US20060293145A1 - Transfer case clutch calibration method - Google Patents

Transfer case clutch calibration method Download PDF

Info

Publication number
US20060293145A1
US20060293145A1 US11/169,029 US16902905A US2006293145A1 US 20060293145 A1 US20060293145 A1 US 20060293145A1 US 16902905 A US16902905 A US 16902905A US 2006293145 A1 US2006293145 A1 US 2006293145A1
Authority
US
United States
Prior art keywords
transfer case
clutch
functions
performance
enhancing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/169,029
Other versions
US7306545B2 (en
Inventor
Christopher Lanker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BorgWarner Inc
Original Assignee
BorgWarner Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BorgWarner Inc filed Critical BorgWarner Inc
Priority to US11/169,029 priority Critical patent/US7306545B2/en
Assigned to BORGWARNER INC. reassignment BORGWARNER INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LANKER, CHRISTOPHER J.
Priority to DE112006001607T priority patent/DE112006001607T5/en
Priority to CN2006800232977A priority patent/CN101208535B/en
Priority to KR1020077030423A priority patent/KR101297625B1/en
Priority to PCT/US2006/021504 priority patent/WO2007001736A1/en
Publication of US20060293145A1 publication Critical patent/US20060293145A1/en
Application granted granted Critical
Publication of US7306545B2 publication Critical patent/US7306545B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/022Power-transmitting couplings or clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • G01M13/025Test-benches with rotational drive means and loading means; Load or drive simulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10406Clutch position
    • F16D2500/104314WD Clutch dividing power between the front and the rear axle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/302Signal inputs from the actuator
    • F16D2500/3022Current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/302Signal inputs from the actuator
    • F16D2500/3028Voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/30404Clutch temperature
    • F16D2500/30405Estimated clutch temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/502Relating the clutch
    • F16D2500/50245Calibration or recalibration of the clutch touch-point
    • F16D2500/50248During assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/51Relating safety
    • F16D2500/5116Manufacture, testing, calibrating, i.e. test or calibration of components during or soon after assembly, e.g. at the end of the production line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/702Look-up tables
    • F16D2500/70205Clutch actuator
    • F16D2500/70223Current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/702Look-up tables
    • F16D2500/70252Clutch torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0053Initializing the parameters of the controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2342/00Calibrating
    • F16H2342/04Calibrating engagement of friction elements
    • F16H2342/044Torque transmitting capability

Definitions

  • the invention relates generally to a method for achieving improved transfer case clutch performance and more particularly to a method which determines the clutch current versus torque throughput function and utilizes such determination to achieve improved transfer case clutch performance.
  • Many four wheel drive vehicles nominally operate in two wheel drive and include sensors and control systems which automatically shift a transfer case clutch to four wheel drive upon detection of a wheel speed difference ( ⁇ s) typically between the front and rear wheels.
  • ⁇ s wheel speed difference
  • Such adaptive four wheel drive systems are carefully tuned by the vehicle manufacturer, typically through extensive road testing, to achieve desired performance and optimum safety and control.
  • the primary operating parameter so determined is the relationship between wheel slip and the speed and extent of transfer case clutch engagement per unit time ( dc / dt ) when a threshold quantum of wheel slip is encountered.
  • the sensing of wheel speed, the computations undertaken to determine wheel slip and the clutch engagement control signal issued when wheel slip is determined are all electronic signals and operations determined and undertaken in accordance with the program or software utilized in the transfer case controller which is either developed or adapted by the vehicle manufacturer.
  • Such electrical output or drive system to the transfer case clutch assumes an established clutch current versus clutch engagement and torque transfer function. Since the transfer case clutch is an electromechanical or hydromechanical device, the accuracy and repeatability of its operation encompasses wider tolerances than the electronic clutch control system.
  • the present invention is directed to improving the operation and cooperation and between a motor vehicle transfer case controller and the transfer case clutch.
  • a method of improving performance of modulatable, secondary driveline clutches in motor vehicle transfer cases determines, records and provides clutch calibration data to a controller in the motor vehicle.
  • the method includes the steps of testing each manufactured transfer case to determine the clutch drive current versus torque transfer function, fitting such determined function to one of a small number of pre-established performance functions or curves and incorporating an identification of the selected one of such pre-established performance curves in the transfer case.
  • the curve identification is read, either physically or electronically, and the transfer case control module (TCCM) adjusts its clutch drive signal in accordance with the pre-established curve to achieve known and desired torque transfer through the clutch with a given clutch drive signal.
  • Information in addition to the basic clutch torque transfer function such as transfer case operating temperature and an age or wear characteristic may also be provided to the transfer case control module to further enhance operation.
  • FIG. 1 is a diagrammatic view of the testing of an individual transfer case to determine secondary driveline its clutch drive current versus torque transfer function or curve according to the present invention
  • FIG. 2 is a typical performance curve of a transfer case secondary driveline clutch showing clutch drive current versus torque throughput
  • FIG. 3 is a selection of a plurality of transfer case secondary clutch curves against which the performance of each transfer case clutch is matched according to the present invention
  • FIG. 4 is an error analysis plot illustrating the reduced scatter of a transfer case secondary clutch drive signal versus torque transfer function with and without utilization of the present method
  • FIG. 5 is a chart illustrating the improvement in inter-unit and intra-unit transfer case secondary clutch variation by utilization of the present invention
  • FIGS. 6A, 6B and 6 C are a series of graphs illustrating the effect of temperature on transfer case secondary clutch performance.
  • FIG. 7 is a graph of transfer case clutch performance illustrating the effect of aging and wear of the transfer case secondary clutch.
  • a transfer case assembly 10 is placed upon a test stand or fixture 12 at the completion of its manufacture on and through a conventional production line 14 .
  • the transfer case assembly 10 includes a housing 20 , an input shaft 22 which is coupled to and driven by the output of an automatic or manual transmission (not illustrated) of a four wheel drive vehicle.
  • the input shaft 22 may directly drive an output shaft 24 or the two shafts may be coupled through a range selection device such as a planetary gear train (not illustrated) to provide both a direct (high gear) and a reduced speed (low gear) output.
  • a range selection device such as a planetary gear train (not illustrated) to provide both a direct (high gear) and a reduced speed (low gear) output.
  • Operably disposed between the primary output shaft 24 and a secondary output shaft 26 is a modulatable secondary driveline clutch assembly 28 .
  • the modulatable secondary driveline clutch assembly 28 may be an electric, electromechanical, hydraulic, electrohydraulic or any other type of modulatable friction clutch.
  • the modulatable clutch assembly 28 provides adjustable torque transfer between the primary output shaft 24 and the secondary output shaft 26 in response to a variable electrical or hydraulic input.
  • the terms “secondary driveline clutch” and “secondary clutch” used herein with regard to the modulatable clutch assembly 28 are intended to clarify that 1) this clutch is not the clutch associated with a speed reduction gearset which is utilized in a transfer case such as the transfer case assembly 10 to select between high and low speed (gear) operating ranges and 2) this clutch is associated with and provides drive torque to the secondary driveline (typically the front driveline) in a four wheel drive vehicle.
  • the transfer case assembly 10 also includes a temperature sensor 30 which is immersed in the clutch and lubricating fluid within the transfer case assembly 10 and provides a signal indicating the fluid temperature to a transfer case control module (TCCM) in the vehicle in which the transfer case assembly 10 is ultimately installed.
  • TCCM transfer case control module
  • a drive motor 32 which is preferably electrically powered, is secured with its output connected to the input shaft 22 .
  • the electric drive motor 32 is driven through a cable 34 by the output of a controller or microprocessor 40 which is capable of controlling and monitoring the rotational power generated by the electric drive motor 32 which is delivered to the input shaft 22 of the transfer case 10 .
  • the controller or microprocessor 40 also provides a control signal in a line 36 directly to the modulatable clutch assembly 28 .
  • the signal from the controller 40 and the line 36 is provided to a suitable proportional hydraulic control valve such as a spool valve or other appropriate electromechanical device.
  • a load and transducer assembly 42 Secured to the secondary output shaft 26 of the transfer case assembly 10 is a load and transducer assembly 42 which is capable of both loading the secondary output shaft 26 and simultaneously measuring the torque delivered to the secondary output shaft 26 through the modulatable secondary clutch assembly 28 . Both drive signals and sensed torque signals are communicated from and to the controller or microprocessor 40 through a multiple conductor cable 44 . Data from the diagnostic testing may be temporarily or permanently stored in a volatile or non-volatile storage device 46 which may include a printer to provide a written record of the performance of the individual transfer case assemblies 10 .
  • a label 48 bearing indicia such as a bar code or any other coded or uncoded data storage and display device is affixed to the transfer case assembly 10 .
  • this information may be tabulated for transfer into a non-volatile RAM. This may be done via the existing ALDL (Assembly Line Diagnostics Link) port during, for example, engine/body calibration and controller download by a singular CAN (Car Area Network) message.
  • ALDL Assembly Line Diagnostics Link
  • the transfer case assembly 10 is then removed from the test stand 12 and provided to an original equipment motor vehicle manufacturer (OEM) which installs it in a four wheel drive motor vehicle such as an SUV, pick-up truck, cross-over vehicle or passenger car 54 .
  • OEM original equipment motor vehicle manufacturer
  • the motor vehicle 54 thus includes the transfer case assembly 10 and a transfer case control module (TCCM) 56 having various associated sensors, sensor inputs, memory and an output which drives the secondary clutch assembly 28 in the transfer case assembly 10 .
  • TCCM transfer case control module
  • FIG. 2 a clutch current versus torque throughput function or curve is illustrated.
  • This function or curve is typical of transfer case clutches and for purposes of explanation, it will be assumed that it is the performance graph of the modulatable secondary clutch assembly 28 disposed within the transfer case assembly 10 illustrated in FIG. 1 .
  • the X (horizontal) distance represents 0 to 100% of the maximum power or drive signal applied to the electromagnetic coil of the clutch assembly 28 .
  • it may be interpreted as a PWM (pulse width modulated) duty cycle of the electrical drive to the electromagnetic clutch coil.
  • it may represent a corresponding signal which drives an electrohydraulic controller or control valve to actuate a hydraulic secondary clutch.
  • the Y (vertical) distance indicates the torque output appearing on the secondary output shaft 26 in, for example, pounds feet (lbs. ft.), Newton meters (Nm) or other torque measurement scale.
  • curve U (up) represents the curve or function as the electric current applied to the electromagnetic coil is increased up to the maximum 100% duty cycle at the right end of the curve.
  • curve D (down) represents the performance of the clutch assembly 28 as the current is decreased.
  • the separation of the two curves U and D is the result of typically encountered hysteresis in the electromagnetic or hydraulic operator and friction clutch as those familiar with such devices will readily appreciate. It will also be appreciated that the hysteresis has been exaggerated somewhat for purposes of illustration and clarity.
  • the curve illustrated in the graph 50 may then be stored temporarily in the controller or microprocessor 40 or may be transferred to the storage device 46 or be provided to a printer to produce a printed, tangible record. In either case, the specific curve 50 is associated with the serial number or other identifying indicia of the particular transfer case assembly 10 tested.
  • FIG. 3 a plurality of different though similar torque output versus drive signal or duty cycle curves or functions are presented.
  • the calibration and operation process has been simplified by creating a relatively small number, typically 8, 10, 12 or more or fewer, curves representative of varying clutch torque versus drive signal relationships. It has been found that such a relatively small number of such curves can be utilized to characterize the variations between transfer cases to a sufficiently high degree of accuracy that does not justify storage and utilization of each individually detected curve or function.
  • the identity of the curve is associated with the transfer case 10 either physically or electronically.
  • an indicia 48 such as a bar code bearing the code of the selected curve as well as, for example, the serial number of the transfer case may be secured thereto.
  • the data may be stored in a data processing features of the transfer case assembly 10 to be read by complementary equipment such as the transfer case module 56 or the CAN, as noted above, disposed in the vehicle 54 in which it installed.
  • FIG. 4 improvements achieved by individual calibration of transfer case assemblies 10 is presented.
  • To the left of the vertical line are scattered data points indicating variations above and below a nominal or average torque versus drive signal relationship.
  • To the right of the vertical line is similar data derived from performance of calibrated transfer case clutch assemblies 28 which provide such calibration data to a vehicle controller thereby improving control and the predictability of control of torque output in accordance with the vehicle manufacturer's software.
  • the first section relates to inter-unit variation, i.e., variations between different transfer cases.
  • the data presented in FIG. 5 illustrates that operational, that is torque throughput variations, can be reduced from 7% to 1% by utilizing the method and calibrated transfer case assemblies 10 according to the present invention.
  • variations caused by the primary or pilot clutch in a transfer case may be reduced from 10% to 5%.
  • intra-unit variations that is, variations occurring within a particular transfer case 10 due to, for example, the operating temperature of the transfer case or its age.
  • performance improvements may be achieved. Such performance improvements are discussed below with regard to FIGS. 6 and 7 .
  • Compensating for the effect of operating temperature on clutch performance can reduce clutch performance variations from 2.8% to 1%.
  • aging of the transfer case, particularly the aging of clutch surfaces and clutch fluid can effect a variation of 14% in the torque output versus drive signal function. By monitoring such variables, clutch torque output variation can be reduced to 2%.
  • FIG. 5 therefore illustrates, the use of clutch calibration, monitoring of operating temperature and accounting for age and wear can reduce variations in the torque output versus drive signal relationship of a transfer case from 33% to 9%.
  • FIG. 6A, 6B and 6 C graphs illustrating clutch (friction) plate temperature, clutch fluid (oil) temperature and electromagnetic coil temperature of an intermittently energized electromagnetic friction pack clutch such as the secondary clutch assembly 28 in a transfer case assembly 10 as a function of time are presented. From such graphs, it is apparent that the temperatures of the friction plates, the clutch fluid and the electromagnetic coil all rise appreciably as the transfer case operates. Generally speaking, such temperature rise reduces the friction coupling and torque delivery through the secondary clutch 28 of the transfer case 10 for a given magnitude of input or drive signal in a known and relatively predictable linear relationship. For example, as the temperature of the electromagnetic coil of the clutch rises, its electrical resistance does as well.
  • FIG. 7 a graph presenting clutch performance as a function of age, oil and other service and life related variables is illustrated.
  • On the X (horizontal) axis are transfer case operating temperatures in degrees Centigrade increasing from left to right.
  • On the Y (vertical) axis are clutch torque throughput magnitudes and Newton meters, increasing from bottom to top.
  • the graph is, in fact, three dimensional and the data points presented in the X-Y space are also related to the number of cycles. The higher number of cycles, generally speaking, the smaller the Y distance and the lower the torque throughput. It has been found experimentally that age, oil and other service life related variables effect, from 2.5% to 14%, clutch signal input versus clutch torque output over the life of a clutch.
  • operational programming based upon the graph of FIG. 7 can be installed within the software or memory of the transfer case control module 56 of the vehicle 54 into which the transfer case assembly 10 is installed in order to compensate for such wear and service life related variables and further improve the torque transfer function and repeatability of the transfer clutch assembly 28 .

Abstract

A method of improving performance of secondary driveline clutches in motor vehicle transfer cases includes the steps of testing each manufactured transfer case to determine the clutch drive current versus torque transfer function, fitting such determined function to one of a small number of predetermined performance curves and incorporating an identification of the selected one of such predetermined performance curves in the transfer case. When the transfer case is installed in a vehicle, the curve identification is read and the transfer case control module (TCCM) adjusts its clutch drive signal in accordance with the predetermined curve to achieve known and desired torque transfer through the clutch with a given clutch drive signal.

Description

    BACKGROUND OF THE INVENTION
  • The invention relates generally to a method for achieving improved transfer case clutch performance and more particularly to a method which determines the clutch current versus torque throughput function and utilizes such determination to achieve improved transfer case clutch performance.
  • Many four wheel drive vehicles nominally operate in two wheel drive and include sensors and control systems which automatically shift a transfer case clutch to four wheel drive upon detection of a wheel speed difference (Δs) typically between the front and rear wheels. Such adaptive four wheel drive systems are carefully tuned by the vehicle manufacturer, typically through extensive road testing, to achieve desired performance and optimum safety and control. The primary operating parameter so determined is the relationship between wheel slip and the speed and extent of transfer case clutch engagement per unit time (dc/dt) when a threshold quantum of wheel slip is encountered. In such vehicles, the sensing of wheel speed, the computations undertaken to determine wheel slip and the clutch engagement control signal issued when wheel slip is determined are all electronic signals and operations determined and undertaken in accordance with the program or software utilized in the transfer case controller which is either developed or adapted by the vehicle manufacturer.
  • Such electrical output or drive system to the transfer case clutch assumes an established clutch current versus clutch engagement and torque transfer function. Since the transfer case clutch is an electromechanical or hydromechanical device, the accuracy and repeatability of its operation encompasses wider tolerances than the electronic clutch control system.
  • The present invention is directed to improving the operation and cooperation and between a motor vehicle transfer case controller and the transfer case clutch.
  • SUMMARY OF THE INVENTION
  • A method of improving performance of modulatable, secondary driveline clutches in motor vehicle transfer cases determines, records and provides clutch calibration data to a controller in the motor vehicle. The method includes the steps of testing each manufactured transfer case to determine the clutch drive current versus torque transfer function, fitting such determined function to one of a small number of pre-established performance functions or curves and incorporating an identification of the selected one of such pre-established performance curves in the transfer case. When the transfer case is installed in a vehicle, the curve identification is read, either physically or electronically, and the transfer case control module (TCCM) adjusts its clutch drive signal in accordance with the pre-established curve to achieve known and desired torque transfer through the clutch with a given clutch drive signal. Information in addition to the basic clutch torque transfer function, such as transfer case operating temperature and an age or wear characteristic may also be provided to the transfer case control module to further enhance operation.
  • Thus it is an object of the present invention to provide a method of improving the operation of a transfer case secondary driveline clutch.
  • Thus it is a further object of the present invention to provide a method of improving the overall operation of a transfer case control module and a transfer case secondary driveline clutch.
  • It is a further object of the present invention to provide a method of determining the clutch current versus clutch engagement function of an individual transfer case, fitting such determined function to one of a small number of pre-established functions and ultimately providing such function to the transfer case control module in which the transfer case is installed.
  • It is a still further object of the present invention to provide a transfer case which provides operating temperature data to the vehicle transfer case control module.
  • It is a still further object of the present invention to provide production calibration of a transfer case secondary driveline clutch and, utilizing such information, to adjust the clutch drive signal of a transfer case control module to achieve improved secondary clutch, transfer case and vehicle performance.
  • Further objects and advantages of the present invention will become apparent by reference to the following description of the preferred embodiment and appended drawings wherein like reference numbers refer to the same component, element or feature.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagrammatic view of the testing of an individual transfer case to determine secondary driveline its clutch drive current versus torque transfer function or curve according to the present invention;
  • FIG. 2 is a typical performance curve of a transfer case secondary driveline clutch showing clutch drive current versus torque throughput;
  • FIG. 3 is a selection of a plurality of transfer case secondary clutch curves against which the performance of each transfer case clutch is matched according to the present invention;
  • FIG. 4 is an error analysis plot illustrating the reduced scatter of a transfer case secondary clutch drive signal versus torque transfer function with and without utilization of the present method;
  • FIG. 5 is a chart illustrating the improvement in inter-unit and intra-unit transfer case secondary clutch variation by utilization of the present invention;
  • FIGS. 6A, 6B and 6C are a series of graphs illustrating the effect of temperature on transfer case secondary clutch performance; and
  • FIG. 7 is a graph of transfer case clutch performance illustrating the effect of aging and wear of the transfer case secondary clutch.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Referring now to FIG. 1, portions of the transfer case calibration method according to the present invention are illustrated. A transfer case assembly 10 is placed upon a test stand or fixture 12 at the completion of its manufacture on and through a conventional production line 14. The transfer case assembly 10 includes a housing 20, an input shaft 22 which is coupled to and driven by the output of an automatic or manual transmission (not illustrated) of a four wheel drive vehicle. The input shaft 22 may directly drive an output shaft 24 or the two shafts may be coupled through a range selection device such as a planetary gear train (not illustrated) to provide both a direct (high gear) and a reduced speed (low gear) output. Operably disposed between the primary output shaft 24 and a secondary output shaft 26 is a modulatable secondary driveline clutch assembly 28. The modulatable secondary driveline clutch assembly 28 may be an electric, electromechanical, hydraulic, electrohydraulic or any other type of modulatable friction clutch. The modulatable clutch assembly 28 provides adjustable torque transfer between the primary output shaft 24 and the secondary output shaft 26 in response to a variable electrical or hydraulic input. The terms “secondary driveline clutch” and “secondary clutch” used herein with regard to the modulatable clutch assembly 28 are intended to clarify that 1) this clutch is not the clutch associated with a speed reduction gearset which is utilized in a transfer case such as the transfer case assembly 10 to select between high and low speed (gear) operating ranges and 2) this clutch is associated with and provides drive torque to the secondary driveline (typically the front driveline) in a four wheel drive vehicle. Preferably, the transfer case assembly 10 also includes a temperature sensor 30 which is immersed in the clutch and lubricating fluid within the transfer case assembly 10 and provides a signal indicating the fluid temperature to a transfer case control module (TCCM) in the vehicle in which the transfer case assembly 10 is ultimately installed.
  • On the test stand 12, a drive motor 32, which is preferably electrically powered, is secured with its output connected to the input shaft 22. The electric drive motor 32 is driven through a cable 34 by the output of a controller or microprocessor 40 which is capable of controlling and monitoring the rotational power generated by the electric drive motor 32 which is delivered to the input shaft 22 of the transfer case 10.
  • The controller or microprocessor 40 also provides a control signal in a line 36 directly to the modulatable clutch assembly 28. Alternatively, if the transfer case assembly 10 utilizes a hydraulic clutch, the signal from the controller 40 and the line 36 is provided to a suitable proportional hydraulic control valve such as a spool valve or other appropriate electromechanical device.
  • Secured to the secondary output shaft 26 of the transfer case assembly 10 is a load and transducer assembly 42 which is capable of both loading the secondary output shaft 26 and simultaneously measuring the torque delivered to the secondary output shaft 26 through the modulatable secondary clutch assembly 28. Both drive signals and sensed torque signals are communicated from and to the controller or microprocessor 40 through a multiple conductor cable 44. Data from the diagnostic testing may be temporarily or permanently stored in a volatile or non-volatile storage device 46 which may include a printer to provide a written record of the performance of the individual transfer case assemblies 10.
  • After the transfer case assembly 10 has undergone a diagnostic test to determine the clutch current versus secondary torque throughout function, as more fully described below, a label 48 bearing indicia such as a bar code or any other coded or uncoded data storage and display device is affixed to the transfer case assembly 10. Alternatively, this information may be tabulated for transfer into a non-volatile RAM. This may be done via the existing ALDL (Assembly Line Diagnostics Link) port during, for example, engine/body calibration and controller download by a singular CAN (Car Area Network) message. The transfer case assembly 10 is then removed from the test stand 12 and provided to an original equipment motor vehicle manufacturer (OEM) which installs it in a four wheel drive motor vehicle such as an SUV, pick-up truck, cross-over vehicle or passenger car 54. The motor vehicle 54 thus includes the transfer case assembly 10 and a transfer case control module (TCCM) 56 having various associated sensors, sensor inputs, memory and an output which drives the secondary clutch assembly 28 in the transfer case assembly 10.
  • Referring now to FIG. 2, a clutch current versus torque throughput function or curve is illustrated. This function or curve is typical of transfer case clutches and for purposes of explanation, it will be assumed that it is the performance graph of the modulatable secondary clutch assembly 28 disposed within the transfer case assembly 10 illustrated in FIG. 1. The X (horizontal) distance represents 0 to 100% of the maximum power or drive signal applied to the electromagnetic coil of the clutch assembly 28. Specifically, it may be interpreted as a PWM (pulse width modulated) duty cycle of the electrical drive to the electromagnetic clutch coil. Alternatively, it may represent a corresponding signal which drives an electrohydraulic controller or control valve to actuate a hydraulic secondary clutch. The Y (vertical) distance indicates the torque output appearing on the secondary output shaft 26 in, for example, pounds feet (lbs. ft.), Newton meters (Nm) or other torque measurement scale. The lower curve, curve U (up) represents the curve or function as the electric current applied to the electromagnetic coil is increased up to the maximum 100% duty cycle at the right end of the curve. The curve D (down) represents the performance of the clutch assembly 28 as the current is decreased. The separation of the two curves U and D is the result of typically encountered hysteresis in the electromagnetic or hydraulic operator and friction clutch as those familiar with such devices will readily appreciate. It will also be appreciated that the hysteresis has been exaggerated somewhat for purposes of illustration and clarity. The curve illustrated in the graph 50 may then be stored temporarily in the controller or microprocessor 40 or may be transferred to the storage device 46 or be provided to a printer to produce a printed, tangible record. In either case, the specific curve 50 is associated with the serial number or other identifying indicia of the particular transfer case assembly 10 tested.
  • It should be understood that depending upon the sensitivity of the instrumentation utilized in the calibration or diagnostic procedure and the quantitative tolerance or difference within which a curve or function is deemed to be the same and outside of which the curve or function is deemed to be different, an exceedingly large number of different curves or functions will be generated.
  • Referring now to FIG. 3, a plurality of different though similar torque output versus drive signal or duty cycle curves or functions are presented. In order to minimize the data required and difficulties involved in utilizing each individual and distinct performance curve to calibrate an associated transfer case control module controller with which the clutch and transfer case assembly 10 are ultimately utilized, the calibration and operation process has been simplified by creating a relatively small number, typically 8, 10, 12 or more or fewer, curves representative of varying clutch torque versus drive signal relationships. It has been found that such a relatively small number of such curves can be utilized to characterize the variations between transfer cases to a sufficiently high degree of accuracy that does not justify storage and utilization of each individually detected curve or function. In FIG. 3, it is assumed that ten representative curves or functions A, B, C, D, E, F, G, H, I and J have been pre-established. For reasons of simplicity and clarity only curves A, B, I and J have been illustrated, it being understood that the other six curves or functions will be similar.
  • Selection of one of the 8, 10 or 12 curves or functions is undertaken by conventional “best fit” software or programs. Upon selection of one of the curves which best fits the performance of the transfer case clutch 28 determined on the test stand 12, the identity of the curve is associated with the transfer case 10 either physically or electronically. For example, an indicia 48 such as a bar code bearing the code of the selected curve as well as, for example, the serial number of the transfer case may be secured thereto. Alternately, the data may be stored in a data processing features of the transfer case assembly 10 to be read by complementary equipment such as the transfer case module 56 or the CAN, as noted above, disposed in the vehicle 54 in which it installed.
  • Referring now to FIG. 4, improvements achieved by individual calibration of transfer case assemblies 10 is presented. To the left of the vertical line are scattered data points indicating variations above and below a nominal or average torque versus drive signal relationship. To the right of the vertical line is similar data derived from performance of calibrated transfer case clutch assemblies 28 which provide such calibration data to a vehicle controller thereby improving control and the predictability of control of torque output in accordance with the vehicle manufacturer's software.
  • Referring now to FIG. 5, the various factors which have been determined to contribute to clutch drive torque output variations are illustrated. The first section relates to inter-unit variation, i.e., variations between different transfer cases. The data presented in FIG. 5 illustrates that operational, that is torque throughput variations, can be reduced from 7% to 1% by utilizing the method and calibrated transfer case assemblies 10 according to the present invention. Similarly, variations caused by the primary or pilot clutch in a transfer case may be reduced from 10% to 5%.
  • With regard to intra-unit variations, that is, variations occurring within a particular transfer case 10 due to, for example, the operating temperature of the transfer case or its age. It should also be appreciated that performance improvements may be achieved. Such performance improvements are discussed below with regard to FIGS. 6 and 7. Compensating for the effect of operating temperature on clutch performance can reduce clutch performance variations from 2.8% to 1%. Similarly, aging of the transfer case, particularly the aging of clutch surfaces and clutch fluid can effect a variation of 14% in the torque output versus drive signal function. By monitoring such variables, clutch torque output variation can be reduced to 2%. As FIG. 5 therefore illustrates, the use of clutch calibration, monitoring of operating temperature and accounting for age and wear can reduce variations in the torque output versus drive signal relationship of a transfer case from 33% to 9%.
  • Referring now to FIG. 6A, 6B and 6C, graphs illustrating clutch (friction) plate temperature, clutch fluid (oil) temperature and electromagnetic coil temperature of an intermittently energized electromagnetic friction pack clutch such as the secondary clutch assembly 28 in a transfer case assembly 10 as a function of time are presented. From such graphs, it is apparent that the temperatures of the friction plates, the clutch fluid and the electromagnetic coil all rise appreciably as the transfer case operates. Generally speaking, such temperature rise reduces the friction coupling and torque delivery through the secondary clutch 28 of the transfer case 10 for a given magnitude of input or drive signal in a known and relatively predictable linear relationship. For example, as the temperature of the electromagnetic coil of the clutch rises, its electrical resistance does as well. For a given drive voltage and current, the power dissipated in the coil and thus the magnetic force and finally the delivered torque will be less than that delivered at a lower temperature. However, assuming a linear relationship creates errors unless the clutch operation curve is accurately known, as it is through use of the present method. Equipping the transfer case assembly 10 with a temperature sensor 30, as illustrated in FIG. 1, provides data that may be utilized by the vehicle transfer case control module 56 to provide compensation in accordance with experimental or empirically developed relationships, thereby improving the stability and repeatability of the drive signal versus torque delivery function of the modulatable secondary driveline clutch assembly 28. Knowing the operating temperature of the transfer case assembly 10 allows the friction plate torque estimate (FIG. 6A) to converge to the actual plate torque based on a Kalman filter. (A Kalman filter is set of equations that provides an efficient way to establish the state of a process.)
  • Referring now to FIG. 7, a graph presenting clutch performance as a function of age, oil and other service and life related variables is illustrated. On the X (horizontal) axis are transfer case operating temperatures in degrees Centigrade increasing from left to right. On the Y (vertical) axis are clutch torque throughput magnitudes and Newton meters, increasing from bottom to top. The graph is, in fact, three dimensional and the data points presented in the X-Y space are also related to the number of cycles. The higher number of cycles, generally speaking, the smaller the Y distance and the lower the torque throughput. It has been found experimentally that age, oil and other service life related variables effect, from 2.5% to 14%, clutch signal input versus clutch torque output over the life of a clutch. Accordingly, operational programming based upon the graph of FIG. 7 can be installed within the software or memory of the transfer case control module 56 of the vehicle 54 into which the transfer case assembly 10 is installed in order to compensate for such wear and service life related variables and further improve the torque transfer function and repeatability of the transfer clutch assembly 28.
  • The foregoing disclosure is the best mode devised by the inventors for practicing this invention. It is apparent, however, that methods incorporating modifications and variations will be obvious to one skilled in the art of achieving improved transfer case clutch performance. Inasmuch as the foregoing disclosure is intended to enable one skilled in the pertinent art to practice the instant invention, it should not be construed to be limited thereby but should be construed to include such aforementioned obvious variations and be limited only by the spirit and scope of the following claims.

Claims (20)

1. A method of enhancing transfer case performance in a motor vehicle comprising the steps of:
providing a transfer case having an input, a clutch and secondary output,
providing a motor for supplying torque to said input, a controller for controlling drive energy to said motor and means for sensing torque delivered to said secondary output,
cycling said transfer case clutch from disengaged to maximum engagement and back to disengaged,
determining a drive energy versus torque function for said clutch,
matching such drive energy versus torque function for said clutch to one of a plurality of predetermined functions, and
associating said one of said plurality of functions with said transfer case.
2. The method of enhancing transfer case performance of claim 1 wherein said plurality of functions is 12 or fewer.
3. The method of enhancing transfer case performance of claim 1 wherein said one of said plurality of functions is bar coded.
4. The method of enhancing transfer case performance of claim 1 wherein said clutch is an electromagnetic friction clutch.
5. The method of enhancing transfer case performance of claim 1 further including the step of providing a temperature sensor in said transfer case.
6. The method of enhancing transfer case performance of claim 5 wherein data from said temperature sensor is provided to a transfer case control module in a motor vehicle.
7. The method of enhancing transfer case performance of claim 1 wherein said one of said plurality of functions is provided to a transfer case control module of a motor vehicle.
8. A method of improving transfer case performance comprising the steps of:
providing a transfer case having an input, a secondary output clutch and a secondary output,
providing a drive motor for supplying torque to said input and a sensor for sensing torque provided to said secondary output,
cycling said secondary output clutch from a minimum drive signal to a maximum drive signal and returning to said minimum drive signal,
determining a drive signal versus torque function for said secondary output clutch,
matching said drive signal versus torque function to one of a number of predetermined functions, and
associating said one of said number of functions with said transfer case.
9. The method of enhancing transfer case performance of claim 8 wherein said one of said number of functions is stored in a machine readable format with of said transfer case.
10. The method of enhancing transfer case performance of claim 8 wherein said one of said number of functions stored in a machine readable format is provided to a transfer case control module.
11. The method of enhancing transfer case performance of claim 8 wherein said number of predetermined functions is 12 or fewer.
12. The method of enhancing transfer case performance of claim 8 wherein said clutch is an electromagnetic friction clutch.
13. The method of enhancing transfer case performance of claim 8 further including the step of providing a temperature sensor in said transfer case.
14. The method of enhancing transfer case performance of claim 13 further including the step of adjusting said drive signal versus torque function based on temperature.
15. A method of improving transfer case performance in a motor vehicle comprising the steps of:
providing a transfer case having an input, a secondary output clutch and a secondary output,
determining an engagement signal versus torque output function for said secondary output clutch,
fitting said engagement signal versus torque output function to one of a plurality of predetermined functions,
storing said one of said plurality of functions with said transfer case, and
providing said one of said plurality of functions to a transfer case control module.
16. The method of claim 15 wherein said one of said plurality of functions is stored in a machine readable format.
17. The method of claim 15 wherein said machine readable format is a bar code.
18. The method of claim 15 wherein said transfer case control module is disposed in a motor vehicle.
19. The method of claim 15 further including the step of sensing a temperature of a fluid in said transfer case and providing such fluid temperature to said transfer case control module.
20. The method of claim 15 further including the step of providing data to a transfer case control module regarding age and wear characteristics of a transfer case secondary clutch.
US11/169,029 2005-06-28 2005-06-28 Transfer case clutch calibration method Active 2026-02-15 US7306545B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/169,029 US7306545B2 (en) 2005-06-28 2005-06-28 Transfer case clutch calibration method
DE112006001607T DE112006001607T5 (en) 2005-06-28 2006-06-02 Calibration method for transfer case clutch
CN2006800232977A CN101208535B (en) 2005-06-28 2006-06-02 Transfer case clutch calibration method
KR1020077030423A KR101297625B1 (en) 2005-06-28 2006-06-02 Transfer case clutch calibration method
PCT/US2006/021504 WO2007001736A1 (en) 2005-06-28 2006-06-02 Transfer case clutch calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/169,029 US7306545B2 (en) 2005-06-28 2005-06-28 Transfer case clutch calibration method

Publications (2)

Publication Number Publication Date
US20060293145A1 true US20060293145A1 (en) 2006-12-28
US7306545B2 US7306545B2 (en) 2007-12-11

Family

ID=37101717

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/169,029 Active 2026-02-15 US7306545B2 (en) 2005-06-28 2005-06-28 Transfer case clutch calibration method

Country Status (5)

Country Link
US (1) US7306545B2 (en)
KR (1) KR101297625B1 (en)
CN (1) CN101208535B (en)
DE (1) DE112006001607T5 (en)
WO (1) WO2007001736A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080081732A1 (en) * 2006-09-29 2008-04-03 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for torque transmission mechanism
US20080296117A1 (en) * 2007-05-29 2008-12-04 Leising Brian E Electrically Actuated Clutch Torque Signature
US20090045001A1 (en) * 2007-08-13 2009-02-19 Magna Powertrain Ag & Co Kg Method for calibrating of an actuator of an all-wheel drive clutch
CN102004031A (en) * 2010-10-12 2011-04-06 上海中科深江电动车辆有限公司 Gear shift detection device and detection method for automated mechanical transmission for electric vehicle
WO2012019710A1 (en) * 2010-08-09 2012-02-16 Schaeffler Technologies Gmbh & Co. Kg Clutch and/or transmission system, and method for starting up a clutch and/or transmission system
US20120116638A1 (en) * 2008-05-13 2012-05-10 Borgwarner Inc. Flash memory signature cal
WO2013004208A1 (en) * 2011-07-07 2013-01-10 Schaeffler Technologies AG & Co. KG Method for operating a control unit and/or an actuator
US20170183010A1 (en) * 2015-12-24 2017-06-29 Audi Ag Method for operating a drive device for a motor vehicle and corresponding drive device
CN109297707A (en) * 2018-10-25 2019-02-01 安徽江淮汽车集团股份有限公司 A method of carrying out driven by clutches efficiency test on vehicle

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5187555B2 (en) 2007-10-12 2013-04-24 株式会社ジェイテクト Driving force transmission device
DE102009054940A1 (en) * 2009-12-18 2011-06-22 ZF Friedrichshafen AG, 88046 Method for rapid filling of a hydraulically actuated multi-disk switching element of a motor vehicle transmission
US8392084B2 (en) 2010-09-03 2013-03-05 Honda Motor Co., Ltd Increasing all-wheel drive system calibration efficiency through hardware-in-the-loop simulation techniques
US10087998B2 (en) 2014-11-19 2018-10-02 Dana Automotive Systems Group, Llc Method to control clutch force in a clutch pack
KR20170020161A (en) 2015-08-14 2017-02-22 에이엠에프코리아 주식회사 Control method for shifting transfer module of truck
DE112017001268T5 (en) 2016-03-11 2018-11-29 Borgwarner Inc. Clutch and electric motor
CN113759809B (en) * 2021-09-29 2023-07-11 中国航发动力股份有限公司 Calibrating instrument for calibrating adjusting mechanism and calibrating method of adjusting mechanism

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989471A (en) * 1989-12-01 1991-02-05 Ford New Holland, Inc. Method of calibrating clutches in transmissions
US5012416A (en) * 1989-12-01 1991-04-30 Ford New Holland, Inc. Medium speed transmission shuttle shifting
US5065849A (en) * 1989-04-12 1991-11-19 Diesel Kiki Co., Ltd. Method for correcting data used for a clutch control operation
US5307269A (en) * 1989-04-12 1994-04-26 Zexel Corporation Method for correcting clutch control data in accordance with disk temperature
US5407024A (en) * 1992-06-24 1995-04-18 Borg-Warner Automotive, Inc. On demand vehicle drive system
US6213242B1 (en) * 1998-08-31 2001-04-10 Ashok Rodrigues Four wheel drive system having torque distribution control responsive to throttle position, speed and selected range
US6321142B1 (en) * 2000-05-16 2001-11-20 Cummins Engine Company, Inc. System for programming a vehicle control computer with selectable features and/or trim values
US6319170B1 (en) * 2000-05-19 2001-11-20 General Motors Corporation Model-based engine torque control for power-on downshifting in an automatic transmission
US6347271B1 (en) * 1999-09-15 2002-02-12 Borgwarner Inc. Control strategy for reducing primary drive line loads
US6397139B1 (en) * 2001-01-30 2002-05-28 Ford Global Tech., Inc. System and method for controlling a transfer case within a vehicle having variations in tire diameter
US6494810B1 (en) * 2001-05-30 2002-12-17 Eaton Corporation Clutch calibration and control
US6568256B1 (en) * 2000-08-10 2003-05-27 Ford Global Technologies, Llc. System and method for controlling an automatic four-wheel drive transfer case which prevents excessive slippage
US6645108B1 (en) * 2002-05-16 2003-11-11 The Timken Company Active torque bias system and controls
US6695748B2 (en) * 2000-09-08 2004-02-24 Borgwarner Inc. Transmission control apparatus
US6697725B1 (en) * 2000-01-04 2004-02-24 Honda Giken Kogyo Kabushiki Kaisha Load-based torque redistribution method in 4-wheel drive vehicle
US20040049324A1 (en) * 1998-06-18 2004-03-11 Kline And Walker Llc Electrically controlled automated devices to operate, slow, guide, stop and secure, equipment and machinery for the purpose of controlling their unsafe, unattended, unauthorized, unlawful hazardous and/or legal use, with remote control and accountability worldwide
US6712728B2 (en) * 2002-01-29 2004-03-30 The Timken Company Transfer case with enhanced torque bias capability
US6834225B1 (en) * 2004-02-09 2004-12-21 Ford Global Technologies, Llc Method and system for controlling a transfer case clutch to avoid wheel slip
US6833516B2 (en) * 1995-06-07 2004-12-21 Automotive Technologies International, Inc. Apparatus and method for controlling a vehicular component
US6834226B2 (en) * 2002-09-13 2004-12-21 Elliott Energy Systems, Inc. Multiple control loop acceleration of turboalternator after reaching self-sustaining speed previous to reaching synchronous speed
US6896112B2 (en) * 2001-06-13 2005-05-24 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Clutch-actuating device and methods of determining clutch parameters
US6945374B2 (en) * 2004-02-04 2005-09-20 Magna Drivetrain Of America, Inc. Active torque coupling with hydraulically-actuated ball ramp clutch assembly
US20070061060A1 (en) * 2003-06-25 2007-03-15 Robert Bosch Gmbh Method and system for determining the point of engagement of a clutch operable via an actuating device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698631A (en) 1980-01-09 1981-08-08 Yumiyama Denki:Kk Clutch testing device
US5737979A (en) 1996-09-09 1998-04-14 Caterpillar Inc. Method of calibrating clutches in a transmission
JP3928445B2 (en) 2002-03-04 2007-06-13 株式会社デンソー Manufacturing method of automatic transmission and automatic transmission manufactured by the manufacturing method
DE102004005401B4 (en) 2004-02-03 2006-04-06 Jungheinrich Aktiengesellschaft Method for adjusting the control current of current-controlled hydraulic valves
JP2005337387A (en) 2004-05-27 2005-12-08 Toyota Motor Corp Method of writing solid performance information

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5065849A (en) * 1989-04-12 1991-11-19 Diesel Kiki Co., Ltd. Method for correcting data used for a clutch control operation
US5307269A (en) * 1989-04-12 1994-04-26 Zexel Corporation Method for correcting clutch control data in accordance with disk temperature
US5012416A (en) * 1989-12-01 1991-04-30 Ford New Holland, Inc. Medium speed transmission shuttle shifting
US4989471A (en) * 1989-12-01 1991-02-05 Ford New Holland, Inc. Method of calibrating clutches in transmissions
US5407024A (en) * 1992-06-24 1995-04-18 Borg-Warner Automotive, Inc. On demand vehicle drive system
US6833516B2 (en) * 1995-06-07 2004-12-21 Automotive Technologies International, Inc. Apparatus and method for controlling a vehicular component
US20040049324A1 (en) * 1998-06-18 2004-03-11 Kline And Walker Llc Electrically controlled automated devices to operate, slow, guide, stop and secure, equipment and machinery for the purpose of controlling their unsafe, unattended, unauthorized, unlawful hazardous and/or legal use, with remote control and accountability worldwide
US6213242B1 (en) * 1998-08-31 2001-04-10 Ashok Rodrigues Four wheel drive system having torque distribution control responsive to throttle position, speed and selected range
US6347271B1 (en) * 1999-09-15 2002-02-12 Borgwarner Inc. Control strategy for reducing primary drive line loads
US6697725B1 (en) * 2000-01-04 2004-02-24 Honda Giken Kogyo Kabushiki Kaisha Load-based torque redistribution method in 4-wheel drive vehicle
US6321142B1 (en) * 2000-05-16 2001-11-20 Cummins Engine Company, Inc. System for programming a vehicle control computer with selectable features and/or trim values
US6319170B1 (en) * 2000-05-19 2001-11-20 General Motors Corporation Model-based engine torque control for power-on downshifting in an automatic transmission
US6568256B1 (en) * 2000-08-10 2003-05-27 Ford Global Technologies, Llc. System and method for controlling an automatic four-wheel drive transfer case which prevents excessive slippage
US6695748B2 (en) * 2000-09-08 2004-02-24 Borgwarner Inc. Transmission control apparatus
US6397139B1 (en) * 2001-01-30 2002-05-28 Ford Global Tech., Inc. System and method for controlling a transfer case within a vehicle having variations in tire diameter
US6494810B1 (en) * 2001-05-30 2002-12-17 Eaton Corporation Clutch calibration and control
US6896112B2 (en) * 2001-06-13 2005-05-24 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Clutch-actuating device and methods of determining clutch parameters
US6712728B2 (en) * 2002-01-29 2004-03-30 The Timken Company Transfer case with enhanced torque bias capability
US6645108B1 (en) * 2002-05-16 2003-11-11 The Timken Company Active torque bias system and controls
US6834226B2 (en) * 2002-09-13 2004-12-21 Elliott Energy Systems, Inc. Multiple control loop acceleration of turboalternator after reaching self-sustaining speed previous to reaching synchronous speed
US20070061060A1 (en) * 2003-06-25 2007-03-15 Robert Bosch Gmbh Method and system for determining the point of engagement of a clutch operable via an actuating device
US6945374B2 (en) * 2004-02-04 2005-09-20 Magna Drivetrain Of America, Inc. Active torque coupling with hydraulically-actuated ball ramp clutch assembly
US6834225B1 (en) * 2004-02-09 2004-12-21 Ford Global Technologies, Llc Method and system for controlling a transfer case clutch to avoid wheel slip

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7775933B2 (en) * 2006-09-29 2010-08-17 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for torque transmission mechanism
US20080081732A1 (en) * 2006-09-29 2008-04-03 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for torque transmission mechanism
US20080296117A1 (en) * 2007-05-29 2008-12-04 Leising Brian E Electrically Actuated Clutch Torque Signature
US8474567B2 (en) 2007-08-13 2013-07-02 Magna Powertrain Ag & Co. Kg Method for calibrating an actuator of an all-wheel drive clutch
DE102007038151A1 (en) * 2007-08-13 2009-02-19 Magna Powertrain Ag & Co Kg Method for readjusting an actuator of an all-wheel drive clutch
US20090045001A1 (en) * 2007-08-13 2009-02-19 Magna Powertrain Ag & Co Kg Method for calibrating of an actuator of an all-wheel drive clutch
US20120116638A1 (en) * 2008-05-13 2012-05-10 Borgwarner Inc. Flash memory signature cal
US9279461B2 (en) * 2008-05-13 2016-03-08 Borgwarner Inc. Integrated memory chip for a coupling device
WO2012019710A1 (en) * 2010-08-09 2012-02-16 Schaeffler Technologies Gmbh & Co. Kg Clutch and/or transmission system, and method for starting up a clutch and/or transmission system
CN102004031A (en) * 2010-10-12 2011-04-06 上海中科深江电动车辆有限公司 Gear shift detection device and detection method for automated mechanical transmission for electric vehicle
WO2013004208A1 (en) * 2011-07-07 2013-01-10 Schaeffler Technologies AG & Co. KG Method for operating a control unit and/or an actuator
US20170183010A1 (en) * 2015-12-24 2017-06-29 Audi Ag Method for operating a drive device for a motor vehicle and corresponding drive device
US10166986B2 (en) * 2015-12-24 2019-01-01 Audi Ag Method for operating a drive device for a motor vehicle and corresponding drive device
CN109297707A (en) * 2018-10-25 2019-02-01 安徽江淮汽车集团股份有限公司 A method of carrying out driven by clutches efficiency test on vehicle

Also Published As

Publication number Publication date
KR101297625B1 (en) 2013-08-20
CN101208535B (en) 2010-06-16
US7306545B2 (en) 2007-12-11
DE112006001607T5 (en) 2008-05-08
KR20080021704A (en) 2008-03-07
WO2007001736A1 (en) 2007-01-04
CN101208535A (en) 2008-06-25

Similar Documents

Publication Publication Date Title
US7306545B2 (en) Transfer case clutch calibration method
JP4383045B2 (en) Powertrain inspection system
US20150136559A1 (en) Electromagnetic clutch
CN103477107B (en) Method for clutch parameter adaptation
US10648557B2 (en) Method for automatic calibration of automatic transmission
US7384359B2 (en) Method and apparatus for transmitting axle sensor data
US9815456B2 (en) Methods and systems for temperature sensor fault detection
AT511870B1 (en) A torque transmission device for a motor vehicle, comprising a position control system for an electromagnetic actuator and method for controlling a corresponding position control system
CN111448086A (en) Method for determining the axle load on a mechanically and/or pneumatically/hydraulically suspended vehicle and device therefor
CN103364204A (en) Diagnostics for smart sensors of vehicles
JP2021117231A (en) Differential transfer case torque sensor device and method
US7349754B1 (en) Providing component-specific performance characterization data for an assembly or subsystem
EP2461064B1 (en) Method and system for assessment of clutch wear
US20080296117A1 (en) Electrically Actuated Clutch Torque Signature
WO2009140102A2 (en) Flash memory signature cal
CN105531920A (en) A vehicle system, and a method for such vehicle system
US20220316854A1 (en) A clutch plate and a method for detecting wear of a clutch plate
US6227062B1 (en) Transmission system electrical connector monitoring system
US20120116638A1 (en) Flash memory signature cal
JP4588629B2 (en) Method and apparatus for measuring piston stroke end pressure of friction engagement element, correction value calculation method and apparatus for calculating correction value of automatic transmission based on pressurization value measured by these measurement method and measurement apparatus, and these Automatic transmission using correction method calculated by calculation method and calculation device
US20200324606A1 (en) Level control system and method for operating a level adjustment system
JP4756961B2 (en) Automatic transmission clutch hydraulic pressure characteristic value setting method
DE102017119883A1 (en) Method for controlling an automated friction clutch
JP2018112214A (en) System and method for diagnosing clutch

Legal Events

Date Code Title Description
AS Assignment

Owner name: BORGWARNER INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LANKER, CHRISTOPHER J.;REEL/FRAME:016623/0396

Effective date: 20050805

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12