US20070128956A1 - Torsional control boat throttle system - Google Patents

Torsional control boat throttle system Download PDF

Info

Publication number
US20070128956A1
US20070128956A1 US11/539,526 US53952606A US2007128956A1 US 20070128956 A1 US20070128956 A1 US 20070128956A1 US 53952606 A US53952606 A US 53952606A US 2007128956 A1 US2007128956 A1 US 2007128956A1
Authority
US
United States
Prior art keywords
throttle
throttle control
assembly
boat
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/539,526
Inventor
Charles Blair
Stephen Olson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/063,700 external-priority patent/US7172478B2/en
Application filed by Individual filed Critical Individual
Priority to US11/539,526 priority Critical patent/US20070128956A1/en
Assigned to BLAIR, CHARLES S. reassignment BLAIR, CHARLES S. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BLAIR, CHARLES S., OLSON, STEPHEN LEE
Publication of US20070128956A1 publication Critical patent/US20070128956A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/21Control means for engine or transmission, specially adapted for use on marine vessels
    • B63H21/213Levers or the like for controlling the engine or the transmission, e.g. single hand control levers

Definitions

  • the present invention relates to throttle controls for vehicles, particular watercraft.
  • the invention also relates to the manner of converting user control input to output, as well as translation of that output to action at a remote location.
  • a number of known throttle controls for watercraft employ a twist-grip type of interface connected to an electronic control unit. These are found in connection with electric trolling motors. Twist of the grip controls motor speed.
  • the grip also serves as a tiller, in which its point dictates the direction of the motor connected thereto by a tube or shaft.
  • the present invention is a throttle assembly using a twist grip type user interface.
  • the throttle control assembly is provided for use in connection with powerboats, especially those suited for use in rough (open ocean) water and/or at high speed (i.e., greater than, for example, 30 knots/35 mph) in racing, etc.
  • the throttle assembly of the present invention typically controls at least one large internal combustion engine.
  • the present invention offers particular advantages in connection with racing boats in which the user sits in a tight cockpit and the boat is planning across the water at very high speeds (upwards of 75 mph in a typical race). At such speeds, the wakes of other boats or wave action produces an extremely rough or “bumpy” ride.
  • a grip-style throttle according to the present invention provides a user something stable to hold onto in order to help maintain body position, and avoid injury as is common from banging fingers, elbows etc. while being tossed around in the cockpit of a scarab or another type of racing boat.
  • the grip drives a mechanical gear system that operates a control cable.
  • the cable may be coupled directly to a lever arm attached to the throttle shaft of a marine engine or motor.
  • the cable can actuate a rack in a rack-and-pinion arrangement in which the pinion is mounted on the throttle shaft itself. In this manner, truly linear throttle control can be achieved since change in lever arm angle is avoided.
  • One aspect of the invention concerns the engine-side rack-and-pinion itself, alone or in combination with the throttle grip assembly.
  • Another aspect of the invention concerns a throttle grip that is adjustable by a user (in use or adjusted and then set to a position) relative to a fixed housing. The adjustment serves to optimize user comfort and/or available support.
  • control features atop the throttle grip.
  • These may be buttons, switches, etc. which are preferably positioned within reach of the user's thumb so that they may be actuated without changing grip on the throttle.
  • These controls advantageously actuate right and/or left trim tabs and/or outboard motor or outdrive up/down adjustment.
  • the throttle grip is advantageously shaped both to provide space for mounting the control features and for facilitating reach to actuate the controls. As such, the grip may have an ergonomic shape, with a surface for mounting the controls canted towards the thumb position for a user.
  • the invention also comprises methods, in which the methods may involve use of the subject devices.
  • the methods may be practiced with other devices than those described herein. Yet, the acts associated with the use of such other devices will be typically be in accordance with those associated with the devices described herein.
  • one method according to the present invention involves operating a boat in which the user grasping a steering wheel with one hand and the throttle control with the second hand, and substantially maintains a body position while effecting throttle control by supporting the body from forward and aft movement with the wheel and throttle control.
  • the user is able to do so since throttle control merely requires twisting the handgrip.
  • the back and forth movement of the levers alter body position. Further, it is not possible to support the body against forward and aft movement by grasping a throttle lever free to move in the same plane.
  • the method may further comprise adjusting at least one of trim and motor up/down without releasing the throttle grip.
  • Another method according to the invention includes grasping a throttle control with one hand and adjusting at least one of trim and motor up/down with that hand while grasping the throttle control. Typically, this will be accomplished using the thumb.
  • the method advantageously further comprises grasping a steering wheel with the second hand while grasping the throttle control with the first hand.
  • the throttle is a grip-type twist throttle so that the user can maintain a stable position while operating the boat.
  • FIG. 1A is an oblique view of the type of boat with which the invention is advantageously used;
  • FIG. 1B is a partial view of the stem of the boat;
  • FIG. 1C is an aerial view of the helm of the boat, including a throttle controller according to aspects of one embodiment of the present invention;
  • FIG. 2A shows an oblique overview of the throttle controller assembly
  • FIG. 2B details the interior of the throttle controller assembly in oblique cut-away view
  • FIG. 3 illustrates an engine-side throttle control system
  • FIG. 4A shows an oblique overview of another embodiment of a throttle controller assembly according to aspects of the present invention
  • FIG. 4B details the interior of the throttle controller assembly in a front end cut-away view
  • FIG. 4C details the interior of the throttle controller assembly in a side cut away view with rotating arm 176 in an aft position
  • FIG. 4D details the interior of the throttle controller assembly in a side cut away view with rotating arm 176 in a forward position
  • FIG. 5 shows an oblique overview of another embodiment of a throttle grip according to aspects of the present invention.
  • FIG. 1A shows a “scarab” type speedboat 2 banking or turning at high speed across the water 4 . As shown, it produces a substantial wake 6 .
  • An operator or pilot 8 sits in a seat 10 located at the starboard side 12 of the watercraft.
  • a co-pilot (not shown) would typically sit to the port side 14 of the vessel.
  • the present invention is advantageously used in connection with such a watercraft. However, the invention may be put to good use with other types of boats.
  • FIG. 1B provides a partial view of the stem 16 of boat 2 opposite bow 18 . Trim tabs 20 , exhaust pipes 22 , and outboard engine 24 components are shown.
  • FIG. 1C shows the cockpit of boat 26 including chairs 10 , wheel 28 , gauges 30 , switch bank 32 , ignition 34 and a control system 40 according to the present invention.
  • the pilot or captain of the vessel will steer with the left hand and control engine direction and speed with the right hand using controller 40 . Since the controller grip 42 is fixed in a forward-aft direction (in contrast to) the gear selector 44 , the throttle control grip offers a stable interface for support.
  • FIGS. 2A and 2B Further details of the subject throttle controller are better appreciated in reference to FIGS. 2A and 2B .
  • the former figure shows a fully assembled view of control package 40 ; the later figure a cutaway view of the throttle control portion of the device.
  • the gear selector arm 44 allows the user to select the direction in which to propel the boat by switching the transmission (not shown) between forward and reverse.
  • Selector 44 and its associated box 46 are not unique, and may be constructed as known in the art. However, in combination with the throttle control mechanism of the present invention, a unique control system 40 is hereby provided.
  • a throttle control assembly or subassembly 48 comprises throttle grip or handle 42 .
  • the handle is mounted upon a shaft 50 .
  • Multiple position locations 52 may be selected from which to secure the handle to the shaft by mating pins 54 to best accommodate a variety of uses or preferred positions.
  • the adjustment holes may be offset around the body of the shaft to allow for selecting a position for the grip rotated around the Z-axis shown.
  • the adjustment locations may be provided in a sort of “spiral staircase” arrangement as shown, Alternatively, a smooth shaft may be provided against which one or more setscrews are locked to secure position at different “heights” along a Z-axis or different rotated “home” or “start” grip positions around the shaft.
  • Shaft 50 may be received within a bracket 56 and be supported by a bearing 58 .
  • Shaft 50 may be flexible, include a flexible section (as described later in an alternative embodiment), or include a U-joint (universal joint) 60 between a proximal section “A” and a distal section “B”.
  • an input bevel gear 62 driven by the handle meshes with an output bevel gear 64 to transform the motion about the grip axis (Z-axis) to motion useful for throttle control.
  • Additional support bearings 58 may be provided for the distal section of the shaft.
  • Providing a flexible shaft, shaft section or a U-joint 60 as shown allows for the grip to be adjusted about an axis Y in a plane relative to the fixed body of the device. As noted, such an adjustment offers improvement for user comfort in use as well as the option of moving the grip out of the way for cockpit entry or exit.
  • the degree of adjustability provided may range from about 30 to about 90 degrees.
  • Detent features may also be provided to releasable secure or give a tactile indication of movement or progression between positions.
  • the system may employ a housing 68 to support the bracket 56 through which shaft 50 is rotationally received.
  • Housing 68 may be mounted to a base 70 .
  • pins or shoulder bolts 72 supported by housing may be used to provide an axis of rotation for the referenced angular adjustment of the grip relative to base 70 and/or plates 74 to which the base is affixed.
  • Adjustment of the grip assembly about an X-axis as shown is also contemplated. Housing 68 and/or base 70 may be adjusted to a desired position and locked down to one or more of the control body plate(s) 74 . In order to serve the desired support function, fixing the position about the X-axis by pins, set screws, etc. is important in order to avoid inadvertent movement or slippage of the grip 42 in the direction of movement when a user is bracing his/herself with it (possibly in combination with wheel 28 ). Likewise, rotation about axis X should not be so great as to result in turning axis Y far from horizontal. In other words, adjustment around the X-axis should be limited to about +/ ⁇ 15 degrees.
  • buttons are shown upon a canted head 76 of the handle.
  • Button 78 operates the left trim tab
  • button 80 manipulates outdrive in and out
  • button 82 operates the right trim tab.
  • the grip body is shaped to mimic the natural curve of the human hand to provide better grip and allow reach to actuate the buttons with the thumb while maintaining a grip on the handle. Wiring is routed within hollows 84 of the grip or as otherwise convenient.
  • the system is set to pull a throttle cable 86 within a cable housing 88 .
  • the cable housing may be attached to plate 74 by a clamp block 90 .
  • the end of cable 86 is connected at a block 92 to a slide 94 .
  • the cable may comprise a threaded end fitting or section 96 .
  • a jam nut 98 may be provided to lock the threaded section within threading inside block 92 .
  • slide 94 forms part of a rack and pinion assembly 100 .
  • Rack gear teeth 102 mesh with pinion gear teeth 104 .
  • the pinion gear itself 106 may comprise a section or sector of a full round gear. It may include lightening holes 108 . It preferably includes holes or depressions 110 to interface with a spring loaded ball 112 to provide a detent means.
  • the detent means provides tactile feedback providing a user with an indication of advancement across the range of throttle grip rotation. Alternatively, a damped or smooth frictional feel to grip rotation may be desired. Naturally, any type of action may be employed.
  • FIG. 2B illustrates how rotation of bevel gear 62 turns bevel gear 64 , that—in turn—rotates pinion 106 to translate rack/slider 94 , to push and pull throttle cable 86 .
  • pinion 104 could be replaced by a cam or lever arm attached to the throttle cable.
  • Other output options exist as well. In any case, at some stage, output from the second bevel gear drives cable pull.
  • the combined unit 40 may simply be mounted to existing boat hardware or to custom brackets using mounting bosses 114 .
  • an existing gear selector setup may be employed and only the throttle control section 48 of the system retrofitted to the existing setup.
  • the system may be integrated into the original control design of a boat. In which case, significant variation to the configuration of at least the device housing is contemplated.
  • any boat may be modified by supplying a custom combing or wall insert to better accommodate a stock throttle control system according to the present invention. Such a wall insert to the boat would allow a user to better recess the subject control housing or box.
  • control housing can be adapted to be mounted in a seat, bolster or on the floor of the boat. In these arrangements, the control housing can be located towards the center of the boat, or outboard of the driver as shown in FIG. 1C .
  • FIG. 3 shows a more preferred approach where a transfer mechanism 150 according to the present invention operates an engine throttle shaft 152 .
  • cable 86 is affixed to throttle rack 154 .
  • rack teeth 156 engage throttle pinion gear teeth 158 , causing throttle pinion gear 160 to rotate.
  • the throttle pinion gear is affixed to throttle shaft 152 by a setscrew, a splined connection or other conventional means.
  • Throttle shaft 152 may be affixed to butterfly valve 162 .
  • An extension spring 164 may be provided in the system to bias cable pull and help return the rack and pinion to its previous configuration when the cable is “pushed” within the housing.
  • the system in FIG. 3 is especially advantageous for use with the system as illustrated in FIGS. 2A and 2B because it offers a 1:1 correspondence of user input to engine throttle action.
  • a flexible shaft may be utilized to transmit torsional movement about the Z-axis from throttle grip 42 to an engine throttle, while permitting shaft 50 to be adjusted about the X and Y axes shown in FIGS. 2A and 2B .
  • An example of such an alternative embodiment will now be described with reference to FIGS. 4A-4D .
  • controller grip 42 is mounted on shaft 50 as previously described.
  • Shaft 50 in turn is rotably mounted to shaft bracket 56 with bearing 58 , as shown in FIG. 2B .
  • One end of a flexible shaft 170 is attached to the lower end of shaft 50 , such as with one or more set screw 172 mounted in a flexible shaft coupling 174 .
  • the other end of flexible shaft 170 is attached to rotating arm 176 at its pivot point.
  • the distal end 178 of arm 176 is coupled to throttle cable 86 .
  • the lower end of flexible shaft 170 may be directly connected to arm 176 with a coupling similar to coupling 174 at the upper end.
  • the lower end of flexible shaft 170 can be affixed within an opening of a transfer shaft 180 , as shown in FIG. 4B , such as with one or more set screws.
  • Shaft 180 may be rotably attached to plate 74 .
  • Arm 176 can be attached to the opposite end of shaft 180 , such as with a pin 182 .
  • Cable housing 88 may be secured from longitudinal movement by pivot bracket 184 .
  • clamp screw 186 adjustably secures cable housing 88 to pivot bracket 184 .
  • Pivot bracket 184 in turn is pivotably secured to plate 74 with shoulder bolt 188 .
  • pivot bracket 184 and the end of cable housing 88 are allowed to pivot around shoulder bolt 88 as arm 176 is moved between the aft position shown in FIG. 4C and the fore position shown in FIG. 4D .
  • FIGS. 4A-4D allows the longitudinal Z-axis of grip 42 to be rotated about the X-axis (fore and aft) and about the Y-axis (pivoting up or down), as described above.
  • the orientation of the longitudinal Z-axis can also be locked in place after adjustments about the X and Y axes, as also described above.
  • FIGS. 4A and 4B the use of flexible shaft 170 and rotating arm 176 permits various components shown in FIGS. 2A and 2B to be eliminated, such as universal joint 60 , bevel gears 62 and 64 , shaft 50 B, bearings 58 , slide 94 , rack 102 and pinion gear 106 .
  • These components are relatively complex, so their elimination can increase reliability of control system 40 and reduce its size and cost.
  • some or all of these components can be used in combination with a flexible shaft.
  • rotating arm 176 of FIGS. 4A-4D can be replaced with a pinion gear 106 as part of a rack and pinion assembly 100 , similar to that of FIG.
  • pinion gear 106 i.e. holes or depressions 110 and a spring loaded ball 112
  • arm 176 and plate 74 can be incorporated into arm 176 and plate 74 , or provided elsewhere, to provide tactile feedback to a user with an indication of advancement across the range of throttle grip rotation.
  • a flexible shaft arrangement should be chosen so that the bend radius of flexible shaft 170 is not so small as to cause binding or excessive stress to flexible shaft 170 in any orientation of grip handle 42 .
  • the bend radius is about three or four inches.
  • Flexible shaft 170 can be bare, as shown in FIGS. 4A and 4B , or can be jacketed with a sleeve or housing. If a jacketed flexible shaft is employed, one or both ends are preferably secured to surrounding structures so that only the core of the flexible shaft rotates as grip 42 is twisted.
  • a jacketed shaft can protect the shaft core from harsh marine environments.
  • a jacketed shaft may also be able to traverse tighter spaces within the throttle control assembly 48 ′ without rubbing on adjacent parts.
  • the length of flexible shaft 170 is about six inches.
  • An example of a suitable flexible shaft that can be used is part number FR187SMRAB00600 manufactured by S.S. White Technologies, Inc., Piscataway, N.J. (www.sswhite.net).
  • the rotational motion of flexible shaft 170 need not be converted into a linear push-pull motion at the throttle control assembly 48 ′. Rather, a flexible shaft may be run directly from throttle grip 42 to the boat engine or engine compartment. There the rotational motion may be converted into linear motion with a rotary arm similar to that shown in FIGS. 4C and 4D , a rack and pinion assembly or other suitable mechanism.
  • the rotational motion of grip 42 need not ever be converted into linear motion, but can instead be coupled directly or through reduction gearing to throttle shaft 152 to drive the rotational movement of a butterfly valve, such as shown in FIG. 3 .
  • Such an arrangement can reduce the cost and complexity of a throttle system.
  • the flexible shaft can provide direct control of the engine throttle without the backlash that can accumulate in other throttle systems, particularly after various components begin to wear. If a flexible shaft is run between grip 42 and the engine throttle, the flexible shaft should have high torsional rigidity to preserve responsiveness, and low friction for ease of operation. Biasing a long flexible shaft in one direction can also improve responsiveness.
  • switches 78 , 80 and 82 atop grip 42 ′ can be arranged in a fan-like manner, as best shown in FIG. 5 .
  • the angle formed between adjacent switches is between about 1 and 10 degrees. More preferably, the angle is between about 2 and 7.5 degrees. Most preferably, the angle is about 5 degrees.
  • Two, three or four switches can be used atop grip 42 ′ in this embodiment of the invention. As indicated above, each switch or button preferably has a momentary forward position, a momentary rearward position and a neutral center position.
  • top surface 190 may be arcuate as shown in FIG. 5 to more closely match the arcuate movement of a user's thumb.
  • the arc of surface 190 has a radius between about 1 and 36 inches, more preferably between about 2 and 12 inches, and most preferably the radius is about 8 inches.
  • top surface 190 may be canted as shown with respect to the longitudinal Z-axis of the grip shaft 50 .
  • the centerline of surface 190 is canted between about 10 and 60 degrees, more preferably between about 20 and 40 degrees, and most preferably about 30 degrees.

Abstract

A torsional throttle control system is provided that may include any of a number of features. One feature of the throttle control system is twist-style grip that has an axis with an angle adjustable to a housing. Another feature comprises trim and/or outboard motor control(s) atop the grip. Yet another feature comprises the internal mechanism adapted to effect throttle control. Methods associated with use of the throttle control hardware and systems including a boat are also covered.

Description

    CROSS REFERENCES
  • This application is a continuation-in-part application of Ser. No. 11/063,700, filed Feb. 22, 2005, which is incorporated herein by reference in its entirety noting that the current application controls to the extent there is any contradiction with an earlier application and to which application we claim priority under 35 USC § 120.
  • FIELD OF THE INVENTION
  • The present invention relates to throttle controls for vehicles, particular watercraft. The invention also relates to the manner of converting user control input to output, as well as translation of that output to action at a remote location.
  • BACKGROUND OF THE INVENTION
  • A number of known throttle controls for watercraft employ a twist-grip type of interface connected to an electronic control unit. These are found in connection with electric trolling motors. Twist of the grip controls motor speed. Typically, the grip also serves as a tiller, in which its point dictates the direction of the motor connected thereto by a tube or shaft.
  • More sophisticated throttle control systems are shown in U.S. Pat. Nos. 6,053,781 and 6,776,671. In each patent, the tiller/throttle grip assembly is removed from the propeller tube and setup at a remote location. In the '781 patent, the direction the propeller points is controlled by a separate lever arm with push-pull ropes/cables wrapped around a component connected to the motor tube. The motor control unit with its grip is located amidship oriented vertically. In the '671 patent, the motor control head and throttle control grip are mounted alongside the pilot's seat. The control head is mounted on a rod so that it can rotate around the axis that is in-line with the boat to actuate a linkage assembly attached to propeller tube to effect steering.
  • While these systems offer benefits, their use is contemplated only in connection with electric trolling motors. Furthermore, neither system offers angular adjustability of the throttle grip independent of steering control. In the '781 patent, no angular adjustability is available with the fixed unit. In the '671 patent one cannot simply adjust the angle of the grip to a desirable position while operating the boat, since to do so would set an unintended course. Moreover, trolling motors are suited only for driving a small boat at a speed of a few knots/mph, and in calm water. The inventor hereof has appreciated the benefits of a throttle grip type system for use in a vastly different context. Particularly, the present invention finds use in high power speedboats as a means of control for the primary source of propulsion. Benefits and advantages of the current system are elaborated upon below.
  • SUMMARY OF THE INVENTION
  • The present invention is a throttle assembly using a twist grip type user interface. The throttle control assembly is provided for use in connection with powerboats, especially those suited for use in rough (open ocean) water and/or at high speed (i.e., greater than, for example, 30 knots/35 mph) in racing, etc.
  • The throttle assembly of the present invention typically controls at least one large internal combustion engine. The present invention offers particular advantages in connection with racing boats in which the user sits in a tight cockpit and the boat is planning across the water at very high speeds (upwards of 75 mph in a typical race). At such speeds, the wakes of other boats or wave action produces an extremely rough or “bumpy” ride. A grip-style throttle according to the present invention, then, provides a user something stable to hold onto in order to help maintain body position, and avoid injury as is common from banging fingers, elbows etc. while being tossed around in the cockpit of a scarab or another type of racing boat.
  • In one aspect of the invention, the grip drives a mechanical gear system that operates a control cable. The cable may be coupled directly to a lever arm attached to the throttle shaft of a marine engine or motor. Alternatively, the cable can actuate a rack in a rack-and-pinion arrangement in which the pinion is mounted on the throttle shaft itself. In this manner, truly linear throttle control can be achieved since change in lever arm angle is avoided.
  • One aspect of the invention concerns the engine-side rack-and-pinion itself, alone or in combination with the throttle grip assembly. Another aspect of the invention concerns a throttle grip that is adjustable by a user (in use or adjusted and then set to a position) relative to a fixed housing. The adjustment serves to optimize user comfort and/or available support.
  • Yet another aspect of the invention provides control features atop the throttle grip. These may be buttons, switches, etc. which are preferably positioned within reach of the user's thumb so that they may be actuated without changing grip on the throttle. These controls advantageously actuate right and/or left trim tabs and/or outboard motor or outdrive up/down adjustment. The throttle grip is advantageously shaped both to provide space for mounting the control features and for facilitating reach to actuate the controls. As such, the grip may have an ergonomic shape, with a surface for mounting the controls canted towards the thumb position for a user.
  • The invention also comprises methods, in which the methods may involve use of the subject devices. The methods may be practiced with other devices than those described herein. Yet, the acts associated with the use of such other devices will be typically be in accordance with those associated with the devices described herein.
  • In any case, one method according to the present invention involves operating a boat in which the user grasping a steering wheel with one hand and the throttle control with the second hand, and substantially maintains a body position while effecting throttle control by supporting the body from forward and aft movement with the wheel and throttle control. The user is able to do so since throttle control merely requires twisting the handgrip. In comparison, where one or more levers are the means of throttle control, the back and forth movement of the levers alter body position. Further, it is not possible to support the body against forward and aft movement by grasping a throttle lever free to move in the same plane. The method may further comprise adjusting at least one of trim and motor up/down without releasing the throttle grip.
  • Another method according to the invention includes grasping a throttle control with one hand and adjusting at least one of trim and motor up/down with that hand while grasping the throttle control. Typically, this will be accomplished using the thumb. The method advantageously further comprises grasping a steering wheel with the second hand while grasping the throttle control with the first hand. Most advantageously, the throttle is a grip-type twist throttle so that the user can maintain a stable position while operating the boat.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Each of the figures diagrammatically illustrates aspects of the invention. Of these:
  • FIG. 1A is an oblique view of the type of boat with which the invention is advantageously used; FIG. 1B is a partial view of the stem of the boat; FIG. 1C is an aerial view of the helm of the boat, including a throttle controller according to aspects of one embodiment of the present invention;
  • FIG. 2A shows an oblique overview of the throttle controller assembly; FIG. 2B details the interior of the throttle controller assembly in oblique cut-away view;
  • FIG. 3 illustrates an engine-side throttle control system;
  • FIG. 4A shows an oblique overview of another embodiment of a throttle controller assembly according to aspects of the present invention; FIG. 4B details the interior of the throttle controller assembly in a front end cut-away view; FIG. 4C details the interior of the throttle controller assembly in a side cut away view with rotating arm 176 in an aft position; FIG. 4D details the interior of the throttle controller assembly in a side cut away view with rotating arm 176 in a forward position; and
  • FIG. 5 shows an oblique overview of another embodiment of a throttle grip according to aspects of the present invention.
  • Variation of the invention from that shown in the figures is contemplated.
  • DETAILED DESCRIPTION
  • The following description focuses on one variation of the present invention. The variation of the invention is to be taken as a non-limiting example. It is to be understood that the invention is not limited to particular variation(s) set forth and may, of course, vary. Changes may be made to the invention described and equivalents may be substituted (both presently know and future-developed) without departing from the true spirit and scope of the invention. In addition, modifications may be made to adapt a particular situation, material, composition of matter, process, process act(s) or step(s) to the objective(s), spirit or scope of the present invention.
  • FIG. 1A shows a “scarab” type speedboat 2 banking or turning at high speed across the water 4. As shown, it produces a substantial wake 6. An operator or pilot 8 sits in a seat 10 located at the starboard side 12 of the watercraft. A co-pilot (not shown) would typically sit to the port side 14 of the vessel. The present invention is advantageously used in connection with such a watercraft. However, the invention may be put to good use with other types of boats.
  • FIG. 1B provides a partial view of the stem 16 of boat 2 opposite bow 18. Trim tabs 20, exhaust pipes 22, and outboard engine 24 components are shown. FIG. 1C shows the cockpit of boat 26 including chairs 10, wheel 28, gauges 30, switch bank 32, ignition 34 and a control system 40 according to the present invention.
  • In use, the pilot or captain of the vessel will steer with the left hand and control engine direction and speed with the right hand using controller 40. Since the controller grip 42 is fixed in a forward-aft direction (in contrast to) the gear selector 44, the throttle control grip offers a stable interface for support.
  • Further details of the subject throttle controller are better appreciated in reference to FIGS. 2A and 2B. The former figure shows a fully assembled view of control package 40; the later figure a cutaway view of the throttle control portion of the device.
  • The gear selector arm 44 allows the user to select the direction in which to propel the boat by switching the transmission (not shown) between forward and reverse. Selector 44 and its associated box 46 are not unique, and may be constructed as known in the art. However, in combination with the throttle control mechanism of the present invention, a unique control system 40 is hereby provided.
  • As for those features particular to the inventive controller, a throttle control assembly or subassembly 48 comprises throttle grip or handle 42. The handle is mounted upon a shaft 50. Multiple position locations 52 may be selected from which to secure the handle to the shaft by mating pins 54 to best accommodate a variety of uses or preferred positions. The adjustment holes may be offset around the body of the shaft to allow for selecting a position for the grip rotated around the Z-axis shown. To provide clearance for one another, the adjustment locations may be provided in a sort of “spiral staircase” arrangement as shown, Alternatively, a smooth shaft may be provided against which one or more setscrews are locked to secure position at different “heights” along a Z-axis or different rotated “home” or “start” grip positions around the shaft.
  • Shaft 50 may be received within a bracket 56 and be supported by a bearing 58. Shaft 50 may be flexible, include a flexible section (as described later in an alternative embodiment), or include a U-joint (universal joint) 60 between a proximal section “A” and a distal section “B”. In the present embodiment, an input bevel gear 62 driven by the handle meshes with an output bevel gear 64 to transform the motion about the grip axis (Z-axis) to motion useful for throttle control. Additional support bearings 58 may be provided for the distal section of the shaft.
  • Providing a flexible shaft, shaft section or a U-joint 60 as shown allows for the grip to be adjusted about an axis Y in a plane relative to the fixed body of the device. As noted, such an adjustment offers improvement for user comfort in use as well as the option of moving the grip out of the way for cockpit entry or exit. The degree of adjustability provided may range from about 30 to about 90 degrees. By way of a pin 65 captured within a way 66, or by some other stop means, travel may be limited to a desired range. Detent features may also be provided to releasable secure or give a tactile indication of movement or progression between positions.
  • When a U-joint is employed for angular adjustment, the system may employ a housing 68 to support the bracket 56 through which shaft 50 is rotationally received. Housing 68 may be mounted to a base 70. Regardless, pins or shoulder bolts 72 supported by housing may be used to provide an axis of rotation for the referenced angular adjustment of the grip relative to base 70 and/or plates 74 to which the base is affixed.
  • Adjustment of the grip assembly about an X-axis as shown is also contemplated. Housing 68 and/or base 70 may be adjusted to a desired position and locked down to one or more of the control body plate(s) 74. In order to serve the desired support function, fixing the position about the X-axis by pins, set screws, etc. is important in order to avoid inadvertent movement or slippage of the grip 42 in the direction of movement when a user is bracing his/herself with it (possibly in combination with wheel 28). Likewise, rotation about axis X should not be so great as to result in turning axis Y far from horizontal. In other words, adjustment around the X-axis should be limited to about +/−15 degrees.
  • Regarding grip 42 configuration, three buttons are shown upon a canted head 76 of the handle. Button 78 operates the left trim tab, button 80 manipulates outdrive in and out, and button 82 operates the right trim tab. The grip body is shaped to mimic the natural curve of the human hand to provide better grip and allow reach to actuate the buttons with the thumb while maintaining a grip on the handle. Wiring is routed within hollows 84 of the grip or as otherwise convenient.
  • As for throttle assembly output, the system is set to pull a throttle cable 86 within a cable housing 88. The cable housing may be attached to plate 74 by a clamp block 90. In a preferred variation of the invention, the end of cable 86 is connected at a block 92 to a slide 94. The cable may comprise a threaded end fitting or section 96. A jam nut 98 may be provided to lock the threaded section within threading inside block 92.
  • In the preferred arrangement, slide 94 forms part of a rack and pinion assembly 100. Rack gear teeth 102 mesh with pinion gear teeth 104. The pinion gear itself 106 may comprise a section or sector of a full round gear. It may include lightening holes 108. It preferably includes holes or depressions 110 to interface with a spring loaded ball 112 to provide a detent means. The detent means provides tactile feedback providing a user with an indication of advancement across the range of throttle grip rotation. Alternatively, a damped or smooth frictional feel to grip rotation may be desired. Naturally, any type of action may be employed.
  • Regarding the action produced by grip rotation, reference to FIG. 2B illustrates how rotation of bevel gear 62 turns bevel gear 64, that—in turn—rotates pinion 106 to translate rack/slider 94, to push and pull throttle cable 86. Alternatively, pinion 104 could be replaced by a cam or lever arm attached to the throttle cable. Other output options exist as well. In any case, at some stage, output from the second bevel gear drives cable pull.
  • Another noteworthy option concerns the manner in which the throttle control and/or gear selector assembly is installed in a boat. The combined unit 40 may simply be mounted to existing boat hardware or to custom brackets using mounting bosses 114. Alternatively, an existing gear selector setup may be employed and only the throttle control section 48 of the system retrofitted to the existing setup. Still further, the system may be integrated into the original control design of a boat. In which case, significant variation to the configuration of at least the device housing is contemplated. Still further, any boat may be modified by supplying a custom combing or wall insert to better accommodate a stock throttle control system according to the present invention. Such a wall insert to the boat would allow a user to better recess the subject control housing or box. It is also contemplated that the control housing can be adapted to be mounted in a seat, bolster or on the floor of the boat. In these arrangements, the control housing can be located towards the center of the boat, or outboard of the driver as shown in FIG. 1C.
  • Another aspect of the invention concerns the manner in which cable pull from the control side of systems is handled at the engine side. The cable can actuate the motor throttle in a conventional manner. However, FIG. 3 shows a more preferred approach where a transfer mechanism 150 according to the present invention operates an engine throttle shaft 152. Here, cable 86 is affixed to throttle rack 154. As the rack is pulled by the throttle cable, rack teeth 156 engage throttle pinion gear teeth 158, causing throttle pinion gear 160 to rotate. The throttle pinion gear is affixed to throttle shaft 152 by a setscrew, a splined connection or other conventional means. Throttle shaft 152 may be affixed to butterfly valve 162. As the butterfly valve position is open, airflow to the engine is increased, resulting in increased combustion in the engine, and higher boat speed. An extension spring 164 may be provided in the system to bias cable pull and help return the rack and pinion to its previous configuration when the cable is “pushed” within the housing. The system in FIG. 3 is especially advantageous for use with the system as illustrated in FIGS. 2A and 2B because it offers a 1:1 correspondence of user input to engine throttle action.
  • As indicated above, a flexible shaft may be utilized to transmit torsional movement about the Z-axis from throttle grip 42 to an engine throttle, while permitting shaft 50 to be adjusted about the X and Y axes shown in FIGS. 2A and 2B. An example of such an alternative embodiment will now be described with reference to FIGS. 4A-4D.
  • Referring first to FIGS. 4A and 4B, an embodiment is shown that is similar to that of FIGS. 2A and 2B. In the alternative embodiment of FIGS. 4A and 4B, controller grip 42 is mounted on shaft 50 as previously described. Shaft 50 in turn is rotably mounted to shaft bracket 56 with bearing 58, as shown in FIG. 2B. One end of a flexible shaft 170 is attached to the lower end of shaft 50, such as with one or more set screw 172 mounted in a flexible shaft coupling 174. The other end of flexible shaft 170 is attached to rotating arm 176 at its pivot point. The distal end 178 of arm 176 is coupled to throttle cable 86.
  • When grip 42 is rotated clockwise about the Z-axis, the rotary motion is transmitted from shaft 50 to arm 176 by flexible shaft 170. This motion causes the distal end 178 of arm 176 to move in the fore direction, which pulls throttle cable 86 forward with respect to cable housing 88. Conversely, when grip 42 is rotated counter-clockwise about the Z-axis, flexible shaft 170 rotates in the opposite direction. This motion causes the distal end 178 of arm 176 to move in the aft direction, pushing throttle cable 86 rearward with respect to cable housing 88. The pulling and pushing on throttle cable 86 serves to increase and decrease, respectively, the throttle of the boat engine, such as described above in reference to FIG. 3.
  • In this exemplary embodiment, the lower end of flexible shaft 170 may be directly connected to arm 176 with a coupling similar to coupling 174 at the upper end. Alternatively, the lower end of flexible shaft 170 can be affixed within an opening of a transfer shaft 180, as shown in FIG. 4B, such as with one or more set screws. Shaft 180 may be rotably attached to plate 74. Arm 176 can be attached to the opposite end of shaft 180, such as with a pin 182.
  • Referring now to FIGS. 4C and 4D, the operation of rotating arm 176 and throttle cable 86 are more clearly shown. Cable housing 88 may be secured from longitudinal movement by pivot bracket 184. In this example, clamp screw 186 adjustably secures cable housing 88 to pivot bracket 184. Pivot bracket 184 in turn is pivotably secured to plate 74 with shoulder bolt 188. With this arrangement, pivot bracket 184 and the end of cable housing 88 are allowed to pivot around shoulder bolt 88 as arm 176 is moved between the aft position shown in FIG. 4C and the fore position shown in FIG. 4D. This alleviates throttle cable 86 from bending or binding in its housing 88 as the distal end 178 of arm 176 rotates through the bottom of its travel arc.
  • As with the embodiment depicted by FIGS. 2A and 2B, the embodiment depicted by FIGS. 4A-4D allows the longitudinal Z-axis of grip 42 to be rotated about the X-axis (fore and aft) and about the Y-axis (pivoting up or down), as described above. In this embodiment, the orientation of the longitudinal Z-axis can also be locked in place after adjustments about the X and Y axes, as also described above.
  • As can be seen by comparing FIGS. 4A and 4B with FIGS. 2A and 2B, the use of flexible shaft 170 and rotating arm 176 permits various components shown in FIGS. 2A and 2B to be eliminated, such as universal joint 60, bevel gears 62 and 64, shaft 50B, bearings 58, slide 94, rack 102 and pinion gear 106. These components are relatively complex, so their elimination can increase reliability of control system 40 and reduce its size and cost. In alternative embodiments, some or all of these components can be used in combination with a flexible shaft. For example, rotating arm 176 of FIGS. 4A-4D can be replaced with a pinion gear 106 as part of a rack and pinion assembly 100, similar to that of FIG. 2B, with the rack 102 mounted on a horizontal slide 94. Alternatively, just the detent means of pinion gear 106 (i.e. holes or depressions 110 and a spring loaded ball 112) can be incorporated into arm 176 and plate 74, or provided elsewhere, to provide tactile feedback to a user with an indication of advancement across the range of throttle grip rotation.
  • Referring to FIG. 4B, a flexible shaft arrangement should be chosen so that the bend radius of flexible shaft 170 is not so small as to cause binding or excessive stress to flexible shaft 170 in any orientation of grip handle 42. Preferably, the bend radius is about three or four inches. Flexible shaft 170 can be bare, as shown in FIGS. 4A and 4B, or can be jacketed with a sleeve or housing. If a jacketed flexible shaft is employed, one or both ends are preferably secured to surrounding structures so that only the core of the flexible shaft rotates as grip 42 is twisted. A jacketed shaft can protect the shaft core from harsh marine environments. A jacketed shaft may also be able to traverse tighter spaces within the throttle control assembly 48′ without rubbing on adjacent parts. By securing one or more midpoints of a longer jacketed shaft, excessive “helixing” or side-to-side movement can be eliminated, thereby creating a more responsive throttle system. Preferably, the length of flexible shaft 170 is about six inches. An example of a suitable flexible shaft that can be used is part number FR187SMRAB00600 manufactured by S.S. White Technologies, Inc., Piscataway, N.J. (www.sswhite.net).
  • According to an aspect of yet another embodiment of the present invention, the rotational motion of flexible shaft 170 need not be converted into a linear push-pull motion at the throttle control assembly 48′. Rather, a flexible shaft may be run directly from throttle grip 42 to the boat engine or engine compartment. There the rotational motion may be converted into linear motion with a rotary arm similar to that shown in FIGS. 4C and 4D, a rack and pinion assembly or other suitable mechanism. The rotational motion of grip 42 need not ever be converted into linear motion, but can instead be coupled directly or through reduction gearing to throttle shaft 152 to drive the rotational movement of a butterfly valve, such as shown in FIG. 3. Such an arrangement can reduce the cost and complexity of a throttle system. Additionally, it can provide direct control of the engine throttle without the backlash that can accumulate in other throttle systems, particularly after various components begin to wear. If a flexible shaft is run between grip 42 and the engine throttle, the flexible shaft should have high torsional rigidity to preserve responsiveness, and low friction for ease of operation. Biasing a long flexible shaft in one direction can also improve responsiveness.
  • According to an aspect of still another embodiment of the present invention, switches 78, 80 and 82 atop grip 42′ can be arranged in a fan-like manner, as best shown in FIG. 5. With such an arrangement, a user's thumb can more easily travel from one switch to another. Preferably, the angle formed between adjacent switches is between about 1 and 10 degrees. More preferably, the angle is between about 2 and 7.5 degrees. Most preferably, the angle is about 5 degrees. Two, three or four switches can be used atop grip 42′ in this embodiment of the invention. As indicated above, each switch or button preferably has a momentary forward position, a momentary rearward position and a neutral center position.
  • Rather than being flat, top surface 190 may be arcuate as shown in FIG. 5 to more closely match the arcuate movement of a user's thumb. Preferably the arc of surface 190 has a radius between about 1 and 36 inches, more preferably between about 2 and 12 inches, and most preferably the radius is about 8 inches. Additionally, top surface 190 may be canted as shown with respect to the longitudinal Z-axis of the grip shaft 50. Preferably the centerline of surface 190 is canted between about 10 and 60 degrees, more preferably between about 20 and 40 degrees, and most preferably about 30 degrees.
  • As for additional details pertinent to the present invention, materials and manufacturing techniques may be employed as within the level of those with skill in the relevant art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts commonly or logically employed. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Likewise, reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “and,” “said,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The breadth of the present invention is not to be limited by the subject specification, but rather only by the plain meaning of the claim terms employed.

Claims (20)

1. A throttle control assembly comprising:
a twist handle having a longitudinal axis of rotation;
a flexible shaft having a first end coupled to the twist handle, wherein rotation of the handle about its axis rotates at least a portion of the flexible shaft to provide an output for throttle control, and
wherein the axis of the twist handle is adjustable relative to a fixed housing.
2. The assembly of claim 1, wherein the twist handle axis is adjustable between about 15 and about 90 degrees.
3. The assembly of claim 1, wherein the flexible shaft has a second end coupled to a rotatable arm, and wherein the rotatable arm has a distal end coupled to a push-pull cable to provide the output for throttle control.
4. The assembly of claim 3, wherein the rotatable arm comprises a sector, wherein a ball detent interfaces with detent positions spaced around the sector.
5. The assembly of claim 1, wherein a detent means is provided for the handle axis adjustment.
6. The assembly of claim 1, further comprising at least one of trim and motor up/down buttons atop the handle.
7. The assembly of claim 1 set in a housing, the housing further comprising a gear shifter.
8. The assembly of claim 1, further comprising a cable, the cable connected to a rack gear meshing with a pinion gear, the pinion gear positioned to actuate fuel supply to an engine or motor.
9. A throttle control, the controller having a rotatable handle to control engine or motor throttle, wherein the improvement comprises:
the grip having an axis, wherein the axis is adjustable to a base at an angle without effecting steering.
10. The throttle assembly of claim 9, wherein a detent means is provided for the adjustment.
11. The throttle assembly of claim 9, wherein a position of the grip can be locked at a desired point of adjustment.
12. A throttle control, the controller having a rotatable handle to control engine or motor throttle, wherein the improvement comprises:
at least one of a trim and an outboard up/down buttons atop the handle.
13. A boat comprising:
a hull,
at least one motor, and
a throttle control as described in claim 1 mounted to or integrated with the boat.
14. A boat comprising:
a hull,
at least one motor, and
a throttle control as described in claim 9 mounted to or integrated with the boat.
15. A boat comprising:
a hull,
at least one motor, and
a throttle control as described in claim 12 mounted to or integrated with the boat.
16. A method of operating a boat by a user having first and second hands, the method comprising:
grasping a steering wheel with the first hand,
grasping a throttle control having a fixed location with the second hand, and
substantially maintaining a body position while effecting throttle control by supporting the body from forward and aft movement with the wheel and throttle control.
17. The method of claim 16, further comprising adjusting at least one of trim and motor up/down without substantially altering the second hand position.
18. The method of claim 16, wherein the fixed location of the throttle control is adjustable by a user before it is fixed.
19. A method of operating a boat by a user having first and second hands, the method comprising:
grasping a throttle control with the first hand, and
adjusting at least one of trim and motor up/down with the first hand while grasping the throttle control.
20. The method of claim 19, further comprising grasping a steering wheel with the second hand while grasping the throttle control with the first hand.
US11/539,526 2005-02-22 2006-10-06 Torsional control boat throttle system Abandoned US20070128956A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/539,526 US20070128956A1 (en) 2005-02-22 2006-10-06 Torsional control boat throttle system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/063,700 US7172478B2 (en) 2005-02-22 2005-02-22 Torsional control boat throttle system
US11/539,526 US20070128956A1 (en) 2005-02-22 2006-10-06 Torsional control boat throttle system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/063,700 Continuation-In-Part US7172478B2 (en) 2005-02-22 2005-02-22 Torsional control boat throttle system

Publications (1)

Publication Number Publication Date
US20070128956A1 true US20070128956A1 (en) 2007-06-07

Family

ID=46326265

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/539,526 Abandoned US20070128956A1 (en) 2005-02-22 2006-10-06 Torsional control boat throttle system

Country Status (1)

Country Link
US (1) US20070128956A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080190570A1 (en) * 2005-03-21 2008-08-14 Francisco Guillen Chico End Stop Device for Blind-Rolling Shafts
US20090221196A1 (en) * 2008-02-29 2009-09-03 Blair Charles S Torsional control boat throttle system
US20090282942A1 (en) * 2008-03-19 2009-11-19 Wilson Thomas H Push-button switch with tactile feedback
US20210024194A1 (en) * 2014-04-19 2021-01-28 Fox I. Stephen Vehicle navigation controller

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3174357A (en) * 1962-08-06 1965-03-23 Alexander G Conklin Control device for a marine outboard motor
US4801282A (en) * 1986-02-21 1989-01-31 Nissan Motor Co., Ltd. Remote control apparatus
US4889308A (en) * 1985-07-30 1989-12-26 Hohe Kg Outside rear-view mirror having a mechanically adjustable mirror glass
US5180320A (en) * 1991-06-18 1993-01-19 Outboard Marine Corporation Trim switch for tiller-steered outboard
US5362269A (en) * 1992-10-29 1994-11-08 Leach Peter M Personal water vehicle
US5453030A (en) * 1994-07-21 1995-09-26 Broussard; Kendal G. Trolling motor auxiliary handle apparatus
US5531750A (en) * 1994-07-15 1996-07-02 Snap-On Incorporated Surgical tool and adjustable locking handle therefor
US5967867A (en) * 1997-04-10 1999-10-19 Honda Giken Kogyo Kabushiki Kaisha Controller for boat propelling device
US6053781A (en) * 1997-08-08 2000-04-25 Littleton; Alan W. Steering device for trolling motor
US6093066A (en) * 1997-07-17 2000-07-25 Sanshin Kogyo Kabushiki Kaisha Control for outboard motor
US6209412B1 (en) * 1998-06-26 2001-04-03 Honda Giken Kogyo Kabushiki Kaisha Operation-control lever unit for engine-powered working machine
US6260278B1 (en) * 1999-06-08 2001-07-17 Andy R. Faher Hand-held lawn and brush trimmer having manual trimmer head adjustment mechanisms
US6453835B2 (en) * 1998-09-03 2002-09-24 The Talaria Company, Llc Steering and thrust control system for waterjet boats
US6672412B1 (en) * 2002-09-12 2004-01-06 Battelle Memorial Institute Method for operating a vehicle having two propulsion units
US6684803B1 (en) * 2002-11-26 2004-02-03 Ceevee North America, Llc Watercraft steering apparatus with joystick
US6715438B1 (en) * 2002-10-15 2004-04-06 Mark X Steering Systems, Llc Tiller operated power assist marine steering system
US6775671B1 (en) * 2000-12-13 2004-08-10 William Marsh Rice University Component-based adaptation system and method
US6805064B1 (en) * 2002-02-13 2004-10-19 Jens Andersen Personal water craft
US7172478B2 (en) * 2005-02-22 2007-02-06 Charles S. Blair Torsional control boat throttle system

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3174357A (en) * 1962-08-06 1965-03-23 Alexander G Conklin Control device for a marine outboard motor
US4889308A (en) * 1985-07-30 1989-12-26 Hohe Kg Outside rear-view mirror having a mechanically adjustable mirror glass
US4801282A (en) * 1986-02-21 1989-01-31 Nissan Motor Co., Ltd. Remote control apparatus
US5180320A (en) * 1991-06-18 1993-01-19 Outboard Marine Corporation Trim switch for tiller-steered outboard
US5362269A (en) * 1992-10-29 1994-11-08 Leach Peter M Personal water vehicle
US5531750A (en) * 1994-07-15 1996-07-02 Snap-On Incorporated Surgical tool and adjustable locking handle therefor
US5453030A (en) * 1994-07-21 1995-09-26 Broussard; Kendal G. Trolling motor auxiliary handle apparatus
US5967867A (en) * 1997-04-10 1999-10-19 Honda Giken Kogyo Kabushiki Kaisha Controller for boat propelling device
US6093066A (en) * 1997-07-17 2000-07-25 Sanshin Kogyo Kabushiki Kaisha Control for outboard motor
US6053781A (en) * 1997-08-08 2000-04-25 Littleton; Alan W. Steering device for trolling motor
US6209412B1 (en) * 1998-06-26 2001-04-03 Honda Giken Kogyo Kabushiki Kaisha Operation-control lever unit for engine-powered working machine
US6453835B2 (en) * 1998-09-03 2002-09-24 The Talaria Company, Llc Steering and thrust control system for waterjet boats
US6260278B1 (en) * 1999-06-08 2001-07-17 Andy R. Faher Hand-held lawn and brush trimmer having manual trimmer head adjustment mechanisms
US6775671B1 (en) * 2000-12-13 2004-08-10 William Marsh Rice University Component-based adaptation system and method
US6805064B1 (en) * 2002-02-13 2004-10-19 Jens Andersen Personal water craft
US6672412B1 (en) * 2002-09-12 2004-01-06 Battelle Memorial Institute Method for operating a vehicle having two propulsion units
US6715438B1 (en) * 2002-10-15 2004-04-06 Mark X Steering Systems, Llc Tiller operated power assist marine steering system
US6684803B1 (en) * 2002-11-26 2004-02-03 Ceevee North America, Llc Watercraft steering apparatus with joystick
US7172478B2 (en) * 2005-02-22 2007-02-06 Charles S. Blair Torsional control boat throttle system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080190570A1 (en) * 2005-03-21 2008-08-14 Francisco Guillen Chico End Stop Device for Blind-Rolling Shafts
US20090221196A1 (en) * 2008-02-29 2009-09-03 Blair Charles S Torsional control boat throttle system
US20090282942A1 (en) * 2008-03-19 2009-11-19 Wilson Thomas H Push-button switch with tactile feedback
US20210024194A1 (en) * 2014-04-19 2021-01-28 Fox I. Stephen Vehicle navigation controller

Similar Documents

Publication Publication Date Title
US7172478B2 (en) Torsional control boat throttle system
USRE39032E1 (en) Multipurpose control mechanism for a marine vessel
US4962717A (en) Maneuvering gear for small boat
US7131385B1 (en) Method for braking a vessel with two marine propulsion devices
US6835109B2 (en) Shift mechanism for outboard motor
US9783278B1 (en) Tiller having removable top cover
US7866272B2 (en) Control handle for a vessel and a vessel including such a control handle
JPH10157692A (en) Movable type sponson device for ship
JPH10236393A (en) Steering device of small boat
US20090221196A1 (en) Torsional control boat throttle system
JP2005319881A (en) Steering arm for outboard motor
US20070128956A1 (en) Torsional control boat throttle system
US6406343B2 (en) Tiller control for outboard motor
CA2530095C (en) Outboard motor shift device
US6684803B1 (en) Watercraft steering apparatus with joystick
JP2005335448A (en) Steering rod for outboard motor
JP3470547B2 (en) Outboard motor
US6776671B2 (en) Trolling motor steering linkage system
CA2430552C (en) Outboard motor
CA2455608C (en) Outboard motor
JP3762372B2 (en) Outboard motor
JP3904479B2 (en) Outboard motor steering system
US5794557A (en) Steering device for a vessel
US6338310B1 (en) Control console and seating arrangement for motorized watercraft
US20070238371A1 (en) Remote steering system for outboard motor

Legal Events

Date Code Title Description
AS Assignment

Owner name: BLAIR, CHARLES S., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BLAIR, CHARLES S.;OLSON, STEPHEN LEE;REEL/FRAME:018886/0155

Effective date: 20070206

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION