Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20070225562 A1
Publication typeApplication
Application numberUS 11/277,324
Publication date27 Sep 2007
Filing date23 Mar 2006
Priority date23 Mar 2006
Also published asCA2582549A1, CA2582549C, CA2582831A1, CA2582831C, EP1842491A2, EP1842491A3, EP1842501A2, EP1842501A3, US8236010, US8911471, US9149274, US9402626, US9492167, US20070221701, US20110144430, US20120283748, US20130012931, US20130197556, US20150090759
Publication number11277324, 277324, US 2007/0225562 A1, US 2007/225562 A1, US 20070225562 A1, US 20070225562A1, US 2007225562 A1, US 2007225562A1, US-A1-20070225562, US-A1-2007225562, US2007/0225562A1, US2007/225562A1, US20070225562 A1, US20070225562A1, US2007225562 A1, US2007225562A1
InventorsJames Spivey, Mark Ortiz, Frederick Shelton
Original AssigneeEthicon Endo-Surgery, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Articulating endoscopic accessory channel
US 20070225562 A1
Abstract
Methods and devices are provided for controlling movement of a working end of a surgical device. In one embodiment, methods and devices are provided for moving an end effector on a distal end of a surgical fastening device. Movement can include rotational movement of the end effector about an axis of the shaft, articulation of the end effector relative to the shaft, and actuation of an end effector, e.g., closing, firing, and/or cutting. In other embodiments, a single cable actuator is provided and is movable between a first position, in which it is effective to rotate an end effector without actuating (i.e., closing and firing) the end effector, and a second position, in which it is effective to actuate the end effector without rotating the end effector. In other aspects, methods and devices are provided for moving a flexible neck formed on a distal end of an accessory channel for use with an endoscope. Movement of the flexible neck can be used to control positioning of a tool extending through the flexible neck.
Images(22)
Previous page
Next page
Claims(26)
1. An accessory channel for releasable attachment to an endoscope, the accessory channel comprising:
an elongate tube having an inner lumen extending therethrough between proximal and distal ends thereof for receiving a tool;
a flexible neck extending from the distal end of the elongate tube and configured to flex to orient a tool extending through the elongate tube; and
a handle coupled to the proximal end of the elongate tube and being operatively associated with the flexible neck such that movement of the handle is mimicked by the flexible neck.
2. The device of claim 1, wherein the flexible neck include a plurality of slits formed therein to facilitate flexion thereof.
3. The device of claim 2, wherein the flexible neck includes a distal region of slits and a proximal region of slits, and wherein the slits are configured such that tension applied to the flexible neck will cause the flexible neck to bend at the proximal and distal regions.
4. The device of claim 1, wherein the handle includes a stationary member and a movable member adapted to articulate relative to the stationary member.
5. The device of claim 4, wherein the movable member is coupled to the stationary member by a joint selected from the group consisting of a ball and socket joint, a hinge joint, and a flexing joint.
6. The device of claim 1, further comprising an actuator extending between the handle and the flexible neck, the actuator being configured to transfer movement from the handle to the flexible neck.
7. The device of claim 6, wherein the actuator comprises at least one cable extending along a length of the elongate tube.
8. The device of claim 7, further comprising a locking mechanism positioned to engage at least one of the handle and the at least one cable to lock the handle and the at least one cable in a fixed position.
9. The device of claim 7, wherein the at least one cable comprises a plurality of cables that are equally spaced apart from one another around a circumference of the elongate tube.
10. The device of claim 7, wherein the elongate tube includes at least one lumen formed in a sidewall thereof and extending along the length thereof, and wherein the at least one actuator is slidably disposed within the at least one lumen.
11. The device of claim 1, wherein the elongate tube includes a mating element formed on and extending along a length of an external surface thereof for mating to a complementary mating element formed on an endoscope or endoscope sleeve.
12. An endoscopic system, comprising:
an elongate sleeve configured to be disposed around an endoscope; and
an accessory channel removably matable to the elongate sleeve, the accessory channel having an inner lumen extending therethrough between proximal and distal ends thereof for receiving a tool, a flexible portion formed on a distal portion thereof and being made flexible by a plurality of slits formed therein, and at least one handle coupled to the proximal end of the accessory channel and operatively associated with the flexible portion such that the at least one handle is configured to cause the flexible portion to articulate in at least one plane.
13. The system of claim 12, wherein the at least one handle is operatively associated with the flexible portion by at least one cable, and wherein the at least one handle is configured to axially move the at least one cable relative to the accessory channel to cause the at least one cable to apply tension to the flexible portion of the accessory channel such that the flexible portion articulates in at least one plane.
14. The system of claim 12, wherein the at least one handle comprises a single handle configured to cause the flexible portion to articulate in multiple planes.
15. The system of claim 14, wherein the single handle includes a stationary member coupled to the proximal end of the accessory channel, and a movable member configured to articulate relative to the stationary member.
16. The system of claim 14, wherein the single handle and the flexible portion are operatively associated such that movement of the single handle is mimicked by the flexible portion.
17. The system of claim 12, wherein the at least one handle includes a first member configured to cause the flexible portion to articulate in a first plane, and a second member configured to cause the flexible portion to articulate in a second plane.
18. The system of claim 17, wherein the at least one handle includes a stationary member coupled to the proximal end of the accessory channel, and wherein the first and second members are rotatably coupled to the stationary member.
19. The system of claim 18, further comprising a first spool coupled to the first member and having at least one cable extending therefrom and coupled to the flexible portion, and a second spool coupled to the second member and having at least one cable extending therefrom and coupled to the flexible portion, and wherein the first and second members are effective to rotate the first and second spools and thereby move the cables axially to cause the flexible portion to articulate.
20. A method for positioning a tool, comprising:
slidably mating an accessory channel to an endoscope disposed within a body cavity to position a distal end of the accessory channel in proximity to a distal end of the endoscope;
inserting a tool through a lumen in the accessory channel such that the tool extends distally beyond the distal end of the accessory channel; and
moving a handle coupled to a proximal end of the accessory channel to cause a flexible neck on the distal end of the accessory channel to articulate, thereby causing a working end of the tool to be oriented in a desired position.
21. The method of claim 20, further comprising locking the flexible neck in a fixed, articulated position.
22. The method of claim 20, wherein moving the handle comprises pivotally articulating the handle relative to the accessory channel.
23. The method of claim 22, wherein the flexible neck mimics movement of the handle.
24. The method of claim 20, wherein moving the handle comprises rotating at least one rotatable member on the handle.
25. The method of claim 20, wherein, when the flexible neck articulates, the flexible neck bends at a plurality of locations along a length thereof.
26. The method of claim 20, wherein slidably mating the accessory channel to an endoscope comprises coupling a mating element formed along a length of the accessory channel with a mating element formed along a length of a sleeve disposed around the endoscope.
Description
    FIELD OF THE INVENTION
  • [0001]
    The present invention relates broadly to methods and devices for controlling movement of a working end of a surgical device.
  • BACKGROUND OF THE INVENTION
  • [0002]
    Endoscopic surgical instruments are often preferred over traditional open surgical devices since the use of a natural orifice tends to reduce the post-operative recovery time and complications. Consequently, significant development has gone into a range of endoscopic surgical instruments that are suitable for precise placement of a working end of a tool at a desired surgical site through a natural orifice. These tools can be used to engage and/or treat tissue in a number of ways to achieve a diagnostic or therapeutic effect.
  • [0003]
    Endoscopic surgery requires that the shaft of the device be flexible while still allowing the working end to be articulated to angularly orient the working end relative to the tissue, and in some cases to be actuated to fire or otherwise effect movement of the working end. Integration of the controls for articulating and actuating a working end of an endoscopic device tend to be complicated by the use of a flexible shaft and by the size constraints of an endoscopic instrument. Generally, the control motions are all transferred through the shaft as longitudinal translations, which can interfere with the flexibility of the shaft. There is also a desire to lower the force necessary to articulate and/or actuate the working end to a level that all or a great majority of surgeons can handle. One known solution to lower the force-to-fire is to use electrical motors. However, surgeons typically prefer to experience feedback from the working end to assure proper operation of the end effector. The user-feedback effects are not suitably realizable in present motor-driven devices.
  • [0004]
    Accordingly, there remains a need for improved methods and devices for controlling movement of a working end of an endoscopic surgical device.
  • SUMMARY OF THE INVENTION
  • [0005]
    In one embodiment, a surgical device is provided having an elongate shaft with a proximal end having a handle movably coupled thereto, and a distal end having a flexible neck extending therefrom. The handle and the flexible neck can be operatively associated such that movement of the handle is effective to cause the flexible neck to articulate in multiple planes. In certain exemplary embodiments, movement of the handle can be mimicked by the flexible neck. The device can also include an actuator extending between the handle and the flexible neck and configured to transfer movement from the handle to the flexible neck.
  • [0006]
    The handle of the device can have a variety of configurations, but in one embodiment the handle can be adapted to articulate relative to the proximal end of the elongate shaft. For example, the handle can be coupled to the proximal end of the elongate shaft by a joint, such as a ball and socket joint, a hinge joint, or a flexing joint. The actuator of the device can also have a variety of configurations, and in one embodiment the actuator can be at least one cable extending along a length of the elongate shaft. For example, the device can include a plurality of cables extending along a length of the shaft and equally spaced apart from one another around a circumference of the actuator. The cables are configured to slide relative to an axis of the elongate shaft and to apply tension to the elongate shaft to cause at least a portion of the elongate shaft to flex and bend. The handle and/or the cables can also optionally include a locking mechanism associated therewith and configured to maintain the handle and/or cables in a fixed position. In an exemplary embodiment, the elongate shaft is configured to passively flex and bend when it is inserted through a tortuous lumen.
  • [0007]
    The elongate shaft can also have a variety of configurations, but in one embodiment the device can be in the form of a surgical stapler and the elongate shaft can include an end effector coupled to a distal end of the flexible neck and adapted to engage tissue and deliver at least one fastener into the engaged tissue. The handle and the end effector can be coupled such that movement of the handle is mimicked by the end effector. For example, the handle can be coupled to the proximal end of the elongate shaft by a joint, such as a ball and socket joint, a hinge joint, and a flexing joint, and the flexible neck can be formed on or coupled to the end effector to allow the end effector to proportionally mimic movement of the handle. The device can also include an actuator extending between the handle and the end effector and configured to transfer movement from the handle to the flexible neck. The actuator can be, for example, a plurality of cables extending along a length of the elongate shaft. The cables can be equally spaced apart from one another around a circumference of the elongate shaft.
  • [0008]
    In another embodiment, the device can be in the form of an accessory channel and the elongate shaft can be in the form of a tube having an inner lumen adapted to receive a tool therethrough. The flexible neck extending from the distal end of the elongate tube can be configured to flex to orient a tool extending through the elongate tube. The flexible neck can have a variety of configurations, but in one embodiment it includes a plurality of slits formed therein to facilitate flexion thereof. The slits can be configured to cause the flexible neck to flex into a desired orientation. For example, the flexible neck can include a distal region of slits and a proximal region of slits, and the slits can be configured such that tension applied to the flexible neck will cause the flexible neck to bend at the proximal and distal regions. A handle can be coupled to the proximal end of the elongate tube, and it can operatively associated with the flexible neck such that movement of the handle is mimicked by the flexible neck. The handle can also have a variety of configurations, and in one embodiment the handle can include a stationary member and a movable member adapted to articulate relative to the stationary member. The movable member can be coupled to the stationary member by a joint, such as a ball and socket joint, a hinge joint, and a flexing joint. In use, the accessory channel can be configured to releasably attach to an endoscope. For example, a mating element can be formed on and extend along a length of an external surface thereof for mating to a complementary mating element formed on a sleeve adapted to receive an endoscope. The device can also include an actuator extending between the handle and the flexible neck. The actuator can be configured to transfer movement from the handle to the flexible neck. In certain exemplary embodiments, the actuator is in the form of at least one cable extending along a length of the elongate tube. Where the actuator includes multiple cables, the cables are preferably equally spaced apart from one another around a circumference of the elongate tube. The cables can extend along the elongate tube using various techniques. For example, the elongate tube can include at least one lumen formed in a sidewall thereof and extending along the length thereof, and the cable(s) can be slidably disposed within the lumen(s). The device can also include a locking mechanism positioned to engage at least one of the handle and the cable(s) to lock the handle and the cable(s) in a fixed position.
  • [0009]
    The present invention also provides an endoscopic system having an elongate sleeve configured to be disposed around an endoscope, and an accessory channel removably matable to the elongate sleeve. The accessory channel can have an inner lumen extending therethrough between proximal and distal ends thereof for receiving a tool, a flexible portion formed on a distal portion thereof and being made flexible by a plurality of slits formed therein, and at least one handle coupled to the proximal end thereof and operatively associated with the flexible portion such that the handle(s) is configured to cause the flexible portion to articulate in at least one plane. The handle(s) can be operatively associated with the flexible portion by at least one cable, and the handle(s) can be configured to axially move the cable(s) relative to the accessory channel to cause the cable(s) to apply tension to the flexible portion of the accessory channel such that the flexible portion articulates in at least one plane. In one embodiment, the device can include a single handle configured to cause the flexible portion to articulate in multiple planes. The single handle can include a stationary member coupled to the proximal end of the accessory channel, and a movable member configured to articulate relative to the stationary member. The single handle and the flexible portion can be operatively associated such that movement of the single handle is mimicked by the flexible portion. In another embodiment, the handle can include a first member configured to cause the flexible portion to articulate in a first plane, and a second member configured to cause the flexible portion to articulate in a second plane. In particular, the handle can include a stationary member coupled to the proximal end of the accessory channel, and the first and second members can be rotatably coupled to the stationary member. The device can further include a first spool coupled to the first member and having at least one cable extending therefrom and coupled to the flexible portion, and a second spool coupled to the second member and having at least one cable extending therefrom and coupled to the flexible portion. The first and second members can be effective to rotate the first and second spools and thereby move the cables axially to cause the flexible portion to articulate.
  • [0010]
    The surgical devices disclosed herein can also include a variety of other features. For example, the device can include an optical image gathering unit disposed on a distal end of the elongate shaft. The optical image gathering unit can be adapted to acquire images during endoscopic procedures. An image display screen can be disposed on a proximal portion of the device and adapted to communicate with the optical image gathering unit to display the acquired images. In other embodiments, the end effector of the device can include a cartridge removably disposed therein and containing a plurality of staples for stapling tissue and a blade for cutting stapled tissue.
  • [0011]
    In other aspects, a surgical method is provided and includes inserting an elongate shaft into a body lumen to position a flexible neck coupled to a distal end of the elongate shaft adjacent to tissue to be treated, and moving a handle pivotally coupled to a proximal end of the elongate shaft to cause the flexible neck to mimic the motion of the handle. The flexible neck can mirror movement of the handle, or movement of the flexible neck can directly correspond to movement of the handle. In certain exemplary embodiments, the movement is proportional.
  • [0012]
    In one exemplary embodiment, an end effector coupled to a distal end of the elongate shaft is positioned adjacent to tissue to be fastened, and a handle pivotally coupled to a proximal end of the elongate shaft is moved to cause the end effector to proportionally mimic the motion of the handle. The end effector can mirror movement of the handle, or movement of the end effector can directly correspond to movement of the handle. In an exemplary embodiment, the handle is pivotally articulated about the proximal end of the elongate shaft to cause the end effector to mimic the motion of the handle. The method can further include engaging tissue between opposed jaws of the end effector, and driving at least one fastener from the end effector into the tissue. Tissue can be engaging by moving a translating member formed on the handle from a first position to a second position to close the opposed jaws, and the fasteners can be fired by rotating a rotatable member formed on the handle to actuate a driver mechanism disposed within the end effector to cause the driver mechanism to drive a plurality of fasteners into the tissue. In another embodiment, prior to moving the translating member from the first position to the second position, the rotatable member can be rotated to rotate the end effector relative to the flexible neck without actuating the driver mechanism.
  • [0013]
    In yet another aspect, the elongate shaft can be in the form of an accessory channel that is slidably mated to an endoscope disposed within a body cavity to position a distal end of the accessory channel in proximity to a distal end of the endoscope. A tool is inserted through a lumen in the accessory channel such that the tool extends distally beyond the distal end of the accessory channel, and a handle coupled to a proximal end of the accessory channel can be moved to cause a flexible neck on the distal end of the accessory channel to articulate, thereby causing a working end of the tool to be oriented in a desired position. The handle can be moved by pivotally articulating the handle relative to the accessory channel, or alternatively is can be moved by rotating at least one rotatable member on the handle.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0014]
    The invention will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
  • [0015]
    FIG. 1A is a perspective view of one embodiment of a surgical stapling and cutting device, showing a working end of the device in an initial position;
  • [0016]
    FIG. 1B is a perspective view of the surgical stapling and cutting device of FIG. 1A, showing the working end of the device in an articulated position;
  • [0017]
    FIG. 2 is a perspective view of a portion of a flexible neck of the device shown in FIGS. 1A and 1B;
  • [0018]
    FIG. 3A is a perspective view of a distal portion of the device shown in FIGS. 1A and 1B, showing an end effector and the flexible neck of FIG. 2 coupled thereto;
  • [0019]
    FIG. 3B is a cross-sectional view taken across line 3B-3B of the end effector shown in FIG. 3A;
  • [0020]
    FIG. 4A is a perspective view of a proximal portion of the device shown in FIGS. 1A and 1B, showing a handle movably coupled to a proximal end of a shaft of the device;
  • [0021]
    FIG. 4B is an exploded view of the proximal portion of the device shown in FIG. 4A;
  • [0022]
    FIG. 5 is a perspective view of coupling element disposed between the flexible neck and elongate shaft of the device shown in FIGS. 1A and 1B, showing an optical image gathering apparatus;
  • [0023]
    FIG. 6 is a perspective view of the handle of the device shown in FIGS. 1A and 1B, showing an image display screen;
  • [0024]
    FIG. 7 is a perspective view of an accessory channel for use with an endoscope;
  • [0025]
    FIG. 8A is a perspective view of a flexible neck of the device shown in FIG. 7;
  • [0026]
    FIG. 8B is a perspective view of the flexible neck shown in FIG. 8A, showing the neck articulated in a first direction;
  • [0027]
    FIG. 8C is a perspective view of the flexible neck shown in FIG. 8A, showing the neck articulated in a second direction;
  • [0028]
    FIG. 9A is a perspective view of another embodiment of a flexible neck for use with an accessory channel;
  • [0029]
    FIG. 9B is a perspective view of the flexible neck shown in FIG. 9A, showing the neck articulated in a first direction;
  • [0030]
    FIG. 9C is a perspective view of the flexible neck shown in FIG. 9A, showing the neck articulated in a second direction;
  • [0031]
    FIG. 10 is a perspective view of a plurality of cable actuators for use with the device of FIG. 7;
  • [0032]
    FIG. 11 is a cross-sectional view of a shaft of the accessory channel of FIG. 7;
  • [0033]
    FIG. 12 is a perspective view of one embodiment of an end cap for use with the accessory channel of FIG. 7;
  • [0034]
    FIG. 13A is an exploded view of the handle and a proximal portion of the elongate shaft of the device shown in FIG. 7;
  • [0035]
    FIG. 13B is a cross-sectional view of the handle and the proximal portion of the elongate shaft of FIG. 13A in an assembled configuration;
  • [0036]
    FIG. 14A is a perspective view of another embodiment of an accessory channel;
  • [0037]
    FIG. 14B is a cross-sectional view of the accessory channel shown in FIG. 14A;
  • [0038]
    FIG. 15A is a side view of a handle assembly of the device shown in FIGS. 14A and 14B;
  • [0039]
    FIG. 15B is an exploded view of the handle assembly of FIG. 15A;
  • [0040]
    FIG. 17A is a perspective view of one embodiment of a locking mechanism; and
  • [0041]
    FIG. 17B is a perspective view of the locking mechanism of FIG. 17A coupled to the surgical stapling and cutting device of FIGS. 1A and 1B.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0042]
    Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.
  • [0043]
    The present invention provides method and devices for controlling a working end of an endoscopic surgical device. In general, the endoscopic surgical devices include an elongate shaft having a distal working end with a flexible neck, and a proximal end with a handle for controlling movement of the flexible neck on the distal working end. In certain exemplary embodiments, this can be achieved using, for example, one or more cables that extend between the handle and the flexible neck such that movement of the handle applies a force to one or more of the cables to cause the flexible portion to flex and thereby move the working end of the device. Various other features are also provided to facilitate use of the device. A person skilled in the art will appreciate that the particular device being controlled, and the particular configuration of the working end, can vary and that the various control techniques described herein can be used on virtually any surgical device in which it is desirable to control movement of the working end.
  • [0044]
    FIGS. 1A and 1B illustrate one exemplary embodiment of a technique for controlling articulation of the end effector, and in particular for causing the end effector to mimic and simultaneously move with the handle. In this embodiment, the device is in the form of a linear stapling and cutting device 10 for applying multiple linear rows of staples to tissue and for cutting the stapled tissue. As shown, the device 10 generally includes an elongate shaft 12 having a proximal end 12 a with a handle 14 coupled thereto, and a distal, working end 12 a having an end effector 16 coupled thereto or formed thereon, as will be discussed in more detail below. In use, the end effector 16 is configured to mimic movement of the handle 14. Mimicking motion between the handle 14 and the end effector 16 can generally be achieved using an actuator (not shown) that extends between the handle 14 and the end effector 16, and that is effective to transfer forces from the handle 14 to the end effector 16. In an exemplary embodiment, the actuator is in the form of several cables that are spaced around a circumference of the elongate shaft 12, and that extend along the length of the elongate shaft 12. Movement of the handle 14 about the proximal end 12 a of the shaft 12 will apply a force to one or more of the cables to cause the cables to apply a force to the end effector 16, thereby causing the end effector 16 to mimic the motion of the handle 14. Mimicking motion can include corresponding motion, whereby the end effector 16 moves in the same direction and orientation as the handle 14, or mirrored motion, whereby the end effector 16 moves in an opposite direction and orientation as the handle 14. The mimicking motion can also be proportional to the movement of the handle.
  • [0045]
    The elongate shaft 12 of the device 10 can have a variety of configurations. For example, it can be solid or hollow, and it can be formed from a single component or multiple segments. As shown in FIG. 2, the elongate shaft 12 is hollow and is formed from multiple connecting segments to allow the elongate shaft 12 to flex. The flexibility of the shaft 12, as well as a relatively small diameter, allows the shaft 12 to be used in endoscopic procedures, whereby the device is introduced translumenally through a natural orifice. The shaft can also vary in length depending on the intended application.
  • [0046]
    FIG. 2 further illustrates one exemplary embodiment of an actuator 22 in the form of several cables 34 a, 34 b, 34 c, 34 d that are spaced around a circumference of the elongate shaft 12, and that extend along the length of the elongate shaft 12. The number and location of the cables can vary. For example, three cables can be spaced approximately 120° apart from one another around the circumference of the shaft 12. In the embodiment shown in FIG. 2, four cables 34 a, 34 b, 34 c, 34 d are spaced approximately 90° apart from one another around the circumference of the shaft 12. Each cable 34 a-d can extend through a pathway, such as a lumen, formed on, in, or around the elongate shaft 12. FIG. 2 illustrates each cable 34 a-d extending through a cut-out formed on an external surface of each segment of the shaft 12. Thus, each segment includes four cut-outs spaced equidistant around the circumference of the shaft 12 to maintain the cables 34 a-d equidistant from one another. The cut-outs preferably have a size that is effective to retain the cables 34 a-d therein while allowing the cables 34 a-d to freely slide relative to the shaft 12.
  • [0047]
    The distal end of the cables 34 a-d can be mated to the end effector 16 to control movement of the end effector 16. While the end effector 16 can have a variety of configurations, and various end effectors known in the art can be used, FIG. 3A illustrates one exemplary embodiment of an end effector 16 which generally includes opposed first and second jaws 18, 20 that are adapted to receive tissue therebetween. The first jaw 18 is adapted to contain a staple cartridge having multiple staples disposed therein and configured to be driven into tissue, and the second jaw 20 forms an anvil for deforming the staples. The particular configuration and the basic operation of the end effector 16 can vary, and various end effectors 16 known in the art can be used. By way of non-limiting example, U.S. Pat. No. 6,978,921 entitled “Surgical Stapling Instrument Incorporating an E-Beam Firing Mechanism,” which is incorporated herein in its entirety, discloses one embodiment of an end effector that can be used with the present invention.
  • [0048]
    In order to allow movement of the end effector 16 relative to the elongate shaft 12, the end effector 16 can be movably coupled to the distal end 12 b of the elongate shaft 12. For example, the end effector 16 can be pivotally coupled to the distal end 12 b of the elongate shaft 12 by a pivoting or rotating joint. Alternatively, the end effector 16 can include a flexible neck 26 formed thereon, as shown, for allowing movement of the end effector 16 relative to the elongate shaft 12. The flexible neck 26 can be formed integrally with the distal end 12 b of the shaft 12 and/or the proximal end of the jaws 18, 20, or it can be a separate member that extends between the shaft 12 and the jaws 18, 20. As shown in FIG. 3A, the flexible neck 26 includes a first coupler 28 for mating the flexible neck 26 to the proximal end of the opposed jaws 18, 20, and a second coupler 30 for mating the flexible neck 26 to the distal end of the elongate shaft 12. The couplers 28, 30 can be removably of fixedly mated to the flexible neck 26 and/or to the jaws 18, 20 and the shaft 12. The couplers 28, 30 also function to house certain components of the end effector 16. For example, the first coupler 28 can function to anchor the cables therein, as will be discussed below, and it can also function to house a gear and driver assembly for actuating (e.g., closing and firing) the jaws 18, 20.
  • [0049]
    In order to facilitate flexion of the flexible neck 26, the neck 26 can include one or more slits 32 formed therein. The quantity, location, and size of the slits 32 can vary to obtain a desired flexibility. In the embodiment shown in FIG. 3A, the flexible neck 26 includes multiple rows of slits 32, each row extending radially around the flexible neck 26 and each row being spaced axially along the length of the flexible neck 26. Each row of slits contains two slits extending around the circumference of the neck 26, and each row of slits 32 is axially offset from one another. As a result, the flexible neck 26 includes alternating slits 32. A person skilled in the particular pattern of the slits 32 can vary, and that FIG. 3A merely illustrates one pattern for forming slits 32 to allow flexion of the flexible neck 26. Other exemplary slit configurations will be discussed in more detail below.
  • [0050]
    As indicated above, the cables 34 a-d can be coupled to the end effector 16 to allow the end effector 16 to move in coordination with the handle 14. The connecting location of the cables 34 a-d with the end effector 16 can vary depending on the desired movement. In the illustrated embodiment, the distal end of the cables 34 a-d is connected to the distal end of the flexible neck 26, and in particular they extend into and connect to the first coupler 28. FIG. 3B illustrates a cross-sectional view of the first coupler 28 showing four bores 28 a, 28 b, 28 c, 28 d for receiving the four cables 34 a, 34 b, 34 c, 34 d, respectively. Virtually any technique known in the art can be used to connect the cables 34 a-d to the coupler 28 including, for example, mechanical mating techniques such as adhesives, an interference fit, a ball-and-socket connection, threads, etc. In use, the connection of the cables 34 a-d at the distal end of the flexible neck 26 will allow the cables 34 a-d to apply a tension to the flexible neck 26 when an axial force is applied to the cables 34 a-d by the handle 14. This tension will cause the neck 26 to flex in a direction dictated by the amount of tension applied to each cable 34 a-d, as will be discussed in more detail below.
  • [0051]
    The handle 14 of the device 10 can be used to control movement of the end effector 16, and in particular to articulate the end effector 16 and thus angularly orient it relative to a longitudinal axis A of the elongate shaft 12. While the handle 14 can have a variety of configurations, in one exemplary embodiment the handle 14 is movably coupled to the proximal end 12 a of the elongate shaft 12 such that movement of the handle 14 can be mimicked by the end effector 16. While various techniques can be used to movably couple the handle 14 to the shaft 12, in the embodiment shown in FIGS. 4A-4C, a ball-and-socket connection is formed between the handle 14 and the proximal end 12 a of the elongate shaft 12. As best shown in FIG. 4B, the proximal end 12 a of the elongate shaft 12 includes a socket 24 formed therein, and the handle 14 includes a hemi-spherical ball 13 a formed on a distal end thereof and configured to be rotatably seated within the socket 24. The socket 24 can be integrally formed with the proximal end 12 a of the elongate shaft, or it can be formed by coupling a hollow housing 12 c, as shown, to the proximal end 12 a of the elongate shaft 12. The hemi-spherical ball 13 a can also be formed integrally with the handle 14, or it can be a separate member that is coupled to the handle 14. In order to movably mate the handle 14 to the shaft 12, the hemi-spherical ball 13 a on the handle 14 can be retained within the socket 24 using the cables 34 a-d, which attach to the handle 14 as will be discussed below. However, other mating techniques can be used to movably mate the handle 14 to the shaft 12. For example, the ball 13 a can be spherical and it can be captured within a spherical socket formed in the proximal end 12 a of the elongate shaft 12, or a mating element, such as a pin, can extend through the ball 13 a to retain the ball 13 a within the socket 24. While FIG. 4B illustrates a ball 13 a formed on the handle 14 and a socket 24 formed in the shaft 12, the ball-and-socket connection can be reversed such that the ball is on the shaft 12 and the socket is in the handle 14. Moreover, a person skilled in the art will appreciate that a variety of other techniques can be used to movably couple the handle 14 to the proximal end 12 a of the elongate shaft 12.
  • [0052]
    In use, the handle 14 can articulate or pivotally move relative to the shaft 12 to cause the end effector 16 to mimic the movement of the handle 14. This can be achieved by coupling the proximal end of the cables 34 a-d to the handle 14. The connecting location of the cables 34 a-d with the handle 14 can vary depending on the desired movement. In the illustrated embodiment, the cables (only three cables 34 a, 34 b and 34 c are shown in FIG. 4A) extend from the elongate shaft 12, through the hollow housing 12 c, and out of slots or openings formed in a proximal end of the hollow housing 12 c. The cables 34 a-d then extend around the ball 13 a on the handle 14 and connect to a distal-facing surface on the handle 14 that surrounds the ball 13 a. Virtually any technique known in the art can be used to connect the cables 34 a-d to the handle 14 including, for example, mechanical mating techniques such as adhesives, an interference fit, threads, etc. As shown in FIG. 4A, the handle 14 includes openings formed therein, and the proximal ends (not shown) of the cables 34 a-d can have a ball or other element formed thereon and configured to be captured within the openings. As further shown in FIG. 4A, the cables (only three cables 34 a, 34 b and 34 c are shown) can remain spaced circumferentially around the handle 14. This will allow movement of the handle 14 to be mirrored by the end effector 16, as will be discussed in more detail below. Alternatively, the cables 34 a-d can be crossed before they connect to the handle 14 to cause the end effector 16 to move in the same direction as the handle 14. For example, opposed cables 34 a and 34 c can cross one another and can connect to opposed sides of the handle 14, and opposed cables 34 b and 34 d can likewise cross one another and can connect to opposed sides of the handle 14. The cables 34 a-d can be crossed at any location, such as within the hollow housing 12 c on the proximal end 12 a of the shaft 12.
  • [0053]
    As further shown in FIGS. 4A and 4B, the handle 14 can also include other features to facilitate use of the device. For example, the handle 14 can include a translating member 38 that is effective to close the jaws 18, 20 on the end effector 16, and a rotating member 40 that is effective to selectively rotate and actuate the end effector 16. The translating and rotating members 38, 40 are described in more detail in an application entitled “Surgical Fastener And Cutter With Single Cable Actuator” by Mark Ortiz et al. and filed on even date herewith, which is hereby incorporated by reference in its entirety. In other embodiments, the handle 14 can include triggers, knobs, etc. for rotating and/or actuating the end effector 16.
  • [0054]
    Referring back to FIG. 1B, in use the handle 14 can be pivoted or angularly oriented relative to the proximal end 12 a of the elongate shaft 12 to effect mimicking movement of the end effector 16. In particular, pivoting the handle 14 about the elongate shaft 12 in a first direction will apply a force to one or more of cables 34 a-d to pull the cable(s) axially. As a result, the actuated cables will apply tension to the flexible neck 26 to cause the neck 26 to flex. In order to prevent the elongate shaft 12 from flexing in response to tension applied to the cables 34 a-d by the handle 14, the flexible neck 26 can have a greater flexibility than the elongate shaft 12. This can be achieved, for example, using the alternating slits 32 as previously described, or in other embodiments the material can differ, or the elongate shaft can include a stabilizing element, such as a rod extending therethrough to render the shaft more rigid than the flexible neck.
  • [0055]
    The direction of movement of the handle 14 will be mimicked by the end effector 16, either in the same direction (i.e., corresponding movement) or in an opposite direction (i.e., mirrored movement), thus allowing a user to precisely control the position of the end effector 16. In an exemplary embodiment, the particular amount of movement of the end effector 16 can be proportional to the amount of movement of the handle 14. That is, the amount of movement of the end effector 16 can be directly equivalent to the amount of movement of the handle 14, or it can be proportionally increased or decreased relative to the amount of movement of the handle 14. In certain embodiments, it may be desirable to have the amount of movement of the end effector 16 be increased relative to the amount of movement of the handle 14. As a result, only small movements of the handle 14 will be necessary to allow large movements of the end effector 16. While various techniques can be achieved to proportionally multiple or increase the movement of the end effector 16, one exemplary embodiment of a force multiplying mechanism is an eccentric cam that is coupled to the cables and that increases the mechanical advantage, either force or displacement, of the cables 34 a-d as tension is applied to the cables 34 a-d by the handle 14.
  • [0056]
    A person skilled in the art will appreciate that, while the movement between the handle and the working end of the device can be proportional in theory, in practice some lose of force will likely occur as the force is transferred through the elongate shaft. Accordingly, proportional movement as used herein is intended to include applications in which the handle and working end are configured to move in proportionate amounts, but in which some lose of force may occur during actual operation of the device.
  • [0057]
    The various devices disclosed herein can also include a variety of other features to facilitate use thereof. For example, the device 10 of FIG. 1A can include an optical image gathering unit disposed on a distal end of the elongate shaft 12 and configured to acquire images during endoscopic procedures. While the location of the unit can vary, in one embodiment the optical image gathering unit can be disposed on the second coupler 30. In particular, FIG. 5 illustrates a ramp-shaped housing 42 that protrudes from an outer surface of the coupler 30, and that contains the optical image gathering unit therein. A viewing window 44 is formed on a distal-facing surface of the housing 42 to allow the unit to acquire images of the end effector 16 and surrounding surgical site. The images from the optical image gathering unit can be transferred to an external image display screen, or alternatively the device 10 can include image display screen disposed on or coupled to a proximal portion of the device. FIG. 6 illustrates one embodiment of an image display screen 46 protruding outward from the handle 14.
  • [0058]
    As previously indicated, the various techniques disclosed herein for controlling movement of a working end of an endoscopic surgical device can be used in conjunction with a variety of medical devices. FIG. 7 illustrates another embodiment of a medical device having an actuator for controlling movement of the working end thereof. In this embodiment, the medical device is in the form of an accessory channel 100 for use with an endoscope. An accessory channel 100 is an external device that can mate to and slide along an endoscope to allow other tools, such as grasper, cutters, etc., to be introduced therethrough and positioned in proximity to the viewing end of the endoscope. While the accessory channel 100 can have virtually any configuration, shape, and size, in the embodiment illustrated in FIG. 7 the accessory channel 100 includes an elongate tube or shaft 102 having an inner lumen extending between proximal and distal ends 102 a, 102 b thereof for receiving a tool therethrough. The accessory channel 100 can also include a mating element formed thereon for mating the accessory channel 100 directly to an endoscope or to a sleeve or other device disposed around an endoscope. While virtually any mating technique can be used, in the illustrated embodiment the mating element on the accessory channel 100 is in the form of a rail 104 that extends along a length of the elongate shaft 102. The rail 104 is configured to be received in a complementary track formed on an endoscope or a device disposed around an endoscope, such as a sleeve. A person skilled in the art will appreciate that a variety of other techniques can be used to mate the accessory channel either directly or indirectly to an endoscope.
  • [0059]
    In order to control movement of a working end of the accessory channel 100, the device 100 can include features similar to those previously described. In particular, the device 100 can a flexible neck 108 formed on or coupled to the distal end 102 b of the elongate shaft 102, a handle 106 formed on or coupled to the proximal end 102 a of the elongate shaft 102, and an actuator extending between the handle 106 and the flexible neck 108. In this embodiment, the actuator is configured to transfer forces from the handle 106 to the flexible neck 108 such that movement of the handle 106 is mimicked by the flexible neck 108, thus allowing a tool extending through the accessory channel 100 to be positioned at a desired angular orientation.
  • [0060]
    The flexible neck 108 can have a variety of configurations, and it can be a separate member that is coupled to the elongate shaft 102, or it can be formed integrally with the elongate shaft 102, as shown in FIG. 7. The neck 108 can be made flexible using various techniques. For example, the neck 108 can be formed from one or more segments that move relative to one another, and/or it can be formed from a flexible material. In the exemplary embodiment shown in FIG. 8A, the neck 108 includes several slits 112 formed therein and configured to provide maximum flexibility of the neck 108. While the size, quantity, and orientation of the slits 112 can vary to obtain the desired results, in the illustrated embodiment the flexible neck 108 includes four columns of slits (only three columns of slits, indicated by arrows 112 a, 112 b, 112 c, are shown). Each column extends axially along a length of the flexible neck 108, and each column includes four row of slits spaced radially around circumference of the neck 108. Each column of slits 112 is also axially offset from one another to allow the slits 112 to overlap. In use, when tension is applied to the actuator, the slits 112 will allow the neck 108 to bend or assume a curved configuration such that the neck 108 articulates relative to the remainder of the elongate shaft 102, as shown in FIGS. 8B and 8C.
  • [0061]
    In other embodiments, the slits can be positioned to allow flexion of the neck at multiple locations or bend points, or to otherwise allow the neck to flex into a predetermined position. By way of non-limiting example, FIG. 9A illustrates another embodiment of a flexible neck 108′ having two regions of slits 112′ formed therein. In particular, the flexible neck 108′ includes a distal region of slits 112 a′ and a proximal region of slits 112 b′. Each region 112 a′, 112 b′ can include any number of slits positioned at any location to provide a desired degree of flexibility in one or more desired directions. As shown in FIG. 9A, the proximal end distal regions of slits 112 a′, 112 b′ each include two rows of slits formed on opposed sides of and extending along the length of the flexible neck 108′. In use, when tension is applied to the flexible neck 108′, as will be discussed in more detail below, the neck 108′ will flex at both the proximal and distal regions 112 a′, 112 b′ and thereby articulate relative to the remainder of the elongate shaft 102′. As shown in FIG. 9B, flexion can occur first in the distal region 112 a′ of the neck 108′. Further tension applied to the neck 108′ can then cause the proximal region 112 b′ to flex, as shown in FIG. 9C. In other embodiments, the slits positioning and/or size of the slits can be configured to cause flexion to occur in the proximal region 112 b′ before it occurs in the distal region 112 a′, or alternatively the slits can be configured to cause simultaneous flexion of the proximal and distal regions 112 b′, 112 a′. A person skilled in the art will appreciate that the quantity, position, size, and shape of the slits can be adjusted to obtain the desired results. The particular configuration of the cut used to form each slit can also vary. For example, the width and length of the slit can remain constant from an outer surface of the elongate shaft to an inner surface of the elongate shaft, or alternatively the width and length can increase or decrease such that the slit tapers or otherwise varies. By way of non-limiting example, a tapering configuration can be formed by forming a slit having triangular configuration, where the length and width of the slit decrease from the outer surface to the inner surface of the elongate shaft.
  • [0062]
    As indicated above, the actuator is configured to apply tension to the flexible neck 108 to cause the neck 108 to articulate. The actuator can have a variety of configurations, but in one exemplary embodiment the actuator is similar to the aforementioned actuator and includes one or more cables that extend between the handle 106 and the distal end of the flexible neck 108 such that the handle 106 and the flexible neck 108 are operatively associated. Each cable can be configured to apply tension to the flexible neck 108 to cause the neck 108 to articulate in a plane of motion. Thus, where the device 100 includes only one cable, the flexible neck 108 can articulate in a single plane of motion. Each additional cable can allow the neck 108 to articulate in a different plane of motion. Where multiple cables are provided, the neck 108 can articulate in multiple planes of motion. Moreover, the cables can be simultaneously tensioned, potentially allow for 360° articulation of the flexible neck 108.
  • [0063]
    While the number of cables can vary, and the device 100 can include only one cable, in the embodiment shown in FIG. 7 the device 100 includes four cables (only three cables 110 a, 110 b, 110 c are shown). A portion of the cables 110 a, 110 b, 110 c, 110 d is shown in more detail in FIG. 10. As noted above, the cables 110 a-d extend along a length of the elongate shaft 102 between the handle 106 and the flexible neck 108. The particular location of the cables 110 a-d can vary, but in an exemplary embodiment the cables 110 a-d are spaced radially around a circumference of the elongate shaft 102 and they extend between the distal-most end of the flexible neck 108 and the handle 106. The cables 110 a-d can extend internally through or externally along the elongate shaft 102, or they can extend through lumens or pathways formed in the sidewall of the elongate shaft 102. FIG. 11 illustrates a cross-sectional view of the elongate shaft 102, showing four lumens 103 a, 103 b, 103 c, 103 d formed therein. The lumens 103 a-d preferably have a size that allows the cables 116 a-d to slide therein, and they are spaced circumferentially about the elongate shaft 102. The lumens 103 a-d extend between the proximal and distal ends 102 a, 102 b of the elongate shaft 102 to allow the cables 110 a-d to extend between the handle 106 and the distal-most end of the flexible neck 108.
  • [0064]
    The distal end of the cables 110 a-d can mate to the distal most end of the flexible neck 108 using a variety of techniques, but in one embodiment, shown in FIG. 12, the flexible neck 108 includes an end cap 114 coupled to or formed on the distal-most end thereof. While the configuration of the end cap 114 can vary depending on the configuration of the actuator, in the illustrated embodiment the end cap 114 includes four bores 114 a, 114 b, 114 c, 114 d formed therein and spaced around a circumference of the end cap 114 such that the bores 114 a-d align with the lumens 103 a-d in the elongate shaft 102. Each bore 114 a-d is configured to receive one of the cables 110 a-d. Various mating techniques can be used to retain the cables 110 a-d within the bores 114 a-d. For example, FIG. 10 illustrates ball formed on the end of each cable 110 a-d for retaining the ends of the cables 110 a-d in the bores 114 a-d in the end cap 114. The end cap 114 can also include a central lumen 116 formed therein for receiving a tool therethrough. The lumen 116 can also function to facilitate positioning of a tool inserted through the accessory channel 100.
  • [0065]
    The proximal end of the cables 110 a-d can be mated to a handle 106 that is coupled to a proximal end of the shaft 102. While the handle 106 can have a variety of configurations, in one exemplary embodiment, previously shown in FIG. 7, the handle 106 can be in the form of a joystick that is movably coupled to the proximal end 102 a of the elongate shaft 102, and in particular that is configured to articulate relative to the proximal end 102 a of the elongate shaft 102. The articulating movement of the handle 106 can allow the motion of the handle 106 to be mimicked by the flexible neck 108, as will be discussed below.
  • [0066]
    While articulating movement can be achieved using a variety of types of joints, in the illustrated embodiment a ball-and-socket connection is formed between the handle 106 and the elongate shaft 102. In particular, as shown in more detail in FIGS. 13A and 13B, the proximal end 102 a of the elongate shaft 102 includes a housing 103 formed thereon and defining a socket 118 in a proximal end thereof. The handle 106 includes a ball 120 that is movably disposed within the socket 118, and the joystick extends proximally from the ball 120 thus allowing the handle 106 to articulate relative to the elongate shaft 102. A pin or other mechanism can be used to movably retain the ball 120 within the socket 118. A person skilled in the art will appreciate that the handle can have a variety of other shapes, and that various other techniques can be used to movably connect the handle 106 to the elongate shaft 102.
  • [0067]
    As indicated above, the proximal end of the cables 110 a-d is configured to mate to the handle 106. Thus, the handle 106 can include features for mating to the cables 110 a-d. While the particular mating features can vary depending on the configuration of the actuator, in an exemplary embodiment the joystick 122 on the handle 106 includes four legs 124 a, 124 b, 124 c, 124 d formed thereon. The legs 124 a-d are spaced around a circumference of the joystick 122, such that they are substantially aligned with the cables, and each leg 124 a-d is configured to mate to a terminal end of one of the cables 110 a-d. A ball-and-socket connection, as previously described with respect to the distal ends of the cables 110 a-d, can be used to mate the cables 110 a-d to the legs, or alternatively any other mating technique known in the art can be used.
  • [0068]
    Referring back to FIG. 7, in use the handle 106 can be pivoted or angularly oriented relative to the proximal end 102 a of the elongate shaft 102 to effect mimicking movement of the flexible neck 108, and to thereby position a tool extending through the flexible neck 108. As shown in FIGS. 7 and 13B, the joystick on the handle 106 can include a lumen 107 formed therethrough and axially aligned with the lumen 102 c in the elongate shaft 102 for allowing a tool to be introduced through the device 100. In other embodiments, the handle 106 can be offset from the proximal end 102 a of the elongate shaft 102 such that the handle 106 is coupled to the cables, but does not interfere with direct access to the lumen 102 c in the elongate shaft 102.
  • [0069]
    In order to control movement of the flexible neck 108 and thus a tool positioned therethrough, the handle 106 is pivoted or articulated about the proximal end 102 a of the elongate shaft 102. For example, movement of the handle 106 in a first direction will cause the legs 124 a-d on the handle 106 to apply a force to one or more of cables 110 a-d to pull the cable(s) axially. As a result, the actuated cables will apply a tension force to the flexible neck 108 to cause the neck 108 to flex. In order to prevent the elongate shaft 102 from flexing in response to tension applied to the cables 110 a-d by the handle 106, the flexible neck 108 can have a greater flexibility than the elongate shaft 102. This can be achieved, for example, using the slits as previously described, or in other embodiments the shaft 102 can include a stabilizing element, such as a rod, extending therethrough to make the shaft 102 more rigid than the flexible neck 108. The direction of movement of the handle 106 will be mimicked by the flexible neck 108, either in the same direction (i.e., corresponding movement) or in an opposite direction (i.e., mirrored movement), thus allowing a user to precisely control the position of the flexible neck 108, and thus to control the position of a tool extending through the flexible neck 108. In an exemplary embodiment, the particular amount of movement of the flexible neck 108 can be proportional to the amount of movement of the handle 106. That is, the amount of movement of the flexible neck 108 can be directly equivalent to the amount of movement of the handle 106, or it can be proportionally increased or decreased relative to the amount of movement of the handle 106. In certain embodiments, it may be desirable to have the amount of movement of the flexible neck 108 be increased relative to the amount of movement of the handle 106. As a result, only small movements of the handle 106 will be necessary to allow large movements of the flexible neck 108. While various techniques can be achieved to proportionally multiple or increase the movement of the flexible neck 108, one exemplary embodiment of a force multiplying mechanism is an eccentric cam that is coupled to the cables and that increases the mechanical advantage, either force or displacement, of the cables 110 a-d as tension is applied to the cables 110 a-d by the handle 106.
  • [0070]
    As previously explained, while the movement between the handle and the working end of the device can be proportional in theory, in practice some lose of force will likely occur as the force is transferred through the elongate shaft. Accordingly, proportional movement as used herein is intended to include applications in which the handle and working end are configured to move in proportionate amounts, but in which some lose of force may occur during actual operation of the device.
  • [0071]
    While FIGS. 1A and 7 illustrate devices in which the working end mimics movement of the handle, the handle can have a variety of other configurations in which it is effective to articulate the working end of the device without having the working end of the device mimic movement of the handle. FIGS. 14A and 14B illustrate another embodiment of a device 200 having a handle 204 that includes a rotatable member that is effective to articulate a flexible neck 206 in one or more planes of motion relative to an elongate shaft 202 of the device. In general, the elongate shaft 202 of the device 200 is very similar to the elongate shaft 102 previously described, and it generally includes a flexible neck 206 coupled to or formed on a distal end thereof. Four cable actuators (not shown) extend through the elongate shaft between the handle 106 and the flexible neck 206. The shaft 102 and the cable actuators are similar to the shaft 102 and cable actuators 110 a-d previously described with respect to device 100, and thus they will not be described in detail.
  • [0072]
    The handle 204 of the device 200 is shown in more detail in FIGS. 15A and 15B. In general, the handle 204 includes one or more spools rotatably disposed therein. Each spool is configured to mate to and control one of the cable actuators. Thus, rotation of each spool will wind up or release the cable, thereby causing the flexible neck 108 to flex and articulate in a particular direction. While the number of spools can vary depending on the number of cable actuators, in the embodiment shown in FIGS. 15A and 15B, the handle 204 includes four spools 208 a, 208 b, 210 a, 210 b. The first two spools 208 a, 208 b are coupled to one another, and the second two spools 210 a, 210 b are coupled to one another. A first cable 212 a is coupled to and wound around the first spool 208 a, and a second cable 212 b is coupled to and wound around the second spool 208 b. The first and second cables 212 a, 212 b are positioned on and extend along opposite sides of the elongate shaft 202. As a result, tension applied to the first cable 212 a will cause the flexible neck 206 to articulate in direction within a first plane of motion, and tension applied to the second cable 212 b will cause the flexible neck 206 to articulate in the opposite direction within the same plane of motion. To allow tension to be applied to only one of the cables 212 a, 212 b, the first and second cables 212 a, 212 b are wound around the first and second spools 208 a, 208 b in opposite directions. Thus, rotation of the first and second spools 208 a, 208 b will wind and apply tension to one of the cables 212 a, 212 b while unwinding and releasing tension on the other one of the cables 212 a, 212 b. Third and fourth cables 212 c, 212 d are likewise wound around the third and fourth spools 210 a, 210 b such that rotation of the third and fourth and second spools 210 a, 210 b will wind and apply tension to one of the cables 212 c, 212 d while unwinding and releasing tension on the other one of the cables 212 c, 212 d. The third and fourth cables 212 c, 212 d can extend along the shaft 102 at a position that is radially offset from the first and second cables 212 a, 212 b such that the third and fourth cables 212 c, 212 d cause articulation of the flexible neck 206 in a second, different plane of motion. For example, the third and fourth cables 212 c, 212 d can be offset from the first and second cables 212 a, 212 b by about 90° such that the cables 212 a-d are all spaced substantially equidistant around the circumference of the elongate shaft 202. A person skilled in the art will appreciate that the handle 204 can include any number of spools and cables to effect articulation in a desired number of planes.
  • [0073]
    In order to control the spools 208 a, 208 b, 210 a, 210 b, the device can include one or more grasping members. As shown in FIGS. 15A and 15B, a first rotatable knob 214 is coupled to the first and second spools 208 a, 208 b, and a second rotatable knob 216 is coupled to the third and fourth spools 210 a, 210 b. The knobs 214, 216 can be integrally formed with the spools 208 a, 208 b, 210 a, 210 b, or they can be coupled to the spools 208 a, 208 b, 210 a, 210 b by a shaft that extends through the spools 208 a, 208 b, 210 a, 210 b. In the illustrated embodiment, the first knob 214 is formed on or coupled directly to the first spool 208 a, and the second knob 216 is coupled to the third and fourth spools 210 a, 210 b by a shaft 218 that extends from the knob 216 through the first and second spools 208 a, 208 b, and that couples to the third and fourth spools 210 a, 210 b. In other words, the first and second spools 208 a, 208 b are rotatably disposed around the shaft 218.
  • [0074]
    In certain exemplary embodiments, the spools and the rotatable knobs can also differ in size. In the embodiment shown in FIGS. 15A and 15B, the first and second spools 208 a, 208 b, as well as the first rotatable knob 214, have a diameter that is greater than a diameter of the third and fourth spools 210 a, 210 b and the second rotatable knob 216. While not necessary, such a configuration can be advantageous as it spaces the cables 212 a-d apart to prevent the cables 212 a-d from coming into contact with one another.
  • [0075]
    In use, a tool can be positioned through the elongate shaft 202, and the knobs 214, 216 can be rotated to articulate the flexible neck 206 on the shaft 202 and thereby position the tool as desired. As shown in FIGS. 14A and 14B, the handle 204 can include a lumen 205 extending therethrough and in alignment with the lumen in the elongate shaft 202 for allowing a tool to be passed through the handle 204 and the shaft 202. In other embodiments, the handle 204 can be offset from the elongate shaft 202 to provide direct access to the lumen in the elongate shaft 202. Once the tool is positioned through the shaft 202, the knobs 214, 214 can be rotated to articulate the flexible neck 206 on the distal end of the elongate shaft 202. In particular, the first knob 214 can be rotated in a first direction, e.g., clockwise, to apply tension to one of the cables, e.g., the first cable 212 a, while releasing or unwinding the other cable, e.g., the second cable 212 b. As a result, the tension applied to the first cable 212 a will pull the distal-most end of the flexible neck 206 in a proximal direction, causing the flexible neck 206 to flex and thereby articulate in a first direction. Rotation of the first knob 214 in an opposite direction, e.g., counterclockwise, will unwind the first cable 212 a while winding the second cable 212 b. The flexible neck 206 will return to its initial, linear configuration. Further rotation of the first knob 214 will continue to wind the second cable 212 b while unwinding the first cable 212 a, thereby causing the flexible neck 206 to flex and articulate in an opposite direction along the same plane of motion. The second knob 216 can be likewise rotated to articulate the flexible in a different plane of motion. The knobs 214, 216 can also optionally be rotated simultaneously to articulate the flexible neck 206 in additional planes of motion different than the first and second planes of motion.
  • [0076]
    In other embodiments, the various devices disclosed herein can include a locking mechanism for locking the handle(s) and/or actuator in a fixed position to maintain the working end of a device in desired articulated or angular orientation. While the locking mechanism can have a variety of configurations, in one exemplary embodiment the locking mechanism can be in the form of a clamp that is effective to clamp down onto the cables and thereby prevent movement of the cables to lock the working end in a desired orientation. The clamp can have a variety of shapes and sizes, and it can be positioned at various locations on the device. FIGS. 17A and 17B illustrate one exemplary embodiment of a clamp 300 that is disposed around the hollow housing 12 c on the surgical fastening and cutting device 10 of FIGS. 1A and 1B. The clamp 300 is generally ring-shaped and can be configured to be slidably or rotatably mated to the hollow housing 12 c adjacent to the openings through which the cables (only three cables 34 a, 34 b, 34 c are shown in FIG. 17B) extend. In an initial position, the clamp 300 is spaced apart from the openings to allow free movement of the cables 34 a-d therethrough. Once the working end of the device, e.g., the end effector 16, is articulated into a desired position, the clamp 300 can moved axially along the hollow housing 12 c until it extends over the openings and engages the cables 34 a-d extending therefrom. The clamp 300 will thus prevent movement of the cables 34 a-d when the clamp 300 is in the locked position. In order to move the clamp 300 axially and to lock the clamp 300 to the housing 12 c, the clamp 300 can include a mating element formed thereon and configured to engage a corresponding mating element formed on the housing 12 c. As shown in FIGS. 17A and 17B, the clamp includes threads 302 formed therein that are configured to mate with corresponding threads (not shown) formed on the housing 12 c. As a result, rotation of the clamp 300 about the housing 12 c will cause the clamp 300 to move between the initial and locked positions. A person skilled in the art will appreciate that various other mating techniques can be used. Moreover, the locking mechanism can have a variety of other configurations. For example, the handle can include a locking element formed thereon and configured to lock the handle in a fixed, articulated position.
  • [0077]
    In other embodiments, the cables can be used to passively allow articulation of the elongate shaft through a body lumen, and the clamp 300 or other locking mechanism can be used to lock the working end of the device into position when desired. In such a configuration, the handle can merely be used to facilitate grasping of the device.
  • [0078]
    In other embodiments, the cable actuators disclosed herein used to effect articulation of a working end of a device can be formed from an electroactive polymer material. Electroactive polymers (EAPs), also referred to as artificial muscles, are materials that exhibit piezoelectric, pyroelectric, or electrostrictive properties in response to electrical or mechanical fields. In particular, EAPs are a set of conductive doped polymers that change shape when an electrical voltage is applied. The conductive polymer can be paired to some form of ionic fluid or gel and electrodes, and the flow of ions from the fluid/gel into or out of the conductive polymer can induce a shape change of the polymer. Typically, a voltage potential in the range of about 1V to 4 kV can be applied depending on the particular polymer and ionic fluid or gel used. It is important to note that EAPs do not change volume when energized, rather they merely expand in one direction and contract in a transverse direction. Thus, the cable actuators previously disclosed herein can be replaced by EAP actuators, and the handle can be configured to activate an energy source to selectively deliver energy to one or more of the cables. In an exemplary embodiment, movement of the handle can be configured to dictate the amount of the energy source, as well as the cable(s) receiving the energy source. As a result, movement of the handle can still be mimicked by the working end of the device to provide the user with the same, precise control over the position of the working end. The energy source can be an internal source, such as a battery, or it can be an external source. In other embodiments, the EAP cable actuators can supplement the axial force applied to the cables by movement of the handle and thereby proportionally increase the amount of movement of the working end relative to the handle.
  • [0079]
    In other aspects, the cable actuators can be formed from a shape-memory material, such as Nitinol. Such a configuration allows tension to be applied to the cables to articulate the end effector, yet allows the cables to return to an initial linear configuration without having to manipulate the handle.
  • [0080]
    In yet another embodiment, the various devices disclosed herein, including portions thereof, can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. By way of example, the surgical stapling and fastening device shown in FIGS. 1A and 1B can be reconditioned after the device has been used in a medical procedure. The device can be disassembled, and any number of the particular pieces can be selectively replaced or removed in any combination. For example, for the surgical stapling and cutting device, a cartridge disposed within the end effector and containing a plurality of fasteners can be replaced by adding a new fastener cartridge to the end effector. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
  • [0081]
    One skilled in the art will appreciate further features and advantages of the invention based on the above-described embodiments. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims. All publications and references cited herein are expressly incorporated herein by reference in their entirety.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4454887 *12 Apr 198219 Jun 1984Krueger ChristianMedical instruments for introduction into the respiratory tract of a patient
US4520817 *8 Mar 19824 Jun 1985United States Surgical CorporationSurgical instruments
US4646722 *10 Dec 19843 Mar 1987Opielab, Inc.Protective endoscope sheath and method of installing same
US5040715 *26 May 198920 Aug 1991United States Surgical CorporationApparatus and method for placing staples in laparoscopic or endoscopic procedures
US5084057 *30 May 199028 Jan 1992United States Surgical CorporationApparatus and method for applying surgical clips in laparoscopic or endoscopic procedures
US5100420 *18 Jul 198931 Mar 1992United States Surgical CorporationApparatus and method for applying surgical clips in laparoscopic or endoscopic procedures
US5195968 *17 Jul 199223 Mar 1993Ingemar LundquistCatheter steering mechanism
US5211649 *12 Dec 198818 May 1993Vaso Products Australia Pty. LimitedVenous cuff applicator, cartridge and cuff
US5259366 *3 Nov 19929 Nov 1993Boris ReydelMethod of using a catheter-sleeve assembly for an endoscope
US5381782 *23 Feb 199317 Jan 1995Spectrum Medsystems CorporationBi-directional and multi-directional miniscopes
US5383880 *16 Dec 199224 Jan 1995Ethicon, Inc.Endoscopic surgical system with sensing means
US5397046 *22 Mar 199314 Mar 1995United States Surgical CorporationLockout mechanism for surgical apparatus
US5431322 *2 Nov 199311 Jul 1995United States Surgical CorporationSelf contained gas powered surgical apparatus
US5433721 *15 Jul 199318 Jul 1995Ethicon, Inc.Endoscopic instrument having a torsionally stiff drive shaft for applying fasteners to tissue
US5441494 *29 Jul 199315 Aug 1995Ethicon, Inc.Manipulable hand for laparoscopy
US5452836 *7 Feb 199426 Sep 1995Ethicon Endo-Surgery, Inc.Surgical stapling instrument with improved jaw closure and staple firing actuator mechanism
US5454827 *24 May 19943 Oct 1995Aust; Gilbert M.Surgical instrument
US5482197 *17 May 19949 Jan 1996United States Surgical CorporationArticulating surgical cartridge assembly
US5489256 *2 Nov 19946 Feb 1996Adair; Edwin L.Sterilizable endoscope with separable disposable tube assembly
US5518163 *26 May 199521 May 1996Ethicon, Inc.Endoscopic surgical system with sensing means
US5518164 *26 May 199521 May 1996Ethicon, Inc.Endoscopic surgical system with sensing means
US5618294 *21 Jul 19958 Apr 1997Aust & Taylor Medical CorporationSurgical instrument
US5630782 *7 Mar 199520 May 1997Adair; Edwin L.Sterilizable endoscope with separable auxiliary assembly
US5651491 *27 Oct 199529 Jul 1997United States Surgical CorporationSurgical stapler having interchangeable loading units
US5667517 *26 May 199516 Sep 1997Ethicon, Inc.Endoscopic surgical system with sensing means
US5669918 *18 Mar 199623 Sep 1997Deutsche Forschungsanstalt Fur Luft-Und Raumfahrt E.V.Surgical instrument for preparing an anastomosis in minimally invasive surgery
US5715988 *14 Aug 199510 Feb 1998United States Surgical CorporationSurgical stapler with lockout mechanism
US5749889 *13 Feb 199612 May 1998Imagyn Medical, Inc.Method and apparatus for performing biopsy
US5762256 *28 Aug 19959 Jun 1998United States Surgical CorporationSurgical stapler
US5779130 *7 Oct 199414 Jul 1998United States Surgical CorporationSelf-contained powered surgical apparatus
US5782396 *20 Oct 199521 Jul 1998United States Surgical CorporationSurgical stapler
US5865361 *23 Sep 19972 Feb 1999United States Surgical CorporationSurgical stapling apparatus
US5906625 *28 Feb 199725 May 1999Olympus Optical Co., Ltd.Tissue-fixing surgical instrument, tissue-fixing device, and method of fixing tissue
US5954259 *27 Jun 199721 Sep 1999United States Surgical CorporationSelf-contained powered surgical apparatus for applying surgical fasteners
US6012494 *18 Mar 199611 Jan 2000Deutsche Forschungsanstalt Fur Luft- Und Raumfahrt E.V.Flexible structure
US6032849 *20 Jul 19987 Mar 2000United States SurgicalSurgical stapler
US6033378 *27 Mar 19977 Mar 2000Ep Technologies, Inc.Catheter steering mechanism
US6071233 *14 Sep 19986 Jun 2000Olympus Optical Co., Ltd.Endoscope
US6099537 *25 Feb 19978 Aug 2000Olympus Optical Co., Ltd.Medical treatment instrument
US6109500 *3 Oct 199729 Aug 2000United States Surgical CorporationLockout mechanism for a surgical stapler
US6179776 *12 Mar 199930 Jan 2001Scimed Life Systems, Inc.Controllable endoscopic sheath apparatus and related method of use
US6264087 *12 Jul 199924 Jul 2001Powermed, Inc.Expanding parallel jaw device for use with an electromechanical driver device
US6315184 *2 Jun 199913 Nov 2001Powermed, Inc.Stapling device for use with an electromechanical driver device for use with anastomosing, stapling, and resecting instruments
US6352503 *15 Jul 19995 Mar 2002Olympus Optical Co., Ltd.Endoscopic surgery apparatus
US6443973 *2 Jun 19993 Sep 2002Power Medical Interventions, Inc.Electromechanical driver device for use with anastomosing, stapling, and resecting instruments
US6522101 *22 Dec 200018 Feb 2003Stryker CorporationRechargeable battery with memory that contains charging sequence data
US6569085 *16 Aug 200127 May 2003Syntheon, LlcMethods and apparatus for delivering a medical instrument over an endoscope while the endoscope is in a body lumen
US6641528 *6 Sep 20014 Nov 2003Fuji Photo Optical Co., Ltd.Bending part of endoscope
US6716233 *22 Feb 20006 Apr 2004Power Medical Interventions, Inc.Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities
US6740030 *4 Jan 200225 May 2004Vision Sciences, Inc.Endoscope assemblies having working channels with reduced bending and stretching resistance
US6749560 *26 Oct 199915 Jun 2004Circon CorporationEndoscope shaft with slotted tube
US6761685 *30 Nov 200013 Jul 2004Scimed Life Systems, Inc.Controllable endoscopic sheath apparatus and related method of use
US6786864 *5 Feb 20027 Sep 2004Olympus CorporationEndoscopic system and method for positioning an indwelling tube
US6790173 *13 Jun 200214 Sep 2004Usgi Medical, Inc.Shape lockable apparatus and method for advancing an instrument through unsupported anatomy
US6793652 *28 Nov 200021 Sep 2004Power Medical Interventions, Inc.Electro-mechanical surgical device
US6846307 *27 Sep 200225 Jan 2005Power Medical Interventions, Inc.Electro-mechanical surgical device
US6846308 *26 Sep 200225 Jan 2005Power Medical Interventions, Inc.Electro-mechanical surgical device
US6846309 *26 Sep 200225 Jan 2005Power Medical Interventions, Inc.Electro-mechanical surgical device
US6878106 *24 Aug 200012 Apr 2005Ingo F. HerrmannDeformable fiberscope with a displaceable supplementary device
US6984203 *27 Nov 200210 Jan 2006Neoguide Systems, Inc.Endoscope with adjacently positioned guiding apparatus
US6997931 *2 Feb 200114 Feb 2006Lsi Solutions, Inc.System for endoscopic suturing
US7029435 *16 Oct 200318 Apr 2006Granit Medical Innovation, LlcEndoscope having multiple working segments
US7056284 *7 Apr 20046 Jun 2006Vision Sciences, Inc.Endoscope assemblies having working channels with reduced bending and stretching resistance
US7070559 *2 Dec 20034 Jul 2006Scimed Life Systems, Inc.Controllable endoscopic sheath apparatus and related method of use
US7494499 *14 Feb 200324 Feb 2009Olympus CorporationSurgical therapeutic instrument
US7674255 *1 Apr 20049 Mar 2010Tuebingen Scientific Surgical Products, GmbHSurgical instrument
US20020049454 *22 Jun 200125 Apr 2002Whitman Michael P.Electro-mechanical surgical device
US20030023142 *1 Mar 200230 Jan 2003Grabover Edward A.Flexible ureteropyeloscope
US20030195387 *21 May 200316 Oct 2003Syntheon, LlcMethods and appartus for delivering a medical instrument over an endoscope while the endoscope is in a body lumen
US20040133075 *5 Aug 20038 Jul 2004Nobuyuki MotokiEndoscope apparatus
US20040193007 *7 Apr 200430 Sep 2004Stephen MartoneEndoscope assemblies having working channels with reduced bending and stretching resistance
US20040230096 *16 May 200318 Nov 2004David StefanchikMethod of guiding medical devices
US20040236316 *23 May 200325 Nov 2004Danitz David J.Articulating mechanism for remote manipulation of a surgical or diagnostic tool
US20050070885 *29 Sep 200331 Mar 2005Rudolph NobisMethod of operating an endoscopic device with one hand
US20050096694 *12 Apr 20045 May 2005Woojin LeeSurgical instrument
US20050119525 *24 Nov 20042 Jun 2005Olympus CorporationInsertion auxiliary implement
US20050124855 *17 Dec 20049 Jun 2005Ross JaffeEndoscope having a guide tube
US20050137454 *8 Jul 200423 Jun 2005Usgi Medical Corp.Shape lockable apparatus and method for advancing an instrument through unsupported anatomy
US20050137455 *8 Jul 200423 Jun 2005Usgi Medical Corp.Shape lockable apparatus and method for advancing an instrument through unsupported anatomy
US20050149067 *5 Oct 20047 Jul 2005Olympus CorporationEndoscopic suturing system
US20050154258 *20 Dec 200414 Jul 2005Tartaglia Joseph M.Endoscope with adjacently positioned guiding apparatus
US20050165419 *21 Mar 200528 Jul 2005Sauer Jude S.System for endoscopic suturing
US20050177181 *29 Dec 200411 Aug 2005Jonathan KaganDevices and methods for treating morbid obesity
US20050228224 *13 Apr 200513 Oct 2005Olympus CorporationEndoscope therapeutic device
US20050234297 *15 Apr 200520 Oct 2005Wilson-Cook Medical, Inc.Endoscopic surgical access devices and methods of articulating an external accessory channel
US20050256452 *14 Jun 200517 Nov 2005Demarchi ThomasSteerable vascular sheath
US20060015009 *14 Sep 200519 Jan 2006Ross JaffeEndoscope having a guide tube
US20060020247 *5 May 200526 Jan 2006Jonathan KaganDevices and methods for attaching an endolumenal gastrointestinal implant
US20060020287 *20 Jul 200526 Jan 2006Woojin LeeSurgical instrument
US20060041188 *25 Mar 200323 Feb 2006Dirusso Carlo AFlexible endoscope
US20060079735 *30 Nov 200513 Apr 2006Stephen MartoneEndoscope assemblies having working channels with reduced bending and stretching resistance
US20060094931 *9 Nov 20054 May 2006Novare Surgical Systems, Inc.Articulating mechanism for remote manipulation of a surgical or diagnostic tool
US20060258904 *13 May 200516 Nov 2006David StefanchikFeeding tube and track
US20060258907 *13 May 200516 Nov 2006David StefanchikTrack for medical devices
US20070106113 *6 Nov 200610 May 2007Biagio RavoCombination endoscopic operative delivery system
US20070129605 *1 Oct 20047 Jun 2007Polydiagnost GmbhEndoscope comprising a flexible probe
US20070221700 *23 Mar 200627 Sep 2007Ethicon Endo-Surgery, Inc.Methods and devices for controlling articulation
US20070221701 *23 Mar 200627 Sep 2007Ethicon Endo-Surgery, Inc.Surgical fastener and cutter with mimicking end effector
US20070225694 *22 Mar 200627 Sep 2007Ethicon Endo-Surgery, Inc.Intubation device for enteral feeding
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US783315624 Apr 200716 Nov 2010Transenterix, Inc.Procedural cannula and support system for surgical procedures
US783762025 Apr 200623 Nov 2010Ethicon Endo-Surgery, Inc.Medical tubular assembly
US789216618 May 200622 Feb 2011Ethicon Endo-Surgery, Inc.Medical instrument including a catheter having a catheter stiffener and method for using
US792732725 Apr 200619 Apr 2011Ethicon Endo-Surgery, Inc.Medical instrument having an articulatable end effector
US795964216 May 200614 Jun 2011Ethicon Endo-Surgery, Inc.Medical instrument having a needle knife
US79764585 Dec 200612 Jul 2011Ethicon Endo-Surgery, Inc.Independent articulating accessory channel
US806616723 Mar 200929 Nov 2011Ethicon Endo-Surgery, Inc.Circular surgical stapling instrument with anvil locking system
US808312018 Sep 200827 Dec 2011Ethicon Endo-Surgery, Inc.End effector for use with a surgical cutting and stapling instrument
US81134109 Feb 201114 Feb 2012Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with control features
US813671210 Dec 200920 Mar 2012Ethicon Endo-Surgery, Inc.Surgical stapler with discrete staple height adjustment and tactile feedback
US814176219 Nov 200927 Mar 2012Ethicon Endo-Surgery, Inc.Surgical stapler comprising a staple pocket
US815714531 May 200717 Apr 2012Ethicon Endo-Surgery, Inc.Pneumatically powered surgical cutting and fastening instrument with electrical feedback
US81571534 Feb 201117 Apr 2012Ethicon Endo-Surgery, Inc.Surgical instrument with force-feedback capabilities
US816197723 Sep 200824 Apr 2012Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US816718518 Nov 20101 May 2012Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US81721244 Feb 20118 May 2012Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US818655531 Jan 200629 May 2012Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with mechanical closure system
US818656016 Oct 200929 May 2012Ethicon Endo-Surgery, Inc.Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US819679513 Aug 201012 Jun 2012Ethicon Endo-Surgery, Inc.Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US81967963 Feb 201112 Jun 2012Ethicon Endo-Surgery, Inc.Shaft based rotary drive system for surgical instruments
US82057813 Jun 201126 Jun 2012Ethicon Endo-Surgery, Inc.Surgical stapler with apparatus for adjusting staple height
US821041123 Sep 20083 Jul 2012Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting instrument
US821111424 Apr 20063 Jul 2012Ethicon Endo-Surgery, Inc.Medical instrument having a medical snare
US821553129 Jan 201010 Jul 2012Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a medical substance dispenser
US822068824 Dec 200917 Jul 2012Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8231658 *13 Nov 200831 Jul 2012Boston Scientific Scimed, Inc.Introducer device with locking adaptor
US823601023 Mar 20067 Aug 2012Ethicon Endo-Surgery, Inc.Surgical fastener and cutter with mimicking end effector
US826730030 Dec 200918 Sep 2012Ethicon Endo-Surgery, Inc.Dampening device for endoscopic surgical stapler
US8287449 *26 May 200516 Oct 2012Ars Co., Ltd.Endoscope device
US82874699 Jan 200816 Oct 2012Ethicon Endo-Surgery, Inc.Articulating surgical device and method of use
US82921552 Jun 201123 Oct 2012Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with tactile position feedback
US830804022 Apr 201013 Nov 2012Ethicon Endo-Surgery, Inc.Surgical stapling instrument with an articulatable end effector
US831707028 Feb 200727 Nov 2012Ethicon Endo-Surgery, Inc.Surgical stapling devices that produce formed staples having different lengths
US832245527 Jun 20064 Dec 2012Ethicon Endo-Surgery, Inc.Manually driven surgical cutting and fastening instrument
US83225892 Jul 20104 Dec 2012Ethicon Endo-Surgery, Inc.Surgical stapling instruments
US83333133 Jun 201118 Dec 2012Ethicon Endo-Surgery, Inc.Surgical stapling instrument with a firing member return mechanism
US834314827 Apr 20091 Jan 2013Gyrus Medical LimitedSurgical instrument
US834812919 Nov 20098 Jan 2013Ethicon Endo-Surgery, Inc.Surgical stapler having a closure mechanism
US834813129 Sep 20068 Jan 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with mechanical indicator to show levels of tissue compression
US834883418 Dec 20088 Jan 2013Ethicon Endo-Surgery, Inc.Steerable surgical access devices and methods
US83534371 Feb 201015 Jan 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with a geared return mechanism
US835343819 Nov 200915 Jan 2013Ethicon Endo-Surgery, Inc.Circular stapler introducer with rigid cap assembly configured for easy removal
US835343919 Nov 200915 Jan 2013Ethicon Endo-Surgery, Inc.Circular stapler introducer with radially-openable distal end portion
US83602969 Sep 201029 Jan 2013Ethicon Endo-Surgery, Inc.Surgical stapling head assembly with firing lockout for a surgical stapler
US836029729 Sep 200629 Jan 2013Ethicon Endo-Surgery, Inc.Surgical cutting and stapling instrument with self adjusting anvil
US836597629 Sep 20065 Feb 2013Ethicon Endo-Surgery, Inc.Surgical staples having dissolvable, bioabsorbable or biofragmentable portions and stapling instruments for deploying the same
US837149115 Feb 200812 Feb 2013Ethicon Endo-Surgery, Inc.Surgical end effector having buttress retention features
US839351430 Sep 201012 Mar 2013Ethicon Endo-Surgery, Inc.Selectively orientable implantable fastener cartridge
US83979715 Feb 200919 Mar 2013Ethicon Endo-Surgery, Inc.Sterilizable surgical instrument
US840843922 Apr 20102 Apr 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with an articulatable end effector
US841457719 Nov 20099 Apr 2013Ethicon Endo-Surgery, Inc.Surgical instruments and components for use in sterile environments
US84247404 Nov 201023 Apr 2013Ethicon Endo-Surgery, Inc.Surgical instrument having a directional switching mechanism
US844403629 Jul 201021 May 2013Ethicon Endo-Surgery, Inc.Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US845390729 Jul 20104 Jun 2013Ethicon Endo-Surgery, Inc.Motor driven surgical fastener device with cutting member reversing mechanism
US845390812 Aug 20104 Jun 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with improved firing trigger arrangement
US845391429 May 20124 Jun 2013Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting instrument with electric actuator directional control assembly
US845952010 Jan 200711 Jun 2013Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US845952514 Feb 200811 Jun 2013Ethicon Endo-Sugery, Inc.Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US846492328 Jan 201018 Jun 2013Ethicon Endo-Surgery, Inc.Surgical stapling devices for forming staples with different formed heights
US847467730 Sep 20102 Jul 2013Ethicon Endo-Surgery, Inc.Fastener system comprising a retention matrix and a cover
US84799699 Feb 20129 Jul 2013Ethicon Endo-Surgery, Inc.Drive interface for operably coupling a manipulatable surgical tool to a robot
US848541229 Sep 200616 Jul 2013Ethicon Endo-Surgery, Inc.Surgical staples having attached drivers and stapling instruments for deploying the same
US84854135 Feb 200916 Jul 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument comprising an articulation joint
US849999312 Jun 20126 Aug 2013Ethicon Endo-Surgery, Inc.Surgical staple cartridge
US85172395 Feb 200927 Aug 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument comprising a magnetic element driver
US851724314 Feb 201127 Aug 2013Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US85172449 Jul 201227 Aug 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a medical substance dispenser
US851802417 May 200727 Aug 2013Transenterix, Inc.System and method for multi-instrument surgical access using a single access port
US852960030 Sep 201010 Sep 2013Ethicon Endo-Surgery, Inc.Fastener system comprising a retention matrix
US85345281 Mar 201117 Sep 2013Ethicon Endo-Surgery, Inc.Surgical instrument having a multiple rate directional switching mechanism
US854012811 Jan 200724 Sep 2013Ethicon Endo-Surgery, Inc.Surgical stapling device with a curved end effector
US854012926 Jul 201024 Sep 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with improved firing trigger arrangement
US85401308 Feb 201124 Sep 2013Ethicon Endo-Surgery, Inc.Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US854013115 Mar 201124 Sep 2013Ethicon Endo-Surgery, Inc.Surgical staple cartridges with tissue tethers for manipulating divided tissue and methods of using same
US854013317 Mar 201024 Sep 2013Ethicon Endo-Surgery, Inc.Staple cartridge
US856187028 Feb 201122 Oct 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument
US856765628 Mar 201129 Oct 2013Ethicon Endo-Surgery, Inc.Staple cartridges for forming staples having differing formed staple heights
US856839020 Jul 201129 Oct 2013Covidien LpArticulating surgical apparatus
US85734619 Feb 20125 Nov 2013Ethicon Endo-Surgery, Inc.Surgical stapling instruments with cam-driven staple deployment arrangements
US85734659 Feb 20125 Nov 2013Ethicon Endo-Surgery, Inc.Robotically-controlled surgical end effector system with rotary actuated closure systems
US857426320 Jul 20115 Nov 2013Covidien LpCoaxial coil lock
US858491914 Feb 200819 Nov 2013Ethicon Endo-Sugery, Inc.Surgical stapling apparatus with load-sensitive firing mechanism
US859076229 Jun 200726 Nov 2013Ethicon Endo-Surgery, Inc.Staple cartridge cavity configurations
US86022871 Jun 201210 Dec 2013Ethicon Endo-Surgery, Inc.Motor driven surgical cutting instrument
US86022889 Feb 201210 Dec 2013Ethicon Endo-Surgery. Inc.Robotically-controlled motorized surgical end effector system with rotary actuated closure systems having variable actuation speeds
US860313520 Jul 201110 Dec 2013Covidien LpArticulating surgical apparatus
US860804415 Feb 200817 Dec 2013Ethicon Endo-Surgery, Inc.Feedback and lockout mechanism for surgical instrument
US860804510 Oct 200817 Dec 2013Ethicon Endo-Sugery, Inc.Powered surgical cutting and stapling apparatus with manually retractable firing system
US86080467 Jan 201017 Dec 2013Ethicon Endo-Surgery, Inc.Test device for a surgical tool
US86164319 Feb 201231 Dec 2013Ethicon Endo-Surgery, Inc.Shiftable drive interface for robotically-controlled surgical tool
US862227414 Feb 20087 Jan 2014Ethicon Endo-Surgery, Inc.Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US862227519 Nov 20097 Jan 2014Ethicon Endo-Surgery, Inc.Circular stapler introducer with rigid distal end portion
US863198717 May 201021 Jan 2014Ethicon Endo-Surgery, Inc.Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US863246213 Jul 201121 Jan 2014Ethicon Endo-Surgery, Inc.Trans-rectum universal ports
US86361873 Feb 201128 Jan 2014Ethicon Endo-Surgery, Inc.Surgical stapling systems that produce formed staples having different lengths
US863673614 Feb 200828 Jan 2014Ethicon Endo-Surgery, Inc.Motorized surgical cutting and fastening instrument
US865212010 Jan 200718 Feb 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and sensor transponders
US865717414 Feb 200825 Feb 2014Ethicon Endo-Surgery, Inc.Motorized surgical cutting and fastening instrument having handle based power source
US865717629 Apr 201125 Feb 2014Ethicon Endo-Surgery, Inc.Tissue thickness compensator for a surgical stapler
US86571789 Jan 201325 Feb 2014Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US866813024 May 201211 Mar 2014Ethicon Endo-Surgery, Inc.Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US867220730 Jul 201018 Mar 2014Ethicon Endo-Surgery, Inc.Transwall visualization arrangements and methods for surgical circular staplers
US86722085 Mar 201018 Mar 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a releasable buttress material
US868425327 May 20111 Apr 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8689592 *19 Jul 20128 Apr 2014Boston Scientific Scimed, Inc.Introducer device with locking adaptor
US86958661 Oct 201015 Apr 2014Ethicon Endo-Surgery, Inc.Surgical instrument having a power control circuit
US872076629 Sep 200613 May 2014Ethicon Endo-Surgery, Inc.Surgical stapling instruments and staples
US872163023 Mar 200613 May 2014Ethicon Endo-Surgery, Inc.Methods and devices for controlling articulation
US8728092 *13 Aug 200920 May 2014Monteris Medical CorporationStereotactic drive system
US873361329 Sep 201027 May 2014Ethicon Endo-Surgery, Inc.Staple cartridge
US873447813 Jul 201127 May 2014Ethicon Endo-Surgery, Inc.Rectal manipulation devices
US874003430 Sep 20103 Jun 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument with interchangeable staple cartridge arrangements
US874003730 Sep 20103 Jun 2014Ethicon Endo-Surgery, Inc.Compressible fastener cartridge
US874003829 Apr 20113 Jun 2014Ethicon Endo-Surgery, Inc.Staple cartridge comprising a releasable portion
US87465292 Dec 201110 Jun 2014Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US874653028 Sep 201210 Jun 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US874653529 Apr 201110 Jun 2014Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising detachable portions
US874723828 Jun 201210 Jun 2014Ethicon Endo-Surgery, Inc.Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US874741813 Aug 200910 Jun 2014Monteris Medical CorporationTrajectory guide
US875269930 Sep 201017 Jun 2014Ethicon Endo-Surgery, Inc.Implantable fastener cartridge comprising bioabsorbable layers
US875274720 Mar 201217 Jun 2014Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US875274927 May 201117 Jun 2014Ethicon Endo-Surgery, Inc.Robotically-controlled disposable motor-driven loading unit
US875746530 Sep 201024 Jun 2014Ethicon Endo-Surgery, Inc.Fastener system comprising a retention matrix and an alignment matrix
US875839114 Feb 200824 Jun 2014Ethicon Endo-Surgery, Inc.Interchangeable tools for surgical instruments
US87638756 Mar 20131 Jul 2014Ethicon Endo-Surgery, Inc.End effector for use with a surgical fastening instrument
US876387730 Sep 20101 Jul 2014Ethicon Endo-Surgery, Inc.Surgical instruments with reconfigurable shaft segments
US87638791 Mar 20111 Jul 2014Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of surgical instrument
US877700429 Apr 201115 Jul 2014Ethicon Endo-Surgery, Inc.Compressible staple cartridge comprising alignment members
US87835419 Feb 201222 Jul 2014Frederick E. Shelton, IVRobotically-controlled surgical end effector system
US878354230 Sep 201022 Jul 2014Ethicon Endo-Surgery, Inc.Fasteners supported by a fastener cartridge support
US878354330 Jul 201022 Jul 2014Ethicon Endo-Surgery, Inc.Tissue acquisition arrangements and methods for surgical stapling devices
US87897396 Sep 201129 Jul 2014Ethicon Endo-Surgery, Inc.Continuous stapling instrument
US878974030 Jul 201029 Jul 2014Ethicon Endo-Surgery, Inc.Linear cutting and stapling device with selectively disengageable cutting member
US878974123 Sep 201129 Jul 2014Ethicon Endo-Surgery, Inc.Surgical instrument with trigger assembly for generating multiple actuation motions
US879449718 Dec 20125 Aug 2014Ethicon Endo-Surgery, Inc.Surgical stapling head assembly with firing lockout for a surgical stapler
US88008389 Feb 201212 Aug 2014Ethicon Endo-Surgery, Inc.Robotically-controlled cable-based surgical end effectors
US880084115 Mar 201112 Aug 2014Ethicon Endo-Surgery, Inc.Surgical staple cartridges
US880173430 Jul 201012 Aug 2014Ethicon Endo-Surgery, Inc.Circular stapling instruments with secondary cutting arrangements and methods of using same
US880173530 Jul 201012 Aug 2014Ethicon Endo-Surgery, Inc.Surgical circular stapler with tissue retention arrangements
US8801752 *29 Jul 200912 Aug 2014Covidien LpArticulating surgical device
US880832519 Nov 201219 Aug 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument with staples having crown features for increasing formed staple footprint
US881402430 Sep 201026 Aug 2014Ethicon Endo-Surgery, Inc.Fastener system comprising a plurality of connected retention matrix elements
US88206031 Mar 20112 Sep 2014Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US88206059 Feb 20122 Sep 2014Ethicon Endo-Surgery, Inc.Robotically-controlled surgical instruments
US882790313 Jul 20119 Sep 2014Ethicon Endo-Surgery, Inc.Modular tool heads for use with circular surgical instruments
US88336326 Sep 201116 Sep 2014Ethicon Endo-Surgery, Inc.Firing member displacement system for a stapling instrument
US8840003 *30 Sep 201023 Sep 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument with compact articulation control arrangement
US88406033 Jun 201023 Sep 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and sensor transponders
US88447899 Feb 201230 Sep 2014Ethicon Endo-Surgery, Inc.Automated end effector component reloading system for use with a robotic system
US885135424 Dec 20097 Oct 2014Ethicon Endo-Surgery, Inc.Surgical cutting instrument that analyzes tissue thickness
US885769315 Mar 201114 Oct 2014Ethicon Endo-Surgery, Inc.Surgical instruments with lockable articulating end effector
US885769429 Apr 201114 Oct 2014Ethicon Endo-Surgery, Inc.Staple cartridge loading assembly
US885859013 Jul 201114 Oct 2014Ethicon Endo-Surgery, Inc.Tissue manipulation devices
US886400730 Sep 201021 Oct 2014Ethicon Endo-Surgery, Inc.Implantable fastener cartridge having a non-uniform arrangement
US886400929 Apr 201121 Oct 2014Ethicon Endo-Surgery, Inc.Tissue thickness compensator for a surgical stapler comprising an adjustable anvil
US887597215 Feb 20114 Nov 2014Ethicon Endo-Surgery, Inc.End effector coupling arrangements for a surgical cutting and stapling instrument
US889394923 Sep 201125 Nov 2014Ethicon Endo-Surgery, Inc.Surgical stapler with floating anvil
US889946330 Sep 20102 Dec 2014Ethicon Endo-Surgery, Inc.Surgical staple cartridges supporting non-linearly arranged staples and surgical stapling instruments with common staple-forming pockets
US88994655 Mar 20132 Dec 2014Ethicon Endo-Surgery, Inc.Staple cartridge comprising drivers for deploying a plurality of staples
US889946619 Nov 20092 Dec 2014Ethicon Endo-Surgery, Inc.Devices and methods for introducing a surgical circular stapling instrument into a patient
US89059771 Jun 20059 Dec 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
US891147114 Sep 201216 Dec 2014Ethicon Endo-Surgery, Inc.Articulatable surgical device
US891934817 Jan 201130 Dec 2014Transenterix Surgical, Inc.System and method for multi-instrument surgical access
US892578230 Sep 20106 Jan 2015Ethicon Endo-Surgery, Inc.Implantable fastener cartridge comprising multiple layers
US89257883 Mar 20146 Jan 2015Ethicon Endo-Surgery, Inc.End effectors for surgical stapling instruments
US892659815 Mar 20116 Jan 2015Ethicon Endo-Surgery, Inc.Surgical instruments with articulatable and rotatable end effector
US893168227 May 201113 Jan 2015Ethicon Endo-Surgery, Inc.Robotically-controlled shaft based rotary drive systems for surgical instruments
US897380418 Mar 201410 Mar 2015Ethicon Endo-Surgery, Inc.Cartridge assembly having a buttressing member
US897895429 Apr 201117 Mar 2015Ethicon Endo-Surgery, Inc.Staple cartridge comprising an adjustable distal portion
US897895513 Jul 201117 Mar 2015Ethicon Endo-Surgery, Inc.Anvil assemblies with collapsible frames for circular staplers
US897895630 Sep 201017 Mar 2015Ethicon Endo-Surgery, Inc.Jaw closure arrangements for surgical instruments
US897987115 Mar 201317 Mar 2015Monteris Medical CorporationImage-guided therapy of a tissue
US899167629 Jun 200731 Mar 2015Ethicon Endo-Surgery, Inc.Surgical staple having a slidable crown
US899167721 May 201431 Mar 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US899242227 May 201131 Mar 2015Ethicon Endo-Surgery, Inc.Robotically-controlled endoscopic accessory channel
US899805820 May 20147 Apr 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US900523018 Jan 201314 Apr 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US901654229 Apr 201128 Apr 2015Ethicon Endo-Surgery, Inc.Staple cartridge comprising compressible distortion resistant components
US902847820 Jul 201112 May 2015Covidien LpArticulating surgical apparatus
US902849428 Jun 201212 May 2015Ethicon Endo-Surgery, Inc.Interchangeable end effector coupling arrangement
US90285197 Feb 201112 May 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US903320330 Sep 201019 May 2015Ethicon Endo-Surgery, Inc.Fastening instrument for deploying a fastener system comprising a retention matrix
US903320413 Jul 201119 May 2015Ethicon Endo-Surgery, Inc.Circular stapling devices with tissue-puncturing anvil features
US904422730 Sep 20102 Jun 2015Ethicon Endo-Surgery, Inc.Collapsible fastener cartridge
US904422830 Sep 20102 Jun 2015Ethicon Endo-Surgery, Inc.Fastener system comprising a plurality of fastener cartridges
US904422915 Mar 20112 Jun 2015Ethicon Endo-Surgery, Inc.Surgical fastener instruments
US904423013 Feb 20122 Jun 2015Ethicon Endo-Surgery, Inc.Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US905008323 Sep 20089 Jun 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US905008423 Sep 20119 Jun 2015Ethicon Endo-Surgery, Inc.Staple cartridge including collapsible deck arrangement
US905594123 Sep 201116 Jun 2015Ethicon Endo-Surgery, Inc.Staple cartridge including collapsible deck
US906077027 May 201123 Jun 2015Ethicon Endo-Surgery, Inc.Robotically-driven surgical instrument with E-beam driver
US907251525 Jun 20147 Jul 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US907253527 May 20117 Jul 2015Ethicon Endo-Surgery, Inc.Surgical stapling instruments with rotatable staple deployment arrangements
US907253628 Jun 20127 Jul 2015Ethicon Endo-Surgery, Inc.Differential locking arrangements for rotary powered surgical instruments
US907865326 Mar 201214 Jul 2015Ethicon Endo-Surgery, Inc.Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US908460115 Mar 201321 Jul 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US908933013 Jul 201128 Jul 2015Ethicon Endo-Surgery, Inc.Surgical bowel retractor devices
US909533919 May 20144 Aug 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US910135815 Jun 201211 Aug 2015Ethicon Endo-Surgery, Inc.Articulatable surgical instrument comprising a firing drive
US910138528 Jun 201211 Aug 2015Ethicon Endo-Surgery, Inc.Electrode connections for rotary driven surgical tools
US91076636 Sep 201118 Aug 2015Ethicon Endo-Surgery, Inc.Stapling instrument comprising resettable staple drivers
US911386230 Sep 201025 Aug 2015Ethicon Endo-Surgery, Inc.Surgical stapling instrument with a variable staple forming system
US911386430 Sep 201025 Aug 2015Ethicon Endo-Surgery, Inc.Surgical cutting and fastening instruments with separate and distinct fastener deployment and tissue cutting systems
US911386529 Apr 201125 Aug 2015Ethicon Endo-Surgery, Inc.Staple cartridge comprising a layer
US911387424 Jun 201425 Aug 2015Ethicon Endo-Surgery, Inc.Surgical instrument system
US911388313 Jul 201125 Aug 2015Ethicon Endo-Surgery, Inc.Collapsible anvil plate assemblies for circular surgical stapling devices
US911388413 Jul 201125 Aug 2015Ethicon Endo-Surgery, Inc.Modular surgical tool systems
US911965728 Jun 20121 Sep 2015Ethicon Endo-Surgery, Inc.Rotary actuatable closure arrangement for surgical end effector
US912565413 Jul 20118 Sep 2015Ethicon Endo-Surgery, Inc.Multiple part anvil assemblies for circular surgical stapling devices
US912566228 Jun 20128 Sep 2015Ethicon Endo-Surgery, Inc.Multi-axis articulating and rotating surgical tools
US913194021 Feb 201315 Sep 2015Ethicon Endo-Surgery, Inc.Staple cartridge
US913822526 Feb 201322 Sep 2015Ethicon Endo-Surgery, Inc.Surgical stapling instrument with an articulatable end effector
US9138250 *24 Apr 200622 Sep 2015Ethicon Endo-Surgery, Inc.Medical instrument handle and medical instrument having a handle
US914927417 Feb 20116 Oct 2015Ethicon Endo-Surgery, Inc.Articulating endoscopic accessory channel
US916803829 Apr 201127 Oct 2015Ethicon Endo-Surgery, Inc.Staple cartridge comprising a tissue thickness compensator
US917991123 May 201410 Nov 2015Ethicon Endo-Surgery, Inc.End effector for use with a surgical fastening instrument
US917991227 May 201110 Nov 2015Ethicon Endo-Surgery, Inc.Robotically-controlled motorized surgical cutting and fastening instrument
US918614325 Jun 201417 Nov 2015Ethicon Endo-Surgery, Inc.Robotically-controlled shaft based rotary drive systems for surgical instruments
US91986616 Sep 20111 Dec 2015Ethicon Endo-Surgery, Inc.Stapling instrument comprising a plurality of staple cartridges stored therein
US919866226 Jun 20121 Dec 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator having improved visibility
US920487814 Aug 20148 Dec 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with interlockable firing system
US920487928 Jun 20128 Dec 2015Ethicon Endo-Surgery, Inc.Flexible drive member
US920488028 Mar 20128 Dec 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising capsules defining a low pressure environment
US921112028 Mar 201215 Dec 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a plurality of medicaments
US921112113 Jan 201515 Dec 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US921112213 Jul 201115 Dec 2015Ethicon Endo-Surgery, Inc.Surgical access devices with anvil introduction and specimen retrieval structures
US92111571 Dec 201415 Dec 2015Monteris Medical CorporationProbe driver
US921601923 Sep 201122 Dec 2015Ethicon Endo-Surgery, Inc.Surgical stapler with stationary staple drivers
US922050028 Mar 201229 Dec 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising structure to produce a resilient load
US922050128 Mar 201229 Dec 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensators
US922675128 Jun 20125 Jan 2016Ethicon Endo-Surgery, Inc.Surgical instrument system including replaceable end effectors
US923294128 Mar 201212 Jan 2016Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a reservoir
US92329457 Jul 201412 Jan 2016Ethicon Endo-Surgery, Inc.Surgical stapling head assembly with firing lockout for a surgical stapler
US923789127 May 201119 Jan 2016Ethicon Endo-Surgery, Inc.Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US924171428 Mar 201226 Jan 2016Ethicon Endo-Surgery, Inc.Tissue thickness compensator and method for making the same
US926551531 Oct 201323 Feb 2016Covidien LpCoaxial coil lock
US92717941 Dec 20141 Mar 2016Monteris Medical CorporationMonitoring and noise masking of thermal therapy
US927179925 Jun 20141 Mar 2016Ethicon Endo-Surgery, LlcRobotic surgical system with removable motor housing
US92724068 Feb 20131 Mar 2016Ethicon Endo-Surgery, LlcFastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US927791928 Mar 20128 Mar 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising fibers to produce a resilient load
US92829628 Feb 201315 Mar 2016Ethicon Endo-Surgery, LlcAdhesive film laminate
US92829667 Feb 201415 Mar 2016Ethicon Endo-Surgery, Inc.Surgical stapling instrument
US928297428 Jun 201215 Mar 2016Ethicon Endo-Surgery, LlcEmpty clip cartridge lockout
US928305423 Aug 201315 Mar 2016Ethicon Endo-Surgery, LlcInteractive displays
US928920615 Dec 201422 Mar 2016Ethicon Endo-Surgery, LlcLateral securement members for surgical staple cartridges
US928921021 May 201222 Mar 2016Ethicon Endo-Surgery, LlcSurgical stapler with apparatus for adjusting staple height
US928921217 Sep 201022 Mar 2016Ethicon Endo-Surgery, Inc.Surgical instruments and batteries for surgical instruments
US928925628 Jun 201222 Mar 2016Ethicon Endo-Surgery, LlcSurgical end effectors having angled tissue-contacting surfaces
US928926628 Nov 200722 Mar 2016Boston Scientific Scimed, Inc.On-axis drive systems and methods
US929546429 Apr 201129 Mar 2016Ethicon Endo-Surgery, Inc.Surgical stapler anvil comprising a plurality of forming pockets
US930175228 Mar 20125 Apr 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising a plurality of capsules
US930175328 Mar 20125 Apr 2016Ethicon Endo-Surgery, LlcExpandable tissue thickness compensator
US930175529 Apr 20115 Apr 2016Ethicon Endo-Surgery, LlcCompressible staple cartridge assembly
US93017599 Feb 20125 Apr 2016Ethicon Endo-Surgery, LlcRobotically-controlled surgical instrument with selectively articulatable end effector
US930796525 Jun 201212 Apr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an anti-microbial agent
US93079861 Mar 201312 Apr 2016Ethicon Endo-Surgery, LlcSurgical instrument soft stop
US930798725 Sep 201412 Apr 2016Ethicon Endo-Surgery, LlcSurgical cutting instrument that analyzes tissue thickness
US930798828 Oct 201312 Apr 2016Ethicon Endo-Surgery, LlcStaple cartridges for forming staples having differing formed staple heights
US930798926 Jun 201212 Apr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorportating a hydrophobic agent
US931424625 Jun 201219 Apr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US931424726 Jun 201219 Apr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating a hydrophilic agent
US932051825 Jun 201226 Apr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an oxygen generating agent
US932052019 Aug 201526 Apr 2016Ethicon Endo-Surgery, Inc.Surgical instrument system
US932052129 Oct 201226 Apr 2016Ethicon Endo-Surgery, LlcSurgical instrument
US932052328 Mar 201226 Apr 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising tissue ingrowth features
US93267671 Mar 20133 May 2016Ethicon Endo-Surgery, LlcJoystick switch assemblies for surgical instruments
US932676812 Mar 20133 May 2016Ethicon Endo-Surgery, LlcStaple cartridges for forming staples having differing formed staple heights
US93267696 Mar 20133 May 2016Ethicon Endo-Surgery, LlcSurgical instrument
US93267706 Mar 20133 May 2016Ethicon Endo-Surgery, LlcSurgical instrument
US93267714 Mar 20113 May 2016Ethicon Endo-Surgery, LlcStaple cartridge
US933297428 Mar 201210 May 2016Ethicon Endo-Surgery, LlcLayered tissue thickness compensator
US933298427 Mar 201310 May 2016Ethicon Endo-Surgery, LlcFastener cartridge assemblies
US933298714 Mar 201310 May 2016Ethicon Endo-Surgery, LlcControl arrangements for a drive member of a surgical instrument
US933303818 Mar 201410 May 2016Monteris Medical CorporationHyperthermia treatment and probe therefore
US93392873 Mar 201117 May 2016Basel HassounSurgical instrument
US9345462 *28 Nov 200724 May 2016Boston Scientific Scimed, Inc.Direct drive endoscopy systems and methods
US934547725 Jun 201224 May 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator comprising incorporating a hemostatic agent
US934548113 Mar 201324 May 2016Ethicon Endo-Surgery, LlcStaple cartridge tissue thickness sensor system
US935172614 Mar 201331 May 2016Ethicon Endo-Surgery, LlcArticulation control system for articulatable surgical instruments
US935172714 Mar 201331 May 2016Ethicon Endo-Surgery, LlcDrive train control arrangements for modular surgical instruments
US935173028 Mar 201231 May 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising channels
US93580031 Mar 20137 Jun 2016Ethicon Endo-Surgery, LlcElectromechanical surgical device with signal relay arrangement
US935800522 Jun 20157 Jun 2016Ethicon Endo-Surgery, LlcEnd effector layer including holding features
US936423028 Jun 201214 Jun 2016Ethicon Endo-Surgery, LlcSurgical stapling instruments with rotary joint assemblies
US936423328 Mar 201214 Jun 2016Ethicon Endo-Surgery, LlcTissue thickness compensators for circular surgical staplers
US937035819 Oct 201221 Jun 2016Ethicon Endo-Surgery, LlcMotor-driven surgical cutting and fastening instrument with tactile position feedback
US93703645 Mar 201321 Jun 2016Ethicon Endo-Surgery, LlcPowered surgical cutting and stapling apparatus with manually retractable firing system
US938698327 May 201112 Jul 2016Ethicon Endo-Surgery, LlcRobotically-controlled motorized surgical instrument
US93869848 Feb 201312 Jul 2016Ethicon Endo-Surgery, LlcStaple cartridge comprising a releasable cover
US938698515 Oct 201212 Jul 2016Ethicon Endo-Surgery, LlcSurgical cutting instrument
US938698828 Mar 201212 Jul 2016Ethicon End-Surgery, LLCRetainer assembly including a tissue thickness compensator
US93870421 Jul 201312 Jul 2016Monteris Medical CorporationHyperthermia treatment and probe therefor
US939301510 May 201319 Jul 2016Ethicon Endo-Surgery, LlcMotor driven surgical fastener device with cutting member reversing mechanism
US93989111 Mar 201326 Jul 2016Ethicon Endo-Surgery, LlcRotary powered surgical instruments with multiple degrees of freedom
US940262618 Jul 20122 Aug 2016Ethicon Endo-Surgery, LlcRotary actuatable surgical fastener and cutter
US940860428 Feb 20149 Aug 2016Ethicon Endo-Surgery, LlcSurgical instrument comprising a firing system including a compliant portion
US940860628 Jun 20129 Aug 2016Ethicon Endo-Surgery, LlcRobotically powered surgical device with manually-actuatable reversing system
US941483828 Mar 201216 Aug 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprised of a plurality of materials
US942107128 Nov 200723 Aug 2016Boston Scientific Scimed, Inc.Direct drive methods
US943338318 Mar 20156 Sep 2016Monteris Medical CorporationImage-guided therapy of a tissue
US943341928 Mar 20126 Sep 2016Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a plurality of layers
US943964912 Dec 201213 Sep 2016Ethicon Endo-Surgery, LlcSurgical instrument having force feedback capabilities
US944581323 Aug 201320 Sep 2016Ethicon Endo-Surgery, LlcClosure indicator systems for surgical instruments
US94519585 Aug 201327 Sep 2016Ethicon Endo-Surgery, LlcSurgical instrument with firing actuator lockout
US945687728 Nov 20074 Oct 2016Boston Scientific Scimed, Inc.Direct drive instruments and methods of use
US94684381 Mar 201318 Oct 2016Eticon Endo-Surgery, LLCSensor straightened end effector during removal through trocar
US948047628 Mar 20121 Nov 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising resilient members
US948617018 Mar 20158 Nov 2016Monteris Medical CorporationImage-guided therapy of a tissue
US948621420 May 20138 Nov 2016Ethicon Endo-Surgery, LlcMotor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US9486612 *11 Feb 20138 Nov 2016St. Jude Medical, Atrial Fibrillation Division, Inc.Device for reducing axial shortening of catheter or sheath due to repeated deflection
US949212118 Mar 201515 Nov 2016Monteris Medical CorporationImage-guided therapy of a tissue
US949216714 Mar 201315 Nov 2016Ethicon Endo-Surgery, LlcArticulatable surgical device with rotary driven cutting member
US949821930 Jun 201522 Nov 2016Ethicon Endo-Surgery, LlcDetachable motor powered surgical instrument
US950448418 Mar 201529 Nov 2016Monteris Medical CorporationImage-guided therapy of a tissue
US951082823 Aug 20136 Dec 2016Ethicon Endo-Surgery, LlcConductor arrangements for electrically powered surgical instruments with rotatable end effectors
US951083023 Oct 20146 Dec 2016Ethicon Endo-Surgery, LlcStaple cartridge
US951090916 Mar 20156 Dec 2016Monteris Medical CorporationImage-guide therapy of a tissue
US951706328 Mar 201213 Dec 2016Ethicon Endo-Surgery, LlcMovable member for use with a tissue thickness compensator
US95170685 Aug 201313 Dec 2016Ethicon Endo-Surgery, LlcSurgical instrument with automatically-returned firing member
US952202912 Mar 201320 Dec 2016Ethicon Endo-Surgery, LlcMotorized surgical cutting and fastening instrument having handle based power source
US953312211 Jan 20083 Jan 2017Boston Scientific Scimed, Inc.Catheter drive system with control handle rotatable about two axes separated from housing by shaft
US954524521 Apr 201517 Jan 2017Covidien LpArticulating surgical apparatus
US95497325 Mar 201324 Jan 2017Ethicon Endo-Surgery, LlcMotor-driven surgical cutting instrument
US954973523 Dec 201324 Jan 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising a firing member including fastener transfer surfaces
US95547941 Mar 201331 Jan 2017Ethicon Endo-Surgery, LlcMultiple processor motor control for modular surgical instruments
US956103213 Aug 20137 Feb 2017Ethicon Endo-Surgery, LlcStaple cartridge comprising a staple driver arrangement
US956103828 Jun 20127 Feb 2017Ethicon Endo-Surgery, LlcInterchangeable clip applier
US95660618 Feb 201314 Feb 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising a releasably attached tissue thickness compensator
US956612613 Sep 201114 Feb 2017Boston Scientific Scimed, Inc.Direct drive endoscopy systems and methods
US957257422 Jun 201521 Feb 2017Ethicon Endo-Surgery, LlcTissue thickness compensators comprising therapeutic agents
US957257727 Mar 201321 Feb 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising a tissue thickness compensator including openings therein
US957464430 May 201321 Feb 2017Ethicon Endo-Surgery, LlcPower module for use with a surgical instrument
US95856578 Feb 20137 Mar 2017Ethicon Endo-Surgery, LlcActuator for releasing a layer of material from a surgical end effector
US95856587 Apr 20167 Mar 2017Ethicon Endo-Surgery, LlcStapling systems
US958566011 Nov 20137 Mar 2017Ethicon Endo-Surgery, LlcMethod for testing a surgical tool
US958566223 Dec 20137 Mar 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising an extendable firing member
US95856638 Mar 20167 Mar 2017Ethicon Endo-Surgery, LlcSurgical stapling instrument configured to apply a compressive pressure to tissue
US95920508 Feb 201314 Mar 2017Ethicon Endo-Surgery, LlcEnd effector comprising a distal tissue abutment member
US959205212 Mar 201414 Mar 2017Ethicon Endo-Surgery, LlcStapling assembly for forming different formed staple heights
US959205322 May 201414 Mar 2017Ethicon Endo-Surgery, LlcStaple cartridge comprising multiple regions
US95920544 Nov 201514 Mar 2017Ethicon Endo-Surgery, LlcSurgical stapler with stationary staple drivers
US95970759 Jun 201421 Mar 2017Ethicon Endo-Surgery, Inc.Tissue acquisition arrangements and methods for surgical stapling devices
US960359528 Feb 201428 Mar 2017Ethicon Endo-Surgery, LlcSurgical instrument comprising an adjustable system configured to accommodate different jaw heights
US960359830 Aug 201328 Mar 2017Ethicon Endo-Surgery, LlcSurgical stapling device with a curved end effector
US960399129 Jul 201328 Mar 2017Ethicon Endo-Surgery, LlcSurgical stapling instrument having a medical substance dispenser
US96158268 Feb 201311 Apr 2017Ethicon Endo-Surgery, LlcMultiple thickness implantable layers for surgical stapling devices
US962962314 Mar 201325 Apr 2017Ethicon Endo-Surgery, LlcDrive system lockout arrangements for modular surgical instruments
US96296297 Mar 201425 Apr 2017Ethicon Endo-Surgey, LLCControl systems for surgical instruments
US962981420 Mar 201425 Apr 2017Ethicon Endo-Surgery, LlcTissue thickness compensator configured to redistribute compressive forces
US964262023 Dec 20139 May 2017Ethicon Endo-Surgery, LlcSurgical cutting and stapling instruments with articulatable end effectors
US96491109 Apr 201416 May 2017Ethicon LlcSurgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US964911128 Jun 201216 May 2017Ethicon Endo-Surgery, LlcReplaceable clip cartridge for a clip applier
US965561411 Mar 201323 May 2017Ethicon Endo-Surgery, LlcRobotically-controlled motorized surgical instrument with an end effector
US965562430 Aug 201323 May 2017Ethicon LlcSurgical stapling device with a curved end effector
US966211015 Sep 201530 May 2017Ethicon Endo-Surgery, LlcSurgical stapling instrument with an articulatable end effector
US967535530 Aug 201313 Jun 2017Ethicon LlcSurgical stapling device with a curved end effector
US967537224 May 201313 Jun 2017Ethicon LlcMotor-driven surgical cutting instrument with electric actuator directional control assembly
US968187023 Dec 201320 Jun 2017Ethicon LlcArticulatable surgical instruments with separate and distinct closing and firing systems
US968723014 Mar 201327 Jun 2017Ethicon LlcArticulatable surgical instrument comprising a firing drive
US968723121 Oct 201327 Jun 2017Ethicon LlcSurgical stapling instrument
US968723624 Feb 201427 Jun 2017Ethicon Endo-Surgery, Inc.Surgical instrument having a power control circuit
US96872378 Jun 201527 Jun 2017Ethicon Endo-Surgery, LlcStaple cartridge including collapsible deck arrangement
US969036226 Mar 201427 Jun 2017Ethicon LlcSurgical instrument control circuit having a safety processor
US969377724 Feb 20144 Jul 2017Ethicon LlcImplantable layers comprising a pressed region
US97003091 Mar 201311 Jul 2017Ethicon LlcArticulatable surgical instruments with conductive pathways for signal communication
US970031023 Aug 201311 Jul 2017Ethicon LlcFiring member retraction devices for powered surgical instruments
US97003178 Feb 201311 Jul 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising a releasable tissue thickness compensator
US970032128 May 201411 Jul 2017Ethicon LlcSurgical stapling device having supports for a flexible drive mechanism
US970034218 Mar 201511 Jul 2017Monteris Medical CorporationImage-guided therapy of a tissue
US970699119 Feb 201418 Jul 2017Ethicon Endo-Surgery, Inc.Staple cartridge comprising staples including a lateral base
US971347922 Feb 201625 Jul 2017Covidien LpCoaxial coil lock
US972409129 Aug 20138 Aug 2017Ethicon LlcSurgical stapling device
US972409223 Dec 20138 Aug 2017Ethicon LlcModular surgical instruments
US97240945 Sep 20148 Aug 2017Ethicon LlcAdjunct with integrated sensors to quantify tissue compression
US972409813 Nov 20148 Aug 2017Ethicon Endo-Surgery, LlcStaple cartridge comprising an implantable layer
US973069212 Mar 201315 Aug 2017Ethicon LlcSurgical stapling device with a curved staple cartridge
US973069517 Sep 201515 Aug 2017Ethicon Endo-Surgery, LlcPower management through segmented circuit
US973069723 Apr 201515 Aug 2017Ethicon Endo-Surgery, LlcSurgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US973366326 Mar 201415 Aug 2017Ethicon LlcPower management through segmented circuit and variable voltage protection
US97373015 Sep 201422 Aug 2017Ethicon LlcMonitoring device degradation based on component evaluation
US97373028 Mar 201622 Aug 2017Ethicon LlcSurgical stapling instrument having a restraining member
US973730310 Sep 201522 Aug 2017Ethicon LlcArticulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US974392825 Mar 201429 Aug 2017Ethicon Endo-Surgery, Inc.Surgical instrument having a feedback system
US974392926 Mar 201429 Aug 2017Ethicon LlcModular powered surgical instrument with detachable shaft assemblies
US975049828 Sep 20155 Sep 2017Ethicon Endo Surgery, LlcDrive systems for surgical instruments
US975049926 Mar 20145 Sep 2017Ethicon LlcSurgical stapling instrument system
US975050124 May 20165 Sep 2017Ethicon Endo-Surgery, LlcSurgical stapling devices having laterally movable anvils
US97571237 Mar 201312 Sep 2017Ethicon LlcPowered surgical instrument having a transmission system
US975712424 Feb 201412 Sep 2017Ethicon LlcImplantable layer assemblies
US97571285 Sep 201412 Sep 2017Ethicon LlcMultiple sensors with one sensor affecting a second sensor's output or interpretation
US975713012 Mar 201412 Sep 2017Ethicon LlcStapling assembly for forming different formed staple heights
US976366223 Dec 201319 Sep 2017Ethicon LlcFastener cartridge comprising a firing member configured to directly engage and eject fasteners from the fastener cartridge
US97702458 Feb 201326 Sep 2017Ethicon LlcLayer arrangements for surgical staple cartridges
US977560824 Feb 20143 Oct 2017Ethicon LlcFastening system comprising a firing member lockout
US977560923 Aug 20133 Oct 2017Ethicon LlcTamper proof circuit for surgical instrument battery pack
US977561330 Aug 20133 Oct 2017Ethicon LlcSurgical stapling device with a curved end effector
US977561425 Jan 20163 Oct 2017Ethicon Endo-Surgery, LlcSurgical stapling instruments with rotatable staple deployment arrangements
US9775676 *13 Jan 20153 Oct 2017Arthrex, Inc.Steerable surgical device with joystick
US97821691 Mar 201310 Oct 2017Ethicon LlcRotary powered articulation joints for surgical instruments
US97888348 Feb 201317 Oct 2017Ethicon LlcLayer comprising deployable attachment members
US97888365 Sep 201417 Oct 2017Ethicon LlcMultiple motor control for powered medical device
US97953817 Apr 201624 Oct 2017Ethicon Endo-Surgery, LlcRobotically-controlled shaft based rotary drive systems for surgical instruments
US979538220 Aug 201324 Oct 2017Ethicon LlcFastener cartridge assembly comprising a cam and driver arrangement
US979538322 Sep 201624 Oct 2017Ethicon LlcTissue thickness compensator comprising resilient members
US979538427 Mar 201324 Oct 2017Ethicon LlcFastener cartridge comprising a tissue thickness compensator and a gap setting element
US98016269 Apr 201431 Oct 2017Ethicon LlcModular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts
US980162726 Sep 201431 Oct 2017Ethicon LlcFastener cartridge for creating a flexible staple line
US980162826 Sep 201431 Oct 2017Ethicon LlcSurgical staple and driver arrangements for staple cartridges
US980163420 Oct 201431 Oct 2017Ethicon LlcTissue thickness compensator for a surgical stapler
US980461826 Mar 201431 Oct 2017Ethicon LlcSystems and methods for controlling a segmented circuit
US980824414 Mar 20137 Nov 2017Ethicon LlcSensor arrangements for absolute positioning system for surgical instruments
US98082466 Mar 20157 Nov 2017Ethicon Endo-Surgery, LlcMethod of operating a powered surgical instrument
US980824730 Jun 20157 Nov 2017Ethicon LlcStapling system comprising implantable layers
US980824923 Aug 20137 Nov 2017Ethicon LlcAttachment portions for surgical instrument assemblies
US20070221700 *23 Mar 200627 Sep 2007Ethicon Endo-Surgery, Inc.Methods and devices for controlling articulation
US20070249905 *25 Apr 200625 Oct 2007Nobis Rudolph HMedical tubular assembly
US20070250070 *24 Apr 200625 Oct 2007Nobis Rudolph HMedical instrument having a medical snare
US20070250111 *25 Apr 200625 Oct 2007Ifung LuMedical instrument having an articulatable end effector
US20070270649 *18 May 200622 Nov 2007Long Gary LMedical instrument including a catheter having a catheter stiffener and method for using
US20080132758 *5 Dec 20065 Jun 2008Ethicon Endo-Surgery, Inc.Independent Articulating Accessory Channel
US20080188868 *28 Nov 20077 Aug 2008Barry WeitznerDirect drive endoscopy systems and methods
US20090062606 *25 Aug 20085 Mar 2009Hoya CorporationEndoscope guiding tube device
US20090124858 *13 Nov 200814 May 2009Oskin ChristopherIntroducer device with locking adaptor
US20090177040 *11 Dec 20089 Jul 2009Gyrus Medical LimitedInstrument shaft
US20090209820 *26 May 200520 Aug 2009Ars Co., Ltd.Endoscope device
US20090292281 *27 Apr 200926 Nov 2009Fleming Alistair ISurgical instrument
US20100030018 *29 Jul 20094 Feb 2010Richard FortierArticulating surgical device
US20100042112 *13 Aug 200918 Feb 2010Monteris Medical, Inc.Stereotactic drive system
US20100049000 *26 May 200525 Feb 2010Ars Co., Ltd.Endoscope device
US20100160735 *18 Dec 200824 Jun 2010Ethicon Endo-Surgery, Inc.Steerable surgical access devices and methods
US20110029899 *2 Aug 20103 Feb 2011FasterWeb, Ltd.Systems and Methods for Acceleration and Optimization of Web Pages Access by Changing the Order of Resource Loading
US20110092963 *6 Dec 201021 Apr 2011Salvatore CastroDeflectable instrument port
US20110160532 *23 Dec 201030 Jun 2011Richard Wolf GmbhEndoscopic instrument
US20120080500 *30 Sep 20105 Apr 2012Ethicon Endo-Surgery, Inc.Surgical stapling instrument with compact articulation control arrangement
US20120095498 *13 Oct 201019 Apr 2012Ethicon Endo-Surgery, Inc.Methods and devices for mechanical space creation at a surgical site
US20120150155 *28 Nov 201114 Jun 2012Boston Scientific Scimed, Inc.Instrument Control Device
US20120265214 *12 Mar 201218 Oct 2012Bender Nicholas JLocking mechanism for deflectable instrument shafts and method of use
US20120289774 *19 Jul 201215 Nov 2012Oskin ChristopherIntroducer Device with Locking Adaptor
US20130012958 *9 Jul 201210 Jan 2013Stanislaw MarczykSurgical Device with Articulation and Wrist Rotation
US20130047755 *28 Aug 201228 Feb 2013Olympus Medical Systems Corp.Bending operation apparatus
US20130158479 *11 Feb 201320 Jun 2013St. Jude Medical, Atrial Fibrillation Division, Inc.Device for reducing axial shortening of catheter or sheath due to repeated deflection
US20130158525 *7 Dec 201220 Jun 2013Adn International, LlcFlexible channel surgical instruments
US20130270322 *15 Mar 201317 Oct 2013Ethicon Endo-Surgery, Inc.Articulatable surgical instrument comprising a firing drive
US20150196364 *13 Jan 201516 Jul 2015Arthrex, Inc.Steerable surgical device with joystick
US20160302815 *27 Jun 201620 Oct 2016Covidien LpReverse seam ripper dissector
USD6500741 Oct 20106 Dec 2011Ethicon Endo-Surgery, Inc.Surgical instrument
CN103079482A *3 Mar 20111 May 2013巴塞尔·S·哈桑Surgical instrument
DE102013222039A1 *30 Oct 201330 Apr 2015Digital Endoscopy GmbhAn ein Mutterendoskop anbringbares Sekundärendoskop und Kombination aus Mutterendoskop und Sekundärendoskop
DE102013222041A1 *30 Oct 201330 Apr 2015Digital Endoscopy GmbhAuslenkbewegungsübertragungseinrichtung, Endoskopdeflectingsteuerung und Endoskop
DE102013222042A1 *30 Oct 201330 Apr 2015Digital Endoscopy GmbhAuslenkbewegungsübertragungseinrichtung, Endoskopdeflectingsteuerung und Endoskop
EP2542163A4 *3 Mar 201112 Aug 2015Basel S HassounSurgical instrument
WO2008070654A2 *4 Dec 200712 Jun 2008Ethicon Endo-Surgery, IncIndependent articulating accessory channel
WO2008070654A3 *4 Dec 200724 Jul 2008Ethicon Endo Surgery IncIndependent articulating accessory channel
WO2009087345A1 *10 Dec 200816 Jul 2009Gyrus Medical LimitedInstrument shaft
WO2010080262A14 Dec 200915 Jul 2010Ethicon Endo-Surgery, Inc.Steerable surgical access devices and methods
WO2011109640A13 Mar 20119 Sep 2011Hassoun Basel SSurgical instrument
WO2012078461A1 *2 Dec 201114 Jun 2012Boston Scientific Scimed, Inc.Instrument control device
WO2015106241A1 *13 Jan 201516 Jul 2015Arthrex, IncSteerable surgical device with joystick
Classifications
U.S. Classification600/121
International ClassificationA61B1/00
Cooperative ClassificationA61B2034/306, A61B2090/372, A61B90/37, A61B17/32002, A61B17/068, A61B1/0052, A61B2017/2905, A61B2017/2919, A61B2017/003, A61B2017/291, A61B2017/2927, A61B2017/2947, A61B1/0057, A61B2017/0042
European ClassificationA61B17/068
Legal Events
DateCodeEventDescription
29 Mar 2006ASAssignment
Owner name: ETHICON ENDO-SURGERY, INC., OHIO
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SPIVEY, JAMES T.;ORTIZ, MARK S.;SHELTON, IV, FREDERICK E.;REEL/FRAME:017381/0716
Effective date: 20060328