US20080036078A1 - Wirebond-less semiconductor package - Google Patents

Wirebond-less semiconductor package Download PDF

Info

Publication number
US20080036078A1
US20080036078A1 US11/464,333 US46433306A US2008036078A1 US 20080036078 A1 US20080036078 A1 US 20080036078A1 US 46433306 A US46433306 A US 46433306A US 2008036078 A1 US2008036078 A1 US 2008036078A1
Authority
US
United States
Prior art keywords
major surface
die
leadframe
clip system
clip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/464,333
Inventor
Juan Alejandro Herbsommer
George J. Przybylek
Osvaldo J. Lopez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Lehigh Valley Inc
Original Assignee
Ciclon Semiconductor Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciclon Semiconductor Device Corp filed Critical Ciclon Semiconductor Device Corp
Priority to US11/464,333 priority Critical patent/US20080036078A1/en
Assigned to CICLON SEMICONDUCTOR DEVICE CORP. reassignment CICLON SEMICONDUCTOR DEVICE CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HERBSOMMER, JUAN ALEJANDRO, LOPEZ, OSVALDO J., PRZBYLEK, GEORGE J.
Publication of US20080036078A1 publication Critical patent/US20080036078A1/en
Priority to US12/966,132 priority patent/US8304903B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/49524Additional leads the additional leads being a tape carrier or flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/38Structure, shape, material or disposition of the strap connectors prior to the connecting process of a plurality of strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/41Structure, shape, material or disposition of the strap connectors after the connecting process of a plurality of strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/3701Shape
    • H01L2224/37011Shape comprising apertures or cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/38Structure, shape, material or disposition of the strap connectors prior to the connecting process of a plurality of strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/4005Shape
    • H01L2224/4009Loop shape
    • H01L2224/40095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01072Hafnium [Hf]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01076Osmium [Os]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/183Connection portion, e.g. seal
    • H01L2924/18301Connection portion, e.g. seal being an anchoring portion, i.e. mechanical interlocking between the encapsulation resin and another package part
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30105Capacitance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Definitions

  • the present invention relates to packages for single or multiple semiconductor devices and in particular to packages that require very low electrical and/or thermal resistance, inductance and cost.
  • the topside pad of the silicon die is connected to the I/O pads of the package. This is a critical part of the package design since all the current and an important percentage of the heat flux has to be conducted through it.
  • the industry uses a variety of solutions for this, including copper strap designs, ball wirebond and ribbon wirebond designs, and copper clip designs.
  • Each of these designs requires at least one or more wirebonds that at least connect one or more the device terminals to an I/O of the leadframe.
  • Wirebond reliability is a major concern with these packages.
  • the mismatch of coefficient of thermal expansion (CTE) between materials used inside the package causes thermal cycling that provides stresses and small deformations in the wirebonds. These cycling deformations create stress and deformations as a result of the joint fatigue and can lead to wirebond failure.
  • CTE coefficient of thermal expansion
  • the bondability of wires to the pads after the reflow of the clip is also a very important issue.
  • the flux present in the solder paste used to attach the clip to the semiconductor chip contaminates the pads to which the wires are to be bonded. This contamination requires special chemicals for removal and still is not easily removed.
  • the cleaning process can involve several steps, including wet cleaning, plasma cleaning and/or UV ozone cleaning, that directly impact manufacturing costs and processing time.
  • wirebonds are limited to contacts that do not require low resistance or that conduct low currents. If this is not the case, then multiple wirebonds are needed per electrical connection, which also increases cost as well as reduces reliability. There is also an intrinsic limitation on the number of wires that can be bonded to a fixed area pad, which is determined by the capabilities of the wirebond tool.
  • wirebond constitutes part of the impedance matching circuit
  • repeatability is a major issue.
  • wirebonds can be deformed or damaged during the manufacturing process. Wirebond solutions are not, therefore, as robust as desired and the wire profiles require constant quality checks.
  • wirebonds between semiconductor pads and package I/Os can result in capacitively and/or inductively coupled branches, thereby reducing electrical isolation, increasing cross talk, increased noise and instability and, in general, reducing performance under high current and high frequency operation.
  • a wirebond-less packaged semiconductor device includes a plurality of I/O contacts, at least one semiconductor die, the die having a bottom major surface and a top major surface, the top major surface having at least two electrically isolated electrodes, and a conductive clip system disposed over the top major surface, the clip system comprising at least two electrically isolated sections coupling the electrodes to respective I/O contacts.
  • FIG. 1 is a top plan view of an assembly implementing a prior art connection scheme
  • FIG. 2A is a top plan view of an exemplary conductive clip system and FIG. 2B is side view thereof;
  • FIG. 2C is a top plan view of a semiconductor die and FIG. 2D is a side view thereof;
  • FIG. 2E is a top plan view of a conductive leadframe and FIG. 2F is a side view thereof;
  • FIG. 2G is a top plan view of an assembly including a clip system, die and leadframe with hidden features and the borders of a chip package shown in phantom;
  • FIG. 2H is a side view of the assembly of FIG. 2G and an enlarged partial view thereof;
  • FIG. 2I is a top plan view of a packaged semiconductor device with the encapsulated clip system shown in phantom;
  • FIGS. 3A-3I illustrate the components of, and formation of, a second exemplary packaged semiconductor device
  • FIGS. 4A-4I illustrate the components of, and formation of, another exemplary packaged semiconductor device
  • FIG. 5 is a partial view of a clip having weakened portions for facilitating removal of a section thereof;
  • FIG. 6 is a top plan view of a matrix of connected conductive clips.
  • FIGS. 7A-7H illustrate the components of, and formation of, an alternative embodiment of an exemplary packaged semiconductor device.
  • FIG. 1 is a top plan view of an assembly 10 implementing a prior art connection scheme. Assembly 10 is shown prior to encapsulation to form a packaged product, the boundaries of which are illustrated by dashed line 12 .
  • the assembly 10 includes, from top to bottom, a clip system, including one or more clips, such as clip 20 , a semiconductor die 30 and a leadframe 40 . Portions of the die 30 and leadframe 40 hidden by clip 20 are shown in phantom.
  • the bottom surface of the die 30 is electrically coupled to the top surface of the leadframe 40 .
  • the top surface of the die 30 is coupled to the bottom surface of the clip 20 .
  • the clip 20 includes slots or openings 22 that allow trapped gasses from the soldering operation to flow out to minimize voiding in the solder and to provide a locking mechanism for the overmolded plastic package.
  • the lead frame 40 includes several electrically isolated sections, one of which is section 42 . As illustrated in FIG. 1 , the leadframe section 42 is electrically coupled to the electrode 32 of the die 30 by a wirebond 50 . As described above, use of wirebond 50 for coupling the die 20 to the leadframe is undesirable as described above.
  • FIG. 2A is a top plan view of one embodiment of an exemplary conductive clip 100 for use in a packaged semiconductor device.
  • FIG. 2B is side view of the clip 100 .
  • the conductive clip 100 is formed from copper, preferably from a single sheet by stamping and/or etching.
  • the clip 100 includes a plurality of openings 102 formed therethrough that allow trapped gasses from the soldering operation to flow out to minimize voiding in the solder and to provide a locking mechanism for the overmolded plastic package.
  • clip 100 includes downwardly depending leg portions 108 a, 108 b, which are shown in phantom in FIG. 2A , that are configured to make contact with I/O pads of a leadframe, discussed below.
  • the body of clip 100 forms at least main sections 104 , 106 and 109 .
  • Section 106 includes downwardly depending connection leg 108 a.
  • Section 106 corresponds to (i.e., is positioned and shaped to make contact with) a first electrode from the semiconductor die, described below.
  • Section 104 is coupled to downwardly depending connection leg 108 b and corresponds to a second electrode from the semiconductor die.
  • the third section 109 is designed to temporarily connect sections 104 and 106 .
  • Third section 109 is designed to protrude so that it can be cut or severed from a packaged product in order to electrically isolate sections 104 and 106 , as described below in more detail.
  • FIG. 2C is a top plan view of a semiconductor die 200
  • FIG. 2D is a side view thereof.
  • an individual die 200 is singulated from a processed semiconductor wafer.
  • the die 200 can be silicon, GaAs, SiC, GaN or other semiconductor material.
  • the die 200 can be a discrete transistor, diode, integrated circuit or other semiconductor device.
  • die 200 comprises a power MOSFET with vertical current flow.
  • the power MOSFET has two electrodes at a top major surface 208 , such as a gate electrode 202 and a source electrode 204 , and a third electrode, such as a drain electrode 206 , (see FIG. 2D ) formed at a bottom major surface 210 thereof.
  • the major surfaces 208 , 210 are physically and electrically coupled to clip 100 and a leadframe (described below) using solder bumps (not shown) and/or a layer of conductive adhesive (collectively, “layer of conductive material”), such as PbSn solder paste or conductive silver epoxy.
  • layer of conductive material such as PbSn solder paste or conductive silver epoxy.
  • FIG. 2E is a top plan view of a conductive leadframe 300
  • FIG. 2F is a side view thereof.
  • leadframe 300 is shown in its segmented view, it should be understood that a master lead frame having a matrix of plurality of identical connection sections is typically employed, from which leadframe 300 is singulated, often after coupling to a semiconductor die or after encapsulation with a packaging material that fixes the various components with respect to the leadframe.
  • Leadframe 300 is formed from a single sheet of conductive material, preferably copper (Cu) or a copper alloy, such as one containing small amounts of Fe, (e.g., CDA194 or the like), electroplated or otherwise coated with a layer of solderable (and preferably corrosion resistant or corrosion minimizing (collectively, “resistant”)) conductive material such as tin, gold, tin lead, silver or other solderable material.
  • the CDA 194 copper alloy provides excellent strength, electric conductivity and thermal conductivity, and is used widely as an international standard copper alloy.
  • the CDA194 alloy contains 2.1 to 2.8% by mass Fe, 0.015 to 0.15% P, and 0.05 to 0.20% Zn.
  • the bottom surface 304 has recessed region(s) designated generally at 306 .
  • the recessed region(s) 306 is preferably etched into the bottom surface 304 of the leadframe 300 to form planar I/O lead contacts 308 (shown as I/O lead contacts 308 a, 308 b, 308 c, 308 d ). These contacts can be seen in phantom in FIG. 2E and in the side view of FIG. 2F . It should be understood that these lead contacts 308 a, 308 b, 308 c, 308 d are exposed in a packaged device to provide electrical contacts to the electrodes of the encapsulated die 200 .
  • the leadframe may also include holes formed therethrough through which the encapsulating material can flow.
  • Leadframe 300 includes sections that are electrically isolated from each other (once singulated from the master leadframe (not shown)).
  • the top surface of main body section 310 aligns and couples to the drain electrode 206 of bottom major surface 210 of the semiconductor die 200 .
  • the top surface of second section 312 aligns with contact leg 108 a of the clip 100 , thereby making electrical contact to the source electrode 204 .
  • the top surface of third section 314 aligns with contact leg 108 b, thereby making electrical contact to the gate electrode 202 of the semiconductor die 200 .
  • FIG. 2G is a top plan view of an assembly 400 including a clip 100 ( FIGS. 2A and 2B ), die 200 ( FIGS. 2C and 2D ) and leadframe 300 ( FIGS. 2E and 2F ) with features hidden by clip 100 shown in phantom.
  • FIG. 2H is a side view of the assembly 400 of FIG. 2G and an enlarged partial view of a section thereof.
  • Solder layer 404 couples the top surface 208 of the die 200 to the bottom surface of clip 100 and solder layer 406 couples the bottom surface 210 of the die 200 to the top surface 302 of the main body section 310 of the leadframe 300 .
  • solder bumps may be used in alternative embodiments in place of or in addition to solder layers 404 and/or 406 .
  • Phantom line 402 shows the boundaries of the packaged device once overmolded with an encapsulating material.
  • Lines 402 identify cut lines from where an individual packaged semiconductor device is singulated from a group of devices that are overmolded with an encapsulating material in the same process, as will be understood by those in the art.
  • the section 109 of clip 100 that connects the sections 104 , 106 extends beyond the border line 402 . In this manner, after encapsulation, section 109 can be severed from the package, or cut, thereby electrically isolating section 104 from section 106 of clip 100 , and thus electrode 202 from electrode 204 of die 200 and I/O contact lead pad 308 c from contact lead pads 308 b.
  • FIG. 2I is a top plan view of a packaged semiconductor device 500 .
  • the assembly of FIG. 2G is encapsulated with a packaging material, exposing the I/O contacts 308 a, 308 b, 308 c and 308 d at an underside thereof.
  • the encapsulating material is a plastic thermosetting material, such as CELH9220 HF10 epoxy resin available from Hitachi Chemical, formed around the assembly by injection molding, transfer molding or other like method.
  • a clip 100 ′ is shown in phantom. Clip 100 ′ is formed by sawing or otherwise removing section 109 of clip 100 , such as after an overmolding process.
  • the edges 502 of the packaged device 500 correspond to dashed lines 402 of FIG. 2H .
  • the top surface of the clip 100 ′ can be covered during encapsulation, leaving the top surface exposed through the encapsulation material. This embodiment provides for improved heat dissipation from the device.
  • section 109 can be sawed prior to encapsulation, or the sections 104 , 106 can be provided as separate, unconnected sections.
  • the clip 100 can be provided as part of a matrix of identical clip sections, such as when multiple packaged devices are formed in the same process, i.e., when multiple dies are mounted on the master leadframe, encapsulated and sawed to form individual packaged devices.
  • section 109 can be cut as part of the sawing process that singulates the packaged devices from one another.
  • FIG. 6 shows a top plan view of a matrix 1600 of interconnected conductive clips 1602 , each clip being configured as described above. Adjacent clips are coupled to each other in the matrix by connecting arms 1604 .
  • Dashed lines 1606 represent cut lines where for singulation of individual clips, either before or after coupling to a die and leadframe and/or encapsulation.
  • An exemplary manufacturing process utilizing clip matrix 1600 includes the following steps: (a) dispensing a conductive solder paste onto a top surface of leadframe matrix of leadframes; (b) placing a plurality of silicon dies on the top surface of the leadframe matrix; (c) dispensing a conductive solder paste on the top surfaces of the silicon dies; (d) disposing the matrix 1600 of conductive clips on the top surfaces of silicon dies; (e) reflow (e.g., melting the solder using a high temperature oven); (f) overmolding the stacked structure resulting from step (e) with an encapsulating material; and (g) singulating individual device from the overmolded structure by cutting (e.g., sawing) along lines 1606 .
  • FIG. 5 is a partial view of an alternative embodiment of a section 109 a of a clip system.
  • the section 109 includes one or more weakened regions 150 for permitting the directed breaking or snapping off of the section 109 , or otherwise facilitating the separation of section 109 from the remaining portions of the clip.
  • Sections 150 can also serve to accurately align a saw blade when sawing an unencapsulated clip.
  • FIGS. 3A-3I illustrate components of another exemplary packaged device, as described in more detail below.
  • FIG. 3A is a top plan view of a clip 600 configured to make an electrical connection to a die having two top electrodes that are substantially of equal size, as may be the case, for example, with an LDMOS (laterally diffused MOS) device discussed below.
  • FIG. 3B is a cross-section of clip 600 taken along lines 3 B- 3 B of FIG. 3A .
  • Clip 600 includes main sections 604 and 606 coupled together by one or more protruding connecting sections 609 . Openings 602 are provided through the clip 600 to function as described above.
  • Section 604 includes downwardly depending leg 608 a.
  • Section 606 includes downwardly depending leg 608 b.
  • FIG. 3C is a top plan view of an exemplary die 700 and FIG. 3D is a side view thereof.
  • Die 700 includes a top major surface 701 and a bottom major surface 703 .
  • the top major surface 701 includes two generally equally sized electrodes 702 and 704 .
  • the bottom surface 703 includes a third electrode 706 .
  • the top electrodes 702 , 704 correspond to the gate and drain electrodes of a LDMOS device and the bottom electrode 706 corresponds to the source of the LDMOS device.
  • FIG. 3E is a top plan view of a leadframe 800
  • FIG. 3F is a side view thereof, for making electrical connection to the semiconductor die 700 and clip 600 discussed above.
  • the leadframe 800 has a top major surface 801 and a bottom major surface 803 .
  • the leadframe 800 is divided into three sections 802 , 804 and 806 corresponding to the three electrodes of the die 700 .
  • the bottom surface of section 802 defines a contact 808
  • the bottom surface of section 804 defines a contact 810
  • the bottom surface of section 806 defines contact 812 , which are shown in phantom in FIG. 3E .
  • the top major surface of section 802 is shaped to make contact with the bottom surface 703 of die 700 , and thus with electrode 706 .
  • the top surface of section 806 is shaped to make contact with leg 608 b of clip 600 , and thus with electrode 704
  • the top surface of section 804 is shaped to make contact with leg 608 a of clip 600 , and thus with electrode 702 .
  • FIG. 3G is a top plan view of an assembly 900 including clip 600 , die 700 and leadframe 800 .
  • FIG. 3H is a cross-sectional view of the assembly 900 taken along lines 3 H- 3 H of FIG. 3G . Portions of the die 700 and leadframe 800 hidden by clip 600 are shown in phantom.
  • the electrodes 702 , 704 of die 700 are coupled to the bottom surface of sections 604 , 606 , respectively, by a layer of conductive adhesive 904 and/or solder bumps, thereby connecting the electrodes to contact pads 810 , 812 through legs 608 a, 608 b, respectively.
  • the bottom electrode 706 of the die 700 is coupled to the top surface of section 802 of the leadframe 800 by conductive adhesive layer 906 , thereby coupling the electrode 706 to the bottom contact pad 808 .
  • dashed line 902 shows the boundaries of encapsulated packaged once overmolded and singulated. Removal of or cutting of connecting sections 609 electrically isolates clip sections 604 and 606 , thereby isolating electrodes 702 and 704 and isolating contact pads 810 and 812 .
  • FIG. 3I is a top plan view of a packaged semiconductor device 1000 .
  • the assembly 900 of FIG. 3G is encapsulated with a packaging material, exposing the I/O contacts 808 , 810 and 812 at an underside thereof.
  • the encapsulating material is a plastic thermosetting material, such as an epoxy resin described above, formed around the assembly 900 by injection molding, transfer molding or other like method.
  • a clip 600 ′ is shown in phantom. Clip 600 ′ is formed by sawing or otherwise removing of sections 609 of clip 600 , such as after an overmolding process.
  • the edges 1002 of the packaged device 1000 correspond with dashed lines 902 of FIG. 3H .
  • This packaging technique is especially effective in improving device performance in devices with high lateral current flow, such as with power LDMOS devices.
  • the elimination of wirebonds allows for equal clip area to be assigned for current flow to each of the top electrodes.
  • FIGS. 4A-4I illustrate components of another exemplary packaged device, as described in more detail below.
  • FIG. 4A is a top plan view of a clip 1100 configured to make an electrical connection to a die having four top electrodes that are substantially of equal size, as may be the case, for example, with some RF transistors, Galium arsenide devices, LDMOS devices, and CMOS devices.
  • FIG. 4B is a cross-section view of clip 1100 taken along lines 4 B- 4 B.
  • Clip 1100 includes four main sections 1102 a, 1102 b, 1102 c and 1102 d coupled together by a plurality of, e.g., four, connecting sections 1106 . Openings 1104 are provided through the clip 1100 to function as described above. Sections 1102 a through 1102 d include respective downwardly depending legs 1108 a through 1108 d.
  • FIG. 4C is a top plan view of an exemplary die 1200 and FIG. 4D is a side view thereof.
  • Die 1200 includes a top major surface 1201 and a bottom major surface 1203 .
  • the top major surface 1201 includes four generally equally sized electrodes 1202 a, 1202 b, 1202 c and 1202 d.
  • the bottom surface 1203 includes a fifth electrode 1204 .
  • the top electrodes 1202 a, 1202 b correspond to the gate electrode and electrodes 1202 c, 1202 d correspond to the source (or drain) electrode of a high frequency transistor device and the bottom electrode corresponds to the drain (or source) electrode of the high frequency transistor device.
  • FIG. 4E is a top plan view of a leadframe 1300
  • FIG. 4F is a side view thereof, for making electrical connection to the semiconductor die 1200 and clip 1100 discussed above.
  • the leadframe 1300 has a top major surface 1302 and a bottom major surface 1304 .
  • the leadframe 1500 is divided into five sections, including a main body section 1308 e and four peripheral sections 1308 a to 1308 d, which correspond to electrodes 1204 and 1202 a - 1202 d, respectively, of die 1200 .
  • the bottom surface of section 1308 e defines a contact 1310 e
  • the bottom surfaces of sections 1308 a - 1308 d define contacts 1310 a - 1310 d, respectively, which are shown in phantom in FIG.
  • the top major surface of section 1308 e is shaped to make contact with the bottom surface 1203 of the die 1200 , and thus with electrode 1204 .
  • the top surfaces of sections 1308 a to 1308 d are shaped to make contact with legs 1108 a to 1108 d, respectively, of clip 1100 , and thus to electrodes 1202 a to 1202 d, respectively.
  • FIG. 4G is a top plan view of an assembly 1400 including clip 1100 , die 1200 and leadframe 1300 .
  • FIG. 4H is a cross-sectional view of the assembly 1400 taken along lines 4 H- 4 H of FIG. 4G . Portions of the die 1200 and leadframe 1300 hidden by clip 1100 are shown in phantom.
  • the electrodes 1202 a to 1202 d are coupled to the bottom surface of section 1102 a to 1102 d of the clip 1100 , respectively, by a layer of conductive adhesive 1404 and/or solder bumps, thereby connecting the electrodes to contact pads 1308 a to 1308 d through legs 1108 a to 1108 d, respectively.
  • the bottom electrode 1204 of the die 1200 is coupled to the top surface 1302 of section 1308 e of the leadframe 1300 by conductive adhesive layer 1406 , thereby coupling the electrode 1204 to the bottom contact pad 1310 e.
  • dashed line 1402 shows the boundaries of encapsulated packaged once overmolded and cut. Removal or cutting of connecting sections 1106 electrically isolates clip sections 1102 a, 1102 b, 1102 c and 1102 d from each other, thereby isolating electrodes 1202 a, 1202 b, 1202 c and 1202 d and isolating contact pads 1310 a, 1310 b, 1310 c and 1310 d.
  • FIG. 4I is a top plan view of a packaged semiconductor device 1500 .
  • the assembly 1500 of FIG. 4G is encapsulated within a packaging material, with the I/O contacts 1310 a to 1310 e exposed at an underside thereof.
  • the encapsulating material is a plastic thermosetting material, such as an epoxy resin described above, formed around the assembly 1400 by injection molding, transfer molding or other like method.
  • a clip 1100 ′ is shown in phantom. Clip 1100 ′ is formed by sawing or otherwise removing or cutting connecting sections 1106 of clip 1100 , such as after an overmolding process.
  • the edges 1502 of the packaged device 1000 correspond to dashed lines 1402 of FIG. 4H .
  • FIGS. 7A-7H illustrate an alternative wirebond-less packaged semiconductor device.
  • the top surface of the die includes only a single electrical connection while the bottom surface of the die includes multiple electrical connections.
  • FIG. 7A is a top plan view of a clip 1700 configured to make an electrical connection to a die having a single top electrode, as may be the case, for example, with some RF transistors, Gallium arsenide devices, and LDMOS devices.
  • FIG. 7B is a side view of clip 1700 .
  • Clip 1700 includes main body portion 1702 . Openings 1704 are provided through the clip 1700 to function as described above.
  • Main body portion 1702 includes one or more downwardly depending legs 1706 located to make electrical contact with the leadframe (described below) in a packaged semiconductor device.
  • FIG. 7C is a top plan view of an exemplary die 1800 and FIG. 7D is a bottom plan view thereof.
  • Die 1800 includes a top major surface 1801 and a bottom major surface 1803 .
  • the top major surface 1801 includes a single electrode 1802 (or group of electrodes that will be shorted by the clip 1700 ).
  • the bottom surface 1803 includes at least two electrodes, shown as electrodes 1804 ad 1806 .
  • electrode 1804 is a gate electrode
  • electrode 1806 is a source electrode
  • electrode 1802 is a drain electrode of a power LDMOS device.
  • electrode 1806 can be a drain electrode and electrode 1802 can be a source electrode.
  • FIG. 7E is a top plan view of a leadframe 1900
  • FIG. 7F is a side view thereof taken from the vantage of line 7 F- 7 F, for making electrical connections to the semiconductor die 1800 and clip 1700 discussed above.
  • the leadframe 1900 has a top major surface 1902 and a bottom major surface 1904 .
  • the leadframe 1900 is divided into three sections, including a main body section 1906 a and peripheral sections 1906 b and 1906 c, which correspond to electrodes 1806 , 1804 and 1802 of die 1800 , respectively.
  • the bottom surface of section 1906 a defines contacts 1908 a, which are shown in phantom in FIG. 7E .
  • the bottom surface of section 1906 b defines contact 1908 b.
  • section 1906 c defines contact 1908 c.
  • the top major surface of sections 1906 a and 1906 b is shaped to make contact with the bottom surface 1803 of the die 1800 , and thus with electrodes 1804 and 1806 , respectively.
  • the top surface of section 1906 c is disposed to make contact with leg 1706 of clip 1700 , and thus to electrode 1802 of die 1800 .
  • the leadframe 1900 includes one or more protruding connecting sections 1910 ac and 1910 ab. As shown in FIG. 7E , connecting sections 1910 ac connect, at least temporarily, sections 1906 a and 1906 c to each other, whereas connecting sections 1910 ab connect sections 1906 a and 1906 b to each other. These section are shaped and located such that they can be severed, such as after molding of the assembly, to electrically isolate sections 1906 a, 1906 b and 1906 c, and thus to electrically isolate I/O contacts 1908 a, 1908 b and 1908 c from each other.
  • FIG. 7G is a top plan view of a partial assembly 2000 including leadframe 1900 and die 1800 disposed thereover.
  • Clip 1700 is not shown so as to not obscure the features of the die 1800 and leadframe 1900 .
  • the die 1800 is located over the leadframe 1900 with the electrode 1804 (not shown in FIG. 7G ) aligned with section 1906 b of clip 1900 , and with electrode 1806 aligned with main section 1906 a.
  • FIG. 7H is a cross-sectional view of a semiconductor device assembly 2100 .
  • FIG. 7H shows the assembly after protruding connecting sections 1910 ac and 1910 ab have been removed to electrically isolate sections 1906 a, 1906 b and 1906 c.
  • the electrode 1802 of die 1800 is coupled to the bottom surface of clip 1700 by a layer of conductive adhesive 2106 and/or solder bumps, thereby connecting the electrode 1802 to contact pad 1908 c through leg 1706 .
  • the contact leg 1706 may also be coupled to the leadframe 1900 by the layer of conductive adhesive 2104 .
  • the bottom electrodes 1804 and 1806 of the die 1800 are coupled to the top surface 1902 of the leadframe 1900 , specifically to sections 1906 c and 1906 a, respectively, of the leadframe 1900 by conductive adhesive layer 2104 , thereby coupling the electrodes 1804 and 1806 to the bottom contact pads 1908 b and 1908 a, respectively.
  • dashed line 2102 shows the boundaries of an encapsulated packaged once overmolded with a capsulation material and cut. Removal or cutting of connecting sections 1910 ab and 1910 ac electrically isolates leadframe sections 1910 a, 1910 b and 1910 c from each other, thereby isolating electrodes 1802 , 1804 and 1806 of die 1800 and isolating contact pads 1908 a, 1908 b and 1908 c.
  • FIGS. 2A-2I , 3 A- 3 I and 4 A- 4 I illustrate embodiments where the leadframe and clip are configured to accommodate a die where the top major surface has multiple electrodes and the bottom major surface has a single electrode
  • FIGS. 7A-7H illustrate an embodiment where the top major surface of the die includes a single electrode and the bottom major surface includes multiple electrodes
  • the connection method and structure therein can be applied to embodiments where both major surfaces of the die have multiple electrodes.
  • both the clip and the leadframe would include protruding connecting sections that when cut or severed would electrically isolate sections of the clip and sections of the leadframe.
  • Such an embodiment may be used, for example, where the packaged semiconductor device includes four or more electrically independent I/O contacts.
  • a packaging method is provided that is low cost and production friendly.
  • the package itself lacks the complexity of prior art packages, providing a robust package and cost savings.
  • the clip is easily configured to any number of die sizes and electrode configurations.
  • the process and package therefore, are easily scalable to different I/O and die configurations, providing consequent reductions in development costs and time as well as implementation times for new designs.
  • the top metallization layer of the die need only comprise a surface that is solderable and not one that is also wirebondable.
  • Device performance is also improved, since use of a Cu clip has lower resistance than wirebonds, and thus can conduct more current in high performance devices, replacing the need for not only a wirebond but for multiple wirebonds for carrying the high current.
  • the packaging scheme is also multi-chip module (MCM) capable, i.e., the package is easily adapted to providing two or more dies per packaged device. For example, more than one power transistor device can be provided per packaged device.
  • MCM multi-chip module
  • the design described herein is particularly suited to high frequency power LDMOS devices, such as power RF devices.
  • the packaged device has been described above principally in connection with a semiconductor die having a bottom drain electrode with isolated gate and source electrodes on an opposite side thereof, the package and packaging method described above are also applicable to other die configurations, such as where the top surface of the die coupled to the clip is configured to have (i) FET drain and gate only, (ii) FET gate, drain and source, (iii) BJT base and emitter only, (iv) BJT base and collector only, (v) BJT base, collector and emitter, (vi) multiple I/O of an integrated circuit, or (vii) anode and cathode of a diode.
  • the bottom exposed surface can be the (i) FET source only, (ii) FET drain only, (iii) BJT emitter only, (iv) BJT collector only, (v) multiple I/O of an integrated circuit, or finally (vi) no electrode at all, i.e., just bare semiconductor substrate material or metallized semiconductor substrate material

Abstract

A wirebond-less packaged semiconductor device includes a plurality of I/O contacts, at least one semiconductor die, the semiconductor die having a bottom major surface and a top major surface, the top major surface having at least two electrically isolated electrodes, and a conductive clip system disposed over the top major surface, the clip system comprising at least two electrically isolated sections coupling the electrodes to respective I/O contacts.

Description

    FIELD OF THE INVENTION
  • The present invention relates to packages for single or multiple semiconductor devices and in particular to packages that require very low electrical and/or thermal resistance, inductance and cost.
  • BACKGROUND OF THE INVENTION
  • It is conventional in the electronic industry to encapsulate one or more semiconductor devices in a semiconductor package. These plastic packages protect a chip from environmental hazards and handling hazards and provide a method for electrically and mechanically attaching the chip to an intended device. The demands on the package design include the ability to conduct high currents without self heating, low electrical and thermal resistances, high reliability under extreme power conditions and low parasitic inductances.
  • Various approaches to packaging semiconductor devices have been documented in the literature as well as commercialized in order to address these design requirements. In one such design, the contact between the backside of the packaged die to the external world is made through an attachment to a highly electrically conductive leadframe using low thermal/electrical resistance solder or epoxy. Some solutions leave the backside of the die exposed.
  • The topside pad of the silicon die is connected to the I/O pads of the package. This is a critical part of the package design since all the current and an important percentage of the heat flux has to be conducted through it. The industry uses a variety of solutions for this, including copper strap designs, ball wirebond and ribbon wirebond designs, and copper clip designs.
  • Each of these designs requires at least one or more wirebonds that at least connect one or more the device terminals to an I/O of the leadframe. Wirebond reliability is a major concern with these packages. The mismatch of coefficient of thermal expansion (CTE) between materials used inside the package causes thermal cycling that provides stresses and small deformations in the wirebonds. These cycling deformations create stress and deformations as a result of the joint fatigue and can lead to wirebond failure.
  • Further, the bondability of wires to the pads after the reflow of the clip is also a very important issue. In most cases, the flux present in the solder paste used to attach the clip to the semiconductor chip contaminates the pads to which the wires are to be bonded. This contamination requires special chemicals for removal and still is not easily removed. The cleaning process can involve several steps, including wet cleaning, plasma cleaning and/or UV ozone cleaning, that directly impact manufacturing costs and processing time.
  • Further, the use of wirebonds is limited to contacts that do not require low resistance or that conduct low currents. If this is not the case, then multiple wirebonds are needed per electrical connection, which also increases cost as well as reduces reliability. There is also an intrinsic limitation on the number of wires that can be bonded to a fixed area pad, which is determined by the capabilities of the wirebond tool.
  • In designs where the wirebond constitutes part of the impedance matching circuit, repeatability is a major issue. Also, wirebonds can be deformed or damaged during the manufacturing process. Wirebond solutions are not, therefore, as robust as desired and the wire profiles require constant quality checks.
  • Still further, wirebonds between semiconductor pads and package I/Os can result in capacitively and/or inductively coupled branches, thereby reducing electrical isolation, increasing cross talk, increased noise and instability and, in general, reducing performance under high current and high frequency operation.
  • There remains a need for a packaging solution that reduces device architecture and process complexity and that can be easily implemented (scaled or modified) for different semiconductor die designs or multiple die assemblies (multichip modules) without significant changes or modifications to the packaging process and machinery, and also a need to do so with very low parasitic resistance, inductance and/or thermal resistance. Still further, there remains a need for such a solution that does not utilize wirebonds.
  • SUMMARY OF THE INVENTION
  • A wirebond-less packaged semiconductor device includes a plurality of I/O contacts, at least one semiconductor die, the die having a bottom major surface and a top major surface, the top major surface having at least two electrically isolated electrodes, and a conductive clip system disposed over the top major surface, the clip system comprising at least two electrically isolated sections coupling the electrodes to respective I/O contacts.
  • The above and other features of the present invention will be better understood from the following detailed description of the preferred embodiments of the invention that is provided in connection with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings illustrate preferred embodiments of the invention, as well as other information pertinent to the disclosure, in which:
  • FIG. 1 is a top plan view of an assembly implementing a prior art connection scheme;
  • FIG. 2A is a top plan view of an exemplary conductive clip system and FIG. 2B is side view thereof;
  • FIG. 2C is a top plan view of a semiconductor die and FIG. 2D is a side view thereof;
  • FIG. 2E is a top plan view of a conductive leadframe and FIG. 2F is a side view thereof;
  • FIG. 2G is a top plan view of an assembly including a clip system, die and leadframe with hidden features and the borders of a chip package shown in phantom;
  • FIG. 2H is a side view of the assembly of FIG. 2G and an enlarged partial view thereof;
  • FIG. 2I is a top plan view of a packaged semiconductor device with the encapsulated clip system shown in phantom;
  • FIGS. 3A-3I illustrate the components of, and formation of, a second exemplary packaged semiconductor device;
  • FIGS. 4A-4I illustrate the components of, and formation of, another exemplary packaged semiconductor device;
  • FIG. 5 is a partial view of a clip having weakened portions for facilitating removal of a section thereof;
  • FIG. 6 is a top plan view of a matrix of connected conductive clips; and
  • FIGS. 7A-7H illustrate the components of, and formation of, an alternative embodiment of an exemplary packaged semiconductor device.
  • DETAILED DESCRIPTION
  • This description of the exemplary embodiments is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. In the description, relative terms such as “lower,” “upper,” “horizontal,” “vertical,” “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivatives thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description and do not require that the apparatus be constructed or operated in a particular orientation.
  • FIG. 1 is a top plan view of an assembly 10 implementing a prior art connection scheme. Assembly 10 is shown prior to encapsulation to form a packaged product, the boundaries of which are illustrated by dashed line 12. The assembly 10 includes, from top to bottom, a clip system, including one or more clips, such as clip 20, a semiconductor die 30 and a leadframe 40. Portions of the die 30 and leadframe 40 hidden by clip 20 are shown in phantom. The bottom surface of the die 30 is electrically coupled to the top surface of the leadframe 40. The top surface of the die 30 is coupled to the bottom surface of the clip 20. The clip 20 includes slots or openings 22 that allow trapped gasses from the soldering operation to flow out to minimize voiding in the solder and to provide a locking mechanism for the overmolded plastic package. The lead frame 40 includes several electrically isolated sections, one of which is section 42. As illustrated in FIG. 1, the leadframe section 42 is electrically coupled to the electrode 32 of the die 30 by a wirebond 50. As described above, use of wirebond 50 for coupling the die 20 to the leadframe is undesirable as described above.
  • FIG. 2A is a top plan view of one embodiment of an exemplary conductive clip 100 for use in a packaged semiconductor device. FIG. 2B is side view of the clip 100. In one embodiment, the conductive clip 100 is formed from copper, preferably from a single sheet by stamping and/or etching. In embodiments, the clip 100 includes a plurality of openings 102 formed therethrough that allow trapped gasses from the soldering operation to flow out to minimize voiding in the solder and to provide a locking mechanism for the overmolded plastic package. As best seen in FIG. 2B, clip 100 includes downwardly depending leg portions 108 a, 108 b, which are shown in phantom in FIG. 2A, that are configured to make contact with I/O pads of a leadframe, discussed below.
  • In one embodiment, the body of clip 100 forms at least main sections 104, 106 and 109. Section 106 includes downwardly depending connection leg 108 a. Section 106 corresponds to (i.e., is positioned and shaped to make contact with) a first electrode from the semiconductor die, described below. Section 104 is coupled to downwardly depending connection leg 108 b and corresponds to a second electrode from the semiconductor die. Finally, the third section 109 is designed to temporarily connect sections 104 and 106. Third section 109 is designed to protrude so that it can be cut or severed from a packaged product in order to electrically isolate sections 104 and 106, as described below in more detail.
  • FIG. 2C is a top plan view of a semiconductor die 200, and FIG. 2D is a side view thereof. As is understood by those in the art, an individual die 200 is singulated from a processed semiconductor wafer. In exemplary embodiments, the die 200 can be silicon, GaAs, SiC, GaN or other semiconductor material. In other exemplary embodiments, the die 200 can be a discrete transistor, diode, integrated circuit or other semiconductor device. In one exemplary embodiment, die 200 comprises a power MOSFET with vertical current flow. In the illustrated embodiment, the power MOSFET has two electrodes at a top major surface 208, such as a gate electrode 202 and a source electrode 204, and a third electrode, such as a drain electrode 206, (see FIG. 2D) formed at a bottom major surface 210 thereof.
  • As described below, the major surfaces 208, 210 are physically and electrically coupled to clip 100 and a leadframe (described below) using solder bumps (not shown) and/or a layer of conductive adhesive (collectively, “layer of conductive material”), such as PbSn solder paste or conductive silver epoxy. When die 200 is coupled to the clip 100, gate electrode 202 aligns with a portion of section 104 of the clip 100 and source electrode 204 aligns with a portion of section 106 of the clip 100. In this manner, gate electrode 202 is electrically coupled to contact leg 108 b of section 104 and source electrode 204 is electrically coupled to contact leg 108 a of section 106.
  • FIG. 2E is a top plan view of a conductive leadframe 300, and FIG. 2F is a side view thereof. Though leadframe 300 is shown in its segmented view, it should be understood that a master lead frame having a matrix of plurality of identical connection sections is typically employed, from which leadframe 300 is singulated, often after coupling to a semiconductor die or after encapsulation with a packaging material that fixes the various components with respect to the leadframe.
  • Leadframe 300 is formed from a single sheet of conductive material, preferably copper (Cu) or a copper alloy, such as one containing small amounts of Fe, (e.g., CDA194 or the like), electroplated or otherwise coated with a layer of solderable (and preferably corrosion resistant or corrosion minimizing (collectively, “resistant”)) conductive material such as tin, gold, tin lead, silver or other solderable material. The CDA 194 copper alloy provides excellent strength, electric conductivity and thermal conductivity, and is used widely as an international standard copper alloy. The CDA194 alloy contains 2.1 to 2.8% by mass Fe, 0.015 to 0.15% P, and 0.05 to 0.20% Zn. While the top surface 302 of the leadframe 300 is planar, the bottom surface 304 has recessed region(s) designated generally at 306. The recessed region(s) 306 is preferably etched into the bottom surface 304 of the leadframe 300 to form planar I/O lead contacts 308 (shown as I/O lead contacts 308 a, 308 b, 308 c, 308 d). These contacts can be seen in phantom in FIG. 2E and in the side view of FIG. 2F. It should be understood that these lead contacts 308 a, 308 b, 308 c, 308 d are exposed in a packaged device to provide electrical contacts to the electrodes of the encapsulated die 200. Although not shown, the leadframe may also include holes formed therethrough through which the encapsulating material can flow.
  • Leadframe 300 includes sections that are electrically isolated from each other (once singulated from the master leadframe (not shown)). The top surface of main body section 310 aligns and couples to the drain electrode 206 of bottom major surface 210 of the semiconductor die 200. The top surface of second section 312 aligns with contact leg 108 a of the clip 100, thereby making electrical contact to the source electrode 204. Finally, the top surface of third section 314 aligns with contact leg 108 b, thereby making electrical contact to the gate electrode 202 of the semiconductor die 200.
  • Turning now to FIGS. 2G and 2H, FIG. 2G is a top plan view of an assembly 400 including a clip 100 (FIGS. 2A and 2B), die 200 (FIGS. 2C and 2D) and leadframe 300 (FIGS. 2E and 2F) with features hidden by clip 100 shown in phantom. FIG. 2H is a side view of the assembly 400 of FIG. 2G and an enlarged partial view of a section thereof. Solder layer 404 couples the top surface 208 of the die 200 to the bottom surface of clip 100 and solder layer 406 couples the bottom surface 210 of the die 200 to the top surface 302 of the main body section 310 of the leadframe 300. As described above, solder bumps may be used in alternative embodiments in place of or in addition to solder layers 404 and/or 406.
  • Phantom line 402 shows the boundaries of the packaged device once overmolded with an encapsulating material. Lines 402 identify cut lines from where an individual packaged semiconductor device is singulated from a group of devices that are overmolded with an encapsulating material in the same process, as will be understood by those in the art. As can be seen from FIG. 2G, the section 109 of clip 100 that connects the sections 104, 106 extends beyond the border line 402. In this manner, after encapsulation, section 109 can be severed from the package, or cut, thereby electrically isolating section 104 from section 106 of clip 100, and thus electrode 202 from electrode 204 of die 200 and I/O contact lead pad 308 c from contact lead pads 308 b.
  • FIG. 2I is a top plan view of a packaged semiconductor device 500. The assembly of FIG. 2G is encapsulated with a packaging material, exposing the I/ O contacts 308 a, 308 b, 308 c and 308 d at an underside thereof. In an exemplary embodiment, the encapsulating material is a plastic thermosetting material, such as CELH9220 HF10 epoxy resin available from Hitachi Chemical, formed around the assembly by injection molding, transfer molding or other like method. For purposes of illustration, a clip 100′ is shown in phantom. Clip 100′ is formed by sawing or otherwise removing section 109 of clip 100, such as after an overmolding process. The edges 502 of the packaged device 500 correspond to dashed lines 402 of FIG. 2H.
  • Though not shown in FIG. 2I, the top surface of the clip 100′ can be covered during encapsulation, leaving the top surface exposed through the encapsulation material. This embodiment provides for improved heat dissipation from the device.
  • Though it is preferred that the sections 104 and 106 of clip 100 are separated from one other by severing section 109 (at least partially) from clip 100 (FIG. 2B) after the encapsulation process, so as to provide stability for clip 100 during the encapsulating step, this is not required. In embodiments where the sections are sufficiently stable on their own without being connected during the selected encapsulating process, section 109 can be sawed prior to encapsulation, or the sections 104, 106 can be provided as separate, unconnected sections. It should also be appreciated that as with leadframe 300, the clip 100 can be provided as part of a matrix of identical clip sections, such as when multiple packaged devices are formed in the same process, i.e., when multiple dies are mounted on the master leadframe, encapsulated and sawed to form individual packaged devices. In this embodiment, section 109 can be cut as part of the sawing process that singulates the packaged devices from one another. This embodiment is illustrated in FIG. 6, which shows a top plan view of a matrix 1600 of interconnected conductive clips 1602, each clip being configured as described above. Adjacent clips are coupled to each other in the matrix by connecting arms 1604. Dashed lines 1606 represent cut lines where for singulation of individual clips, either before or after coupling to a die and leadframe and/or encapsulation. An exemplary manufacturing process utilizing clip matrix 1600 includes the following steps: (a) dispensing a conductive solder paste onto a top surface of leadframe matrix of leadframes; (b) placing a plurality of silicon dies on the top surface of the leadframe matrix; (c) dispensing a conductive solder paste on the top surfaces of the silicon dies; (d) disposing the matrix 1600 of conductive clips on the top surfaces of silicon dies; (e) reflow (e.g., melting the solder using a high temperature oven); (f) overmolding the stacked structure resulting from step (e) with an encapsulating material; and (g) singulating individual device from the overmolded structure by cutting (e.g., sawing) along lines 1606.
  • FIG. 5 is a partial view of an alternative embodiment of a section 109 a of a clip system. The section 109 includes one or more weakened regions 150 for permitting the directed breaking or snapping off of the section 109, or otherwise facilitating the separation of section 109 from the remaining portions of the clip. Sections 150 can also serve to accurately align a saw blade when sawing an unencapsulated clip.
  • FIGS. 3A-3I illustrate components of another exemplary packaged device, as described in more detail below. FIG. 3A is a top plan view of a clip 600 configured to make an electrical connection to a die having two top electrodes that are substantially of equal size, as may be the case, for example, with an LDMOS (laterally diffused MOS) device discussed below. FIG. 3B is a cross-section of clip 600 taken along lines 3B-3B of FIG. 3A. Clip 600 includes main sections 604 and 606 coupled together by one or more protruding connecting sections 609. Openings 602 are provided through the clip 600 to function as described above. Section 604 includes downwardly depending leg 608 a. Section 606 includes downwardly depending leg 608 b.
  • FIG. 3C is a top plan view of an exemplary die 700 and FIG. 3D is a side view thereof. Die 700 includes a top major surface 701 and a bottom major surface 703. The top major surface 701 includes two generally equally sized electrodes 702 and 704. The bottom surface 703 includes a third electrode 706. In one embodiment, the top electrodes 702, 704 correspond to the gate and drain electrodes of a LDMOS device and the bottom electrode 706 corresponds to the source of the LDMOS device.
  • FIG. 3E is a top plan view of a leadframe 800, and FIG. 3F is a side view thereof, for making electrical connection to the semiconductor die 700 and clip 600 discussed above. The leadframe 800 has a top major surface 801 and a bottom major surface 803. The leadframe 800 is divided into three sections 802, 804 and 806 corresponding to the three electrodes of the die 700. The bottom surface of section 802 defines a contact 808, the bottom surface of section 804 defines a contact 810 and the bottom surface of section 806 defines contact 812, which are shown in phantom in FIG. 3E. The top major surface of section 802 is shaped to make contact with the bottom surface 703 of die 700, and thus with electrode 706. The top surface of section 806 is shaped to make contact with leg 608 b of clip 600, and thus with electrode 704, and the top surface of section 804 is shaped to make contact with leg 608 a of clip 600, and thus with electrode 702.
  • FIG. 3G is a top plan view of an assembly 900 including clip 600, die 700 and leadframe 800. FIG. 3H is a cross-sectional view of the assembly 900 taken along lines 3H-3H of FIG. 3G. Portions of the die 700 and leadframe 800 hidden by clip 600 are shown in phantom. The electrodes 702, 704 of die 700 are coupled to the bottom surface of sections 604, 606, respectively, by a layer of conductive adhesive 904 and/or solder bumps, thereby connecting the electrodes to contact pads 810, 812 through legs 608 a, 608 b, respectively. The bottom electrode 706 of the die 700 is coupled to the top surface of section 802 of the leadframe 800 by conductive adhesive layer 906, thereby coupling the electrode 706 to the bottom contact pad 808.
  • As with FIG. 2H, dashed line 902 shows the boundaries of encapsulated packaged once overmolded and singulated. Removal of or cutting of connecting sections 609 electrically isolates clip sections 604 and 606, thereby isolating electrodes 702 and 704 and isolating contact pads 810 and 812.
  • FIG. 3I is a top plan view of a packaged semiconductor device 1000. The assembly 900 of FIG. 3G is encapsulated with a packaging material, exposing the I/ O contacts 808, 810 and 812 at an underside thereof. In an exemplary embodiment, the encapsulating material is a plastic thermosetting material, such as an epoxy resin described above, formed around the assembly 900 by injection molding, transfer molding or other like method. For purposes of illustration, a clip 600′ is shown in phantom. Clip 600′ is formed by sawing or otherwise removing of sections 609 of clip 600, such as after an overmolding process. The edges 1002 of the packaged device 1000 correspond with dashed lines 902 of FIG. 3H.
  • This packaging technique is especially effective in improving device performance in devices with high lateral current flow, such as with power LDMOS devices. The elimination of wirebonds allows for equal clip area to be assigned for current flow to each of the top electrodes.
  • FIGS. 4A-4I illustrate components of another exemplary packaged device, as described in more detail below. FIG. 4A is a top plan view of a clip 1100 configured to make an electrical connection to a die having four top electrodes that are substantially of equal size, as may be the case, for example, with some RF transistors, Galium arsenide devices, LDMOS devices, and CMOS devices. FIG. 4B is a cross-section view of clip 1100 taken along lines 4B-4B. Clip 1100 includes four main sections 1102 a, 1102 b, 1102 c and 1102 d coupled together by a plurality of, e.g., four, connecting sections 1106. Openings 1104 are provided through the clip 1100 to function as described above. Sections 1102 a through 1102 d include respective downwardly depending legs 1108 a through 1108 d.
  • FIG. 4C is a top plan view of an exemplary die 1200 and FIG. 4D is a side view thereof. Die 1200 includes a top major surface 1201 and a bottom major surface 1203. The top major surface 1201 includes four generally equally sized electrodes 1202 a, 1202 b, 1202 c and 1202 d. The bottom surface 1203 includes a fifth electrode 1204. In one embodiment, the top electrodes 1202 a, 1202 b correspond to the gate electrode and electrodes 1202 c, 1202 d correspond to the source (or drain) electrode of a high frequency transistor device and the bottom electrode corresponds to the drain (or source) electrode of the high frequency transistor device.
  • FIG. 4E is a top plan view of a leadframe 1300, and FIG. 4F is a side view thereof, for making electrical connection to the semiconductor die 1200 and clip 1100 discussed above. The leadframe 1300 has a top major surface 1302 and a bottom major surface 1304. The leadframe 1500 is divided into five sections, including a main body section 1308 e and four peripheral sections 1308 a to 1308 d, which correspond to electrodes 1204 and 1202 a-1202 d, respectively, of die 1200. The bottom surface of section 1308 e defines a contact 1310 e, and the bottom surfaces of sections 1308 a-1308 d define contacts 1310 a-1310 d, respectively, which are shown in phantom in FIG. 4E. The top major surface of section 1308 e is shaped to make contact with the bottom surface 1203 of the die 1200, and thus with electrode 1204. The top surfaces of sections 1308 a to 1308 d are shaped to make contact with legs 1108 a to 1108 d, respectively, of clip 1100, and thus to electrodes 1202 a to 1202 d, respectively.
  • FIG. 4G is a top plan view of an assembly 1400 including clip 1100, die 1200 and leadframe 1300. FIG. 4H is a cross-sectional view of the assembly 1400 taken along lines 4H-4H of FIG. 4G. Portions of the die 1200 and leadframe 1300 hidden by clip 1100 are shown in phantom. The electrodes 1202 a to 1202 d are coupled to the bottom surface of section 1102 a to 1102 d of the clip 1100, respectively, by a layer of conductive adhesive 1404 and/or solder bumps, thereby connecting the electrodes to contact pads 1308 a to 1308 d through legs 1108 a to 1108 d, respectively. The bottom electrode 1204 of the die 1200 is coupled to the top surface 1302 of section 1308 e of the leadframe 1300 by conductive adhesive layer 1406, thereby coupling the electrode 1204 to the bottom contact pad 1310 e.
  • As with FIGS. 2H and 3H, dashed line 1402 shows the boundaries of encapsulated packaged once overmolded and cut. Removal or cutting of connecting sections 1106 electrically isolates clip sections 1102 a, 1102 b, 1102 c and 1102 d from each other, thereby isolating electrodes 1202 a, 1202 b, 1202 c and 1202 d and isolating contact pads 1310 a, 1310 b, 1310 c and 1310 d.
  • FIG. 4I is a top plan view of a packaged semiconductor device 1500. The assembly 1500 of FIG. 4G is encapsulated within a packaging material, with the I/O contacts 1310 a to 1310 e exposed at an underside thereof. In an exemplary embodiment, the encapsulating material is a plastic thermosetting material, such as an epoxy resin described above, formed around the assembly 1400 by injection molding, transfer molding or other like method. For purposes of illustration, a clip 1100′ is shown in phantom. Clip 1100′ is formed by sawing or otherwise removing or cutting connecting sections 1106 of clip 1100, such as after an overmolding process. The edges 1502 of the packaged device 1000 correspond to dashed lines 1402 of FIG. 4H.
  • FIGS. 7A-7H illustrate an alternative wirebond-less packaged semiconductor device. In this embodiment, as described below, the top surface of the die includes only a single electrical connection while the bottom surface of the die includes multiple electrical connections.
  • FIG. 7A is a top plan view of a clip 1700 configured to make an electrical connection to a die having a single top electrode, as may be the case, for example, with some RF transistors, Gallium arsenide devices, and LDMOS devices. FIG. 7B is a side view of clip 1700. Clip 1700 includes main body portion 1702. Openings 1704 are provided through the clip 1700 to function as described above. Main body portion 1702 includes one or more downwardly depending legs 1706 located to make electrical contact with the leadframe (described below) in a packaged semiconductor device.
  • FIG. 7C is a top plan view of an exemplary die 1800 and FIG. 7D is a bottom plan view thereof. Die 1800 includes a top major surface 1801 and a bottom major surface 1803. The top major surface 1801 includes a single electrode 1802 (or group of electrodes that will be shorted by the clip 1700). The bottom surface 1803 includes at least two electrodes, shown as electrodes 1804 ad 1806. In one embodiment, electrode 1804 is a gate electrode, electrode 1806 is a source electrode and electrode 1802 is a drain electrode of a power LDMOS device. Alternatively, electrode 1806 can be a drain electrode and electrode 1802 can be a source electrode.
  • FIG. 7E is a top plan view of a leadframe 1900, and FIG. 7F is a side view thereof taken from the vantage of line 7F-7F, for making electrical connections to the semiconductor die 1800 and clip 1700 discussed above. The leadframe 1900 has a top major surface 1902 and a bottom major surface 1904. The leadframe 1900 is divided into three sections, including a main body section 1906 a and peripheral sections 1906 b and 1906 c, which correspond to electrodes 1806, 1804 and 1802 of die 1800, respectively. The bottom surface of section 1906 a defines contacts 1908 a, which are shown in phantom in FIG. 7E. The bottom surface of section 1906 b defines contact 1908 b. Finally, the bottom surface of section 1906 c defines contact 1908 c. The top major surface of sections 1906 a and 1906 b is shaped to make contact with the bottom surface 1803 of the die 1800, and thus with electrodes 1804 and 1806, respectively. The top surface of section 1906 c is disposed to make contact with leg 1706 of clip 1700, and thus to electrode 1802 of die 1800.
  • The leadframe 1900 includes one or more protruding connecting sections 1910 ac and 1910 ab. As shown in FIG. 7E, connecting sections 1910 ac connect, at least temporarily, sections 1906 a and 1906 c to each other, whereas connecting sections 1910 ab connect sections 1906 a and 1906 b to each other. These section are shaped and located such that they can be severed, such as after molding of the assembly, to electrically isolate sections 1906 a, 1906 b and 1906 c, and thus to electrically isolate I/ O contacts 1908 a, 1908 b and 1908 c from each other.
  • FIG. 7G is a top plan view of a partial assembly 2000 including leadframe 1900 and die 1800 disposed thereover. Clip 1700 is not shown so as to not obscure the features of the die 1800 and leadframe 1900. As can be seen from FIG. 7G, the die 1800 is located over the leadframe 1900 with the electrode 1804 (not shown in FIG. 7G) aligned with section 1906 b of clip 1900, and with electrode 1806 aligned with main section 1906 a.
  • FIG. 7H is a cross-sectional view of a semiconductor device assembly 2100. FIG. 7H shows the assembly after protruding connecting sections 1910 ac and 1910 ab have been removed to electrically isolate sections 1906 a, 1906 b and 1906 c.
  • The electrode 1802 of die 1800 is coupled to the bottom surface of clip 1700 by a layer of conductive adhesive 2106 and/or solder bumps, thereby connecting the electrode 1802 to contact pad 1908 c through leg 1706. As with the assemblies described above, the contact leg 1706 may also be coupled to the leadframe 1900 by the layer of conductive adhesive 2104. The bottom electrodes 1804 and 1806 of the die 1800 are coupled to the top surface 1902 of the leadframe 1900, specifically to sections 1906 c and 1906 a, respectively, of the leadframe 1900 by conductive adhesive layer 2104, thereby coupling the electrodes 1804 and 1806 to the bottom contact pads 1908 b and 1908 a, respectively.
  • As with FIGS. 2H, 3H and 4H, dashed line 2102 shows the boundaries of an encapsulated packaged once overmolded with a capsulation material and cut. Removal or cutting of connecting sections 1910 ab and 1910 ac electrically isolates leadframe sections 1910 a, 1910 b and 1910 c from each other, thereby isolating electrodes 1802, 1804 and 1806 of die 1800 and isolating contact pads 1908 a, 1908 b and 1908 c.
  • While FIGS. 2A-2I, 3A-3I and 4A-4I illustrate embodiments where the leadframe and clip are configured to accommodate a die where the top major surface has multiple electrodes and the bottom major surface has a single electrode, and FIGS. 7A-7H illustrate an embodiment where the top major surface of the die includes a single electrode and the bottom major surface includes multiple electrodes, the connection method and structure therein can be applied to embodiments where both major surfaces of the die have multiple electrodes. In such an embodiment, both the clip and the leadframe would include protruding connecting sections that when cut or severed would electrically isolate sections of the clip and sections of the leadframe. Such an embodiment may be used, for example, where the packaged semiconductor device includes four or more electrically independent I/O contacts.
  • From the foregoing, a packaging method is provided that is low cost and production friendly. The package itself lacks the complexity of prior art packages, providing a robust package and cost savings. Further, the clip is easily configured to any number of die sizes and electrode configurations. The process and package, therefore, are easily scalable to different I/O and die configurations, providing consequent reductions in development costs and time as well as implementation times for new designs.
  • In embodiments where all electrical connections are made to the I/O contacts directly from the die to the leadframe or from the clip to the leadframe without wirebonds, there are no wirebond reliability or failure concerns or impedance matching design issues. The repeatability of the electrical connection (e.g., inductance, resistance and capacitance) helps to improve the repeatability of the impedance matching circuit. Electromagnetic coupling between electrodes is also reduced. Parasitic inductances are lower and more repeatable. Further, there is no need for a cleaning procedure before wirebonding, resulting in a simplified process flow and both time and cost savings. Still further, in embodiments, the top metallization layer of the die need only comprise a surface that is solderable and not one that is also wirebondable.
  • Device performance is also improved, since use of a Cu clip has lower resistance than wirebonds, and thus can conduct more current in high performance devices, replacing the need for not only a wirebond but for multiple wirebonds for carrying the high current.
  • Still further, the packaging scheme is also multi-chip module (MCM) capable, i.e., the package is easily adapted to providing two or more dies per packaged device. For example, more than one power transistor device can be provided per packaged device. The only modifications that are needed to accommodate this MCM design is to the shape of the clip and leadframe. Such modifications are within the skill of those in the art.
  • Though not limited thereto, the design described herein is particularly suited to high frequency power LDMOS devices, such as power RF devices. Although the packaged device has been described above principally in connection with a semiconductor die having a bottom drain electrode with isolated gate and source electrodes on an opposite side thereof, the package and packaging method described above are also applicable to other die configurations, such as where the top surface of the die coupled to the clip is configured to have (i) FET drain and gate only, (ii) FET gate, drain and source, (iii) BJT base and emitter only, (iv) BJT base and collector only, (v) BJT base, collector and emitter, (vi) multiple I/O of an integrated circuit, or (vii) anode and cathode of a diode. The bottom exposed surface can be the (i) FET source only, (ii) FET drain only, (iii) BJT emitter only, (iv) BJT collector only, (v) multiple I/O of an integrated circuit, or finally (vi) no electrode at all, i.e., just bare semiconductor substrate material or metallized semiconductor substrate material
  • Although the invention has been described in terms of exemplary embodiments, it is not limited thereto. Rather, the appended claims should be construed broadly to include other variants and embodiments of the invention that may be made by those skilled in the art without departing from the scope and range of equivalents of the invention.

Claims (26)

1. A wirebond-less packaged semiconductor device comprising:
a plurality of I/O contacts;
at least one semiconductor die, said semiconductor die having a bottom major surface and a top major surface, said top major surface having at least two electrically isolated electrodes; and
a conductive clip system disposed over said top major surface, said clip system comprising at least two electrically isolated sections coupling said electrodes to respective I/O contacts.
2. The semiconductor device of claim 1, further comprising an encapsulating layer, said encapsulating layer at least partially enclosing said die and clip system with said I/O contacts exposed therethrough.
3. The device of claim 2, wherein a top surface of at least a portion of said conductive clip system is exposed through said encapsulating layer.
4. The semiconductor device of claim 1, further comprising a conductive leadframe disposed under said die, said conductive leadframe comprising said plurality of I/O contacts.
5. The device of claim 4, wherein said bottom major surface of said semiconductor die is coupled to said leadframe with a first layer of conductive material, and wherein said top major surface of said semiconductor die is coupled to said clip system with a second layer of conductive material.
6. The device of claim 1, wherein said semiconductor die comprises a power MOSFET device.
7. The device of claim 4, wherein said top major surface of said die comprises a gate electrode and a source electrode and wherein said bottom major surface of said die comprises a drain electrode.
8. The device of claim 4, wherein said top major surface of said die comprises a gate electrode and drain electrode and wherein said bottom major surface of said die comprises a source electrode.
9. The device of claim 1, wherein said semiconductor die comprises a high-frequency power LDMOS device.
10. A wirebond-less packaged semiconductor device comprising:
a conductive leadframe defining a plurality of electrical I/O pads;
at least one semiconductor die, said semiconductor die having a bottom major surface with at least one electrode coupled to at least one of said electrical I/O pads, said at least one semiconductor die further comprising a top major surface having at least two electrically isolated electrodes;
a conductive clip system, said clip system comprising at least two electrically isolated portions coupling said at least two electrically isolated electrodes to respective electrical I/O pads of said leadframe; and
an encapsulating layer, said encapsulating layer at least partially enclosing said leadframe, die and clip system with said I/O pads exposed therethrough.
11. The device of claim 10, wherein said bottom major surface of said semiconductor die is coupled to said leadframe with a first layer of conductive material, and wherein said top major surface of said semiconductor die is coupled to said clip system with a second layer of conductive material.
12. The device of claim 10, wherein said semiconductor die comprises a power MOSFET device.
13. The device of claim 12, wherein (i) said top major surface of said die comprises a gate electrode and a source electrode and wherein said bottom major surface of said die comprises a drain electrode, or (ii) said top major surface of said die comprises a gate electrode and a drain electrode and wherein said bottom major surface of said die comprises a source electrode.
14. The device of claim 10, wherein said semiconductor die comprises a high frequency power LDMOS device.
15. A method of forming a wirebond-less packaged semiconductor device comprising:
providing a conductive leadframe defining a plurality of electrical I/O pads;
providing at least one semiconductor die, said die having a bottom major surface with at least one electrode and a top major surface having at least two electrically isolated electrodes;
coupling said at least one electrode from said bottom surface of said semiconductor die to at least one of said electrical I/O pads;
providing a conductive clip system, said clip system comprising at least two electrically isolated portions;
coupling said at least two electrically isolated electrodes from said top major surface to respective electrical I/O pads of said leadframe with said at least two electrically isolated portions of said clip system; and
at least partially encapsulating said leadframe, die and clip system within an encapsulating layer with said I/O pads exposed therethrough.
16. The method of claim 15, wherein said conductive clip system is initially provided with said electrically isolated portions electrically connected together, the method further comprising the step of cutting a section of said clip system connecting said isolated portion, thereby electrically isolating said portions.
17. The method of claim 15, wherein said cutting step occurs after said encapsulating step.
18. The method of claim 17, wherein said cutting step comprises sawing through said section of said clip system.
19. The method of claim 16, wherein said bottom major surface of said semiconductor die is coupled to said leadframe with a first layer of conductive material, and wherein said top major surface of said semiconductor die is coupled to said clip system with a second layer of conductive material.
20. The method of claim 16, wherein said semiconductor die comprises a power MOSFET device.
21. The method of claim 20, wherein (i) said top major surface of said die comprises a gate electrode and a source electrode and wherein said bottom major surface of said die comprises a drain electrode, or (ii) said top major surface of said die comprises a gate electrode and a drain electrode and wherein said bottom major surface of said die comprises a source electrode.
22. The method of claim 16, wherein said semiconductor die comprises a power LDMOS device.
23. The method of claim 17, wherein said cutting step comprising breaking off or snapping off a section of said clip system to isolate said portions.
24. The method of claim 23, wherein said clip system comprises a pre-weakened region for permitting directed breaking or snapping off.
25. The method of claim 15,
wherein said leadframe is provided in a matrix of individual leadframes,
wherein said conductive clip system is provided in a matrix of individual conductive clip systems, and
wherein said providing said at least one semiconductor die step comprises providing a plurality of semiconductor dies between said matrix of individual leadframes and said matrix of conductive clip systems, said method further comprising,
the method further comprising, after said encapsulating step, the step of cutting said matrixes to form individual packaged semiconductor devices.
26. A wirebond-less packaged semiconductor device comprising:
a conductive leadframe system defining a plurality of electrical I/O contacts;
a semiconductor die, said semiconductor die having a bottom major surface with a plurality of electrically isolated electrodes coupled to respective ones of said electrical I/O pads, said semiconductor die further comprising a top major surface having at least one electrode;
a conductive clip system disposed over said top surface of said die, said clip system comprising a main body portion coupled to said top surface electrode and comprising a downwardly depending leg portion coupling said main body portion to at one of said I/O contacts of said leadframe; and
an encapsulating layer, said encapsulating layer at least partially enclosing said leadframe system, die and clip system with said I/O contacts exposed therethrough.
US11/464,333 2006-08-14 2006-08-14 Wirebond-less semiconductor package Abandoned US20080036078A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/464,333 US20080036078A1 (en) 2006-08-14 2006-08-14 Wirebond-less semiconductor package
US12/966,132 US8304903B2 (en) 2006-08-14 2010-12-13 Wirebond-less semiconductor package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/464,333 US20080036078A1 (en) 2006-08-14 2006-08-14 Wirebond-less semiconductor package

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/966,132 Continuation US8304903B2 (en) 2006-08-14 2010-12-13 Wirebond-less semiconductor package

Publications (1)

Publication Number Publication Date
US20080036078A1 true US20080036078A1 (en) 2008-02-14

Family

ID=39049910

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/464,333 Abandoned US20080036078A1 (en) 2006-08-14 2006-08-14 Wirebond-less semiconductor package
US12/966,132 Active 2027-02-19 US8304903B2 (en) 2006-08-14 2010-12-13 Wirebond-less semiconductor package

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/966,132 Active 2027-02-19 US8304903B2 (en) 2006-08-14 2010-12-13 Wirebond-less semiconductor package

Country Status (1)

Country Link
US (2) US20080036078A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070138634A1 (en) * 2005-12-19 2007-06-21 Ralf Otremba Semiconductor Device Comprising A Vertical Semiconductor Component And Method For Producing The Same
US20080246086A1 (en) * 2005-07-13 2008-10-09 Ciclon Semiconductor Device Corp. Semiconductor devices having charge balanced structure
US20090267145A1 (en) * 2008-04-23 2009-10-29 Ciclon Semiconductor Device Corp. Mosfet device having dual interlevel dielectric thickness and method of making same
US20100072585A1 (en) * 2008-09-25 2010-03-25 Alpha & Omega Semiconductor Incorporated Top exposed clip with window array
US20100171543A1 (en) * 2009-01-08 2010-07-08 Ciclon Semiconductor Device Corp. Packaged power switching device
US20100176508A1 (en) * 2009-01-12 2010-07-15 Ciclon Semiconductor Device Corp. Semiconductor device package and method of assembly thereof
US20110076807A1 (en) * 2007-08-28 2011-03-31 Gomez Jocel P Self locking and aligning clip structure for semiconductor die package
WO2011090574A2 (en) 2010-01-19 2011-07-28 Vishay-Siliconix Semiconductor package and method
CN102097406B (en) * 2009-12-11 2012-10-03 佳邦科技股份有限公司 Encapsulation insulating clad structure of single grain size semiconductor element and clad method
EP2525394A1 (en) * 2011-05-19 2012-11-21 International Rectifier Corporation Thermally enhanced semiconductor package with exposed conductive clip
US8361839B1 (en) * 2009-05-28 2013-01-29 Texas Instruments Incorporated Structure and method for power field effect transistor
TWI395311B (en) * 2009-10-28 2013-05-01 Inpaq Technology Co Ltd Single chip semiconductor coating structure and the precesses thereof
US20140035116A1 (en) * 2010-12-14 2014-02-06 Alpha And Omega Semiconductor Incorporated Top Exposed Semiconductor Chip Package
DE102009044641B4 (en) * 2008-12-02 2015-06-11 Infineon Technologies Ag Device with a semiconductor chip and metal foil and a method for producing the device
US9136256B2 (en) 2014-02-20 2015-09-15 Texas Instruments Incorporated Converter having partially thinned leadframe with stacked chips and interposer, free of wires and clips
US20160064313A1 (en) * 2013-04-11 2016-03-03 Texas Instruments Incorporated Integrating Multi-Output Power Converters Having Vertically Stacked Semiconductor Chips
US20160277017A1 (en) * 2011-09-13 2016-09-22 Fsp Technology Inc. Snubber circuit
US20170207150A1 (en) * 2016-01-19 2017-07-20 Jmj Korea Co., Ltd. Clip-bonded semiconductor chip package using metal bumps and method for manufacturing the package
US10128170B2 (en) 2017-01-09 2018-11-13 Silanna Asia Pte Ltd Conductive clip connection arrangements for semiconductor packages
US11302655B2 (en) * 2018-06-29 2022-04-12 Mitsubishi Electric Corporation Semiconductor device including a semiconductor element and a lead frame with a plurality of holes
TWI814424B (en) * 2022-06-07 2023-09-01 強茂股份有限公司 Thinned semiconductor package and packaging method thereof

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035221B2 (en) * 2007-11-08 2011-10-11 Intersil Americas, Inc. Clip mount for integrated circuit leadframes
US8278756B2 (en) * 2010-02-24 2012-10-02 Inpaq Technology Co., Ltd. Single chip semiconductor coating structure and manufacturing method thereof
TWI453831B (en) 2010-09-09 2014-09-21 台灣捷康綜合有限公司 Semiconductor package and method for making the same
US9171837B2 (en) * 2012-12-17 2015-10-27 Nxp B.V. Cascode circuit
US8884414B2 (en) 2013-01-09 2014-11-11 Texas Instruments Incorporated Integrated circuit module with dual leadframe
US10269688B2 (en) 2013-03-14 2019-04-23 General Electric Company Power overlay structure and method of making same
US9589929B2 (en) 2013-03-14 2017-03-07 Vishay-Siliconix Method for fabricating stack die package
US9966330B2 (en) 2013-03-14 2018-05-08 Vishay-Siliconix Stack die package
US8987876B2 (en) * 2013-03-14 2015-03-24 General Electric Company Power overlay structure and method of making same
US9070721B2 (en) 2013-03-15 2015-06-30 Semiconductor Components Industries, Llc Semiconductor devices and methods of making the same
JP6147588B2 (en) 2013-07-01 2017-06-14 ルネサスエレクトロニクス株式会社 Semiconductor device
US9099452B2 (en) 2013-11-08 2015-08-04 International Rectifier Corporation Semiconductor package with low profile switch node integrated heat spreader
US9570379B2 (en) 2013-12-09 2017-02-14 Infineon Technologies Americas Corp. Power semiconductor package with integrated heat spreader and partially etched conductive carrier
US9653386B2 (en) 2014-10-16 2017-05-16 Infineon Technologies Americas Corp. Compact multi-die power semiconductor package
US9620475B2 (en) 2013-12-09 2017-04-11 Infineon Technologies Americas Corp Array based fabrication of power semiconductor package with integrated heat spreader
JP2015144217A (en) * 2014-01-31 2015-08-06 株式会社東芝 Connector frame and semiconductor device
US9647329B2 (en) 2014-04-09 2017-05-09 Texas Instruments Incorporated Encapsulated molded package with embedded antenna for high data rate communication using a dielectric waveguide
DE102016107792B4 (en) 2016-04-27 2022-01-27 Infineon Technologies Ag Pack and semi-finished product with a vertical connection between support and bracket and method of making a pack and a batch of packs
US10727151B2 (en) * 2017-05-25 2020-07-28 Infineon Technologies Ag Semiconductor chip package having a cooling surface and method of manufacturing a semiconductor package
US10964629B2 (en) 2019-01-18 2021-03-30 Texas Instruments Incorporated Siderail with mold compound relief
JP7266508B2 (en) * 2019-10-21 2023-04-28 ルネサスエレクトロニクス株式会社 semiconductor equipment
JP2021150334A (en) 2020-03-16 2021-09-27 株式会社東芝 Semiconductor device and manufacturing method of the same
US20220208686A1 (en) * 2020-12-30 2022-06-30 UTAC Headquarters Pte. Ltd. Semiconductor Device and Method of Forming Leadframe with Clip Bond for Electrical Interconnect
DE102021125780A1 (en) 2021-10-05 2023-04-06 Infineon Technologies Ag SEGMENTED LEADFRAME FOR FLIP-CHIP ATTACHMENT OF A SEMICONDUCTOR CHIP WITH PREVENTION OF THE CHIP'S TILTING

Citations (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625226A (en) * 1994-09-19 1997-04-29 International Rectifier Corporation Surface mount package with improved heat transfer
US5811850A (en) * 1994-10-14 1998-09-22 Texas Instruments Incorporated LDMOS transistors, systems and methods
US5977630A (en) * 1997-08-15 1999-11-02 International Rectifier Corp. Plural semiconductor die housed in common package with split heat sink
US6040626A (en) * 1998-09-25 2000-03-21 International Rectifier Corp. Semiconductor package
US6075286A (en) * 1997-06-02 2000-06-13 International Rectifier Corporation Stress clip design
US6242800B1 (en) * 1997-03-12 2001-06-05 International Rectifier Corp. Heat dissipating device package
US6249041B1 (en) * 1998-06-02 2001-06-19 Siliconix Incorporated IC chip package with directly connected leads
US6319755B1 (en) * 1999-12-01 2001-11-20 Amkor Technology, Inc. Conductive strap attachment process that allows electrical connector between an integrated circuit die and leadframe
US20010052639A1 (en) * 2000-06-13 2001-12-20 Fairchild Korea Semiconductor Ltd. Power module package having insulator type heat sink attached to rear surface of lead frame and manufacturing method thereof
US6396127B1 (en) * 1998-09-25 2002-05-28 International Rectifier Corporation Semiconductor package
US20020066950A1 (en) * 2000-12-04 2002-06-06 Fairchild Semiconductor Corporation Flip chip in leaded molded package with two dies
US6404050B2 (en) * 1996-10-24 2002-06-11 International Rectifier Corporation Commonly housed diverse semiconductor
US6482680B1 (en) * 2001-07-20 2002-11-19 Carsem Semiconductor Sdn, Bhd. Flip-chip on lead frame
US6489678B1 (en) * 1998-08-05 2002-12-03 Fairchild Semiconductor Corporation High performance multi-chip flip chip package
US20030011005A1 (en) * 2001-02-01 2003-01-16 Fairchild Semiconductor Corporation Unmolded package for a semiconductor device
USD471165S1 (en) * 2001-05-15 2003-03-04 Gem Services, Inc. Surface mount package
USD472528S1 (en) * 2001-10-31 2003-04-01 Siliconix Incorporated Semiconductor chip package
US20030075786A1 (en) * 2001-10-22 2003-04-24 Fairchild Semiconductor Corporation Thin, thermally enhanced flip chip in a leaded molded package
US6586824B1 (en) * 2001-07-26 2003-07-01 Amkor Technology, Inc. Reduced thickness packaged electronic device
US6593622B2 (en) * 2001-05-02 2003-07-15 International Rectifier Corporation Power mosfet with integrated drivers in a common package
US6611047B2 (en) * 2001-10-12 2003-08-26 Amkor Technology, Inc. Semiconductor package with singulation crease
US6617655B1 (en) * 2002-04-05 2003-09-09 Fairchild Semiconductor Corporation MOSFET device with multiple gate contacts offset from gate contact area and over source area
US6627976B1 (en) * 1999-10-15 2003-09-30 Amkor Technology, Inc. Leadframe for semiconductor package and mold for molding the same
US6630726B1 (en) * 2001-11-07 2003-10-07 Amkor Technology, Inc. Power semiconductor package with strap
US6639308B1 (en) * 1999-12-16 2003-10-28 Amkor Technology, Inc. Near chip size semiconductor package
US6646329B2 (en) * 2001-05-15 2003-11-11 Fairchild Semiconductor, Inc. Power chip scale package
US6645791B2 (en) * 2001-04-23 2003-11-11 Fairchild Semiconductor Semiconductor die package including carrier with mask
US6653740B2 (en) * 2000-02-10 2003-11-25 International Rectifier Corporation Vertical conduction flip-chip device with bump contacts on single surface
US6661082B1 (en) * 2000-07-19 2003-12-09 Fairchild Semiconductor Corporation Flip chip substrate design
US6677663B1 (en) * 1999-12-30 2004-01-13 Amkor Technology, Inc. End grid array semiconductor package
US6677669B2 (en) * 2002-01-18 2004-01-13 International Rectifier Corporation Semiconductor package including two semiconductor die disposed within a common clip
US6696747B1 (en) * 1999-10-15 2004-02-24 Amkor Technology, Inc. Semiconductor package having reduced thickness
US6700187B2 (en) * 2001-03-27 2004-03-02 Amkor Technology, Inc. Semiconductor package and method for manufacturing the same
US6707138B2 (en) * 1999-12-01 2004-03-16 Amkor Technology, Inc. Semiconductor device including metal strap electrically coupled between semiconductor die and metal leadframe
US6713322B2 (en) * 2001-03-27 2004-03-30 Amkor Technology, Inc. Lead frame for semiconductor package
US6723582B2 (en) * 2000-12-07 2004-04-20 Amkor Technology, Inc. Method of making a semiconductor package having exposed metal strap
US6744124B1 (en) * 1999-12-10 2004-06-01 Siliconix Incorporated Semiconductor die package including cup-shaped leadframe
US6753605B2 (en) * 2000-12-04 2004-06-22 Fairchild Semiconductor Corporation Passivation scheme for bumped wafers
US6756658B1 (en) * 2001-04-06 2004-06-29 Amkor Technology, Inc. Making two lead surface mounting high power microleadframe semiconductor packages
US6762067B1 (en) * 2000-01-18 2004-07-13 Fairchild Semiconductor Corporation Method of packaging a plurality of devices utilizing a plurality of lead frames coupled together by rails
US6818973B1 (en) * 2002-09-09 2004-11-16 Amkor Technology, Inc. Exposed lead QFP package fabricated through the use of a partial saw process
US6838309B1 (en) * 2002-03-13 2005-01-04 Amkor Technology, Inc. Flip-chip micromachine package using seal layer
US6844615B1 (en) * 2003-03-13 2005-01-18 Amkor Technology, Inc. Leadframe package for semiconductor devices
US6847103B1 (en) * 1999-11-09 2005-01-25 Amkor Technology, Inc. Semiconductor package with exposed die pad and body-locking leadframe
US6853060B1 (en) * 2003-04-22 2005-02-08 Amkor Technology, Inc. Semiconductor package using a printed circuit board and a method of manufacturing the same
US6858919B2 (en) * 2000-03-25 2005-02-22 Amkor Technology, Inc. Semiconductor package
US7285849B2 (en) * 2005-11-18 2007-10-23 Fairchild Semiconductor Corporation Semiconductor die package using leadframe and clip and method of manufacturing

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410989B1 (en) 1999-01-04 2002-06-25 International Rectifier Corporation Chip-scale package
JP3062192B1 (en) 1999-09-01 2000-07-10 松下電子工業株式会社 Lead frame and method of manufacturing resin-encapsulated semiconductor device using the same
US6262489B1 (en) 1999-11-08 2001-07-17 Delphi Technologies, Inc. Flip chip with backside electrical contact and assembly and method therefor
KR100426494B1 (en) 1999-12-20 2004-04-13 앰코 테크놀로지 코리아 주식회사 Semiconductor package and its manufacturing method
DE10101086B4 (en) 2000-01-12 2007-11-08 International Rectifier Corp., El Segundo Power module unit
US6396138B1 (en) 2000-02-15 2002-05-28 International Rectifier Corporation Chip array with two-sided cooling
AU2001247631A1 (en) 2000-03-22 2001-10-03 International Rectifier Corporation Gate driver multi-chip module
US6465875B2 (en) 2000-03-27 2002-10-15 International Rectifier Corporation Semiconductor device package with plural pad lead frame
US6448643B2 (en) 2000-05-24 2002-09-10 International Rectifier Corporation Three commonly housed diverse semiconductor dice
JP3619773B2 (en) * 2000-12-20 2005-02-16 株式会社ルネサステクノロジ Manufacturing method of semiconductor device
US6816945B2 (en) * 2001-08-03 2004-11-09 International Business Machines Corporation Quiesce system storage device and method in a dual active controller with cache coherency using stripe locks for implied storage volume reservations
US6784540B2 (en) 2001-10-10 2004-08-31 International Rectifier Corp. Semiconductor device package with improved cooling
US6841414B1 (en) 2002-06-19 2005-01-11 Amkor Technology, Inc. Saw and etch singulation method for a chip package
US6946740B2 (en) 2002-07-15 2005-09-20 International Rectifier Corporation High power MCM package
US6777800B2 (en) * 2002-09-30 2004-08-17 Fairchild Semiconductor Corporation Semiconductor die package including drain clip
US6773964B2 (en) 2002-09-30 2004-08-10 Koninklijke Philips Electronics N.V. Integrated circuit package including sealed gaps and prevention of vapor induced failures and method of manufacturing the same
US7061085B2 (en) 2003-09-19 2006-06-13 Micron Technology, Inc. Semiconductor component and system having stiffener and circuit decal

Patent Citations (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625226A (en) * 1994-09-19 1997-04-29 International Rectifier Corporation Surface mount package with improved heat transfer
US5811850A (en) * 1994-10-14 1998-09-22 Texas Instruments Incorporated LDMOS transistors, systems and methods
US6404050B2 (en) * 1996-10-24 2002-06-11 International Rectifier Corporation Commonly housed diverse semiconductor
US6242800B1 (en) * 1997-03-12 2001-06-05 International Rectifier Corp. Heat dissipating device package
US6075286A (en) * 1997-06-02 2000-06-13 International Rectifier Corporation Stress clip design
US5977630A (en) * 1997-08-15 1999-11-02 International Rectifier Corp. Plural semiconductor die housed in common package with split heat sink
US6249041B1 (en) * 1998-06-02 2001-06-19 Siliconix Incorporated IC chip package with directly connected leads
US20030122247A1 (en) * 1998-08-05 2003-07-03 Fairchild Semiconductor Corporation High performance multi-chip flip chip package
US6696321B2 (en) * 1998-08-05 2004-02-24 Fairchild Semiconductor, Corporation High performance multi-chip flip chip package
US20030107126A1 (en) * 1998-08-05 2003-06-12 Fairchild Semiconductor Corporation High performance multi-chip flip chip package
US6489678B1 (en) * 1998-08-05 2002-12-03 Fairchild Semiconductor Corporation High performance multi-chip flip chip package
US20040159939A1 (en) * 1998-08-05 2004-08-19 Fairchild Semiconductor Corporation High performance multi-chip flip chip package
US6396127B1 (en) * 1998-09-25 2002-05-28 International Rectifier Corporation Semiconductor package
US6040626A (en) * 1998-09-25 2000-03-21 International Rectifier Corp. Semiconductor package
US6696747B1 (en) * 1999-10-15 2004-02-24 Amkor Technology, Inc. Semiconductor package having reduced thickness
US6627976B1 (en) * 1999-10-15 2003-09-30 Amkor Technology, Inc. Leadframe for semiconductor package and mold for molding the same
US6847103B1 (en) * 1999-11-09 2005-01-25 Amkor Technology, Inc. Semiconductor package with exposed die pad and body-locking leadframe
US6319755B1 (en) * 1999-12-01 2001-11-20 Amkor Technology, Inc. Conductive strap attachment process that allows electrical connector between an integrated circuit die and leadframe
US6707138B2 (en) * 1999-12-01 2004-03-16 Amkor Technology, Inc. Semiconductor device including metal strap electrically coupled between semiconductor die and metal leadframe
US6744124B1 (en) * 1999-12-10 2004-06-01 Siliconix Incorporated Semiconductor die package including cup-shaped leadframe
US6639308B1 (en) * 1999-12-16 2003-10-28 Amkor Technology, Inc. Near chip size semiconductor package
US6677663B1 (en) * 1999-12-30 2004-01-13 Amkor Technology, Inc. End grid array semiconductor package
US6762067B1 (en) * 2000-01-18 2004-07-13 Fairchild Semiconductor Corporation Method of packaging a plurality of devices utilizing a plurality of lead frames coupled together by rails
US6653740B2 (en) * 2000-02-10 2003-11-25 International Rectifier Corporation Vertical conduction flip-chip device with bump contacts on single surface
US6858919B2 (en) * 2000-03-25 2005-02-22 Amkor Technology, Inc. Semiconductor package
US20010052639A1 (en) * 2000-06-13 2001-12-20 Fairchild Korea Semiconductor Ltd. Power module package having insulator type heat sink attached to rear surface of lead frame and manufacturing method thereof
US6661082B1 (en) * 2000-07-19 2003-12-09 Fairchild Semiconductor Corporation Flip chip substrate design
US6753605B2 (en) * 2000-12-04 2004-06-22 Fairchild Semiconductor Corporation Passivation scheme for bumped wafers
US20020066950A1 (en) * 2000-12-04 2002-06-06 Fairchild Semiconductor Corporation Flip chip in leaded molded package with two dies
US6723582B2 (en) * 2000-12-07 2004-04-20 Amkor Technology, Inc. Method of making a semiconductor package having exposed metal strap
US20030011005A1 (en) * 2001-02-01 2003-01-16 Fairchild Semiconductor Corporation Unmolded package for a semiconductor device
US20040164386A1 (en) * 2001-02-01 2004-08-26 Fairchild Semiconductor Corporation Unmolded package for a semiconductor device
US6713322B2 (en) * 2001-03-27 2004-03-30 Amkor Technology, Inc. Lead frame for semiconductor package
US6700187B2 (en) * 2001-03-27 2004-03-02 Amkor Technology, Inc. Semiconductor package and method for manufacturing the same
US6846704B2 (en) * 2001-03-27 2005-01-25 Amkor Technology, Inc. Semiconductor package and method for manufacturing the same
US6756658B1 (en) * 2001-04-06 2004-06-29 Amkor Technology, Inc. Making two lead surface mounting high power microleadframe semiconductor packages
US6645791B2 (en) * 2001-04-23 2003-11-11 Fairchild Semiconductor Semiconductor die package including carrier with mask
US6593622B2 (en) * 2001-05-02 2003-07-15 International Rectifier Corporation Power mosfet with integrated drivers in a common package
US6646329B2 (en) * 2001-05-15 2003-11-11 Fairchild Semiconductor, Inc. Power chip scale package
USD471165S1 (en) * 2001-05-15 2003-03-04 Gem Services, Inc. Surface mount package
US6482680B1 (en) * 2001-07-20 2002-11-19 Carsem Semiconductor Sdn, Bhd. Flip-chip on lead frame
US6586824B1 (en) * 2001-07-26 2003-07-01 Amkor Technology, Inc. Reduced thickness packaged electronic device
US6611047B2 (en) * 2001-10-12 2003-08-26 Amkor Technology, Inc. Semiconductor package with singulation crease
US20030075786A1 (en) * 2001-10-22 2003-04-24 Fairchild Semiconductor Corporation Thin, thermally enhanced flip chip in a leaded molded package
USD472528S1 (en) * 2001-10-31 2003-04-01 Siliconix Incorporated Semiconductor chip package
US6873041B1 (en) * 2001-11-07 2005-03-29 Amkor Technology, Inc. Power semiconductor package with strap
US6630726B1 (en) * 2001-11-07 2003-10-07 Amkor Technology, Inc. Power semiconductor package with strap
US6677669B2 (en) * 2002-01-18 2004-01-13 International Rectifier Corporation Semiconductor package including two semiconductor die disposed within a common clip
US6838309B1 (en) * 2002-03-13 2005-01-04 Amkor Technology, Inc. Flip-chip micromachine package using seal layer
US6617655B1 (en) * 2002-04-05 2003-09-09 Fairchild Semiconductor Corporation MOSFET device with multiple gate contacts offset from gate contact area and over source area
US6818973B1 (en) * 2002-09-09 2004-11-16 Amkor Technology, Inc. Exposed lead QFP package fabricated through the use of a partial saw process
US6844615B1 (en) * 2003-03-13 2005-01-18 Amkor Technology, Inc. Leadframe package for semiconductor devices
US6853060B1 (en) * 2003-04-22 2005-02-08 Amkor Technology, Inc. Semiconductor package using a printed circuit board and a method of manufacturing the same
US7285849B2 (en) * 2005-11-18 2007-10-23 Fairchild Semiconductor Corporation Semiconductor die package using leadframe and clip and method of manufacturing

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080246086A1 (en) * 2005-07-13 2008-10-09 Ciclon Semiconductor Device Corp. Semiconductor devices having charge balanced structure
US8692324B2 (en) 2005-07-13 2014-04-08 Ciclon Semiconductor Device Corp. Semiconductor devices having charge balanced structure
US7589413B2 (en) * 2005-12-19 2009-09-15 Infineon Technologies Ag Semiconductor device comprising a vertical semiconductor component and method for producing the same
US20070138634A1 (en) * 2005-12-19 2007-06-21 Ralf Otremba Semiconductor Device Comprising A Vertical Semiconductor Component And Method For Producing The Same
US20110076807A1 (en) * 2007-08-28 2011-03-31 Gomez Jocel P Self locking and aligning clip structure for semiconductor die package
US8067273B2 (en) * 2007-08-28 2011-11-29 Fairchild Semiconductor Corporation Self locking and aligning clip structure for semiconductor die package
US20090267145A1 (en) * 2008-04-23 2009-10-29 Ciclon Semiconductor Device Corp. Mosfet device having dual interlevel dielectric thickness and method of making same
US8373257B2 (en) * 2008-09-25 2013-02-12 Alpha & Omega Semiconductor Incorporated Top exposed clip with window array
US20100072585A1 (en) * 2008-09-25 2010-03-25 Alpha & Omega Semiconductor Incorporated Top exposed clip with window array
DE102009044641B4 (en) * 2008-12-02 2015-06-11 Infineon Technologies Ag Device with a semiconductor chip and metal foil and a method for producing the device
US20100171543A1 (en) * 2009-01-08 2010-07-08 Ciclon Semiconductor Device Corp. Packaged power switching device
US8049312B2 (en) 2009-01-12 2011-11-01 Texas Instruments Incorporated Semiconductor device package and method of assembly thereof
US20100176508A1 (en) * 2009-01-12 2010-07-15 Ciclon Semiconductor Device Corp. Semiconductor device package and method of assembly thereof
US8361839B1 (en) * 2009-05-28 2013-01-29 Texas Instruments Incorporated Structure and method for power field effect transistor
TWI395311B (en) * 2009-10-28 2013-05-01 Inpaq Technology Co Ltd Single chip semiconductor coating structure and the precesses thereof
CN102097406B (en) * 2009-12-11 2012-10-03 佳邦科技股份有限公司 Encapsulation insulating clad structure of single grain size semiconductor element and clad method
WO2011090574A2 (en) 2010-01-19 2011-07-28 Vishay-Siliconix Semiconductor package and method
EP2526565A2 (en) * 2010-01-19 2012-11-28 Vishay-Siliconix Semiconductor package and method
EP2526565A4 (en) * 2010-01-19 2014-03-05 Vishay Siliconix Semiconductor package and method
US9412684B2 (en) * 2010-12-14 2016-08-09 Alpha And Omega Semiconductor Incorporated Top exposed semiconductor chip package
US20140035116A1 (en) * 2010-12-14 2014-02-06 Alpha And Omega Semiconductor Incorporated Top Exposed Semiconductor Chip Package
US20130337611A1 (en) * 2011-05-19 2013-12-19 International Rectifier Corporation Thermally Enhanced Semiconductor Package with Conductive Clip
US8987051B2 (en) * 2011-05-19 2015-03-24 International Rectifier Corporation Thermally enhanced semiconductor package with conductive clip
US8531016B2 (en) 2011-05-19 2013-09-10 International Rectifier Corporation Thermally enhanced semiconductor package with exposed parallel conductive clip
US8970021B2 (en) 2011-05-19 2015-03-03 International Rectifier Corporation Thermally enhanced semiconductor package
EP2525394A1 (en) * 2011-05-19 2012-11-21 International Rectifier Corporation Thermally enhanced semiconductor package with exposed conductive clip
US20160277017A1 (en) * 2011-09-13 2016-09-22 Fsp Technology Inc. Snubber circuit
US9653388B2 (en) * 2013-04-11 2017-05-16 Texas Instruments Incorporated Integrating multi-output power converters having vertically stacked semiconductor chips
US20160064313A1 (en) * 2013-04-11 2016-03-03 Texas Instruments Incorporated Integrating Multi-Output Power Converters Having Vertically Stacked Semiconductor Chips
US9355991B2 (en) * 2013-04-11 2016-05-31 Texas Instruments Incorporated Integrating multi-output devices having vertically stacked semiconductor chips
US9136256B2 (en) 2014-02-20 2015-09-15 Texas Instruments Incorporated Converter having partially thinned leadframe with stacked chips and interposer, free of wires and clips
US20170207150A1 (en) * 2016-01-19 2017-07-20 Jmj Korea Co., Ltd. Clip-bonded semiconductor chip package using metal bumps and method for manufacturing the package
US10128170B2 (en) 2017-01-09 2018-11-13 Silanna Asia Pte Ltd Conductive clip connection arrangements for semiconductor packages
US10490489B2 (en) 2017-01-09 2019-11-26 Silanna Asia Pte Ltd Conductive clip connection arrangements for semiconductor packages
US11302655B2 (en) * 2018-06-29 2022-04-12 Mitsubishi Electric Corporation Semiconductor device including a semiconductor element and a lead frame with a plurality of holes
TWI814424B (en) * 2022-06-07 2023-09-01 強茂股份有限公司 Thinned semiconductor package and packaging method thereof

Also Published As

Publication number Publication date
US8304903B2 (en) 2012-11-06
US20110095411A1 (en) 2011-04-28

Similar Documents

Publication Publication Date Title
US8304903B2 (en) Wirebond-less semiconductor package
US9824949B2 (en) Packaging solutions for devices and systems comprising lateral GaN power transistors
US9589869B2 (en) Packaging solutions for devices and systems comprising lateral GaN power transistors
US7504733B2 (en) Semiconductor die package
US8389336B2 (en) Semiconductor device package and method of assembly thereof
US7605451B2 (en) RF power transistor having an encapsulated chip package
US6590281B2 (en) Crack-preventive semiconductor package
US9218987B2 (en) Method for top-side cooled semiconductor package with stacked interconnection plates
US7208818B2 (en) Power semiconductor package
US6756658B1 (en) Making two lead surface mounting high power microleadframe semiconductor packages
US20080017998A1 (en) Semiconductor component and method of manufacture
US8314489B2 (en) Semiconductor module and method for production thereof
US20100052149A1 (en) Semiconductor device and method of manufacturing the same
US20090261462A1 (en) Semiconductor package with stacked die assembly
US20080290487A1 (en) Lead frame for semiconductor device
US20230123782A1 (en) Method of manufacture for a cascode semiconductor device
US11676879B2 (en) Semiconductor package having a chip carrier and a metal plate sized independently of the chip carrier
US8574961B2 (en) Method of marking a low profile packaged semiconductor device
US20230178428A1 (en) Leaded semiconductor package formation using lead frame with structured central pad
US20230136784A1 (en) Semiconductor device package with thermal pad
US11450593B2 (en) Spacer frame for semiconductor packages
US20230223320A1 (en) Semiconductor device package and method for manufacturing the same
US20230187327A1 (en) Leadless semiconductor package with internal gull wing lead structures
US20230245942A1 (en) Semiconductor device package with integral heat slug
US20230170329A1 (en) Semiconductor package with metal posts from structured leadframe

Legal Events

Date Code Title Description
AS Assignment

Owner name: CICLON SEMICONDUCTOR DEVICE CORP., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HERBSOMMER, JUAN ALEJANDRO;PRZBYLEK, GEORGE J.;LOPEZ, OSVALDO J.;REEL/FRAME:018102/0507

Effective date: 20060810

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION