FIGS. 1, 3), and provides access between the Acme lead screw 11 (as shown in FIGS. 2, 4) cavity and the outside hanger hook holes 4 (as shown in FIGS. 1, 3, 4).
  • Basket and Hanger
  • The carrier 14 (as shown in FIGS. 1, 6) is a simple wire framed basket outfitted with two hanger hooks 15 (as shown in FIG. 6) that allow it to be hung from the saddle nut 4 (as shown in FIGS. 1, 3, 4). The carrier 14 (as shown in FIGS. 1, 6) is used to transport items from one end of the device to the other. This is only one of many types of containers that may be affixed to the device saddle nut. Other types may include coat hangers, mesh bags with drawstrings, or carabineers attached to any type of container whose contents weighs a minimal amount.
  • The basket 14 (as shown in FIGS. 1, 6) is made from a wire mesh and comprises a pair of hanger handles, which capture a pair of hanger hooks 15 (as shown in FIG. 6).
  • The two basket hanger hooks are placed through two hanger hook holes located in the sides of the saddle nut flange 4 (as shown in FIGS. 1, 3, 4).
  • Theory of Operation
  • The operational control of the device is identical to that of a common garage door opener. Pushing any of the start/stop buttons will initiate the device to move the carrier and its contents in the direction away from either end of the conveyor track 2 (as shown in FIGS. 1, 3). When the carrier 14 (as shown in FIGS. 1, 6) reaches the opposite end of the conveyor track the device will automatically stop. Upon pressing the start/stop button the carrier 14 (as shown in FIGS. 1, 6) will move back to the opposite end of the conveyor track 2 (as shown in FIGS. 1, 3). The start/stop button may also be used to stop the travel of the carrier 14 (as shown in FIGS. 1, 6) at any point in its cycle. When pressed again after stopping, it will resume in the opposite direction and return back to its starting point unless the start/stop button is yet again pressed.
  • Installation of the device is simple. The device is affixed to the roof liner of the vehicle using small screws located at the rib points in the vehicles roof. Power for the device may be obtained from the vehicles electrical system by tapping into the fuse box. The device may share the same fuse with the vehicles widow wipers or other comparable systems that use a fused circuit.
  • The device is also designed such that it may be customized to the correct length as needed in any given vehicle by removing the guide rail limit switch end cap 3 (as shown in FIGS. 1, 3) and trimming the non-power drive end of the conveyor track 2 (as shown in FIGS. 1, 3) and Acme lead screw 11 (as shown in FIGS. 2, 4).
  • The foregoing description details certain preferred embodiments of the present invention and describes the best mode contemplated. It will be appreciated, however, that no matter how detailed the foregoing description appears, the invention can be practiced in many ways without departing from the spirit of the invention. Therefore, the description contained in this specification is to be considered exemplary, rather than limiting, and the true scope of the invention is only limited by the following claims and any equivalents thereof.

Claims (8)

1-15. (canceled)
16. A horizontal conveyance device for conveying items back and forth laterally throughout a substantially level horizontal space of a vehicle or vessel, said horizontal conveyance device comprising:
a device capable of linear motion wherein the motion of said device moves in the same direction and each rotation is of an equal distance,
a linear motion device follower wherein said linear motion device follower is affixedly attached to said linear motion device and is capable of moving forward and backward laterally along said linear motion device,
a substantially horizontal conveyor track system that provides a relatively rigid yet malleable horizontal structure into which the linear motion device is secured and which prohibits the linear motion device follower from rotating 360° about the linear motion device,
a bi-directional power drive and electronics control box system wherein said bi-directional power drive provides power to engage the linear motion device and said electronic control box system provides control logic to drive the linear motion device backward and forward and whereby said reversible power drive and electronics control box system is powered from the extant power source of a vehicle,
and a carrier system.
17. A power drive and electronics control box system of claim 16 further comprising:
a power drive and electronics control box enclosure and cover,
a bi-directional power drive motor with gear reduction,
a linear motion device coupling,
a power drive motor shaft with coupling flat,
and a control logic circuit board wherein digital and analog circuitry exists so as to provide power to the power drive in response to external input and to change the direction of said power drive.
18. The horizontal conveyance device of claim 16 wherein the conveyor track system further comprises:
a conveyor track,
an end cap,
travel limit switches wherein when a travel limit switch is closed it stops the said power drive and thus also stops the translation of linear motion,
and mounting screw holes.
19. A carrier system of claim 16 further comprising:
a carrier made of relatively rigid materially and capable of holding and securing items for conveyance along the guide track rail,
and a means for securing said carrier to said linear motion device follower.
20. A conveyor track of claim 18 further comprising:
a flexible extruded composite material such that the flexible conveyor track is able to conform to irregular mounting surfaces.
21. A method of using the horizontal conveyance device of claim 1, the method comprising:
providing power to the linear motion device thus engaging the device;
determining the direction of movement of the conveyance device;
hanging a carrier from the conveyance device wherein the carrier will move back and forth along the axis of travel.
22. A system for mounting the horizontal conveyance device of claim 1 to a plurality of vehicles, wherein the user affixes the horizontal conveyance device to the interior structure of a plurality of vehicles by use of the means of attachment and can power the device by use of the power from the vehicle's electrical system.
US11/767,923 2004-06-25 2007-06-25 Delivery System for Use in Motor Vehicles Abandoned US20080041691A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/767,923 US20080041691A1 (en) 2004-06-25 2007-06-25 Delivery System for Use in Motor Vehicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/877,416 US7252187B2 (en) 2004-06-25 2004-06-25 Delivery system for use in motor vehicles
US11/767,923 US20080041691A1 (en) 2004-06-25 2007-06-25 Delivery System for Use in Motor Vehicles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/877,416 Continuation US7252187B2 (en) 2004-06-25 2004-06-25 Delivery system for use in motor vehicles

Publications (1)

Publication Number Publication Date
US20080041691A1 true US20080041691A1 (en) 2008-02-21

Family

ID=35504417

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/877,416 Expired - Fee Related US7252187B2 (en) 2004-06-25 2004-06-25 Delivery system for use in motor vehicles
US11/767,923 Abandoned US20080041691A1 (en) 2004-06-25 2007-06-25 Delivery System for Use in Motor Vehicles

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/877,416 Expired - Fee Related US7252187B2 (en) 2004-06-25 2004-06-25 Delivery system for use in motor vehicles

Country Status (1)

Country Link
US (2) US7252187B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7252187B2 (en) * 2004-06-25 2007-08-07 Lorusso Louis Delivery system for use in motor vehicles
US20060255217A1 (en) * 2004-10-29 2006-11-16 Bee Safety Wise, Llc Basket caddy for a step ladder
US20060102424A1 (en) * 2004-10-29 2006-05-18 Wise Lester D Basket caddy for a step ladder
CN103144579A (en) * 2012-12-04 2013-06-12 中国计量学院 Rain gear storage device in bus
CA2951899A1 (en) 2015-12-22 2017-06-22 Wal-Mart Stores, Inc. Shopping cart bagging station and method of forming the same
US10399587B2 (en) 2015-12-22 2019-09-03 Walmart Apollo, Llc Shopping cart bagging station and method of forming the same
US10336358B2 (en) 2015-12-22 2019-07-02 Walmart Apollo, Llc Shopping cart bagging station and method of forming the same
US10486725B2 (en) 2015-12-22 2019-11-26 Walmart Apollo, Llc Shopping cart bagging station and method of forming the same
US10040468B2 (en) 2016-07-07 2018-08-07 Wal-Mart Stores, Inc. Shopping cart basket
US10058197B2 (en) * 2016-07-26 2018-08-28 Walmart Apollo, Llc Bag dispenser
US10513281B2 (en) 2016-08-19 2019-12-24 Walmart Apollo, Llc Shopping cart bagging station and method of forming the same
US10040469B2 (en) 2016-09-30 2018-08-07 Wal-Mart Stores, Inc. Shopping cart bagging station and method of forming the same
US10173708B1 (en) 2017-08-17 2019-01-08 Walmart Apollo, Llc Shopping cart bagging station
US10507858B2 (en) 2017-08-25 2019-12-17 Walmart Apollo, Llc Shopping cart bagging station
US10507859B2 (en) 2018-02-09 2019-12-17 Walmart Apollo, Llc Shopping cart bagging station
US11254519B1 (en) * 2021-07-05 2022-02-22 Garry Harris Vehicle waste disposal system

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3133660A (en) * 1961-04-17 1964-05-19 Hardy G Roberts Container
US3667624A (en) * 1970-01-30 1972-06-06 Hitachi Ltd Cassette-tape supplying apparatus
US3707925A (en) * 1971-05-04 1973-01-02 R Byrnes Reversible inclined conveyor for meat carrying trolleys
US3812956A (en) * 1969-07-29 1974-05-28 E Hindermann Screw conveyor
US4145724A (en) * 1976-07-16 1979-03-20 Consolidated Electronic Industries Pty., Ltd. Automated magnetic tape cartridge retrieval handling and replay machine
US4386382A (en) * 1979-09-24 1983-05-31 Lanier Business Products, Inc. Time independent controller for cassette changing apparatus
US4510539A (en) * 1981-12-28 1985-04-09 Lanier Business Products, Inc. Continuous loop cassette changer apparatus for a dictation/transcription system
US4806060A (en) * 1987-06-01 1989-02-21 Molski Bernard E Wheel chair hoist assembly for vehicles
US4977996A (en) * 1988-04-05 1990-12-18 Stockrail Limited Warehousing systems
US5002176A (en) * 1988-05-26 1991-03-26 Veit Transpo Gmbh Suspension transport system
US5387064A (en) * 1993-12-16 1995-02-07 Cardinal Materials Flow, Inc. Movable shelf structure for truck
US5416653A (en) * 1991-02-14 1995-05-16 Exabyte Corporation Cartridge handling apparatus and method with motion-responsive ejection
US5919023A (en) * 1997-12-18 1999-07-06 Ocs-Intellitrak, Inc. Compact overhead conveyor
US6203088B1 (en) * 1999-01-19 2001-03-20 Johnson Controls Technology Company' Sliding console system
US6382396B1 (en) * 1999-12-08 2002-05-07 Harcon Engineering Inc. Accumulating conveyor
US6547299B2 (en) * 2001-09-19 2003-04-15 Visteon Global Technologies, Inc. Removable console
US6682291B2 (en) * 2000-11-10 2004-01-27 Webasto Vehicle Systems International Gmbh Transport device for loading and unloading a trunk space
US6752444B2 (en) * 2001-05-28 2004-06-22 Mitsubishi Denki Kabushiki Kaisha Device installation apparatus for moving body
US6938554B2 (en) * 2001-03-28 2005-09-06 Esa Aaltonen Method for detaching towable device from ski lift and detaching member
US7219942B2 (en) * 2004-11-05 2007-05-22 Audiovox Corporation Overhead system attachable to a rail assembly in a vehicle and method for installing same
US7252187B2 (en) * 2004-06-25 2007-08-07 Lorusso Louis Delivery system for use in motor vehicles

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3133660A (en) * 1961-04-17 1964-05-19 Hardy G Roberts Container
US3812956A (en) * 1969-07-29 1974-05-28 E Hindermann Screw conveyor
US3667624A (en) * 1970-01-30 1972-06-06 Hitachi Ltd Cassette-tape supplying apparatus
US3707925A (en) * 1971-05-04 1973-01-02 R Byrnes Reversible inclined conveyor for meat carrying trolleys
US4145724A (en) * 1976-07-16 1979-03-20 Consolidated Electronic Industries Pty., Ltd. Automated magnetic tape cartridge retrieval handling and replay machine
US4386382A (en) * 1979-09-24 1983-05-31 Lanier Business Products, Inc. Time independent controller for cassette changing apparatus
US4510539A (en) * 1981-12-28 1985-04-09 Lanier Business Products, Inc. Continuous loop cassette changer apparatus for a dictation/transcription system
US4806060A (en) * 1987-06-01 1989-02-21 Molski Bernard E Wheel chair hoist assembly for vehicles
US4977996A (en) * 1988-04-05 1990-12-18 Stockrail Limited Warehousing systems
US5002176A (en) * 1988-05-26 1991-03-26 Veit Transpo Gmbh Suspension transport system
US5416653A (en) * 1991-02-14 1995-05-16 Exabyte Corporation Cartridge handling apparatus and method with motion-responsive ejection
US5387064A (en) * 1993-12-16 1995-02-07 Cardinal Materials Flow, Inc. Movable shelf structure for truck
US5919023A (en) * 1997-12-18 1999-07-06 Ocs-Intellitrak, Inc. Compact overhead conveyor
US6203088B1 (en) * 1999-01-19 2001-03-20 Johnson Controls Technology Company' Sliding console system
US6382396B1 (en) * 1999-12-08 2002-05-07 Harcon Engineering Inc. Accumulating conveyor
US6682291B2 (en) * 2000-11-10 2004-01-27 Webasto Vehicle Systems International Gmbh Transport device for loading and unloading a trunk space
US6938554B2 (en) * 2001-03-28 2005-09-06 Esa Aaltonen Method for detaching towable device from ski lift and detaching member
US6752444B2 (en) * 2001-05-28 2004-06-22 Mitsubishi Denki Kabushiki Kaisha Device installation apparatus for moving body
US6547299B2 (en) * 2001-09-19 2003-04-15 Visteon Global Technologies, Inc. Removable console
US7252187B2 (en) * 2004-06-25 2007-08-07 Lorusso Louis Delivery system for use in motor vehicles
US7219942B2 (en) * 2004-11-05 2007-05-22 Audiovox Corporation Overhead system attachable to a rail assembly in a vehicle and method for installing same

Also Published As

Publication number Publication date
US20050284729A1 (en) 2005-12-29
US7252187B2 (en) 2007-08-07

Similar Documents

Publication Publication Date Title
US20080041691A1 (en) Delivery System for Use in Motor Vehicles
US7810790B2 (en) Vehicle with on-board cargo handling system
JP3828579B2 (en) Dirty and / or contaminated containers
CN110422757A (en) A kind of drainpipe intelligent transport hoisting machine
US4311211A (en) Service system
NL193526B (en) Device for encapsulating electronic parts with a plastic.
CN115798108A (en) Self-walking equipment, method for interactively taking goods from container and automatic delivery system
CN208516712U (en) A kind of lifting express box and jacking system
CN106193898B (en) door opener
CN210140208U (en) Cabin door assembly, robot and autopilot assembly
CN209993037U (en) Vending machine
ATE236808T1 (en) STORAGE COMPARTMENT FOR A CONTAINER ESPECIALLY IN A MOTOR VEHICLE
CN108986313B (en) Container and pushing mechanism thereof
CN106437405B (en) Door opener based on light sensation detector
CN206088188U (en) Health care product conveyer
JPH0620858U (en) Lead wire storage device
CN205708578U (en) Rail guided vehicle
CN106193885B (en) Pedal-powered door starter
CN110407064A (en) A kind of lifting express box and jacking system
CN213849577U (en) Intelligent storage cabinet based on Internet of things
JP2003003717A (en) Fixing device of door in opened posture
CN216348715U (en) Online automatic detection system
CN214709563U (en) Environment-friendly hamster running wheel
CN212724220U (en) Express delivery cabinet with locking function
CN107182819A (en) Automatic pet feeding device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION