US20080016677A1 - Rotating and pivoting magnet for magnetic navigation - Google Patents

Rotating and pivoting magnet for magnetic navigation Download PDF

Info

Publication number
US20080016677A1
US20080016677A1 US11/650,856 US65085607A US2008016677A1 US 20080016677 A1 US20080016677 A1 US 20080016677A1 US 65085607 A US65085607 A US 65085607A US 2008016677 A1 US2008016677 A1 US 2008016677A1
Authority
US
United States
Prior art keywords
magnet
magnet assembly
segments
operating point
assembled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/650,856
Inventor
Francis Creighton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stereotaxis Inc
Original Assignee
Stereotaxis Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/056,227 external-priority patent/US6975197B2/en
Application filed by Stereotaxis Inc filed Critical Stereotaxis Inc
Priority to US11/650,856 priority Critical patent/US20080016677A1/en
Publication of US20080016677A1 publication Critical patent/US20080016677A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0273Magnetic circuits with PM for magnetic field generation
    • H01F7/0278Magnetic circuits with PM for magnetic field generation for generating uniform fields, focusing, deflecting electrically charged particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/73Manipulators for magnetic surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/73Manipulators for magnetic surgery
    • A61B2034/731Arrangement of the coils or magnets
    • A61B2034/732Arrangement of the coils or magnets arranged around the patient, e.g. in a gantry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/73Manipulators for magnetic surgery
    • A61B2034/731Arrangement of the coils or magnets
    • A61B2034/733Arrangement of the coils or magnets arranged only on one side of the patient, e.g. under a table
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/12Devices for detecting or locating foreign bodies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49075Electromagnet, transformer or inductor including permanent magnet or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49075Electromagnet, transformer or inductor including permanent magnet or core
    • Y10T29/49078Laminated

Definitions

  • This invention relates to magnet medical procedures, and in particular to a magnet useful in navigating magnetic medical devices in the body.
  • Electromagnets and permanent magnets have been developed for moving magnet medical devices in the body. Some magnets used in medical applications apply a gradient to pull magnet medical devices within the body. Other magnets used in medical applications simply apply a magnetic field in a selected direction to align magnetic medical devices in the selected direction. Still other magnets apply both a magnetic field and a magnetic gradient to simultaneously orient and move a magnetic medical device.
  • Electromagnets and in particular superconducting electromagnets can create strong magnet fields and gradients, but they are expensive to construct and operate.
  • a focused permanent magnet has been developed which can create useful magnet fields at sufficient distances from the magnet to be employed in magnet surgery.
  • the magnet is comprised of a plurality of segments each magnetized in a direction to contribute to the desired magnetic property, for example field strength at an operating point spaced in front of a magnet.
  • a third design criteria is to minimize the degrees of freedom of magnet motion to provide a universally directed magnetic field. The fewer degrees of freedom of magnet motion needed, the simpler the navigation, and the less expensive the apparatus for moving the magnet.
  • the present invention relates to a magnet, and to a magnet system that is capable of generating useful magnet fields in virtually any direction, at distances from the magnet sufficient to conduct medical procedures in the patient's body.
  • the magnet is designed so that a magnetic field can be generated in virtually any direction with a minimum amount of movement so that the exclusion zone—the zone from which the patient and other medical equipment and personnel cannot be located—or the inclusion zone—the zone that the magnet occupies—is minimized.
  • the magnet of the present invention comprises a plurality of magnet segments each magnetized in direction to optimize the magnetic field at an operating point spaced from the magnet.
  • the magnet is adapted to pivot about a first axis spaced behind the magnet, and to rotate about a generally horizontal axis. Through a combination of pivoting and rotating the magnet can project a magnetic field at the operating point in virtually any direction of sufficient strength to be useful.
  • the shape of the magnet is determined to minimize the inclusion zone, which in the preferred embodiment is a horizontal cylinder, with a beveled edge on the forward face.
  • FIG. 1A is a front elevation view of a magnet constructed according to the principles of this invention.
  • FIG. 1B is a right side elevation view of the magnet
  • FIG. 1C is a top plan view thereof
  • FIG. 1D is a front perspective view thereof
  • FIG. 1E is a rear perspective view thereof
  • FIG. 2A is a perspective view of a support for pivoting and rotating a magnet in accordance with the principles of this invention, with the magnet in a first position;
  • FIG. 2B is a perspective view of a support for pivoting and rotating a magnet in accordance with the principles of this invention, with the magnet pivoted to a second position;
  • FIG. 3A is a perspective view of a housing containing the magnet and support
  • FIG. 3B is a front elevation view of the housing
  • FIG. 3C is a right side elevation view of the housing
  • FIG. 3D is a top plan view of the housing
  • FIG. 4A is a perspective view of one quadrant of a magnet block, with several surfaces of equal contribution (represented in wire frame) superposed thereon;
  • FIG. 4B is a top plan view of one quadrant of a magnet block with several surfaces of equal contribution
  • FIG. 4C is a right side elevation view of one quadrant of a magnet block with several surfaces of equal contribution
  • FIG. 4D is a rear elevation view of one quadrant of a magnet block with several surface of equal contribution.
  • FIG. 5 is a perspective view of the inclusion volume of a magnet constructed according to the principles of this invention, showing the magnet generally centered within the inclusion volume;
  • FIG. 6 is a front elevation view of the exclusion volume with the magnet in its centered position
  • FIG. 7 is a right side elevation view of the exclusion volume with the magnet in its centered position
  • FIG. 8 is a top plan view of the exclusion volume with the magnet in its centered position
  • FIG. 9 is a perspective view of the inclusion volume, with the magnet pivoted to the left about the z axis;
  • FIG. 10 is front elevation view of the inclusion volume of the magnet, with the magnet pivoted to the left;
  • FIG. 11 is a right side elevation view of the inclusion volume, with the magnet pivoted to the left;
  • FIG. 12 is a top plan view of the inclusion volume, with the magnet pivoted to the left;
  • FIG. 13 is a top plan view of a magnet constructed according to the principles of this invention, showing the local magnetic field directions in the space surrounding the magnet;
  • FIG. 14 is a horizontal cross sectional view of one half of a magnet constructed according to the principles of this invention (the other half being a mirror image thereof), showing the magnetization directions of the segments comprising the magnet, and the local field directions surrounding the magnet and lines of constant magnetic field strength;
  • FIG. 15 is a graph of maximum coning angle versus distance from the magnet
  • FIG. 16 is a perspective view of a magnetic surgery system incorporating a magnet constructed according to the principles of this invention.
  • FIG. 17 is a perspective view of a magnetic surgery system incorporating two magnets constructed according to the principles of this invention.
  • a magnet constructed according to the principles of this invention is indicated generally as 20 in FIGS. 1A through 1E .
  • the magnet 20 comprises a generally cylindrical front face 22 and a back face 24 . There are left top face 26 and a right top face 28 , and a left bottom face 30 and a right bottom face 32 .
  • the magnet 20 preferably comprises a plurality of parallel bands or segments of permanent magnetic material extending from top to bottom. The magnetization direction of each segment is preferably selected to generally optimize the magnet field at a magnet operating point spaced from the center of the front face of the magnet. This magnet operating point is a design criteria of the magnet.
  • the magnet operating point may be selected closer to the surface of the magnet, for applications where a magnetic field is to be applied relatively far from the magnet, such as cardiac applications, the magnet operating point may be selected further from the surface of the magnet.
  • the magnet operating point is 13 inches from the center of the front face of the magnet. This represents a reasonable compromise to provide a magnet useful for both neurology and cardiac applications.
  • the magnet could be optimized for some other operating point closer to or further from the front face of the magnet.
  • the magnet 20 is preferably mounted for pivoting about a first axis A 1 , generally parallel to the vertical axis of the magnet.
  • upper and lower arms 34 and 36 project from the back surface 24 of the magnet 20 .
  • a cylindrical post 38 extends between the arms 34 and 36 , and is journaled in a sleeve 40 .
  • the magnet is preferably also mounted for rotation about a second axis A 2 , that is generally horizontal, and that is perpendicular to, and intersects with, axis A 1 .
  • a sleeve 42 extends perpendicularly to sleeve 40 , and is journaled around a horizontal arbor 44 .
  • any other mechanism for mounting the magnet 20 to pivot about a first axis, and rotate about a second axis, and in particular to pivot about a first axis that rotates about a second axis can be used.
  • the axis A 1 is fifteen inches from the front face of the magnet 20 .
  • FIGS. 3A through 3D A housing 50 for containing the magnet and structure for pivoting and rotating the magnet is shown in FIGS. 3A through 3D .
  • the housing 50 contains the magnet and mechanism so that it is isolated from the procedure. Furthermore, the housing 50 eliminates moving parts from the procedure site, so that the system is less intimidating to the patients, and does not present any hazard to anyone at the procedure site.
  • the housing 50 accommodates the inclusion zone of the magnet 20 .
  • the magnet 20 is adapted to pivot about an axis A 1 generally behind the magnet.
  • the radius of curvature of the generally cylindrical front face 22 corresponds to the distance between the front face and the pivot axis (15 inches in this preferred embodiment).
  • the back face of the magnet is shaped in accordance with a surface of constant contribution to the magnetic field at the operating point. Material on such a surface contributes equally to the magnetic field at the operating point, regardless of its position on the surface. By selecting the appropriate surface of constant contribution to achieve the desired magnet size and strength, an excluding material that would lie beyond the surface, the weight of the magnet can be optimized for its selected magnetic properties.
  • a constant contribution force can be calculated or plotted by maximizing the contribution to a particular magnet property at the magnet's operating point, for example the transfer field at the magnet's operating point, and determining the surface of points that contribute equally to the selected magnetic property.
  • the superposition of several such surfaces of constant contribution is shown in FIGS. 4A through 4D .
  • various surfaces of constant contribution S 1 , S 2 , S 3 , S 4 , S 5 , and S 6 are shown, and the final shape of back side of the magnet is determined based upon the constant contribution surface that leaves sufficient magnetic material to achieve the desired field strength, gradient, or field gradient product, while keeping the weight low.
  • the magnet is capable of producing a field of at least about 0.4 T at an application point at least 13 inches from the surface of the magnet, or about 0.1 T at an application point of 7.5 inches from the surface of the magnet, yet weights less than about 500 pounds.
  • An important design criteria for the magnet 20 is its inclusion volume, which represents the combination of all of the volumes that the magnet occupies throughout all of the desired possible orientations of the magnet, i.e., all of the desired pivots and rotations.
  • the inclusion volume of a magnet constructed according to the principles of this invention is shown in FIGS. 5 through 8 , with the magnet in a first position within its exclusion zone, and in FIGS. 9 through 12 with the magnet 20 in a second position within its exclusion zone, pivoted 35°, which because of the design of the magnet described above, results in a magnetic field direction shift of 90° at the system's operation point.
  • the system's operation point is a design element, and in this preferred embodiment is thirteen inches from the center of the front face of the inclusion volume, which corresponds to thirteen inches from the center of the front face of the housing 50 .
  • the magnet's operation point and the system's operation point correspond when the magnet 20 is in its centered position in its exclusion zone.
  • the pivot point is 15 inches behind the front face of the magnet, and 28 inches (15 plus 13 inches) behind the operating point.
  • the pivot point is generally horizontal, and extends through the pivot axis.
  • the inclusion volume is generally cylindrical, with a beveled forward edge.
  • the inclusion volume has a diameter of about 30 inches and a depth of about 14 inches.
  • the bevel on the forward face of the volume is at approximately 45°, to a depth of about 5 inches, so that the diameter of the generally circular front face is about 20 inches.
  • the edge of the magnet 20 is shaped so that the magnet 20 remains within the exclusion volume.
  • Two magnets 20 can be mounted in opposition, so that their magnetic fields add, to provide a useful magnetic field at greater distances, for example to conduct cardiac procedures in the chest, where the application point of the magnetic field is necessarily far away from the magnet.
  • the magnet 20 when the magnet 20 is in its centered position, it produces a transverse magnetic field at an operating point at the front of the magnet assembly.
  • Rotation of the magnet 20 approximately 35° clockwise about an axis parallel to the longitudinal axes of the magnetic segments results in a magnetic field at the operating point at the front of the magnet assembly to point outwardly, away from the magnetic assembly, and rotation of the magnet approximately 35° counterclockwise about that axis results in a magnetic field at the operating point at the front of the magnet assembly to point inwardly, into the magnetic assembly.
  • the magnetic field direction changes 180°.
  • This pivoting combined with rotation of the magnet about the second axis, allows the magnet to create a magnetic field in any direction at the operating point of the assembly, through a simple pivoting and rotation of the magnet, without translation.
  • the inclusion volume of the magnet can be made very small, which means that exclusion volume is small, and access to the patient by health care professionals and medical equipment is not impaired.
  • the magnet assembly of the present invention While it is possible with the magnet assembly of the present invention to project a field at the application point in any direction, at sufficient strength to be useful, it may not always be possible to move smoothly and continuously from one magnetic field direction to another in the plane containing both directions. Thus when changing the field from a first direction to the second direction, it is possible that a field direction will temporarily swing out of the plane—a phenomenon known as coning.
  • amount of coning depends upon the distance from the magnet, and as shown in FIG. 14 , the maximum coning is slightly more than 14° from the desired plane, and occurs at distances of about six inches from the magnet. At a distance of 12 inches from the magnet, the maximum coning is about 12.75°.
  • a magnetic surgery system incorporating a magnet system constructed according to the principles of the present invention is indicated generally as 100 in FIG. 16 .
  • the system 100 includes a magnet 20 and its support and moving structure contained within a housing 50 .
  • the system 100 is particularly adapted for conduct neurological procedures, and the housing is positioned to be near the patient's head, in this case at the top of the patient's head.
  • the system 100 includes a patient support, such a patient bed 102 , which may or may not be movable.
  • a C-arm 104 mounts bi-planar imaging equipment for making bi-planar images of the procedure site, and displaying them on the displays 106 .
  • the bi-planar image equipment includes an imaging beam sources, such as x-ray sources 108 , and imaging beam receivers or detectors, such as amorphous silicon last plates 110 , which are substantially unaffected by the presence of magnetic fields.
  • the magnet 20 inside the housing 50 can be used to navigate a magnetic medical device in the patients head by pivoting the magnet about axis A 1 and rotating the magnet about axis A 2 to achieve the desired magnetic field to orient a magnetic medical device inside the patient's head.
  • the bi-planar imaging allows the physician and other health care workers to monitor the orientation and position of the magnetic medical device to navigate the distal end of the magnetic medical device to its desired destination.
  • the magnet assembly is designed to apply a magnet field at the systems' operating point, which, as described above is a point thirteen inches from the front face of the housing 50
  • the system preferably allows the application of a magnetic field in virtually any direction in sufficient strength for navigation purposes, e.g. 0.1 T, anywhere in 7 inch diameter cylinder surrounding the line from the center of the front face of the housing to the system's operating point.
  • a magnetic surgery system incorporating two magnet systems constructed according to the principles of the present invention is indicated generally as 200 in FIG. 17 .
  • the system 200 includes two magnets 20 and their respective support and moving structures, each contained within a housing 50 .
  • the housings 50 are disposed on opposite sides of the patients, so that the operating points of each magnet system overlap so that the magnetic fields produced by the two systems are additive.
  • the system 200 is particularly adapted for cardiac procedures, and the housings 50 are positioned on opposite sides of the patient's chest.
  • the system 200 includes a patient support, such a patient bed 202 , which may or may not be movable.
  • a C-arm 204 mounts bi-planar imaging equipment for making bi-planar images of the procedure site, and displaying them on the displays 206 .
  • the bi-planar image equipment includes an imaging beam sources, such as x-ray sources 208 , and imaging beam receivers or detectors, such as amorphous silicon last plates 210 , which are substantially unaffected by the presence of magnetic fields.
  • the magnets 20 inside the housing 50 can be used to navigate a magnetic medical device in the patient's head by pivoting the magnet about axis A 1 and rotating the magnet about axis A 2 to achieve the desired magnetic field to orient a magnetic medical device inside the patient's head.
  • the bi-planar imaging allows the physician and other health care workers to monitor the orientation and position of the magnetic medical device to navigate the distal end of the magnetic medical device to its desired destination.
  • the magnet assembly is designed to apply a magnet field at the systems' operating point, which, as described above is a point thirteen inches from the front face of the housing 50
  • the system preferably allows the application of a magnetic field in virtually any direction in sufficient strength for navigation purposes, e.g. 0.04 T, anywhere in 7 inch diameter circle thirteen inches from the front face of the housing.

Abstract

A magnet assembly comprising a magnet mounted for pivoting about a first axis spaced from the magnet, and rotating about a second axis that is perpendicular to and intersects with the first axis. The magnet comprising a plurality of segments each with a magnetization direction such that through a combination of pivoting and rotating the magnet projects a magnetic field in any direction at an operating point spaced from the front of the assembly. The segmented construction with segments of different magnetization directions allows small changes in the orientation of the magnet to substantially change the magnet field direction at a system operating point.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 10/056,227, filed Jan. 23, 2002, now U.S. Pat. No. 6,975,197, issued Dec. 13, 2005, the entire disclosure of which is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • This invention relates to magnet medical procedures, and in particular to a magnet useful in navigating magnetic medical devices in the body.
  • BACKGROUND OF THE INVENTION
  • Electromagnets and permanent magnets have been developed for moving magnet medical devices in the body. Some magnets used in medical applications apply a gradient to pull magnet medical devices within the body. Other magnets used in medical applications simply apply a magnetic field in a selected direction to align magnetic medical devices in the selected direction. Still other magnets apply both a magnetic field and a magnetic gradient to simultaneously orient and move a magnetic medical device.
  • There are a number of important competing design considerations for magnets used in medical procedures. First and foremost is providing sufficient field strength or gradient to orient or move the magnetic device. Electromagnets and in particular superconducting electromagnets can create strong magnet fields and gradients, but they are expensive to construct and operate. Until recently, it was difficult to construct a permanent magnet that could provide a sufficiently strong and universally directed magnetic field and gradient at a distance sufficiently far from the magnet to be useful in medical procedures. Recently, a focused permanent magnet has been developed which can create useful magnet fields at sufficient distances from the magnet to be employed in magnet surgery. The magnet is comprised of a plurality of segments each magnetized in a direction to contribute to the desired magnetic property, for example field strength at an operating point spaced in front of a magnet. This magnet and its method of design are disclosed in co-pending, co-owned, U.S. patent application Ser. No. 09/546,840, filed Apr. 11, 2000, U.S. patent application Ser. No. 09/497,467, filed Feb. 3, 2000, the disclosures of which are incorporated herein by reference. This magnet has other useful properties in that field direction could be changed by a simple translation of the magnet. However, these magnets still had relatively large exclusion zones to accommodate the movement of the magnet. The large exclusion zone made access to the patient, and positioning of other medical equipment (particularly imaging equipment) in the procedure room difficult. Thus a second design criteria is to minimize the exclusion zone, to provide greater access to the patient for medical staff and equipment.
  • A third design criteria is to minimize the degrees of freedom of magnet motion to provide a universally directed magnetic field. The fewer degrees of freedom of magnet motion needed, the simpler the navigation, and the less expensive the apparatus for moving the magnet.
  • SUMMARY OF THE INVENTION
  • The present invention relates to a magnet, and to a magnet system that is capable of generating useful magnet fields in virtually any direction, at distances from the magnet sufficient to conduct medical procedures in the patient's body. The magnet is designed so that a magnetic field can be generated in virtually any direction with a minimum amount of movement so that the exclusion zone—the zone from which the patient and other medical equipment and personnel cannot be located—or the inclusion zone—the zone that the magnet occupies—is minimized.
  • Generally the magnet of the present invention comprises a plurality of magnet segments each magnetized in direction to optimize the magnetic field at an operating point spaced from the magnet. The magnet is adapted to pivot about a first axis spaced behind the magnet, and to rotate about a generally horizontal axis. Through a combination of pivoting and rotating the magnet can project a magnetic field at the operating point in virtually any direction of sufficient strength to be useful. The shape of the magnet is determined to minimize the inclusion zone, which in the preferred embodiment is a horizontal cylinder, with a beveled edge on the forward face.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a front elevation view of a magnet constructed according to the principles of this invention;
  • FIG. 1B is a right side elevation view of the magnet;
  • FIG. 1C is a top plan view thereof;
  • FIG. 1D is a front perspective view thereof;
  • FIG. 1E is a rear perspective view thereof;
  • FIG. 2A is a perspective view of a support for pivoting and rotating a magnet in accordance with the principles of this invention, with the magnet in a first position;
  • FIG. 2B is a perspective view of a support for pivoting and rotating a magnet in accordance with the principles of this invention, with the magnet pivoted to a second position;
  • FIG. 3A is a perspective view of a housing containing the magnet and support;
  • FIG. 3B is a front elevation view of the housing;
  • FIG. 3C is a right side elevation view of the housing;
  • FIG. 3D is a top plan view of the housing;
  • FIG. 4A is a perspective view of one quadrant of a magnet block, with several surfaces of equal contribution (represented in wire frame) superposed thereon;
  • FIG. 4B is a top plan view of one quadrant of a magnet block with several surfaces of equal contribution;
  • FIG. 4C is a right side elevation view of one quadrant of a magnet block with several surfaces of equal contribution;
  • FIG. 4D is a rear elevation view of one quadrant of a magnet block with several surface of equal contribution.
  • FIG. 5 is a perspective view of the inclusion volume of a magnet constructed according to the principles of this invention, showing the magnet generally centered within the inclusion volume;
  • FIG. 6 is a front elevation view of the exclusion volume with the magnet in its centered position;
  • FIG. 7 is a right side elevation view of the exclusion volume with the magnet in its centered position;
  • FIG. 8 is a top plan view of the exclusion volume with the magnet in its centered position;
  • FIG. 9 is a perspective view of the inclusion volume, with the magnet pivoted to the left about the z axis;
  • FIG. 10 is front elevation view of the inclusion volume of the magnet, with the magnet pivoted to the left;
  • FIG. 11 is a right side elevation view of the inclusion volume, with the magnet pivoted to the left;
  • FIG. 12 is a top plan view of the inclusion volume, with the magnet pivoted to the left;
  • FIG. 13 is a top plan view of a magnet constructed according to the principles of this invention, showing the local magnetic field directions in the space surrounding the magnet;
  • FIG. 14 is a horizontal cross sectional view of one half of a magnet constructed according to the principles of this invention (the other half being a mirror image thereof), showing the magnetization directions of the segments comprising the magnet, and the local field directions surrounding the magnet and lines of constant magnetic field strength;
  • FIG. 15 is a graph of maximum coning angle versus distance from the magnet;
  • FIG. 16 is a perspective view of a magnetic surgery system incorporating a magnet constructed according to the principles of this invention; and
  • FIG. 17 is a perspective view of a magnetic surgery system incorporating two magnets constructed according to the principles of this invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • A magnet constructed according to the principles of this invention is indicated generally as 20 in FIGS. 1A through 1E. The magnet 20 comprises a generally cylindrical front face 22 and a back face 24. There are left top face 26 and a right top face 28, and a left bottom face 30 and a right bottom face 32. The magnet 20 preferably comprises a plurality of parallel bands or segments of permanent magnetic material extending from top to bottom. The magnetization direction of each segment is preferably selected to generally optimize the magnet field at a magnet operating point spaced from the center of the front face of the magnet. This magnet operating point is a design criteria of the magnet. For applications where a magnet field is to be applied relatively close to the magnet, such a neurology applications, the magnet operating point may be selected closer to the surface of the magnet, for applications where a magnetic field is to be applied relatively far from the magnet, such as cardiac applications, the magnet operating point may be selected further from the surface of the magnet. In this preferred, embodiment the magnet operating point is 13 inches from the center of the front face of the magnet. This represents a reasonable compromise to provide a magnet useful for both neurology and cardiac applications. Of course, the magnet could be optimized for some other operating point closer to or further from the front face of the magnet.
  • The magnet 20 is preferably mounted for pivoting about a first axis A1, generally parallel to the vertical axis of the magnet. As shown in FIGS. 2A and 2B, upper and lower arms 34 and 36 project from the back surface 24 of the magnet 20. A cylindrical post 38 extends between the arms 34 and 36, and is journaled in a sleeve 40. The magnet is preferably also mounted for rotation about a second axis A2, that is generally horizontal, and that is perpendicular to, and intersects with, axis A1. As shown in FIGS. 2A and 2B, a sleeve 42 extends perpendicularly to sleeve 40, and is journaled around a horizontal arbor 44. Of course any other mechanism for mounting the magnet 20 to pivot about a first axis, and rotate about a second axis, and in particular to pivot about a first axis that rotates about a second axis can be used. In the preferred embodiment the axis A1 is fifteen inches from the front face of the magnet 20.
  • A housing 50 for containing the magnet and structure for pivoting and rotating the magnet is shown in FIGS. 3A through 3D. The housing 50 contains the magnet and mechanism so that it is isolated from the procedure. Furthermore, the housing 50 eliminates moving parts from the procedure site, so that the system is less intimidating to the patients, and does not present any hazard to anyone at the procedure site. The housing 50 accommodates the inclusion zone of the magnet 20.
  • As described above, the magnet 20 is adapted to pivot about an axis A1 generally behind the magnet. The radius of curvature of the generally cylindrical front face 22 corresponds to the distance between the front face and the pivot axis (15 inches in this preferred embodiment). The back face of the magnet is shaped in accordance with a surface of constant contribution to the magnetic field at the operating point. Material on such a surface contributes equally to the magnetic field at the operating point, regardless of its position on the surface. By selecting the appropriate surface of constant contribution to achieve the desired magnet size and strength, an excluding material that would lie beyond the surface, the weight of the magnet can be optimized for its selected magnetic properties. A constant contribution force can be calculated or plotted by maximizing the contribution to a particular magnet property at the magnet's operating point, for example the transfer field at the magnet's operating point, and determining the surface of points that contribute equally to the selected magnetic property. The superposition of several such surfaces of constant contribution is shown in FIGS. 4A through 4D. As shown in FIGS. 4A to 4D, various surfaces of constant contribution S1, S2, S3, S4, S5, and S6, are shown, and the final shape of back side of the magnet is determined based upon the constant contribution surface that leaves sufficient magnetic material to achieve the desired field strength, gradient, or field gradient product, while keeping the weight low. It is desirable to keep the weight of the final magnet low both to conserve magnetic material, which can be expensive, and to reduce the structural requirements for the supporting mechanism for the magnet. Because of limitations of manufacturing magnets with smooth continuously curved surfaces, the actual shape of the back surface may only approximate the shape of the constant contribution surface. In the preferred embodiment, the magnet is capable of producing a field of at least about 0.4 T at an application point at least 13 inches from the surface of the magnet, or about 0.1 T at an application point of 7.5 inches from the surface of the magnet, yet weights less than about 500 pounds.
  • An important design criteria for the magnet 20 is its inclusion volume, which represents the combination of all of the volumes that the magnet occupies throughout all of the desired possible orientations of the magnet, i.e., all of the desired pivots and rotations. The inclusion volume of a magnet constructed according to the principles of this invention is shown in FIGS. 5 through 8, with the magnet in a first position within its exclusion zone, and in FIGS. 9 through 12 with the magnet 20 in a second position within its exclusion zone, pivoted 35°, which because of the design of the magnet described above, results in a magnetic field direction shift of 90° at the system's operation point. The system's operation point is a design element, and in this preferred embodiment is thirteen inches from the center of the front face of the inclusion volume, which corresponds to thirteen inches from the center of the front face of the housing 50. The magnet's operation point and the system's operation point correspond when the magnet 20 is in its centered position in its exclusion zone. In the preferred embodiment the pivot point is 15 inches behind the front face of the magnet, and 28 inches (15 plus 13 inches) behind the operating point. As shown and described in the Figures, the pivot point is generally horizontal, and extends through the pivot axis. In this preferred embodiment, the inclusion volume is generally cylindrical, with a beveled forward edge. The inclusion volume has a diameter of about 30 inches and a depth of about 14 inches. The bevel on the forward face of the volume is at approximately 45°, to a depth of about 5 inches, so that the diameter of the generally circular front face is about 20 inches. The edge of the magnet 20 is shaped so that the magnet 20 remains within the exclusion volume.
  • Two magnets 20 can be mounted in opposition, so that their magnetic fields add, to provide a useful magnetic field at greater distances, for example to conduct cardiac procedures in the chest, where the application point of the magnetic field is necessarily far away from the magnet.
  • As shown in FIG. 13, when the magnet 20 is in its centered position, it produces a transverse magnetic field at an operating point at the front of the magnet assembly. Rotation of the magnet 20 approximately 35° clockwise about an axis parallel to the longitudinal axes of the magnetic segments results in a magnetic field at the operating point at the front of the magnet assembly to point outwardly, away from the magnetic assembly, and rotation of the magnet approximately 35° counterclockwise about that axis results in a magnetic field at the operating point at the front of the magnet assembly to point inwardly, into the magnetic assembly. Thus over the span of a mere 70° of pivoting, the magnetic field direction changes 180°. This pivoting, combined with rotation of the magnet about the second axis, allows the magnet to create a magnetic field in any direction at the operating point of the assembly, through a simple pivoting and rotation of the magnet, without translation. Thus the inclusion volume of the magnet can be made very small, which means that exclusion volume is small, and access to the patient by health care professionals and medical equipment is not impaired.
  • While it is possible with the magnet assembly of the present invention to project a field at the application point in any direction, at sufficient strength to be useful, it may not always be possible to move smoothly and continuously from one magnetic field direction to another in the plane containing both directions. Thus when changing the field from a first direction to the second direction, it is possible that a field direction will temporarily swing out of the plane—a phenomenon known as coning. However, amount of coning depends upon the distance from the magnet, and as shown in FIG. 14, the maximum coning is slightly more than 14° from the desired plane, and occurs at distances of about six inches from the magnet. At a distance of 12 inches from the magnet, the maximum coning is about 12.75°.
  • A magnetic surgery system incorporating a magnet system constructed according to the principles of the present invention is indicated generally as 100 in FIG. 16. The system 100 includes a magnet 20 and its support and moving structure contained within a housing 50. The system 100 is particularly adapted for conduct neurological procedures, and the housing is positioned to be near the patient's head, in this case at the top of the patient's head. The system 100 includes a patient support, such a patient bed 102, which may or may not be movable. A C-arm 104 mounts bi-planar imaging equipment for making bi-planar images of the procedure site, and displaying them on the displays 106. The bi-planar image equipment includes an imaging beam sources, such as x-ray sources 108, and imaging beam receivers or detectors, such as amorphous silicon last plates 110, which are substantially unaffected by the presence of magnetic fields. The magnet 20 inside the housing 50 can be used to navigate a magnetic medical device in the patients head by pivoting the magnet about axis A1 and rotating the magnet about axis A2 to achieve the desired magnetic field to orient a magnetic medical device inside the patient's head. The bi-planar imaging allows the physician and other health care workers to monitor the orientation and position of the magnetic medical device to navigate the distal end of the magnetic medical device to its desired destination. While the magnet assembly is designed to apply a magnet field at the systems' operating point, which, as described above is a point thirteen inches from the front face of the housing 50, the system preferably allows the application of a magnetic field in virtually any direction in sufficient strength for navigation purposes, e.g. 0.1 T, anywhere in 7 inch diameter cylinder surrounding the line from the center of the front face of the housing to the system's operating point.
  • A magnetic surgery system incorporating two magnet systems constructed according to the principles of the present invention is indicated generally as 200 in FIG. 17. The system 200 includes two magnets 20 and their respective support and moving structures, each contained within a housing 50. The housings 50 are disposed on opposite sides of the patients, so that the operating points of each magnet system overlap so that the magnetic fields produced by the two systems are additive. The system 200 is particularly adapted for cardiac procedures, and the housings 50 are positioned on opposite sides of the patient's chest. The system 200 includes a patient support, such a patient bed 202, which may or may not be movable. A C-arm 204 mounts bi-planar imaging equipment for making bi-planar images of the procedure site, and displaying them on the displays 206. The bi-planar image equipment includes an imaging beam sources, such as x-ray sources 208, and imaging beam receivers or detectors, such as amorphous silicon last plates 210, which are substantially unaffected by the presence of magnetic fields. The magnets 20 inside the housing 50 can be used to navigate a magnetic medical device in the patient's head by pivoting the magnet about axis A1 and rotating the magnet about axis A2 to achieve the desired magnetic field to orient a magnetic medical device inside the patient's head. The bi-planar imaging allows the physician and other health care workers to monitor the orientation and position of the magnetic medical device to navigate the distal end of the magnetic medical device to its desired destination. While the magnet assembly is designed to apply a magnet field at the systems' operating point, which, as described above is a point thirteen inches from the front face of the housing 50, the system preferably allows the application of a magnetic field in virtually any direction in sufficient strength for navigation purposes, e.g. 0.04 T, anywhere in 7 inch diameter circle thirteen inches from the front face of the housing.

Claims (21)

1.-10. (canceled)
11. A method of making a magnet assembly that generates a magnetic field which is optimized at a predetermined operating point spaced from the center of the magnet, comprising:
providing a plurality of segments of permanent magnet material configured to be arranged in a parallel manner to form a magnet assembly;
forming a radius of curvature on the top face of each of the plurality of segments, such that the segments when assembled form a generally curved top surface having a radius of curvature that corresponds to the distance between the top face and an intended pivot axis of the assembled magnet;
forming a generally curved back face of each of the plurality of segments, such that the segments when assembled form a shape in accordance with at least one select surface of constant contribution to the predetermined operating point, such that the segments of permanent magnet material will each contribute to the magnetic field generated at the predetermined operating point spaced from the center of the assembled magnet.
12. The magnet assembly of claim 1 wherein the magnetization direction of each of the plurality of magnets is preferably selected to generally optimize the magnetic field at the magnet operating point spaced from the center of the magnet assembly.
13. The magnet assembly of claim 1 wherein the at least one select surface of constant contribution is that which provides sufficient permanent magnetic material for the assembled segments to achieve the desired field strength and field gradient product, and excludes permanent magnet material beyond the surface to keep the weight of the magnet assembly low.
14. The magnet assembly of claim 1, wherein the back side of the plurality of segments forming the magnet assembly comprises a supposition of one or more surfaces of constant contribution.
15. The magnet assembly of claim 1 wherein the generated magnetic field is at least 0.4 Tesla at an application point at least 13 inches from the top surface of the magnet assembly, or at least 0.1 Tesla at an application point 7.5 inches from the top surface of the magnet assembly.
16. The magnet assembly of claim 1 wherein the predetermined operating point is in the range of two to 15 inches from the top face of the assembled magnet assembly.
17. The magnet assembly of claim 1 wherein the intended pivot axis is approximately 15 inches from the top face of the assembled magnet assembly.
18. The magnet assembly of claim 1 wherein the plurality of segments comprise a plurality of parallel bands.
19. The magnet assembly of claim 1, wherein the permanent magnet material of any segment along the back surface contributes equally to the magnetic field at the operating point.
20. The magnet assembly of claim 1, wherein the back side of the plurality of segments forming the magnet assembly comprises a supposition of one or more surfaces of constant contribution.
21. A method of making a magnet assembly that generates a magnetic field which is optimized at a predetermined operating point spaced from the center of the magnet, comprising:
providing a plurality of segments of permanent magnet material that extend from top to bottom of a magnet assembly that is formed when the segments are arranged in a parallel manner;
forming a radius of curvature on the top face of each of the plurality of segments, such that the segments when assembled form a generally curved top surface having a radius of curvature that corresponds to the distance between the top face and an intended pivot axis of the assembled magnet;
forming a generally curved back face of each of the plurality of segments, such that the segments when assembled form a shape in accordance with at least one select surface of constant contribution to the predetermined operating point, such that the segments of permanent magnet material will each contribute to the magnetic field generated at the predetermined operating point spaced from the center of the assembled magnet; and
assembling the plurality of segments to form the magnet assembly.
22. The magnet assembly of claim 11 wherein the magnetization direction of each of the plurality of magnets is preferably selected to generally optimize the magnetic field at the magnet operating point spaced from the center of the magnet assembly.
23. The magnet assembly of claim 11 wherein the at least one select surface of constant contribution is that which provides sufficient permanent magnetic material for the assembled segments to achieve the desired field strength and field gradient product, and excludes permanent magnet material beyond the surface to keep the weight of the magnet assembly low.
24. The magnet assembly of claim 11, wherein the back side of the plurality of segments forming the magnet assembly comprises a supposition of one or more surfaces of constant contribution.
25. The magnet assembly of claim 11 wherein the generated magnetic field is at least 0.4 Tesla at an application point at least 13 inches from the top surface of the magnet assembly, or at least 0.1 Tesla at an application point 7.5 inches from the top surface of the magnet assembly.
26. The magnet assembly of claim 11 wherein the predetermined operating point is in the range of two to 15 inches from the top face of the assembled magnet assembly.
27. The magnet assembly of claim 11 wherein the intended pivot axis is approximately 15 inches from the top face of the assembled magnet assembly.
28. The magnet assembly of claim 11 wherein the plurality of segments comprise a plurality of parallel bands.
29. The magnet assembly of claim 11, wherein the permanent magnet material of any segment along the back surface contributes equally to the magnetic field at the operating point.
30. The magnet assembly of claim 11, wherein the back side of the plurality of segments forming the magnet assembly comprises a supposition of one or more surfaces of constant contribution.
US11/650,856 2002-01-23 2007-01-08 Rotating and pivoting magnet for magnetic navigation Abandoned US20080016677A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/650,856 US20080016677A1 (en) 2002-01-23 2007-01-08 Rotating and pivoting magnet for magnetic navigation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/056,227 US6975197B2 (en) 2002-01-23 2002-01-23 Rotating and pivoting magnet for magnetic navigation
US11/296,190 US7161453B2 (en) 2002-01-23 2005-12-07 Rotating and pivoting magnet for magnetic navigation
US11/650,856 US20080016677A1 (en) 2002-01-23 2007-01-08 Rotating and pivoting magnet for magnetic navigation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/296,190 Continuation US7161453B2 (en) 2002-01-23 2005-12-07 Rotating and pivoting magnet for magnetic navigation

Publications (1)

Publication Number Publication Date
US20080016677A1 true US20080016677A1 (en) 2008-01-24

Family

ID=31493923

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/296,190 Expired - Lifetime US7161453B2 (en) 2002-01-23 2005-12-07 Rotating and pivoting magnet for magnetic navigation
US11/650,856 Abandoned US20080016677A1 (en) 2002-01-23 2007-01-08 Rotating and pivoting magnet for magnetic navigation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/296,190 Expired - Lifetime US7161453B2 (en) 2002-01-23 2005-12-07 Rotating and pivoting magnet for magnetic navigation

Country Status (1)

Country Link
US (2) US7161453B2 (en)

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050113812A1 (en) * 2003-09-16 2005-05-26 Viswanathan Raju R. User interface for remote control of medical devices
US20080015670A1 (en) * 2006-01-17 2008-01-17 Carlo Pappone Methods and devices for cardiac ablation
US20080097200A1 (en) * 2006-10-20 2008-04-24 Blume Walter M Location and Display of Occluded Portions of Vessels on 3-D Angiographic Images
US20080132910A1 (en) * 2006-11-07 2008-06-05 Carlo Pappone Control for a Remote Navigation System
US20080200913A1 (en) * 2007-02-07 2008-08-21 Viswanathan Raju R Single Catheter Navigation for Diagnosis and Treatment of Arrhythmias
US20080208912A1 (en) * 2007-02-26 2008-08-28 Garibaldi Jeffrey M System and method for providing contextually relevant medical information
US20080287909A1 (en) * 2007-05-17 2008-11-20 Viswanathan Raju R Method and apparatus for intra-chamber needle injection treatment
US20080294232A1 (en) * 2007-05-22 2008-11-27 Viswanathan Raju R Magnetic cell delivery
US20090012821A1 (en) * 2007-07-06 2009-01-08 Guy Besson Management of live remote medical display
US20090062646A1 (en) * 2005-07-07 2009-03-05 Creighton Iv Francis M Operation of a remote medical navigation system using ultrasound image
US20090082722A1 (en) * 2007-08-21 2009-03-26 Munger Gareth T Remote navigation advancer devices and methods of use
US20090105579A1 (en) * 2007-10-19 2009-04-23 Garibaldi Jeffrey M Method and apparatus for remotely controlled navigation using diagnostically enhanced intra-operative three-dimensional image data
US20090131927A1 (en) * 2007-11-20 2009-05-21 Nathan Kastelein Method and apparatus for remote detection of rf ablation
US20090131798A1 (en) * 2007-11-19 2009-05-21 Minar Christopher D Method and apparatus for intravascular imaging and occlusion crossing
US20090177032A1 (en) * 1999-04-14 2009-07-09 Garibaldi Jeffrey M Method and apparatus for magnetically controlling endoscopes in body lumens and cavities
US20090177037A1 (en) * 2007-06-27 2009-07-09 Viswanathan Raju R Remote control of medical devices using real time location data
US20100063385A1 (en) * 1998-08-07 2010-03-11 Garibaldi Jeffrey M Method and apparatus for magnetically controlling catheters in body lumens and cavities
US20100069733A1 (en) * 2008-09-05 2010-03-18 Nathan Kastelein Electrophysiology catheter with electrode loop
US20100097315A1 (en) * 2006-09-06 2010-04-22 Garibaldi Jeffrey M Global input device for multiple computer-controlled medical systems
US20100163061A1 (en) * 2000-04-11 2010-07-01 Creighton Francis M Magnets with varying magnetization direction and method of making such magnets
US20100168549A1 (en) * 2006-01-06 2010-07-01 Carlo Pappone Electrophysiology catheter and system for gentle and firm wall contact
US7772950B2 (en) 2005-08-10 2010-08-10 Stereotaxis, Inc. Method and apparatus for dynamic magnetic field control using multiple magnets
US20100222669A1 (en) * 2006-08-23 2010-09-02 William Flickinger Medical device guide
US20100298845A1 (en) * 2009-05-25 2010-11-25 Kidd Brian L Remote manipulator device
US20110022029A1 (en) * 2004-12-20 2011-01-27 Viswanathan Raju R Contact over-torque with three-dimensional anatomical data
US20110033100A1 (en) * 2005-02-07 2011-02-10 Viswanathan Raju R Registration of three-dimensional image data to 2d-image-derived data
US20110046618A1 (en) * 2009-08-04 2011-02-24 Minar Christopher D Methods and systems for treating occluded blood vessels and other body cannula
US20110130718A1 (en) * 2009-05-25 2011-06-02 Kidd Brian L Remote Manipulator Device
US8196590B2 (en) 2003-05-02 2012-06-12 Stereotaxis, Inc. Variable magnetic moment MR navigation
US8231618B2 (en) 2007-11-05 2012-07-31 Stereotaxis, Inc. Magnetically guided energy delivery apparatus
US8308628B2 (en) 2009-11-02 2012-11-13 Pulse Therapeutics, Inc. Magnetic-based systems for treating occluded vessels
WO2016126435A1 (en) * 2015-02-04 2016-08-11 Lockheed Martin Corporation Apparatus and method for estimating absolute axes' orientations for a magnetic detection system
US9541610B2 (en) 2015-02-04 2017-01-10 Lockheed Martin Corporation Apparatus and method for recovery of three dimensional magnetic field from a magnetic detection system
US9551763B1 (en) 2016-01-21 2017-01-24 Lockheed Martin Corporation Diamond nitrogen vacancy sensor with common RF and magnetic fields generator
US9557391B2 (en) 2015-01-23 2017-01-31 Lockheed Martin Corporation Apparatus and method for high sensitivity magnetometry measurement and signal processing in a magnetic detection system
US9590601B2 (en) 2014-04-07 2017-03-07 Lockheed Martin Corporation Energy efficient controlled magnetic field generator circuit
US9614589B1 (en) 2015-12-01 2017-04-04 Lockheed Martin Corporation Communication via a magnio
US9638821B2 (en) 2014-03-20 2017-05-02 Lockheed Martin Corporation Mapping and monitoring of hydraulic fractures using vector magnetometers
US9720055B1 (en) 2016-01-21 2017-08-01 Lockheed Martin Corporation Magnetometer with light pipe
US9824597B2 (en) 2015-01-28 2017-11-21 Lockheed Martin Corporation Magnetic navigation methods and systems utilizing power grid and communication network
US9823313B2 (en) 2016-01-21 2017-11-21 Lockheed Martin Corporation Diamond nitrogen vacancy sensor with circuitry on diamond
US9829545B2 (en) 2015-11-20 2017-11-28 Lockheed Martin Corporation Apparatus and method for hypersensitivity detection of magnetic field
US9835694B2 (en) 2016-01-21 2017-12-05 Lockheed Martin Corporation Higher magnetic sensitivity through fluorescence manipulation by phonon spectrum control
US9845153B2 (en) 2015-01-28 2017-12-19 Lockheed Martin Corporation In-situ power charging
US9853837B2 (en) 2014-04-07 2017-12-26 Lockheed Martin Corporation High bit-rate magnetic communication
US9883878B2 (en) 2012-05-15 2018-02-06 Pulse Therapeutics, Inc. Magnetic-based systems and methods for manipulation of magnetic particles
US9910105B2 (en) 2014-03-20 2018-03-06 Lockheed Martin Corporation DNV magnetic field detector
US9910104B2 (en) 2015-01-23 2018-03-06 Lockheed Martin Corporation DNV magnetic field detector
US10006973B2 (en) 2016-01-21 2018-06-26 Lockheed Martin Corporation Magnetometer with a light emitting diode
US10012704B2 (en) 2015-11-04 2018-07-03 Lockheed Martin Corporation Magnetic low-pass filter
US10088336B2 (en) 2016-01-21 2018-10-02 Lockheed Martin Corporation Diamond nitrogen vacancy sensed ferro-fluid hydrophone
US10088452B2 (en) 2016-01-12 2018-10-02 Lockheed Martin Corporation Method for detecting defects in conductive materials based on differences in magnetic field characteristics measured along the conductive materials
US10120039B2 (en) 2015-11-20 2018-11-06 Lockheed Martin Corporation Apparatus and method for closed loop processing for a magnetic detection system
US10126377B2 (en) 2016-05-31 2018-11-13 Lockheed Martin Corporation Magneto-optical defect center magnetometer
US10145910B2 (en) 2017-03-24 2018-12-04 Lockheed Martin Corporation Photodetector circuit saturation mitigation for magneto-optical high intensity pulses
US10168393B2 (en) 2014-09-25 2019-01-01 Lockheed Martin Corporation Micro-vacancy center device
US10228429B2 (en) 2017-03-24 2019-03-12 Lockheed Martin Corporation Apparatus and method for resonance magneto-optical defect center material pulsed mode referencing
US10274550B2 (en) 2017-03-24 2019-04-30 Lockheed Martin Corporation High speed sequential cancellation for pulsed mode
US10281550B2 (en) 2016-11-14 2019-05-07 Lockheed Martin Corporation Spin relaxometry based molecular sequencing
US10317279B2 (en) 2016-05-31 2019-06-11 Lockheed Martin Corporation Optical filtration system for diamond material with nitrogen vacancy centers
US10330744B2 (en) 2017-03-24 2019-06-25 Lockheed Martin Corporation Magnetometer with a waveguide
US10338162B2 (en) 2016-01-21 2019-07-02 Lockheed Martin Corporation AC vector magnetic anomaly detection with diamond nitrogen vacancies
US10338164B2 (en) 2017-03-24 2019-07-02 Lockheed Martin Corporation Vacancy center material with highly efficient RF excitation
US10338163B2 (en) 2016-07-11 2019-07-02 Lockheed Martin Corporation Multi-frequency excitation schemes for high sensitivity magnetometry measurement with drift error compensation
US10345396B2 (en) 2016-05-31 2019-07-09 Lockheed Martin Corporation Selected volume continuous illumination magnetometer
US10345395B2 (en) 2016-12-12 2019-07-09 Lockheed Martin Corporation Vector magnetometry localization of subsurface liquids
US10359479B2 (en) 2017-02-20 2019-07-23 Lockheed Martin Corporation Efficient thermal drift compensation in DNV vector magnetometry
US10371765B2 (en) 2016-07-11 2019-08-06 Lockheed Martin Corporation Geolocation of magnetic sources using vector magnetometer sensors
US10371760B2 (en) 2017-03-24 2019-08-06 Lockheed Martin Corporation Standing-wave radio frequency exciter
US10379174B2 (en) 2017-03-24 2019-08-13 Lockheed Martin Corporation Bias magnet array for magnetometer
US10408890B2 (en) 2017-03-24 2019-09-10 Lockheed Martin Corporation Pulsed RF methods for optimization of CW measurements
US10459041B2 (en) 2017-03-24 2019-10-29 Lockheed Martin Corporation Magnetic detection system with highly integrated diamond nitrogen vacancy sensor
WO2019219207A1 (en) 2018-05-18 2019-11-21 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Magnetic field generator
US10520558B2 (en) 2016-01-21 2019-12-31 Lockheed Martin Corporation Diamond nitrogen vacancy sensor with nitrogen-vacancy center diamond located between dual RF sources
US10527746B2 (en) 2016-05-31 2020-01-07 Lockheed Martin Corporation Array of UAVS with magnetometers
US10571530B2 (en) 2016-05-31 2020-02-25 Lockheed Martin Corporation Buoy array of magnetometers
US10677953B2 (en) 2016-05-31 2020-06-09 Lockheed Martin Corporation Magneto-optical detecting apparatus and methods
US11918315B2 (en) 2018-05-03 2024-03-05 Pulse Therapeutics, Inc. Determination of structure and traversal of occlusions using magnetic particles

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7313429B2 (en) 2002-01-23 2007-12-25 Stereotaxis, Inc. Rotating and pivoting magnet for magnetic navigation
US6702804B1 (en) * 1999-10-04 2004-03-09 Stereotaxis, Inc. Method for safely and efficiently navigating magnetic devices in the body
US6856006B2 (en) * 2002-03-28 2005-02-15 Siliconix Taiwan Ltd Encapsulation method and leadframe for leadless semiconductor packages
US7161453B2 (en) * 2002-01-23 2007-01-09 Stereotaxis, Inc. Rotating and pivoting magnet for magnetic navigation
US7248914B2 (en) * 2002-06-28 2007-07-24 Stereotaxis, Inc. Method of navigating medical devices in the presence of radiopaque material
WO2006076394A2 (en) * 2005-01-11 2006-07-20 Stereotaxis, Inc. Navigation using sensed physiological data as feedback
US20070060992A1 (en) * 2005-06-02 2007-03-15 Carlo Pappone Methods and devices for mapping the ventricle for pacing lead placement and therapy delivery
US7769444B2 (en) * 2005-07-11 2010-08-03 Stereotaxis, Inc. Method of treating cardiac arrhythmias
US20070016131A1 (en) * 2005-07-12 2007-01-18 Munger Gareth T Flexible magnets for navigable medical devices
US20070060829A1 (en) * 2005-07-21 2007-03-15 Carlo Pappone Method of finding the source of and treating cardiac arrhythmias
US20070062547A1 (en) * 2005-07-21 2007-03-22 Carlo Pappone Systems for and methods of tissue ablation
US7818076B2 (en) 2005-07-26 2010-10-19 Stereotaxis, Inc. Method and apparatus for multi-system remote surgical navigation from a single control center
US20070060962A1 (en) * 2005-07-26 2007-03-15 Carlo Pappone Apparatus and methods for cardiac resynchronization therapy and cardiac contractility modulation
US8784336B2 (en) 2005-08-24 2014-07-22 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
WO2007067655A2 (en) * 2005-12-06 2007-06-14 Stereotaxis, Inc. Smart card control of medical devices
US20070149946A1 (en) * 2005-12-07 2007-06-28 Viswanathan Raju R Advancer system for coaxial medical devices
US20070197899A1 (en) * 2006-01-17 2007-08-23 Ritter Rogers C Apparatus and method for magnetic navigation using boost magnets
US20070197906A1 (en) * 2006-01-24 2007-08-23 Ritter Rogers C Magnetic field shape-adjustable medical device and method of using the same
US20070250041A1 (en) * 2006-04-19 2007-10-25 Werp Peter R Extendable Interventional Medical Devices
US20080015427A1 (en) * 2006-06-30 2008-01-17 Nathan Kastelein System and network for remote medical procedures
US20080039830A1 (en) * 2006-08-14 2008-02-14 Munger Gareth T Method and Apparatus for Ablative Recanalization of Blocked Vasculature
US7961924B2 (en) 2006-08-21 2011-06-14 Stereotaxis, Inc. Method of three-dimensional device localization using single-plane imaging
US8244824B2 (en) * 2006-09-06 2012-08-14 Stereotaxis, Inc. Coordinated control for multiple computer-controlled medical systems
US7747960B2 (en) 2006-09-06 2010-06-29 Stereotaxis, Inc. Control for, and method of, operating at least two medical systems
US8242972B2 (en) 2006-09-06 2012-08-14 Stereotaxis, Inc. System state driven display for medical procedures
US8273081B2 (en) * 2006-09-08 2012-09-25 Stereotaxis, Inc. Impedance-based cardiac therapy planning method with a remote surgical navigation system
WO2008033829A2 (en) * 2006-09-11 2008-03-20 Stereotaxis, Inc. Automated mapping of anatomical features of heart chambers
US7794407B2 (en) 2006-10-23 2010-09-14 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US8388546B2 (en) 2006-10-23 2013-03-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US20080228065A1 (en) * 2007-03-13 2008-09-18 Viswanathan Raju R System and Method for Registration of Localization and Imaging Systems for Navigational Control of Medical Devices
US20080228068A1 (en) * 2007-03-13 2008-09-18 Viswanathan Raju R Automated Surgical Navigation with Electro-Anatomical and Pre-Operative Image Data
CN101311284A (en) * 2007-05-24 2008-11-26 鸿富锦精密工业(深圳)有限公司 Magnesium alloy and magnesium alloy thin material
US9649048B2 (en) 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US10524691B2 (en) 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
CN101925333B (en) 2007-11-26 2014-02-12 C·R·巴德股份有限公司 Integrated system for intravascular placement of catheter
US8849382B2 (en) 2007-11-26 2014-09-30 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US10449330B2 (en) 2007-11-26 2019-10-22 C. R. Bard, Inc. Magnetic element-equipped needle assemblies
US9636031B2 (en) 2007-11-26 2017-05-02 C.R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US8781555B2 (en) 2007-11-26 2014-07-15 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US8478382B2 (en) 2008-02-11 2013-07-02 C. R. Bard, Inc. Systems and methods for positioning a catheter
US9901714B2 (en) 2008-08-22 2018-02-27 C. R. Bard, Inc. Catheter assembly including ECG sensor and magnetic assemblies
US8437833B2 (en) 2008-10-07 2013-05-07 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
JP5795576B2 (en) 2009-06-12 2015-10-14 バード・アクセス・システムズ,インコーポレーテッド Method of operating a computer-based medical device that uses an electrocardiogram (ECG) signal to position an intravascular device in or near the heart
WO2011019760A2 (en) 2009-08-10 2011-02-17 Romedex International Srl Devices and methods for endovascular electrography
US10639008B2 (en) 2009-10-08 2020-05-05 C. R. Bard, Inc. Support and cover structures for an ultrasound probe head
US11103213B2 (en) 2009-10-08 2021-08-31 C. R. Bard, Inc. Spacers for use with an ultrasound probe
EP2531098B1 (en) 2010-02-02 2020-07-15 C.R. Bard, Inc. Apparatus and method for catheter navigation and tip location
MX2012013858A (en) 2010-05-28 2013-04-08 Bard Inc C R Insertion guidance system for needles and medical components.
WO2011150376A1 (en) 2010-05-28 2011-12-01 C.R. Bard, Inc. Apparatus for use with needle insertion guidance system
MX338127B (en) 2010-08-20 2016-04-04 Bard Inc C R Reconfirmation of ecg-assisted catheter tip placement.
CN103189009B (en) 2010-10-29 2016-09-07 C·R·巴德股份有限公司 The bio-impedance auxiliary of Medical Devices is placed
KR20140051284A (en) 2011-07-06 2014-04-30 씨. 알. 바드, 인크. Needle length determination and calibration for insertion guidance system
USD724745S1 (en) 2011-08-09 2015-03-17 C. R. Bard, Inc. Cap for an ultrasound probe
USD699359S1 (en) 2011-08-09 2014-02-11 C. R. Bard, Inc. Ultrasound probe head
WO2013070775A1 (en) 2011-11-07 2013-05-16 C.R. Bard, Inc Ruggedized ultrasound hydrogel insert
CN104837413B (en) 2012-06-15 2018-09-11 C·R·巴德股份有限公司 Detect the device and method of removable cap on ultrasonic detector
ES2811323T3 (en) 2014-02-06 2021-03-11 Bard Inc C R Systems for the guidance and placement of an intravascular device
US10973584B2 (en) 2015-01-19 2021-04-13 Bard Access Systems, Inc. Device and method for vascular access
WO2016210325A1 (en) 2015-06-26 2016-12-29 C.R. Bard, Inc. Connector interface for ecg-based catheter positioning system
US11000207B2 (en) 2016-01-29 2021-05-11 C. R. Bard, Inc. Multiple coil system for tracking a medical device
US10992079B2 (en) 2018-10-16 2021-04-27 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
WO2023034319A1 (en) 2021-08-30 2023-03-09 Stereotaxis, Inc. Magnetically steerable irrigated ablation catheters, and systems and methods thereof

Citations (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3387707A (en) * 1965-06-14 1968-06-11 Westinghouse Electric Corp Permanent magnet assembly
US4839059A (en) * 1988-06-23 1989-06-13 The United States Of America As Represented By The Secretary Of The Army Clad magic ring wigglers
US5184395A (en) * 1989-07-03 1993-02-09 Comec S.R.L. System for manufacturing permanent magnetic field generators and relevant magnet geometries therefor
US5216400A (en) * 1992-06-02 1993-06-01 The United States Of America As Represented By The Secretary Of The Army Magnetic field sources for producing high-intensity variable fields
US5312321A (en) * 1986-11-21 1994-05-17 Holcomb Technology, Inc. Method and apparatus for suppressing neuron action potential firings
US5495222A (en) * 1994-04-15 1996-02-27 New York University Open permanent magnet structure for generating highly uniform field
US5622169A (en) * 1993-09-14 1997-04-22 University Of Washington Apparatus and method for locating a medical tube in the body of a patient
US6014580A (en) * 1997-11-12 2000-01-11 Stereotaxis, Inc. Device and method for specifying magnetic field for surgical applications
US6015414A (en) * 1997-08-29 2000-01-18 Stereotaxis, Inc. Method and apparatus for magnetically controlling motion direction of a mechanically pushed catheter
US6212419B1 (en) * 1997-11-12 2001-04-03 Walter M. Blume Method and apparatus using shaped field of repositionable magnet to guide implant
US6241671B1 (en) * 1998-11-03 2001-06-05 Stereotaxis, Inc. Open field system for magnetic surgery
US6352363B1 (en) * 2001-01-16 2002-03-05 Stereotaxis, Inc. Shielded x-ray source, method of shielding an x-ray source, and magnetic surgical system with shielded x-ray source
US6364823B1 (en) * 1999-03-17 2002-04-02 Stereotaxis, Inc. Methods of and compositions for treating vascular defects
US6375606B1 (en) * 1999-03-17 2002-04-23 Stereotaxis, Inc. Methods of and apparatus for treating vascular defects
US6385472B1 (en) * 1999-09-10 2002-05-07 Stereotaxis, Inc. Magnetically navigable telescoping catheter and method of navigating telescoping catheter
US6401723B1 (en) * 2000-02-16 2002-06-11 Stereotaxis, Inc. Magnetic medical devices with changeable magnetic moments and method of navigating magnetic medical devices with changeable magnetic moments
US6505062B1 (en) * 1998-02-09 2003-01-07 Stereotaxis, Inc. Method for locating magnetic implant by source field
US6522909B1 (en) * 1998-08-07 2003-02-18 Stereotaxis, Inc. Method and apparatus for magnetically controlling catheters in body lumens and cavities
US6524303B1 (en) * 2000-09-08 2003-02-25 Stereotaxis, Inc. Variable stiffness magnetic catheter
US6527782B2 (en) * 2000-06-07 2003-03-04 Sterotaxis, Inc. Guide for medical devices
US6537196B1 (en) * 2000-10-24 2003-03-25 Stereotaxis, Inc. Magnet assembly with variable field directions and methods of magnetically navigating medical objects
US6542766B2 (en) * 1999-05-13 2003-04-01 Andrew F. Hall Medical devices adapted for magnetic navigation with magnetic fields and gradients
US6562019B1 (en) * 1999-09-20 2003-05-13 Stereotaxis, Inc. Method of utilizing a magnetically guided myocardial treatment system
US20040002643A1 (en) * 2002-06-28 2004-01-01 Hastings Roger N. Method of navigating medical devices in the presence of radiopaque material
US6677752B1 (en) * 2000-11-20 2004-01-13 Stereotaxis, Inc. Close-in shielding system for magnetic medical treatment instruments
US20040019447A1 (en) * 2002-07-16 2004-01-29 Yehoshua Shachar Apparatus and method for catheter guidance control and imaging
US20040030244A1 (en) * 1999-08-06 2004-02-12 Garibaldi Jeffrey M. Method and apparatus for magnetically controlling catheters in body lumens and cavities
US6702804B1 (en) * 1999-10-04 2004-03-09 Stereotaxis, Inc. Method for safely and efficiently navigating magnetic devices in the body
US20040064153A1 (en) * 1999-02-04 2004-04-01 Creighton Francis M. Efficient magnet system for magnetically-assisted surgery
US20040068173A1 (en) * 2002-08-06 2004-04-08 Viswanathan Raju R. Remote control of medical devices using a virtual device interface
US6733511B2 (en) * 1998-10-02 2004-05-11 Stereotaxis, Inc. Magnetically navigable and/or controllable device for removing material from body lumens and cavities
US20050021063A1 (en) * 1999-03-30 2005-01-27 Hall Andrew F. Magnetically Guided Atherectomy
US20050020911A1 (en) * 2002-04-10 2005-01-27 Viswanathan Raju R. Efficient closed loop feedback navigation
US20050043611A1 (en) * 2003-05-02 2005-02-24 Sabo Michael E. Variable magnetic moment MR navigation
US20050065435A1 (en) * 2003-07-22 2005-03-24 John Rauch User interface for remote control of medical devices
US20050096589A1 (en) * 2003-10-20 2005-05-05 Yehoshua Shachar System and method for radar-assisted catheter guidance and control
US20050113628A1 (en) * 2002-01-23 2005-05-26 Creighton Francis M.Iv Rotating and pivoting magnet for magnetic navigation
US20050113812A1 (en) * 2003-09-16 2005-05-26 Viswanathan Raju R. User interface for remote control of medical devices
US20050119556A1 (en) * 2001-01-29 2005-06-02 Gillies George T. Catheter navigation within an MR imaging device
US20050119687A1 (en) * 2003-09-08 2005-06-02 Dacey Ralph G.Jr. Methods of, and materials for, treating vascular defects with magnetically controllable hydrogels
US6902528B1 (en) * 1999-04-14 2005-06-07 Stereotaxis, Inc. Method and apparatus for magnetically controlling endoscopes in body lumens and cavities
US20060009735A1 (en) * 2004-06-29 2006-01-12 Viswanathan Raju R Navigation of remotely actuable medical device using control variable and length
US20060025679A1 (en) * 2004-06-04 2006-02-02 Viswanathan Raju R User interface for remote control of medical devices
US20060041245A1 (en) * 2001-05-06 2006-02-23 Ferry Steven J Systems and methods for medical device a dvancement and rotation
US7008418B2 (en) * 2002-05-09 2006-03-07 Stereotaxis, Inc. Magnetically assisted pulmonary vein isolation
US20060058646A1 (en) * 2004-08-26 2006-03-16 Raju Viswanathan Method for surgical navigation utilizing scale-invariant registration between a navigation system and a localization system
US20060061445A1 (en) * 2000-04-11 2006-03-23 Stereotaxis, Inc. Magnets with varying magnetization direction and method of making such magnets
US7020512B2 (en) * 2002-01-14 2006-03-28 Stereotaxis, Inc. Method of localizing medical devices
US7019610B2 (en) * 2002-01-23 2006-03-28 Stereotaxis, Inc. Magnetic navigation system
US20060074297A1 (en) * 2004-08-24 2006-04-06 Viswanathan Raju R Methods and apparatus for steering medical devices in body lumens
US20060079745A1 (en) * 2004-10-07 2006-04-13 Viswanathan Raju R Surgical navigation with overlay on anatomical images
US20060079812A1 (en) * 2004-09-07 2006-04-13 Viswanathan Raju R Magnetic guidewire for lesion crossing
US20060094956A1 (en) * 2004-10-29 2006-05-04 Viswanathan Raju R Restricted navigation controller for, and methods of controlling, a remote navigation system
US20060100505A1 (en) * 2004-10-26 2006-05-11 Viswanathan Raju R Surgical navigation using a three-dimensional user interface
US7161453B2 (en) * 2002-01-23 2007-01-09 Stereotaxis, Inc. Rotating and pivoting magnet for magnetic navigation
US20070016131A1 (en) * 2005-07-12 2007-01-18 Munger Gareth T Flexible magnets for navigable medical devices
US20070021731A1 (en) * 1997-11-12 2007-01-25 Garibaldi Jeffrey M Method of and apparatus for navigating medical devices in body lumens
US20070021744A1 (en) * 2005-07-07 2007-01-25 Creighton Francis M Iv Apparatus and method for performing ablation with imaging feedback
US20070021742A1 (en) * 2005-07-18 2007-01-25 Viswanathan Raju R Estimation of contact force by a medical device
US20070019330A1 (en) * 2005-07-12 2007-01-25 Charles Wolfersberger Apparatus for pivotally orienting a projection device
US20070030958A1 (en) * 2005-07-15 2007-02-08 Munger Gareth T Magnetically shielded x-ray tube
US20070032746A1 (en) * 2005-01-10 2007-02-08 Stereotaxis, Inc. Guide wire with magnetically adjustable bent tip and method for using the same
US20070038064A1 (en) * 2005-07-08 2007-02-15 Creighton Francis M Iv Magnetic navigation and imaging system
US20070038410A1 (en) * 2005-08-10 2007-02-15 Ilker Tunay Method and apparatus for dynamic magnetic field control using multiple magnets
US20070038065A1 (en) * 2005-07-07 2007-02-15 Creighton Francis M Iv Operation of a remote medical navigation system using ultrasound image
US20070040670A1 (en) * 2005-07-26 2007-02-22 Viswanathan Raju R System and network for remote medical procedures
US20070043455A1 (en) * 2005-07-26 2007-02-22 Viswanathan Raju R Apparatus and methods for automated sequential movement control for operation of a remote navigation system
US20070049909A1 (en) * 2005-08-26 2007-03-01 Munger Gareth T Magnetically enabled optical ablation device
US20070055124A1 (en) * 2005-09-01 2007-03-08 Viswanathan Raju R Method and system for optimizing left-heart lead placement
US20070055130A1 (en) * 2005-09-02 2007-03-08 Creighton Francis M Iv Ultrasonic disbursement of magnetically delivered substances
US7189798B2 (en) * 2001-01-11 2007-03-13 Eastman Chemical Company Composition containing mixture of dihydroxybutane sulfonates
US7189198B2 (en) * 2002-07-03 2007-03-13 Stereotaxis, Inc. Magnetically guidable carriers and methods for the targeted magnetic delivery of substances in the body
US7190819B2 (en) * 2004-10-29 2007-03-13 Stereotaxis, Inc. Image-based medical device localization
US20070060962A1 (en) * 2005-07-26 2007-03-15 Carlo Pappone Apparatus and methods for cardiac resynchronization therapy and cardiac contractility modulation
US20070060916A1 (en) * 2005-07-26 2007-03-15 Carlo Pappone System and network for remote medical procedures
US20070060829A1 (en) * 2005-07-21 2007-03-15 Carlo Pappone Method of finding the source of and treating cardiac arrhythmias
US20070060992A1 (en) * 2005-06-02 2007-03-15 Carlo Pappone Methods and devices for mapping the ventricle for pacing lead placement and therapy delivery
US20070060966A1 (en) * 2005-07-11 2007-03-15 Carlo Pappone Method of treating cardiac arrhythmias
US20070062546A1 (en) * 2005-06-02 2007-03-22 Viswanathan Raju R Electrophysiology catheter and system for gentle and firm wall contact
US20070062547A1 (en) * 2005-07-21 2007-03-22 Carlo Pappone Systems for and methods of tissue ablation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1032676C (en) * 1993-10-08 1996-09-04 张小云 Low frequency rotation permanent magnetic field therapeutic device
US5900793A (en) * 1997-07-23 1999-05-04 Odin Technologies Ltd Permanent magnet assemblies for use in medical applications

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3387707A (en) * 1965-06-14 1968-06-11 Westinghouse Electric Corp Permanent magnet assembly
US5312321A (en) * 1986-11-21 1994-05-17 Holcomb Technology, Inc. Method and apparatus for suppressing neuron action potential firings
US4839059A (en) * 1988-06-23 1989-06-13 The United States Of America As Represented By The Secretary Of The Army Clad magic ring wigglers
US5184395A (en) * 1989-07-03 1993-02-09 Comec S.R.L. System for manufacturing permanent magnetic field generators and relevant magnet geometries therefor
US5216400A (en) * 1992-06-02 1993-06-01 The United States Of America As Represented By The Secretary Of The Army Magnetic field sources for producing high-intensity variable fields
US5622169A (en) * 1993-09-14 1997-04-22 University Of Washington Apparatus and method for locating a medical tube in the body of a patient
US5495222A (en) * 1994-04-15 1996-02-27 New York University Open permanent magnet structure for generating highly uniform field
US6015414A (en) * 1997-08-29 2000-01-18 Stereotaxis, Inc. Method and apparatus for magnetically controlling motion direction of a mechanically pushed catheter
US6014580A (en) * 1997-11-12 2000-01-11 Stereotaxis, Inc. Device and method for specifying magnetic field for surgical applications
US6212419B1 (en) * 1997-11-12 2001-04-03 Walter M. Blume Method and apparatus using shaped field of repositionable magnet to guide implant
US20070021731A1 (en) * 1997-11-12 2007-01-25 Garibaldi Jeffrey M Method of and apparatus for navigating medical devices in body lumens
US6507751B2 (en) * 1997-11-12 2003-01-14 Stereotaxis, Inc. Method and apparatus using shaped field of repositionable magnet to guide implant
US6505062B1 (en) * 1998-02-09 2003-01-07 Stereotaxis, Inc. Method for locating magnetic implant by source field
US7010338B2 (en) * 1998-02-09 2006-03-07 Stereotaxis, Inc. Device for locating magnetic implant by source field
US20070038074A1 (en) * 1998-02-09 2007-02-15 Ritter Rogers C Method and device for locating magnetic implant source field
US6522909B1 (en) * 1998-08-07 2003-02-18 Stereotaxis, Inc. Method and apparatus for magnetically controlling catheters in body lumens and cavities
US7211082B2 (en) * 1998-09-11 2007-05-01 Stereotaxis, Inc. Magnetically navigable telescoping catheter and method of navigating telescoping catheter
US20070073288A1 (en) * 1998-09-11 2007-03-29 Hall Andrew F Magnetically navigable telescoping catheter and method of navigating telescoping catheter
US6733511B2 (en) * 1998-10-02 2004-05-11 Stereotaxis, Inc. Magnetically navigable and/or controllable device for removing material from body lumens and cavities
US20050004585A1 (en) * 1998-10-02 2005-01-06 Hall Andrew F. Magnetically navigable and/or controllable device for removing material from body lumens and cavities
US6241671B1 (en) * 1998-11-03 2001-06-05 Stereotaxis, Inc. Open field system for magnetic surgery
US20040064153A1 (en) * 1999-02-04 2004-04-01 Creighton Francis M. Efficient magnet system for magnetically-assisted surgery
US6375606B1 (en) * 1999-03-17 2002-04-23 Stereotaxis, Inc. Methods of and apparatus for treating vascular defects
US6364823B1 (en) * 1999-03-17 2002-04-02 Stereotaxis, Inc. Methods of and compositions for treating vascular defects
US20050021063A1 (en) * 1999-03-30 2005-01-27 Hall Andrew F. Magnetically Guided Atherectomy
US6902528B1 (en) * 1999-04-14 2005-06-07 Stereotaxis, Inc. Method and apparatus for magnetically controlling endoscopes in body lumens and cavities
US6542766B2 (en) * 1999-05-13 2003-04-01 Andrew F. Hall Medical devices adapted for magnetic navigation with magnetic fields and gradients
US20040030244A1 (en) * 1999-08-06 2004-02-12 Garibaldi Jeffrey M. Method and apparatus for magnetically controlling catheters in body lumens and cavities
US6385472B1 (en) * 1999-09-10 2002-05-07 Stereotaxis, Inc. Magnetically navigable telescoping catheter and method of navigating telescoping catheter
US20040006301A1 (en) * 1999-09-20 2004-01-08 Sell Jonathan C. Magnetically guided myocardial treatment system
US6562019B1 (en) * 1999-09-20 2003-05-13 Stereotaxis, Inc. Method of utilizing a magnetically guided myocardial treatment system
US6755816B2 (en) * 1999-10-04 2004-06-29 Stereotaxis, Inc. Method for safely and efficiently navigating magnetic devices in the body
US6702804B1 (en) * 1999-10-04 2004-03-09 Stereotaxis, Inc. Method for safely and efficiently navigating magnetic devices in the body
US20070088197A1 (en) * 2000-02-16 2007-04-19 Sterotaxis, Inc. Magnetic medical devices with changeable magnetic moments and method of navigating magnetic medical devices with changeable magnetic moments
US6401723B1 (en) * 2000-02-16 2002-06-11 Stereotaxis, Inc. Magnetic medical devices with changeable magnetic moments and method of navigating magnetic medical devices with changeable magnetic moments
US20060061445A1 (en) * 2000-04-11 2006-03-23 Stereotaxis, Inc. Magnets with varying magnetization direction and method of making such magnets
US20060004382A1 (en) * 2000-06-07 2006-01-05 Hogg Bevil J Guide for medical devices
US6527782B2 (en) * 2000-06-07 2003-03-04 Sterotaxis, Inc. Guide for medical devices
US6524303B1 (en) * 2000-09-08 2003-02-25 Stereotaxis, Inc. Variable stiffness magnetic catheter
US6537196B1 (en) * 2000-10-24 2003-03-25 Stereotaxis, Inc. Magnet assembly with variable field directions and methods of magnetically navigating medical objects
US6677752B1 (en) * 2000-11-20 2004-01-13 Stereotaxis, Inc. Close-in shielding system for magnetic medical treatment instruments
US7189798B2 (en) * 2001-01-11 2007-03-13 Eastman Chemical Company Composition containing mixture of dihydroxybutane sulfonates
US6352363B1 (en) * 2001-01-16 2002-03-05 Stereotaxis, Inc. Shielded x-ray source, method of shielding an x-ray source, and magnetic surgical system with shielded x-ray source
US20050119556A1 (en) * 2001-01-29 2005-06-02 Gillies George T. Catheter navigation within an MR imaging device
US20060041245A1 (en) * 2001-05-06 2006-02-23 Ferry Steven J Systems and methods for medical device a dvancement and rotation
US7020512B2 (en) * 2002-01-14 2006-03-28 Stereotaxis, Inc. Method of localizing medical devices
US20050113628A1 (en) * 2002-01-23 2005-05-26 Creighton Francis M.Iv Rotating and pivoting magnet for magnetic navigation
US7019610B2 (en) * 2002-01-23 2006-03-28 Stereotaxis, Inc. Magnetic navigation system
US7161453B2 (en) * 2002-01-23 2007-01-09 Stereotaxis, Inc. Rotating and pivoting magnet for magnetic navigation
US20070016010A1 (en) * 2002-01-23 2007-01-18 Sterotaxis, Inc. Magnetic navigation system
US20050020911A1 (en) * 2002-04-10 2005-01-27 Viswanathan Raju R. Efficient closed loop feedback navigation
US7008418B2 (en) * 2002-05-09 2006-03-07 Stereotaxis, Inc. Magnetically assisted pulmonary vein isolation
US20040002643A1 (en) * 2002-06-28 2004-01-01 Hastings Roger N. Method of navigating medical devices in the presence of radiopaque material
US7189198B2 (en) * 2002-07-03 2007-03-13 Stereotaxis, Inc. Magnetically guidable carriers and methods for the targeted magnetic delivery of substances in the body
US20040019447A1 (en) * 2002-07-16 2004-01-29 Yehoshua Shachar Apparatus and method for catheter guidance control and imaging
US20040068173A1 (en) * 2002-08-06 2004-04-08 Viswanathan Raju R. Remote control of medical devices using a virtual device interface
US20050043611A1 (en) * 2003-05-02 2005-02-24 Sabo Michael E. Variable magnetic moment MR navigation
US20050065435A1 (en) * 2003-07-22 2005-03-24 John Rauch User interface for remote control of medical devices
US20050119687A1 (en) * 2003-09-08 2005-06-02 Dacey Ralph G.Jr. Methods of, and materials for, treating vascular defects with magnetically controllable hydrogels
US20050113812A1 (en) * 2003-09-16 2005-05-26 Viswanathan Raju R. User interface for remote control of medical devices
US20050096589A1 (en) * 2003-10-20 2005-05-05 Yehoshua Shachar System and method for radar-assisted catheter guidance and control
US20060025679A1 (en) * 2004-06-04 2006-02-02 Viswanathan Raju R User interface for remote control of medical devices
US20060041179A1 (en) * 2004-06-04 2006-02-23 Viswanathan Raju R User interface for remote control of medical devices
US20060041178A1 (en) * 2004-06-04 2006-02-23 Viswanathan Raju R User interface for remote control of medical devices
US20060041181A1 (en) * 2004-06-04 2006-02-23 Viswanathan Raju R User interface for remote control of medical devices
US20060041180A1 (en) * 2004-06-04 2006-02-23 Viswanathan Raju R User interface for remote control of medical devices
US20060036125A1 (en) * 2004-06-04 2006-02-16 Viswanathan Raju R User interface for remote control of medical devices
US20060025719A1 (en) * 2004-06-29 2006-02-02 Stereotaxis, Inc. Navigation of remotely actuable medical device using control variable and length
US20060009735A1 (en) * 2004-06-29 2006-01-12 Viswanathan Raju R Navigation of remotely actuable medical device using control variable and length
US20060036213A1 (en) * 2004-06-29 2006-02-16 Stereotaxis, Inc. Navigation of remotely actuable medical device using control variable and length
US20060025676A1 (en) * 2004-06-29 2006-02-02 Stereotaxis, Inc. Navigation of remotely actuable medical device using control variable and length
US20060074297A1 (en) * 2004-08-24 2006-04-06 Viswanathan Raju R Methods and apparatus for steering medical devices in body lumens
US20060058646A1 (en) * 2004-08-26 2006-03-16 Raju Viswanathan Method for surgical navigation utilizing scale-invariant registration between a navigation system and a localization system
US20060079812A1 (en) * 2004-09-07 2006-04-13 Viswanathan Raju R Magnetic guidewire for lesion crossing
US20060079745A1 (en) * 2004-10-07 2006-04-13 Viswanathan Raju R Surgical navigation with overlay on anatomical images
US20060100505A1 (en) * 2004-10-26 2006-05-11 Viswanathan Raju R Surgical navigation using a three-dimensional user interface
US7190819B2 (en) * 2004-10-29 2007-03-13 Stereotaxis, Inc. Image-based medical device localization
US20060094956A1 (en) * 2004-10-29 2006-05-04 Viswanathan Raju R Restricted navigation controller for, and methods of controlling, a remote navigation system
US20070032746A1 (en) * 2005-01-10 2007-02-08 Stereotaxis, Inc. Guide wire with magnetically adjustable bent tip and method for using the same
US20070062546A1 (en) * 2005-06-02 2007-03-22 Viswanathan Raju R Electrophysiology catheter and system for gentle and firm wall contact
US20070060992A1 (en) * 2005-06-02 2007-03-15 Carlo Pappone Methods and devices for mapping the ventricle for pacing lead placement and therapy delivery
US20070038065A1 (en) * 2005-07-07 2007-02-15 Creighton Francis M Iv Operation of a remote medical navigation system using ultrasound image
US20070021744A1 (en) * 2005-07-07 2007-01-25 Creighton Francis M Iv Apparatus and method for performing ablation with imaging feedback
US20070038064A1 (en) * 2005-07-08 2007-02-15 Creighton Francis M Iv Magnetic navigation and imaging system
US20070060966A1 (en) * 2005-07-11 2007-03-15 Carlo Pappone Method of treating cardiac arrhythmias
US20070019330A1 (en) * 2005-07-12 2007-01-25 Charles Wolfersberger Apparatus for pivotally orienting a projection device
US20070016131A1 (en) * 2005-07-12 2007-01-18 Munger Gareth T Flexible magnets for navigable medical devices
US20070030958A1 (en) * 2005-07-15 2007-02-08 Munger Gareth T Magnetically shielded x-ray tube
US20070021742A1 (en) * 2005-07-18 2007-01-25 Viswanathan Raju R Estimation of contact force by a medical device
US20070062547A1 (en) * 2005-07-21 2007-03-22 Carlo Pappone Systems for and methods of tissue ablation
US20070060829A1 (en) * 2005-07-21 2007-03-15 Carlo Pappone Method of finding the source of and treating cardiac arrhythmias
US20070043455A1 (en) * 2005-07-26 2007-02-22 Viswanathan Raju R Apparatus and methods for automated sequential movement control for operation of a remote navigation system
US20070060916A1 (en) * 2005-07-26 2007-03-15 Carlo Pappone System and network for remote medical procedures
US20070060962A1 (en) * 2005-07-26 2007-03-15 Carlo Pappone Apparatus and methods for cardiac resynchronization therapy and cardiac contractility modulation
US20070040670A1 (en) * 2005-07-26 2007-02-22 Viswanathan Raju R System and network for remote medical procedures
US20070038410A1 (en) * 2005-08-10 2007-02-15 Ilker Tunay Method and apparatus for dynamic magnetic field control using multiple magnets
US20070049909A1 (en) * 2005-08-26 2007-03-01 Munger Gareth T Magnetically enabled optical ablation device
US20070055124A1 (en) * 2005-09-01 2007-03-08 Viswanathan Raju R Method and system for optimizing left-heart lead placement
US20070055130A1 (en) * 2005-09-02 2007-03-08 Creighton Francis M Iv Ultrasonic disbursement of magnetically delivered substances

Cited By (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100063385A1 (en) * 1998-08-07 2010-03-11 Garibaldi Jeffrey M Method and apparatus for magnetically controlling catheters in body lumens and cavities
US20090177032A1 (en) * 1999-04-14 2009-07-09 Garibaldi Jeffrey M Method and apparatus for magnetically controlling endoscopes in body lumens and cavities
US20100163061A1 (en) * 2000-04-11 2010-07-01 Creighton Francis M Magnets with varying magnetization direction and method of making such magnets
US8196590B2 (en) 2003-05-02 2012-06-12 Stereotaxis, Inc. Variable magnetic moment MR navigation
US20050113812A1 (en) * 2003-09-16 2005-05-26 Viswanathan Raju R. User interface for remote control of medical devices
US20110022029A1 (en) * 2004-12-20 2011-01-27 Viswanathan Raju R Contact over-torque with three-dimensional anatomical data
US8369934B2 (en) 2004-12-20 2013-02-05 Stereotaxis, Inc. Contact over-torque with three-dimensional anatomical data
US7961926B2 (en) 2005-02-07 2011-06-14 Stereotaxis, Inc. Registration of three-dimensional image data to 2D-image-derived data
US20110033100A1 (en) * 2005-02-07 2011-02-10 Viswanathan Raju R Registration of three-dimensional image data to 2d-image-derived data
US20090062646A1 (en) * 2005-07-07 2009-03-05 Creighton Iv Francis M Operation of a remote medical navigation system using ultrasound image
US9314222B2 (en) 2005-07-07 2016-04-19 Stereotaxis, Inc. Operation of a remote medical navigation system using ultrasound image
US7772950B2 (en) 2005-08-10 2010-08-10 Stereotaxis, Inc. Method and apparatus for dynamic magnetic field control using multiple magnets
US20100168549A1 (en) * 2006-01-06 2010-07-01 Carlo Pappone Electrophysiology catheter and system for gentle and firm wall contact
US20080015670A1 (en) * 2006-01-17 2008-01-17 Carlo Pappone Methods and devices for cardiac ablation
US20100222669A1 (en) * 2006-08-23 2010-09-02 William Flickinger Medical device guide
US20100097315A1 (en) * 2006-09-06 2010-04-22 Garibaldi Jeffrey M Global input device for multiple computer-controlled medical systems
US20080097200A1 (en) * 2006-10-20 2008-04-24 Blume Walter M Location and Display of Occluded Portions of Vessels on 3-D Angiographic Images
US8135185B2 (en) 2006-10-20 2012-03-13 Stereotaxis, Inc. Location and display of occluded portions of vessels on 3-D angiographic images
US20080132910A1 (en) * 2006-11-07 2008-06-05 Carlo Pappone Control for a Remote Navigation System
US20080200913A1 (en) * 2007-02-07 2008-08-21 Viswanathan Raju R Single Catheter Navigation for Diagnosis and Treatment of Arrhythmias
US20080208912A1 (en) * 2007-02-26 2008-08-28 Garibaldi Jeffrey M System and method for providing contextually relevant medical information
US20080287909A1 (en) * 2007-05-17 2008-11-20 Viswanathan Raju R Method and apparatus for intra-chamber needle injection treatment
US20080294232A1 (en) * 2007-05-22 2008-11-27 Viswanathan Raju R Magnetic cell delivery
US20090177037A1 (en) * 2007-06-27 2009-07-09 Viswanathan Raju R Remote control of medical devices using real time location data
US8024024B2 (en) 2007-06-27 2011-09-20 Stereotaxis, Inc. Remote control of medical devices using real time location data
US9111016B2 (en) 2007-07-06 2015-08-18 Stereotaxis, Inc. Management of live remote medical display
US20090012821A1 (en) * 2007-07-06 2009-01-08 Guy Besson Management of live remote medical display
US20090082722A1 (en) * 2007-08-21 2009-03-26 Munger Gareth T Remote navigation advancer devices and methods of use
US20090105579A1 (en) * 2007-10-19 2009-04-23 Garibaldi Jeffrey M Method and apparatus for remotely controlled navigation using diagnostically enhanced intra-operative three-dimensional image data
US8231618B2 (en) 2007-11-05 2012-07-31 Stereotaxis, Inc. Magnetically guided energy delivery apparatus
US20090131798A1 (en) * 2007-11-19 2009-05-21 Minar Christopher D Method and apparatus for intravascular imaging and occlusion crossing
US20090131927A1 (en) * 2007-11-20 2009-05-21 Nathan Kastelein Method and apparatus for remote detection of rf ablation
US20100069733A1 (en) * 2008-09-05 2010-03-18 Nathan Kastelein Electrophysiology catheter with electrode loop
US20110130718A1 (en) * 2009-05-25 2011-06-02 Kidd Brian L Remote Manipulator Device
US20100298845A1 (en) * 2009-05-25 2010-11-25 Kidd Brian L Remote manipulator device
US10537713B2 (en) 2009-05-25 2020-01-21 Stereotaxis, Inc. Remote manipulator device
US20110046618A1 (en) * 2009-08-04 2011-02-24 Minar Christopher D Methods and systems for treating occluded blood vessels and other body cannula
US8529428B2 (en) 2009-11-02 2013-09-10 Pulse Therapeutics, Inc. Methods of controlling magnetic nanoparticles to improve vascular flow
US8926491B2 (en) 2009-11-02 2015-01-06 Pulse Therapeutics, Inc. Controlling magnetic nanoparticles to increase vascular flow
US8715150B2 (en) 2009-11-02 2014-05-06 Pulse Therapeutics, Inc. Devices for controlling magnetic nanoparticles to treat fluid obstructions
US8313422B2 (en) 2009-11-02 2012-11-20 Pulse Therapeutics, Inc. Magnetic-based methods for treating vessel obstructions
US9339664B2 (en) 2009-11-02 2016-05-17 Pulse Therapetics, Inc. Control of magnetic rotors to treat therapeutic targets
US9345498B2 (en) 2009-11-02 2016-05-24 Pulse Therapeutics, Inc. Methods of controlling magnetic nanoparticles to improve vascular flow
US10159734B2 (en) 2009-11-02 2018-12-25 Pulse Therapeutics, Inc. Magnetic particle control and visualization
US10813997B2 (en) 2009-11-02 2020-10-27 Pulse Therapeutics, Inc. Devices for controlling magnetic nanoparticles to treat fluid obstructions
US11612655B2 (en) 2009-11-02 2023-03-28 Pulse Therapeutics, Inc. Magnetic particle control and visualization
US10029008B2 (en) 2009-11-02 2018-07-24 Pulse Therapeutics, Inc. Therapeutic magnetic control systems and contrast agents
US11000589B2 (en) 2009-11-02 2021-05-11 Pulse Therapeutics, Inc. Magnetic particle control and visualization
US8308628B2 (en) 2009-11-02 2012-11-13 Pulse Therapeutics, Inc. Magnetic-based systems for treating occluded vessels
US9883878B2 (en) 2012-05-15 2018-02-06 Pulse Therapeutics, Inc. Magnetic-based systems and methods for manipulation of magnetic particles
US10646241B2 (en) 2012-05-15 2020-05-12 Pulse Therapeutics, Inc. Detection of fluidic current generated by rotating magnetic particles
US9638821B2 (en) 2014-03-20 2017-05-02 Lockheed Martin Corporation Mapping and monitoring of hydraulic fractures using vector magnetometers
US9910105B2 (en) 2014-03-20 2018-03-06 Lockheed Martin Corporation DNV magnetic field detector
US10725124B2 (en) 2014-03-20 2020-07-28 Lockheed Martin Corporation DNV magnetic field detector
US9823381B2 (en) 2014-03-20 2017-11-21 Lockheed Martin Corporation Mapping and monitoring of hydraulic fractures using vector magnetometers
US9590601B2 (en) 2014-04-07 2017-03-07 Lockheed Martin Corporation Energy efficient controlled magnetic field generator circuit
US10277208B2 (en) 2014-04-07 2019-04-30 Lockheed Martin Corporation Energy efficient controlled magnetic field generator circuit
US9853837B2 (en) 2014-04-07 2017-12-26 Lockheed Martin Corporation High bit-rate magnetic communication
US10168393B2 (en) 2014-09-25 2019-01-01 Lockheed Martin Corporation Micro-vacancy center device
US10466312B2 (en) 2015-01-23 2019-11-05 Lockheed Martin Corporation Methods for detecting a magnetic field acting on a magneto-optical detect center having pulsed excitation
US9910104B2 (en) 2015-01-23 2018-03-06 Lockheed Martin Corporation DNV magnetic field detector
US9557391B2 (en) 2015-01-23 2017-01-31 Lockheed Martin Corporation Apparatus and method for high sensitivity magnetometry measurement and signal processing in a magnetic detection system
US9824597B2 (en) 2015-01-28 2017-11-21 Lockheed Martin Corporation Magnetic navigation methods and systems utilizing power grid and communication network
US9845153B2 (en) 2015-01-28 2017-12-19 Lockheed Martin Corporation In-situ power charging
US9541610B2 (en) 2015-02-04 2017-01-10 Lockheed Martin Corporation Apparatus and method for recovery of three dimensional magnetic field from a magnetic detection system
GB2550809A (en) * 2015-02-04 2017-11-29 Lockheed Corp Apparatus and method for estimating absolute axes' orientations for a magnetic detection system
US10241158B2 (en) 2015-02-04 2019-03-26 Lockheed Martin Corporation Apparatus and method for estimating absolute axes' orientations for a magnetic detection system
WO2016126435A1 (en) * 2015-02-04 2016-08-11 Lockheed Martin Corporation Apparatus and method for estimating absolute axes' orientations for a magnetic detection system
US10408889B2 (en) 2015-02-04 2019-09-10 Lockheed Martin Corporation Apparatus and method for recovery of three dimensional magnetic field from a magnetic detection system
US10012704B2 (en) 2015-11-04 2018-07-03 Lockheed Martin Corporation Magnetic low-pass filter
US10120039B2 (en) 2015-11-20 2018-11-06 Lockheed Martin Corporation Apparatus and method for closed loop processing for a magnetic detection system
US9829545B2 (en) 2015-11-20 2017-11-28 Lockheed Martin Corporation Apparatus and method for hypersensitivity detection of magnetic field
US10333588B2 (en) 2015-12-01 2019-06-25 Lockheed Martin Corporation Communication via a magnio
US9614589B1 (en) 2015-12-01 2017-04-04 Lockheed Martin Corporation Communication via a magnio
US10088452B2 (en) 2016-01-12 2018-10-02 Lockheed Martin Corporation Method for detecting defects in conductive materials based on differences in magnetic field characteristics measured along the conductive materials
US9823313B2 (en) 2016-01-21 2017-11-21 Lockheed Martin Corporation Diamond nitrogen vacancy sensor with circuitry on diamond
US9835694B2 (en) 2016-01-21 2017-12-05 Lockheed Martin Corporation Higher magnetic sensitivity through fluorescence manipulation by phonon spectrum control
US9551763B1 (en) 2016-01-21 2017-01-24 Lockheed Martin Corporation Diamond nitrogen vacancy sensor with common RF and magnetic fields generator
US9720055B1 (en) 2016-01-21 2017-08-01 Lockheed Martin Corporation Magnetometer with light pipe
US10006973B2 (en) 2016-01-21 2018-06-26 Lockheed Martin Corporation Magnetometer with a light emitting diode
US9835693B2 (en) 2016-01-21 2017-12-05 Lockheed Martin Corporation Higher magnetic sensitivity through fluorescence manipulation by phonon spectrum control
US9817081B2 (en) 2016-01-21 2017-11-14 Lockheed Martin Corporation Magnetometer with light pipe
US10088336B2 (en) 2016-01-21 2018-10-02 Lockheed Martin Corporation Diamond nitrogen vacancy sensed ferro-fluid hydrophone
US10338162B2 (en) 2016-01-21 2019-07-02 Lockheed Martin Corporation AC vector magnetic anomaly detection with diamond nitrogen vacancies
US9823314B2 (en) 2016-01-21 2017-11-21 Lockheed Martin Corporation Magnetometer with a light emitting diode
US10520558B2 (en) 2016-01-21 2019-12-31 Lockheed Martin Corporation Diamond nitrogen vacancy sensor with nitrogen-vacancy center diamond located between dual RF sources
US10345396B2 (en) 2016-05-31 2019-07-09 Lockheed Martin Corporation Selected volume continuous illumination magnetometer
US10677953B2 (en) 2016-05-31 2020-06-09 Lockheed Martin Corporation Magneto-optical detecting apparatus and methods
US10571530B2 (en) 2016-05-31 2020-02-25 Lockheed Martin Corporation Buoy array of magnetometers
US10126377B2 (en) 2016-05-31 2018-11-13 Lockheed Martin Corporation Magneto-optical defect center magnetometer
US10317279B2 (en) 2016-05-31 2019-06-11 Lockheed Martin Corporation Optical filtration system for diamond material with nitrogen vacancy centers
US10527746B2 (en) 2016-05-31 2020-01-07 Lockheed Martin Corporation Array of UAVS with magnetometers
US10371765B2 (en) 2016-07-11 2019-08-06 Lockheed Martin Corporation Geolocation of magnetic sources using vector magnetometer sensors
US10338163B2 (en) 2016-07-11 2019-07-02 Lockheed Martin Corporation Multi-frequency excitation schemes for high sensitivity magnetometry measurement with drift error compensation
US10281550B2 (en) 2016-11-14 2019-05-07 Lockheed Martin Corporation Spin relaxometry based molecular sequencing
US10345395B2 (en) 2016-12-12 2019-07-09 Lockheed Martin Corporation Vector magnetometry localization of subsurface liquids
US10359479B2 (en) 2017-02-20 2019-07-23 Lockheed Martin Corporation Efficient thermal drift compensation in DNV vector magnetometry
US10338164B2 (en) 2017-03-24 2019-07-02 Lockheed Martin Corporation Vacancy center material with highly efficient RF excitation
US10459041B2 (en) 2017-03-24 2019-10-29 Lockheed Martin Corporation Magnetic detection system with highly integrated diamond nitrogen vacancy sensor
US10408890B2 (en) 2017-03-24 2019-09-10 Lockheed Martin Corporation Pulsed RF methods for optimization of CW measurements
US10379174B2 (en) 2017-03-24 2019-08-13 Lockheed Martin Corporation Bias magnet array for magnetometer
US10371760B2 (en) 2017-03-24 2019-08-06 Lockheed Martin Corporation Standing-wave radio frequency exciter
US10228429B2 (en) 2017-03-24 2019-03-12 Lockheed Martin Corporation Apparatus and method for resonance magneto-optical defect center material pulsed mode referencing
US10330744B2 (en) 2017-03-24 2019-06-25 Lockheed Martin Corporation Magnetometer with a waveguide
US10145910B2 (en) 2017-03-24 2018-12-04 Lockheed Martin Corporation Photodetector circuit saturation mitigation for magneto-optical high intensity pulses
US10274550B2 (en) 2017-03-24 2019-04-30 Lockheed Martin Corporation High speed sequential cancellation for pulsed mode
US11918315B2 (en) 2018-05-03 2024-03-05 Pulse Therapeutics, Inc. Determination of structure and traversal of occlusions using magnetic particles
WO2019219207A1 (en) 2018-05-18 2019-11-21 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Magnetic field generator

Also Published As

Publication number Publication date
US20060145799A1 (en) 2006-07-06
US7161453B2 (en) 2007-01-09

Similar Documents

Publication Publication Date Title
US7161453B2 (en) Rotating and pivoting magnet for magnetic navigation
US6975197B2 (en) Rotating and pivoting magnet for magnetic navigation
US6630879B1 (en) Efficient magnet system for magnetically-assisted surgery
US10702132B2 (en) System and method for using a capsule device
US7305263B2 (en) Magnetic navigation system and magnet system therefor
US10478047B2 (en) System and method for using a capsule device
US6459924B1 (en) Articulated magnetic guidance systems and devices and methods for using same for magnetically-assisted surgery
EP0917856B1 (en) Mobile bi-planar fluoroscopic imaging apparatus
EP2923629B1 (en) Capsule type endoscope system
US7019610B2 (en) Magnetic navigation system
CN100482165C (en) Cantilevered gantry apparatus for X-ray imaging
JP2017221660A (en) Surgical tool systems and methods
EP3610795B1 (en) Mobile x-ray imaging system
CN107847210A (en) For remote fluorescence perspective, the nearby equipment of fluoroscopy and radiology
US20210228298A1 (en) Magnetic field generator
JPH01214342A (en) Isocenter type x-ray imaging stand
EP1488431B1 (en) Rotating and pivoting magnet for magnetic navigation
EP3620110A1 (en) An x-ray imaging device
Li et al. Design and analysis of a long-range magnetic actuated and guided endoscope for uniport vats

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION