US20070114533A1 - Thin film transistor including a lightly doped amorphous silicon channel layer - Google Patents

Thin film transistor including a lightly doped amorphous silicon channel layer Download PDF

Info

Publication number
US20070114533A1
US20070114533A1 US11/624,699 US62469907A US2007114533A1 US 20070114533 A1 US20070114533 A1 US 20070114533A1 US 62469907 A US62469907 A US 62469907A US 2007114533 A1 US2007114533 A1 US 2007114533A1
Authority
US
United States
Prior art keywords
layer
channel layer
amorphous silicon
thin film
film transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/624,699
Inventor
Fang-Chen Luo
Wan-Yi Liu
Chieh-Chou Hsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AU Optronics Corp
Original Assignee
AU Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/777,564 external-priority patent/US20050176188A1/en
Application filed by AU Optronics Corp filed Critical AU Optronics Corp
Priority to US11/624,699 priority Critical patent/US20070114533A1/en
Publication of US20070114533A1 publication Critical patent/US20070114533A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • H01L29/78669Amorphous silicon transistors with inverted-type structure, e.g. with bottom gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78609Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device for preventing leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Abstract

A thin film transistor (TFT) is provided. The thin film transistor (TFT) comprises a substrate, a gate, an inter-gate dielectric layer, a channel layer and source/drain regions. A gate is formed over the substrate. An inter-gate dielectric layer is formed over the substrate covering the gate. A doped amorphous silicon layer is formed over a portion of the inter-gate dielectric layer at least covering the gate to serve as channel layer. Source/drain regions are formed over the channel layer.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This is a divisional application of patent application Ser. No. 10/711,509, filed on Sep. 23, 2004, which is a continuation-in-part of prior applications Ser. No. 10/777,564, filed on Feb. 11, 2004. The entirety of each of the above-mentioned patent applications is hereby incorporated by reference herein and made a part of this specification.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention generally relates to a thin film transistor (TFT). More particularly, the present invention generally relates to a thin film transistor (TFT) having a lightly doped amorphous silicon channel layer.
  • 2. Description of the Related Art
  • In recent years, a variety of macromedia electronic devices and products are drastically developed due to the rapid development of the semiconductor device and the user interface of the device. Conventionally, since the cathode ray tube (CRT) display device is low-cost and has high performance, it is widely used display device. However, as to the display device of the personal computer, the cathode ray tube (CRT) display has the disadvantages of large size and high power consumption. Accordingly, the liquid crystal display (LCD) being small, lightweight, use low operational voltage, low power consumption, radiation free and environmentally friendly, gradually replaced the conventional CRT display. In recent years, the liquid crystal display (LCD), for example, the thin film transistor (TFT) liquid crystal display (LCD) has become the main stream of the display devices.
  • In general, the conventional thin film transistor (TFT) may be classified into amorphous silicon thin film transistor (TFT) and polysilicon thin film transistor (TFT). It is noted that, the technology of low temperature polysilicon (LTPS) is different from the technology of conventional amorphous silicon (α-Si). In the low temperature polysilicon (LTPS) technology, the electron mobility can be enhanced to more than 200 cm2/V-sec. Therefore, the size of the thin film transistor (TFT) can be minimized, the aperture ratio of the display can be enhanced, and the power consumption can be reduced. However, because of the manufacturing process of the amorphous silicon thin film transistor (TFT) technology is well developed, simple and low-cost, the amorphous silicon thin film transistor (TFT) technology is still the main stream of the array of the display device.
  • FIG. 1 is a cross-sectional view schematically illustrating the structure of conventional amorphous silicon thin film transistor (TFT). Referring to FIG. 1, the thin film transistor (TFT) 100 includes a substrate 110, a gate 120, an inter-gate dielectric layer 130, a channel layer 140 and source/drain regions 150. The gate 120 is disposed on the substrate 110. The inter-gate dielectric layer 130 is disposed on the substrate and covers the gate 120. The channel layer 140 is disposed on a portion of the inter-gate dielectric layer 130 that at least covers the gate 120. The source/drain regions 150 are disposed on the channel layer 140 and are separated by a distance. When the gate 120 operates to supply an operating voltage to the channel layer 140, the source/drain regions 150 are electrically connected by the channel layer 140.
  • The manufacturing method of the channel layer 140 of the conventional thin film transistor (TFT) 100 includes the following steps. First, the substrate 110 is transported into a reaction chamber (not shown) and the substrate is subjected to a reaction gas mixture comprising of silane (SiH4) and hydrogen (H2) in the reaction chamber to form an intrinsic amorphous silicon layer. Next, the amorphous silicon layer is patterned to form the channel layer 140.
  • Accordingly, because the channel layer of the thin film transistor (TFT) is an intrinsic amorphous silicon layer, the electron mobility and the turning-on-current are not high enough when the thin film transistor is operated.
  • SUMMARY OF THE INVENTION
  • Accordingly, one object of the present invention is to provide a thin film transistor. (TFT) and the manufacturing method thereof to increase the turning-on-current and the electron mobility of the channel region of the thin film transistor (TFT).
  • In accordance with the above objects and other advantages of the present invention, a manufacturing method of thin film transistor (TFT) is provided. The manufacturing method includes the following steps. First, a gate is formed over a substrate. Next, an inter-gate dielectric layer is formed over the substrate covering the gate. Next, a channel layer is formed covering over a portion of the inter-gate dielectric layer at least covering the gate. The channel layer comprises a lightly doped amorphous silicon layer. Next, source/drain regions are formed over the channel layer, wherein the source/drain regions are separated by a distance.
  • In an embodiment of the present invention, the channel layer comprises an N-type lightly doped amorphous silicon layer. In another embodiment of the invention, the channel layer may comprise a P-type lightly doped amorphous silicon layer.
  • In an embodiment of the present invention, the channel layer, for example but not limited to, doped with phosphorous atoms, and a concentration of phosphorous atoms in the channel layer is in a range of about 1E17 atom/cm3 to about 1E18 atom/cm3. In another embodiment of the invention, the channel layer is, for example but not limited to, doped with boron atoms, and a concentration of boron atoms in the channel layer is in a range of about 1E16 atom/cm3 to about 5E17 atom/cm3.
  • In an embodiment of the present invention, the channel layer is formed by performing, for example but not limited to, a chemical vapor deposition (CVD) process using a reaction gas mixture comprising silane (SiH4), hydrogen and phosphine (PH3), wherein a effective content ratio of phosphine (PH3) is in a range of about 2.8E-7 to about 8E-6, wherein the effective content ratio of the phosphine (PH3) is equal to the ratio of the content of phosphine (PH3) to the total content of silane (SiH4), hydrogen (H2) and phosphine (PH3).
  • In another embodiment of the present invention, the channel layer is formed by performing, for example but not limited to, a chemical vapor deposition (CVD) process using a reaction gas mixture comprising silane (SiH4), hydrogen (H2) and boroethane (B2H6), wherein a effective content ratio of the boroethane (B2H6) is in a range of about 5E-7 to about 1E-5, and wherein the effective content ratio of the boroethane (B2H6) is equal to the ratio of the content of boroethane (B2H6) to the total content of silane (SiH4), hydrogen (H2) and boroethane (B2H6).
  • In an embodiment of the present invention, the channel layer is formed by, for example but not limited to, forming a first lightly doped sub-amorphous silicon layer over a portion of the inter-gate dielectric layer at a first deposition rate, and forming a second lightly doped sub-amorphous silicon layer over the first lightly doped sub-amorphous silicon layer at a second deposition rate, wherein the first deposition rate is lower than the second deposition rate.
  • In an embodiment of the present invention, the method further includes, for example but not limited to, a step of forming an ohmic contact layer over the channel layer between the steps of forming the channel layer and the step of forming the source/drain regions.
  • In an embodiment of the present invention, the method further includes, for example but not limited to, a step of forming a protection layer over the substrate covering the source/drain regions, the channel layer and the inter-gate dielectric layer.
  • In accordance with above objects and other advantages of the present invention, a thin film transistor (TFT) is provided. The thin film transistor (TFT) includes a substrate, a gate, an inter-gate dielectric layer, a channel layer and source/drain regions. The gate is disposed over the substrate, and the inter-gate dielectric layer is disposed on the substrate and covers the gate. The channel layer is disposed over a portion of the inter-gate dielectric layer, wherein the channel covers the gate. The channel layer comprises a lightly doped amorphous silicon layer. The source/drain regions are disposed over the channel layer, wherein the source/drain regions are separated by a distance.
  • In an embodiment of the present invention, the channel layer comprises an N-type lightly doped amorphous silicon layer. In another embodiment of the invention, the channel layer may comprise a P-type lightly doped amorphous silicon layer.
  • In an embodiment of the present invention, the channel layer is, for example but not limited to, doped with phosphorous atoms, and a concentration of phosphorous atoms in the channel layer is in a range of about 1E17 atom/cm3 to about 1E18 atom/cm3. In another embodiment of the invention, the channel layer is, for example but not limited to, doped with boron atoms, and a concentration of boron atoms in the channel layer is in a range of about 1E16 atom/cm3 to about 5E17 atom/cm3.
  • In an embodiment of the present invention, the method of forming the channel layer includes, for example but not limited to, a first lightly doped sub-amorphous silicon layer and a second lightly doped sub-amorphous silicon layer. Wherein the first lightly doped sub-amorphous silicon layer is formed over a portion of the inter-gate dielectric layer at a first deposition rate, and the second lightly doped sub-amorphous silicon layer is formed over the first lightly doped sub-amorphous silicon layer at a second deposition rate. Furthermore, the second deposition rate is higher than the first deposition rate.
  • In an embodiment of the present invention, the TFT further includes, for example but not limited to, an ohmic contact layer disposed between the channel layer and the source/drain.
  • In an embodiment of the present invention, the TFT further includes, for example but not limited to, a protection layer disposed over the substrate covering the source/drain regions, the channel layer and the inter-gate dielectric layer.
  • According to an aspect of the present invention, a lightly doped amorphous silicon layer is provided as a channel layer achieve at least the advantages of increased electron mobility of the channel layer and thereby increase the turning-on-current of thin film transistor (TFT) without increasing the leakage current, and the improvement of the ohmic contact between the channel layer and the source/drain regions.
  • It is to be understood that both the foregoing general description and the following detailed description are exemplary, and are intended to provide further explanation of the invention as claimed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The following drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
  • FIG. 1 is a cross-sectional view schematically illustrating the structure of a conventional amorphous silicon thin film transistor (TFT).
  • FIG. 2A to FIG. 2F are cross-sectional views schematically illustrating the process flow of a process of forming a thin film transistor (TFT) according to a preferred embodiment of the present invention.
  • FIG. 3 is a plot illustrating the relationship between the turning-on-current and the effective content ratio of the phosphine (PH3) in the process of forming the thin film transistor (TFT) according to one of the preferred embodiment of the present invention.
  • FIG. 4 is a plot illustrating the relationship between the electron mobility and the effective content ratio of the phosphine (PH3) in the process of forming the thin film transistor (TFT) according to one of the preferred embodiment of the present invention.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.
  • FIG. 2A to FIG. 2F are cross-sectional views schematically illustrating the process flow of a process of forming a thin film transistor (TFT) according to a preferred embodiment of the present invention. As shown in FIG. 2A, a gate 220 is formed over a substrate 210. Next, an inter-gate dielectric layer 230 is formed over the substrate 210 at least covering the gate 220. The method of forming the gate 220 includes, for example but not limited to, forming a first conductive layer (Metal 1) over the substrate 210 by performing a sputtering process, and then performing well known photolithography and etching process to form the gate 220. The inter-gate dielectric layer 230 can be formed by, for example but not limited to, performing a plasma enhance chemical vapor deposition (PECVD) process.
  • Furthermore, the substrate 210 includes, for example but not limited to, a glass substrate, a transparent plastic substrate or a substrate composed of any transparent material. The material of the gate 220 includes, for example but not limited to, tantalum (Ta), chromium (Cr), molybdenum (Mo), titanium (Ti) or aluminum (Al) or other conductive material. The material of the inter-gate dielectric layer 230 includes, for example but not limited to silicon nitride (SixNy), silicon oxynitride (SiON), silicon oxide (SiOx) or other dielectric material.
  • Next, as shown in FIG. 2B, a channel layer 240 is formed over a portion of the inter-gate dielectric layer 230 at least covering the gate 220. The channel layer 240 comprises, for example but not limited to, lightly doped amorphous silicon layer, wherein the doped amorphous silicon layer comprises an N-type lightly doped amorphous silicon layer or P-type lightly doped amorphous silicon layer. The channel layer 240 can be formed by performing, for example but not limited to, a chemical vapor deposition (CVD) process. The CVD process includes, for example, transporting the substrate 210 into a reaction chamber (not shown). Next, a reaction gas mixture is charged into the reaction chamber, wherein the reaction gas mixture comprises, for example but not limited, silane (SiH4), hydrogen (H2) and phosphine (PH3). Alternatively, the reaction gas mixture may comprise silane (SiH4), hydrogen (H2) and boroethane (B2H6). For the reaction gas comprising phosphine (PH3), the effective content ratio of the phosphine (PH3) is, for example but not limited to, in a range of about 2.8E-7 to about 8E-6. And, for the reaction gas comprising boroethane (B2H6), the effective content ratio of the boroethane (B2H6) is, for example but not limited to, in a range of about 5E-7 to about 1E-5. The effective content ratio of the phosphine (PH3) is equal to the ratio of the content of phosphine (PH3) to the total content of silane (SiH4), hydrogen and phosphine (PH3). The effective content ratio of the boroethane (B2H6) is equal to the ratio of the content of boroethane (B2H6) to the total content of silane (SiH4), hydrogen and boroethane (B2H6).
  • In an embodiment of the present invention, the channel layer 240 is, for example but not limited to, doped with phosphorous atoms. The concentration of phosphorous atoms is, for example but not limited to, in a range of about 1E17 atom/cm3 to 1E18 atom/cm3. Alternatively, the channel layer 240 is, for example but not limited to, doped with boron atoms. The concentration of boron atoms is, for example but not limited to, in a range of about 1E16 atom/cm3 to 5E17 atom/cm3.
  • The method of forming the channel layer 240 is described as follows. First, a first lightly doped sub-amorphous silicon layer 242 is formed over a portion of the inter-gate dielectric layer 230 at least covering the gate 220 at a first deposition rate. Next, a second lightly doped sub-amorphous silicon layer 244 is formed over the first lightly doped sub-amorphous silicon 242 at a second deposition rate. In an embodiment of the invention, the first deposition rate is, lower than the second deposition rate.
  • Next, as shown in FIG. 2C, an ohmic contact layer 250 is formed over the channel layer 240, wherein the ohmic contact layer 250 has an excellent contact with a metal surface. The method of forming the ohmic contact layer 250 includes, for example but not limited to, performing an ion implant process to implant N-type ions into the amorphous silicon layer.
  • Next, as shown in FIG. 2D, source/drain regions 260 are formed over the channel layer 240. The forming method of source/drain regions 260 includes, for example but not limited to, first forming a second conductive layer (Metal 2) over the substrate 210, and then performing the well known photolithography and etching process to form the source/drain regions 260. The material of the source/drain 260 includes, for example but not limited to, tantalum (Ta), chromium (Cr), molybdenum (Mo), titanium (Ti), aluminum (Al), or other conductive material.
  • Next, as shown in FIG. 2E, a protection layer 270 is formed over the substrate 210 to cover the source/drain regions 260, the channel layer 240 and the inter-gate dielectric layer 230. The protection layer 270 comprises an opening 272 exposing a portion of the source/drain region 260 there-within.
  • Next, as shown in FIG. 2F, a transparent conductive layer 280 is formed over the protection layer 270 and electrically connected to the source/drain region 260 through the opening 272. The transparent conductive layer 280 includes, for example but not limited to, a pixel electrode. The material of the transparent conductive layer 280 includes, for example but not limited to, indium tin oxide (ITO), strontium tin oxide (STO), or other transparent conductive material.
  • Referring to FIG. 2E, a structure of the thin film transistor (TFT) 200 of the present invention is shown. The TFT comprises a substrate 210, a gate 220, an inter-gate dielectric layer 230, a channel layer 240 and source/drain regions 260. The gate 220 is disposed over the substrate 210. The inter-gate dielectric layer 230 is disposed over the substrate 210 and covers the gate 220. The channel layer 240 is disposed over a portion of the inter-gate dielectric layer 230 at least covering the gate 210. The material of the channel layer 240 includes, for example, a lightly doped amorphous silicon layer. The source/drain regions 260 are disposed over the channel layer 240, wherein the source/drain are separated by a distance.
  • Furthermore, the channel layer 240 comprises, for example but not limited to, an N-type lightly doped amorphous silicon layer or P-type lightly doped amorphous silicon layer.
  • Furthermore, the channel layer 240 is, for example but not limited to, doped with phosphorous atoms, and the concentration of phosphorous atoms in the channel layer 240 is, for example but not limited to, in a range of about 1E17 atom/cm3 to about 1E18 atom/cm3. Alternatively, the channel layer 240 is, for example but not limited to, boron atoms, and the concentration of boron atoms in the channel layer 240 is, for example but not limited to, in a range of about 1E16 atom/cm3 to about 5E17 atom/cm3.
  • Moreover, the channel layer 240 can be formed by, for example but not limited to, sequentially forming a first lightly doped sub-amorphous silicon layer 242 and a second lightly doped sub-amorphous silicon layer 244 over the inter-gate dielectric layer 220. The first lightly doped sub-amorphous silicon layer 242 is disposed, for example but not limited to, on a portion of the inter-gate dielectric layer 220 that at least covers the gate 210. The second lightly doped sub-amorphous silicon layer 244 is disposed, for example but not limited to, on the first lightly doped sub-amorphous silicon layer 242.
  • Moreover, the thin film transistor (TFT) 210 further includes, for example but not limited to, an ohmic contact layer 250 and a protection layer 270 formed over the substrate 210. The ohmic contact layer 250 is disposed, for example but not limited to, between the channel layer 240 and the source/drain regions 260 to enhance the ohmic contact the channel layer 240 and the source/drain regions 260. The protection layer 270 is disposed on, for example but not limited to, the substrate 210, and the protection layer 270 covers the source/drain regions 260, the channel layer 240 and the inter-gate dielectric layer 220.
  • However, it is noted that, the above-described thin film transistor (TFT) and the manufacturing method thereof of the embodiments of the present invention is provided as exemplary embodiments of the invention. Further, the use of channel layer composed of lightly doped amorphous silicon layer in a thin film transistor (TFT) and the process of forming the same in a TFT falls within the scope of the present invention.
  • FIG. 3 is a plot illustrating the relationship between the turning-on-current and the effective content ratio of phosphine (PH3) in the process of forming the thin film transistor (TFT) according to one of the preferred embodiment of the present invention. FIG. 4 is a plot illustrating the relationship between the electron mobility and the effective content ratio of phosphine (PH3) in the process of forming the thin film transistor (TFT) according to one of the preferred embodiment of the present invention. As shown in FIG. 3, the turning-on-current of the thin film transistor (TFT) increases drastically with the increasing effective content ratio of the phosphine (PH3) in presence of the channel layer. As shown in FIG. 4, the electron mobility of the channel layer of the thin film transistor (TFT) drastically increases with the increasing effective content ratio of the phosphine (PH3) in presence of the channel layer. In FIG. 3 and FIG. 4, the parameter (2.9/2.8) means that the effective content ratio of the phosphine (PH3) is 2.9*1E-7 when fabricating the first lightly doped sub-amorphous layer, and the effective content ratio of the phosphine (PH3) is 2.8*1E-7 when fabricating the second lightly doped sub-amorphous layer. Similarly, the parameter (5.7/5.6) means that the effective content ratio of the phosphine (PH3) is 5.7*1E-7 when fabricating the first lightly doped sub-amorphous layer, and the effective content ratio of the phosphine (PH3) is 5.6*1E-7 when fabricating the second lightly doped sub-amorphous layer. Moreover, the rest parameters such as (8.6/8.3), (11.4/11.1), (54.7/44.4), (80/77.8) and (108.6/105.6) are explained in the same way. For example, the effective content ratio of phosphine (PH3) X is calculated as follow. XPH3=(RPH3*WPH3)/((RPH3* WPH3)+(RH2*WH2)+(RSiH4*WSiH4)), wherein RPH3 is the flow rate of phosphine; WPH3 is the weight percent of phosphine; RH2 is the flow rate of hydrogen; WH2 is the weight percent of hydrogen; RsiH4 is the flow rate of silane; and WSiH4 is the weight percent of silane.
  • Furthermore, the TFT of the present invention was tested, the test results reveal that the TFT of the present invention do not have excess the leakage current, and the ohmic contact between the channel layer and the source/drain is substantially improved.
  • It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.

Claims (8)

1. A thin film transistor (TFT), comprising:
a substrate;
a gate, disposed over the substrate;
an inter-gate dielectric layer, disposed over the substrate covering the gate;
a channel layer, disposed over a portion of the inter-gate dielectric layer, at least over the gate, wherein the channel layer comprises a lightly doped amorphous silicon layer; and
source/drain regions, disposed over the channel layer, wherein the source/drain regions are separated by a distance.
2. The thin film transistor (TFT) of claim 1, wherein the channel layer comprises an N-type lightly doped amorphous silicon layer.
3. The thin film transistor (TFT) of claim 1, wherein the channel layer comprises a P-type lightly doped amorphous silicon layer.
4. The thin film transistor (TFT) of claim 1, wherein the channel layer is doped with phosphorous atoms, and a concentration of phosphorous atoms is in a range of about 1E17 atom/cm3 to about 1E18 atom/cm3.
5. The thin film transistor (TFT) of claim 1, wherein the channel layer is doped with boron atoms, and a concentration of boron atoms is in a range of about 1E16 atom/cm3 to about 5E17 atom/cm3.
6. The thin film transistor (TFT) of claim 1, wherein the lightly doped amorphous silicon layer comprises:
a first lightly doped sub-amorphous silicon layer, disposed over a portion of the inter-gate dielectric layer; and
a second lightly doped sub-amorphous silicon layer, disposed over the first lightly doped sub-amorphous silicon layer, wherein the first lightly doped sub-amorphous silicon layer is formed at a first deposition rate, and the second lightly doped sub-amorphous silicon layer is formed at a second deposition rate higher than the first deposition rate.
7. The thin film transistor (TFT) of claim 1, further comprising an ohmic contact layer between the channel layer and the source/drain regions.
8. The thin film transistor (TFT) of claim 1, further comprising a protection layer over the substrate, wherein the protection layer covers the source/drain regions, the channel layer and the inter-gate dielectric layer.
US11/624,699 2004-02-11 2007-01-19 Thin film transistor including a lightly doped amorphous silicon channel layer Abandoned US20070114533A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/624,699 US20070114533A1 (en) 2004-02-11 2007-01-19 Thin film transistor including a lightly doped amorphous silicon channel layer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/777,564 US20050176188A1 (en) 2004-02-11 2004-02-11 Thin film transistor and manufacturing method thereof
US10/711,509 US7205171B2 (en) 2004-02-11 2004-09-23 Thin film transistor and manufacturing method thereof including a lightly doped channel
US11/624,699 US20070114533A1 (en) 2004-02-11 2007-01-19 Thin film transistor including a lightly doped amorphous silicon channel layer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/711,509 Division US7205171B2 (en) 2004-02-11 2004-09-23 Thin film transistor and manufacturing method thereof including a lightly doped channel

Publications (1)

Publication Number Publication Date
US20070114533A1 true US20070114533A1 (en) 2007-05-24

Family

ID=36943278

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/711,509 Expired - Lifetime US7205171B2 (en) 2004-02-11 2004-09-23 Thin film transistor and manufacturing method thereof including a lightly doped channel
US11/307,160 Active 2024-07-04 US7375372B2 (en) 2004-02-11 2006-01-26 Thin film transistor
US11/624,699 Abandoned US20070114533A1 (en) 2004-02-11 2007-01-19 Thin film transistor including a lightly doped amorphous silicon channel layer

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/711,509 Expired - Lifetime US7205171B2 (en) 2004-02-11 2004-09-23 Thin film transistor and manufacturing method thereof including a lightly doped channel
US11/307,160 Active 2024-07-04 US7375372B2 (en) 2004-02-11 2006-01-26 Thin film transistor

Country Status (1)

Country Link
US (3) US7205171B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090090909A1 (en) * 2007-10-05 2009-04-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20120097955A1 (en) * 2010-10-21 2012-04-26 Au Optronics Corporation Thin film transistor and pixel structure having the thin film transistor
US8383467B2 (en) * 2008-09-24 2013-02-26 Samsung Electronics Co., Ltd. Thin film transistor and method of manufacturing the same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070042536A1 (en) * 2005-08-17 2007-02-22 Chi-Wen Chen Thin film transistor and method for manufacturing the same
CN100403498C (en) * 2005-08-29 2008-07-16 友达光电股份有限公司 Thin-film transistor and its manufacturing method
TWI605509B (en) * 2007-09-03 2017-11-11 半導體能源研究所股份有限公司 Methods for manufacturing thin film transistor and display device
TW200915573A (en) * 2007-09-29 2009-04-01 Chunghwa Picture Tubes Ltd Thin film transistor, pixel structure and fabricating methods thereof
US20090090915A1 (en) 2007-10-05 2009-04-09 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, display device having thin film transistor, and method for manufacturing the same
KR101455304B1 (en) * 2007-10-05 2014-11-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Thin film transistor, display device having thin film transistor, and method for manufacturing the same
JP2009099636A (en) * 2007-10-15 2009-05-07 Hitachi Displays Ltd Display device and method of manufacturing the same
JP5311957B2 (en) * 2007-10-23 2013-10-09 株式会社半導体エネルギー研究所 Display device and manufacturing method thereof
JP5311955B2 (en) * 2007-11-01 2013-10-09 株式会社半導体エネルギー研究所 Method for manufacturing display device
KR101523353B1 (en) 2007-12-03 2015-05-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Thin film transistor and semiconductor device
TWI481029B (en) * 2007-12-03 2015-04-11 半導體能源研究所股份有限公司 Semiconductor device
TWI467663B (en) 2008-11-07 2015-01-01 Semiconductor Energy Lab Semiconductor device and method for manufacturing the semiconductor device
KR101343570B1 (en) * 2008-12-18 2013-12-20 한국전자통신연구원 Thin Film Transistor Using Boron-Doped Oxide Semiconductor Thin Film and Method for Preparing the Same
JP2012079998A (en) * 2010-10-05 2012-04-19 Hitachi Displays Ltd Liquid crystal display device
CN108231869B (en) * 2018-01-02 2021-04-30 京东方科技集团股份有限公司 Transistor, display substrate, display device and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683333B2 (en) * 2000-07-14 2004-01-27 E Ink Corporation Fabrication of electronic circuit elements using unpatterned semiconductor layers
US20040046171A1 (en) * 2000-10-31 2004-03-11 Pt Plus Co. Ltd., A Korean Corporation Thin film transistor including polycrystalline active layer and method for fabricating the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5318919A (en) * 1990-07-31 1994-06-07 Sanyo Electric Co., Ltd. Manufacturing method of thin film transistor
US5547892A (en) * 1995-04-27 1996-08-20 Taiwan Semiconductor Manufacturing Company Process for forming stacked contacts and metal contacts on static random access memory having thin film transistors
KR100473997B1 (en) * 2000-10-06 2005-03-07 엘지.필립스 엘시디 주식회사 A method of fabricating the same
TW535296B (en) * 2002-05-31 2003-06-01 Chunghwa Picture Tubes Ltd Method for producing thin film transistor
TW577176B (en) * 2003-03-31 2004-02-21 Ind Tech Res Inst Structure of thin-film transistor, and the manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683333B2 (en) * 2000-07-14 2004-01-27 E Ink Corporation Fabrication of electronic circuit elements using unpatterned semiconductor layers
US20040046171A1 (en) * 2000-10-31 2004-03-11 Pt Plus Co. Ltd., A Korean Corporation Thin film transistor including polycrystalline active layer and method for fabricating the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090090909A1 (en) * 2007-10-05 2009-04-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8183102B2 (en) * 2007-10-05 2012-05-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8383467B2 (en) * 2008-09-24 2013-02-26 Samsung Electronics Co., Ltd. Thin film transistor and method of manufacturing the same
US20120097955A1 (en) * 2010-10-21 2012-04-26 Au Optronics Corporation Thin film transistor and pixel structure having the thin film transistor
US8304778B2 (en) * 2010-10-21 2012-11-06 Au Optronics Corporation Thin film transistor and pixel structure having the thin film transistor

Also Published As

Publication number Publication date
US20060197087A1 (en) 2006-09-07
US7375372B2 (en) 2008-05-20
US7205171B2 (en) 2007-04-17
US20050176187A1 (en) 2005-08-11

Similar Documents

Publication Publication Date Title
US7375372B2 (en) Thin film transistor
TWI405249B (en) Method of forming a silicon layer and method of manufacturing a display substrate by using the same
US7968880B2 (en) Thin film transistor and display device
US8263421B2 (en) Manufacturing method of semiconductor device
US7786485B2 (en) Thin-film transistor and display device
US20020146871A1 (en) Semiconductor device, method for manufacturing the same, and radiation detector
US20100062556A1 (en) Methods for manufacturing thin film transistor and display device
US8106398B2 (en) Microcrystalline semiconductor film, thin film transistor, and display device including thin film transistor
JP2007220817A (en) Thin-film transistor and manufacturing method thereof
US8748222B2 (en) Method for forming oxide thin film transistor
US7199061B2 (en) Pecvd silicon oxide thin film deposition
US20170170309A1 (en) Thin film transistor, array substrate and display device having the same, and method thereof
US7176074B1 (en) Manufacturing method of thin film transistor array substrate
US20150060843A1 (en) Display substrate and method of manufacturing a display substrate
US6960809B2 (en) Polysilicon thin film transistor and method of forming the same
US20050176188A1 (en) Thin film transistor and manufacturing method thereof
US5923050A (en) Amorphous silicon TFT
CN111739841B (en) In-cell touch panel with top gate structure and manufacturing method
KR20140104792A (en) Thin film transistor, thin film transistor and manufacturing method thereof
US20090085033A1 (en) Thin film transistor, pixel structure and fabrication methods thereof
EP0744775A2 (en) Microcrystal silicon thin film transistor
CN107910378B (en) LTPS thin film transistor, array substrate, manufacturing method of LTPS thin film transistor and array substrate, and display device
US8815692B2 (en) Thin film transistor array substrate and method for manufacturing the same
CN1307697C (en) Thin film transistor and manufacturing method of thin film transistor
KR20070040035A (en) Display substrate and method for manufacturing the same

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION