US20060246126A1 - Therapeutic liposome composition and method of preparation - Google Patents

Therapeutic liposome composition and method of preparation Download PDF

Info

Publication number
US20060246126A1
US20060246126A1 US11/479,437 US47943706A US2006246126A1 US 20060246126 A1 US20060246126 A1 US 20060246126A1 US 47943706 A US47943706 A US 47943706A US 2006246126 A1 US2006246126 A1 US 2006246126A1
Authority
US
United States
Prior art keywords
receptor
conjugate
group
lipid
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/479,437
Inventor
Theresa Allen
Paul Uster
Francis Martin
Samuel Zalipsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alza Corp
Original Assignee
Alza Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46203431&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20060246126(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US08/949,046 external-priority patent/US5891468A/en
Application filed by Alza Corp filed Critical Alza Corp
Priority to US11/479,437 priority Critical patent/US20060246126A1/en
Publication of US20060246126A1 publication Critical patent/US20060246126A1/en
Assigned to ALZA CORPORATION reassignment ALZA CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALLEN, TERESA M., MARTIN, FRANCIS J., USTER, PAUL STEVEN, ZALIPSKY, SAMUEL M.
Assigned to ALZA CORPORATION reassignment ALZA CORPORATION MERGER (SEE DOCUMENT FOR DETAILS). Assignors: SEQUUS PHARMACEUTICALS INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/543Lipids, e.g. triglycerides; Polyamines, e.g. spermine or spermidine
    • A61K47/544Phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6849Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a receptor, a cell surface antigen or a cell surface determinant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • A61K47/6911Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a liposome
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • A61K47/6911Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a liposome
    • A61K47/6913Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a liposome the liposome being modified on its surface by an antibody
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/12Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
    • A61K51/1217Dispersions, suspensions, colloids, emulsions, e.g. perfluorinated emulsion, sols
    • A61K51/1234Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • A61K9/1272Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2851Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the lectin superfamily, e.g. CD23, CD72
    • C07K16/2854Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the lectin superfamily, e.g. CD23, CD72 against selectins, e.g. CD62
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S424/00Drug, bio-affecting and body treating compositions
    • Y10S424/812Liposome comprising an antibody, antibody fragment, antigen, or other specific or nonspecific immunoeffector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/829Liposomes, e.g. encapsulation

Definitions

  • the present invention relates to a target-cell sensitized therapeutic liposome composition and to a method of preparing the composition.
  • a library for preparation of the composition is also described.
  • Liposomes spherical, self-enclosed vesicles composed of amphipathic lipids, have been widely studied and are employed as vehicles for in vivo administration of therapeutic agents.
  • the so-called long circulating liposomes formulations which avoid uptake by the organs of the mononuclear phagocyte system, primarily the liver and spleen, have found commercial applicability.
  • Such long-circulating liposomes include a surface coat of flexible water soluble polymer chains, which act to prevent interaction between the liposome and the plasma components which play a role in liposome uptake.
  • targeting ligands such as an antibody
  • This approach where the targeting ligand is bound to the polar head group residues of liposomal lipid components, results in interference by the surface-grafted polymer chains, inhibiting the interaction between the bound ligand and its intended target (Klibanov, A. L., et al., Biochim. Biophys. Acta., 1062:142-148 (1991); Hansen, C. B., et al., Biochim. Biophys. Acta, 1239:133-144 (1995)).
  • the targeting ligand is attached to the free ends of the polymer chains forming the surface coat on the liposomes (Allen. T. M., et al., Biochim. Biophys. Acta, 1237:99-108 (1995); Blume, G., et al., Biochim. Biophys. Acta, 1149:180-184 (1993)).
  • Two approaches have been described for preparing a liposome having a targeting ligand attached to the distal end of the surface polymer chains.
  • One approach involves preparation of lipid vesicles which include an end-functionalized lipid-polymer derivative; that is, a lipid-polymer conjugate where the free polymer end is reactive or “activated”.
  • Such an activated conjugate is included in the liposome composition and the activated polymer ends are reacted with a targeting ligand after liposome formation.
  • the disadvantage to this approach is the difficulty in reacting all of the activated ends with a ligand.
  • the approach also requires a subsequent step for separation of the unreacted ligand from the liposome composition.
  • the lipid-polymer-ligand conjugate is included in the lipid composition at the time of liposome formation.
  • This approach has the disadvantage that some of the valuable ligand faces the inner aqueous compartment of the liposome and is unavailable for interaction with the intended target.
  • the invention includes a therapeutic liposome composition sensitized to a target cell, comprising (i) a liposomal composition composed of pre-formed liposomes having an entrapped therapeutic agent; and (ii) a plurality of conjugates, each conjugate composed of (a) a lipid having a polar head group and a hydrophobic tail, (b) a hydrophilic polymer having a proximal end and a distal end, where the polymer is attached at its proximal end to the head group of the lipid, and (c) a targeting ligand attached to the distal end of the polymer.
  • the therapeutic, target-cell sensitized liposome composition is formed by combining the liposomal composition with a conjugate selected from the plurality of conjugates.
  • the targeting ligand is an antibody or an antibody fragment.
  • the antibody or antibody fragment is of mouse origin and is humanized to remove murine epitopes.
  • the targeting ligand specifically binds to an extracellular domain of a growth factor receptor.
  • a growth factor receptor is selected from c-erbB-2 protein product of the HER2/neu oncogene, epidermal growth factor receptor, basic fibroblast growth factor receptor, and vascular endothelial growth factor receptor.
  • the targeting ligand binds a receptor selected from E-selectin receptor, L-selectin receptor, P-selectin receptor, folate receptor, CD4 receptor, CD19 receptor, ⁇ integrin receptors and chemokine receptors.
  • the targeting ligand can also be folic acid, pyridoxal phosphate, vitamin B12, sialyl Lewis x , transferrin, epidermal growth factor, basic fibroblast growth factor, vascular endothelial growth factor, VCAM-1, ICAM-1, PECAM-1, an RGD peptide or an NGR peptide.
  • the hydrophilic polymer surrounding the pre-formed liposomes is selected from the group consisting of polyvinylpyrrolidone, polyvinylmethylether, polymethyloxazoline, polyethyloxazoline, polyhydroxypropyloxazoline, polyhydroxypropylmethacrylamide, polymethacrylamide, polydimethylacrylamide, polyhydroxypropylmethacrylate, polyhydroxyethylacrylate, hydroxymethylcellulose, hydroxyethylcellulose, polyethyleneglycol, polyaspartamide and hydrophilic peptide sequences.
  • the hydrophilic polymer is polyethylene glycol of molecular weight between 500-5,000 daltons.
  • the entrapped therapeutic agent is, in one embodiment, a cytotoxic drug.
  • the drug can be an anthracycline antibiotic selected from doxorubicin, daunorubicin, epirubicin and idarubicin and analogs thereof.
  • the cytotoxic agent can also be a platinum compound selected from cisplatin, carboplatin, ormaplatin, oxaliplatin, zeniplatin, enloplatin, lobaplatin, spiroplatin, (( ⁇ )-(R)-2-aminomethylpyrrolidine (1,1-cyclobutane dicarboxylato)platinum), (SP-4-3(R)-1,1-cyclobutane-dicarboxylato(2-)-(2-methyl-1,4-butanediamine-N,N′)platinum), nedaplatin and (bis-acetato-ammine-dichloro-cyclohexylamine-platinum(IV)).
  • platinum compound selected from cisplatin, carboplatin, ormaplatin, oxaliplatin, zeniplatin, enloplatin, lobaplatin, spiroplatin, (( ⁇ )-(R)-2-aminomethylpyrrolidine (1,1-cycl
  • the cytotoxic agent is a topoisomerase 1 inhibitor selected from the group consisting of topotecan, irinotecan, (7-(4-methylpiperazino-methylene)-10,11-ethylenedioxy-20(S)-camptothecin), 7-(2-(N-isopropylamino)ethyl)-(20S)-camptothecin, 9-aminocamptothecin and 9-nitrocamptothecin.
  • the cytotoxic agent is a vinca alkaloid selected from the group consisting of vincristine, vinblastine, vinleurosine, vinrodisine, vinorelbine and vindesine.
  • the entrapped agent is a nucleic acid.
  • the nucleic acid can be an antisense oligonucleotide or ribozyme or a plasmid containing a therapeutic gene which when internalized by the target cells achieves expression of the therapeutic gene to produce a therapeutic gene product.
  • the invention includes a plurality of targeting conjugates for use in preparing a targeted, therapeutic liposome composition.
  • Each conjugate is composed of a (i) a lipid having a polar head group and a hydrophobic tail, (ii) a hydrophilic polymer having a proximal end and a distal end, the polymer attached at its proximal end to the head group of the lipid, and (iii) a targeting ligand attached to the distal end of the polymer.
  • the lipid in the conjugates is, in one embodiment, distearoyl phosphatidylethanolamine, distearoyl-phosphatidylcholine, monogalactosyl diacylglycerols or digalactosyl diacylglycerols.
  • the hydrophilic polymer in the conjugates is selected from the group consisting of polyvinylpyrrolidone, polyvinylmethylether, polymethyloxazoline, polyethyloxazoline, polyhydroxypropyloxazoline, polyhydroxypropylmethacrylamide, polymethacrylamide, polydimethylacrylamide, polyhydroxypropylmethacrylate, polyhydroxyethylacrylate, hydroxymethylcellulose, hydroxyethylcellulose, polyethyleneglycol, polyaspartamide and hydrophilic peptide sequences.
  • the targeting ligand of the conjugates can be any of those recited above.
  • the invention includes a method of formulating a therapeutic liposome composition having sensitivity to a target cell.
  • the method includes the steps of (i) selecting a liposome formulation composed of pre-formed liposomes having an entrapped therapeutic agent; (ii) selecting from a plurality of targeting conjugates a targeting conjugate composed of (a) a lipid having a polar head group and a hydrophobic tail, (b) a hydrophilic polymer having a proximal end and a distal end, where the polymer is attached at its proximal end to the head group of the lipid, and (c) a targeting ligand attached to the distal end of the polymer; and (iii) combining the liposome formulation and the selected targeting conjugate to form said therapeutic, target-cell sensitive liposome composition.
  • combining includes incubating under conditions effective to achieve insertion of the selected targeting conjugate into the liposomes of the selected liposome formulation.
  • selecting a liposome formulation includes determining the sensitivity of the target cell to the therapeutic activity of the entrapped therapeutic agent.
  • selecting a targeting conjugate includes determining the ability of the targeting ligand to bind cell surface receptors expressed on the target tell.
  • selecting a targeting conjugate is based on (i) the ability of a targeting ligand to bind to cell surface receptors expressed on the target cell and (ii) the ability of the target cell to internalize liposomes bound to the target cell by binding between the target cell and the targeting ligand.
  • FIG. 1 illustrates a library composed of a plurality of therapeutic pre-formed liposomes and a plurality of targeting conjugates
  • FIGS. 2A-2D are plots showing the fraction of liposomes (peak centered at fraction 10) and the fraction of micellular targeting conjugates (peak centered at fraction 20) by size exclusion chromatography from samples taken during incubation of a targeting conjugate sialyl-Lewis x -PEG-DSPE with pre-formed liposomes at times of 0 hours ( FIG. 2A ), 1 hour ( FIG. 2B ), 3 hours ( FIG. 2C ) and 5 hours ( FIG. 2D );
  • FIG. 3 is a plot showing the time course for insertion of the targeting conjugate sialyl-Lewis x -PEG-DSPE into pre-formed liposomes when incubated at 25° C. (closed circles) and 37° C. (open squares);
  • FIG. 4 is a plot showing the blood circulation lifetime of target-cell sensitized liposome prepared in accordance with the invention, where the percent of injected dose in vivo for liposomes having E-selectin Fab fragments targeting ligands (30 ligands per liposome represented by solid triangles, 70 ligands per liposome represented by solid squares) and for liposomes having a surface coating of polyethyleneglycol chains (open circles) as a function of time after dosing; and
  • FIGS. 5A-5B are scanned images of micrographs of blood vessels in a window chamber of a mouse dorsal fold, where FIG. 5A is the control of the untreated blood vessels under transmitted light, and FIG. 5B is a fluorescence micrograph showing binding of fluorsecin-labeled liposomes bearing an E-selectin Fab fragments to endothelial cells in the blood vessels.
  • “Incubating” or “incubating under conditions effective to achieve insertion” refer to conditions of time, temperature and liposome lipid composition which allow for penetration and entry of a selected component, such as a lipid or lipid conjugate, into the lipid bilayer of a liposome.
  • Pre-formed liposomes refers to intact, previously formed unilamellar or multilamellar lipid vesicles.
  • “Sensitized to a target cell” or “target-cell sensitized” refers to a liposome which includes a ligand or moiety covalently bound to the liposome and having binding affinity for a receptor expressed on a particular cell.
  • “Therapeutic liposome composition” refers to liposomes which include a therapeutic agent entrapped in the aqueous spaces of the liposomes or in the lipid bilayers of the liposomes.
  • Vehicle-forming lipid refers to any lipid capable of forming part of a stable micelle or liposome composition and typically including one or two hydrophobic acyl hydrocarbon chains or a steroid group and may contain a chemically reactive group, such as an amine, acid, ester, aldehyde or alcohol, at its polar head group.
  • the invention includes a kit or “library” for preparation of a therapeutic, target-cell sensitized liposome composition.
  • FIG. 1 shows such a library 10 , where a plurality 12 of targeting conjugates 12 ( a ), 12 ( b ), 12 ( c ), etc. and a plurality 14 of pre-formed therapeutic liposome compositions, such compositions 14 ( a ), 14 ( b ), 14 ( c ) are shown.
  • the targeting conjugates and pre-formed liposome pluralities are shown in suspension form in vials ready for use, however it will be appreciated that other storage forms are contemplated, such as lyophilized or freeze-dried.
  • the targeting conjugates in the library are lipid-polymer-ligand conjugates and will be described in more detail below.
  • the conjugates in the library differ in the targeting ligand attached to the lipid-polymer, as well as in the lipid and polymer components. Exemplary ligands and lipid and polymer components will be set forth below.
  • the pre-formed liposomes in the library are either conventional liposomes containing an entrapped therapeutic agent or are liposomes having a surface coating of hydrophilic polymer chains, as will be described below.
  • the pre-formed liposomes in the library differ from one another generally in the entrapped therapeutic agent and exemplary agents will be set forth below.
  • the pre-formed liposomes can also differ from one another in the liposome lipid components.
  • a therapeutic, target-cell sensitized liposome composition is prepared from the library as follows.
  • a composition specific for a subject suffering from a particular condition for example a solid tumor of the lung, a bacterial infection or a viral infection, is prepared by selecting a targeting conjugate from the library.
  • the targeting conjugate is selected either according to knowledge of those of skill in the art of ligand-receptor binding pairs or by obtaining a suitable patient sample, e.g., a fluid sample, a biopsy or the like.
  • the sample is tested by means known to those in the art for expression of a variety of receptors to determine the appropriate targeting ligand.
  • a pre-formed therapeutic liposome composition is selected based on knowledge of those of skill in the art of the therapeutic agents appropriate for treatment of the particular condition.
  • the therapeutic liposome composition is selected after performing chemosensitivity tests to determine the effect of the entrapped agent on cells of concern obtained from the patient biopsy or fluid sample.
  • the target-cell sensitized, therapeutic liposome composition for the subject is prepared by combining the two components. As will be described, the components are combined under conditions effective to achieve insertion of the targeting conjugate into the liposome bilayer to create the target-cell sensitized liposomes. After insertion is complete, the composition is administered to patient.
  • one component of the kit or library for preparing the composition of the invention is a plurality of pre-formed liposomes having an entrapped therapeutic or diagnostic agent.
  • the liposome lipid components, exemplary agents and methods of preparing the liposomes are described.
  • Liposomes suitable for use in the composition of the present invention include those composed primarily of vesicle-forming lipids.
  • a vesicle-forming lipid is one which (a) can form spontaneously into bilayer vesicles in water, as exemplified by the phospholipids, or (b) is stably incorporated into lipid bilayers, with its hydrophobic moiety in contact with the interior, hydrophobic region of the bilayer membrane, and its head group moiety oriented toward the exterior, polar surface of the membrane.
  • the vesicle-forming lipids of this type are preferably ones having two hydrocarbon chains, typically acyl chains, and a head group, either polar or nonpolar.
  • synthetic vesicle-forming lipids and naturally-occurring vesicle-forming lipids including the phospholipids, such as phosphatidylcholine, phosphatidylethanolamine, phosphatidic acid, phosphatidylinositol, and sphingomyelin, where the two hydrocarbon chains are typically between about 14-22 carbon atoms in length, and have varying degrees of unsaturation.
  • the above-described lipids and phospholipids whose acyl chains have varying degrees of saturation can be obtained commercially or prepared according to published methods.
  • Other suitable lipids include glycolipids, cerebrosides and sterols, such as cholesterol.
  • Cationic lipids are also suitable for use in the liposomes of the invention, where the cationic lipid can be included as a minor component of the lipid composition or as a major or sole component.
  • Such cationic lipids typically have a lipophilic moiety, such as a sterol, an acyl or diacyl chain, and where the lipid has an overall net positive charge.
  • the head group of the lipid carries the positive charge.
  • Exemplary cationic lipids include 1,2-dioleyloxy-3-(trimethylamino)propane (DOTAP); N-[1-(2,3,-ditetradecyloxy)propyl]-N,N-dimethyl-N-hydroxyethylammonium bromide (DMRIE); N-[1-(2,3,-dioleyloxy)propyl]-N,N-dimethyl-N-hydroxy ethylammonium bromide (DORIE); N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA); 3 ⁇ [N-(N′,N′-dimethylaminoethane)carbamoly]cholesterol (DC-Chol); and dimethyldioctadecylammonium (DDAB).
  • DOTAP 1,2-dioleyloxy-3-(trimethylamino)propane
  • DMRIE N-[1
  • the cationic vesicle-forming lipid may also be a neutral lipid, such as dioleoylphosphatidyl ethanolamine (DOPE) or an amphipathic lipid, such as a phospholipid, derivatized with a cationic lipid, such as polylysine or other polyamine lipids.
  • DOPE dioleoylphosphatidyl ethanolamine
  • an amphipathic lipid such as a phospholipid
  • a cationic lipid such as polylysine or other polyamine lipids.
  • the neutral lipid (DOPE) can be derivatized with polylysine to form a cationic lipid.
  • the vesicle-forming lipid is selected to achieve a specified degree of fluidity or rigidity, to control the stability of the liposome in serum, to control the conditions effective for insertion of the targeting conjugate, as will be described, and to control the rate of release of the entrapped agent in the liposome.
  • Liposomes having a more rigid lipid bilayer, or a liquid crystalline bilayer are achieved by incorporation of a relatively rigid lipid, e.g., a lipid having a relatively high phase transition temperature, e.g., up to 60° C.
  • a relatively rigid lipid e.g., a lipid having a relatively high phase transition temperature, e.g., up to 60° C.
  • Rigid, i.e., saturated, lipids contribute to greater membrane rigidity in the lipid bilayer.
  • Other lipid components, such as cholesterol are also known to contribute to membrane rigidity in lipid bilayer structures.
  • lipid fluidity is achieved by incorporation of a relatively fluid lipid, typically one having a lipid phase with a relatively low liquid to liquid-crystalline phase transition temperature, e.g., at or below room temperature.
  • the targeted, therapeutic liposome composition of the invention is prepared using pre-formed liposomes and a targeting conjugate, which are incubated together under conditions effective to achieve insertion of the conjugate into the liposome bilayer. More specifically, the two components are incubated together under conditions which achieve insertion of the conjugate in such a way that the targeting ligand is oriented outwardly from the liposome surface, and therefore available for interaction with its cognate receptor.
  • Vesicle-forming lipids having phase transition temperatures from approximately 2° C.-80° C. are suitable for use in the pre-formed liposome component of the present composition.
  • the lipid distearyl phosphatidylcholine (DSPC) has a phase transition temperature of 62° C.
  • the lipid hydrogenated soy phosphatidylcholine (HSPC) has a phase transition temperature of 58° C.
  • Phase transition temperatures of many lipids are tabulated in a variety of sources, such as Avanti Polar Lipids catalogue and Lipid Thermotropic Phase Transition Database (LIPIDAT, NIST Standard Reference Database 34).
  • a vesicle-forming lipid having a phase transition temperature between about 30-70° C. is employed.
  • the lipid used in forming the liposomes is one having a phase transition temperature within about 20° C., more preferably 10° C., most preferably 5° C., of the temperature to which the ligand in the targeting conjugate can be heated without affecting its binding activity.
  • the conditions effective to achieve insertion of the targeting conjugate into the liposome are determined based on several variables, including, the desired rate of insertion, where a higher incubation temperature may achieve a faster rate of insertion, the temperature to which the ligand can be safely heated without affecting its activity, and to a lesser degree the phase transition temperature of the lipids and the lipid composition. It will also be appreciated that insertion can be varied by the presence of solvents, such as amphipathic solvents including polyethyleneglycol and ethanol, or detergents.
  • the pre-formed liposomes also include a vesicle-forming lipid derivatized with a hydrophilic polymer.
  • a vesicle-forming lipid derivatized with a hydrophilic polymer As has been described, for example in U.S. Pat. No. 5,013,556, including such a derivatized lipid in the liposome composition forms a surface coating of hydrophilic polymer chains around the liposome. The surface coating of hydrophilic polymer chains is effective to increase the in vivo blood circulation lifetime of the liposomes when compared to liposomes lacking such a coating.
  • Vesicle-forming lipids suitable for derivatization with a hydrophilic polymer include any of those lipids listed above, and, in particular phospholipids, such as distearoyl phosphatidylethanolamine (DSPE).
  • DSPE distearoyl phosphatidylethanolamine
  • Hydrophilic polymers suitable for derivatization with a vesicle-forming lipid include polyvinylpyrrolidone, polyvinylmethylether, polymethyloxazoline, polyethyloxazoline, polyhydroxypropyloxazoline, polyhydroxypropylmethacrylamide, polymethacrylamide, polydimethylacrylamide, polyhydroxypropylmethacrylate, polyhydroxyethylacrylate, hydroxymethylcellulose, hydroxyethylcellulose, polyethyleneglycol, polyaspartamide and hydrophilic peptide sequences.
  • the polymers may be employed as homopolymers or as block or random copolymers.
  • a preferred hydrophilic polymer chain is polyethyleneglycol (PEG), preferably as a PEG chain having a molecular weight between 500-10,000 daltons, more preferably between 1,000-5,000 daltons.
  • PEG polyethyleneglycol
  • Methoxy or ethoxy-capped analogues of PEG are also preferred hydrophilic polymers, commercially available in a variety of polymer sizes, e.g., 120-20,000 daltons.
  • vesicle-forming lipids derivatized with hydrophilic polymers has been described, for example in U.S. Pat. No. 5,395,619.
  • liposomes including such derivatized lipids has also been described, where typically, between 1-20 mole percent of such a derivatized lipid is included in the liposome formulation.
  • the pre-formed liposomes include an agent entrapped in the liposome. Entrapped is intended to include encapsulation of an agent in the aqueous core and aqueous spaces of liposomes as well as entrapment of an agent in the lipid bilayer(s) of the liposomes.
  • Agents contemplated for use in the composition of the invention are widely varied, and include both therapeutic applications and those for use in diagnostic applications.
  • Therapeutic agents include natural and synthetic compounds having the following therapeutic activities: anti-arthritic, anti-arrhythmic, anti-bacterial, anticholinergic, anticoagulant, antidiuretic, antidote, antiepileptic, antifungal, anti-inflammatory, antimetabolic, antimigraine, antineoplastic, antiparasitic, antipyretic, antiseizure, antisera, antispasmodic, analgesic, anesthetic, beta-blocking, biological response modifying, bone metabolism regulating, cardiovascular, diuretic, enzymatic, fertility enhancing, growth-promoting, hemostatic, hormonal, hormonal suppressing, hypercalcemic alleviating, hypocalcemic alleviating, hypoglycemic alleviating, hyperglycemic alleviating, immunosuppressive, immunoenhancing, muscle relaxing, neurotransmitting, parasympathomimetic, sympathominetric plasma extending, plasma expanding, psychotropic, thrombolytic and vasodilating.
  • the entrapped agent is a cytotoxic drug, that is, a drug having a deleterious or toxic effect on cells.
  • cytotoxic agents include the anthracycline antibiotics such as doxorubicin, daunorubicin, epirubicin and idarubicin, and analogs of these, such as epirubidin and mitoxantrone; platinum compounds, such as cisplatin, carboplatin, ormaplatin, oxaliplatin, zeniplatin, enloplatin, lobaplatin, spiroplatin, (( ⁇ )-(R)-2-aminomethylpyrrolidine (1,1-cyclobutane dicarboxylato)platinum) (DWA2114R), (SP-4-3(R)-1,1-cyclobutane-dicarboxylato(2-)-(2-methyl-1,4-butanediamine-N,N′)platinum) (CI-973), nedap
  • vinca alkaloids such as vincristine, vinblastine, vinleurosine, vinrodisine, vinorelbine (navelbine) and vindesine.
  • cytotoxic agents is a topoisomerase I inhibitor, such as camptothecin and its analogues, including SN-38 ((+)-(4S)-4,11-diethyl-4,9-dihydroxy-1H-pyrano[3′,4′:6,7]-indolizino[1,2-b]quinoline-3,14(4H,12H)-dione); 9-aminocamptothecin; 9-nitrocamptothecin, topotecan (hycamtin; 9-dimethyl-aminomethyl-10-hydroxycamptothecin); irinotecan (CPT-11; 7-ethyl-10-[4-(1-piperidino)-1-piperidino]-carbonyloxy-camptothecin), which is hydrolyzed in vivo to SN-38); 7-ethylcamptothecin and its derivatives (Sawada, S.
  • camptothecin and its analogues including
  • the entrapped therapeutic agent is an angiogenesis inhibitor, such as angiostatin, endostatin and TNF ⁇ .
  • the entrapped therapeutic agent in a nucleic acid selected from a variety of DNA and RNA based nucleic acids, including fragments and analogues of these.
  • a variety of genes for treatment of various conditions have been described, and coding sequences for specific genes of interest can be retrieved from DNA sequence databanks, such as GenBank or EMBL.
  • DNA sequence databanks such as GenBank or EMBL.
  • polynucleotides for treatment of viral, malignant and inflammatory diseases and conditions such as, cystic fibrosis, adenosine deaminase deficiency and AIDS.
  • Treatment of cancers by administration of tumor suppressor genes such as APC, DPC4, NF-1, NF-2, MTS1, RB, p53, WT1, BRCA1, BRCA2 and VHL, are contemplated.
  • HLA-B7 tumors, colorectal carcinoma, melanoma
  • IL-2 cancers, especially breast cancer, lung cancer, and tumors
  • IL-4 cancer
  • TNF cancer
  • IGF-1 antisense brain tumors
  • IFN neuroblastoma
  • GM-CSF renal cell carcinoma
  • MDR-1 cancer, especially advanced cancer, breast and ovarian cancers
  • HSV thymidine kinase brain tumors, head and neck tumors, mesothelioma, ovarian cancer.
  • the polynucleotide can be an antisense DNA oligonucleotide composed of sequences complementary to its target, usually a messenger RNA (mRNA) or an mRNA precursor.
  • mRNA messenger RNA
  • the mRNA contains genetic information in the functional, or sense, orientation and binding of the antisense oligonucleotide inactivates the intended mRNA and prevents its translation into protein.
  • antisense molecules are determined based on biochemical experiments showing that proteins are translated from specific RNAs and once the sequence of the RNA is known, an antisense molecule that will bind to it through complementary Watson-Crick base pairs can be designed.
  • Such antisense molecules typically contain between 10-30 base pairs, more preferably between 10-25, and most preferably between 15-20.
  • the antisense oligonucleotide can be modified for improved resistance to nuclease hydrolysis, and such analogues include phosphorothioate, methylphosphonate, phosphodiester and p-ethoxy oligonucleotides (WO 97/07784).
  • the entrapped agent can also be a ribozyme or catalytic RNA.
  • the liposomes may be prepared by a variety of techniques, such as those detailed in Szoka, F., Jr., et al., Ann. Rev. Biophys. Bioeng. 9:467 (1980), and specific examples of liposomes prepared in support of the present invention will be described below.
  • the liposomes are multilamellar vesicles (MLVs), which can be formed by simple lipid-film hydration techniques. In this procedure, a mixture of liposome-forming lipids of the type detailed above dissolved in a suitable organic solvent is evaporated in a vessel to form a thin film, which is then covered by an aqueous medium. The lipid film hydrates to form MLVS, typically with sizes between about 0.1 to 10 microns.
  • the pre-formed liposomes include a vesicle-forming lipid derivatized with a hydrophilic polymer to form a surface coating of hydrophilic polymer chains on the liposomes surface.
  • a coating is preferably prepared by including between 1-20 mole percent of the derivatized lipid with the remaining liposome forming components, e.g., vesicle-forming lipids.
  • Exemplary methods of preparing derivatized lipids and of forming polymer-coated liposomes have been described in co-owned U.S. Pat. Nos. 5,013,556, 5,631,018 and 5,395,619, which are incorporated herein by reference.
  • the hydrophilic polymer may be stably coupled to the lipid, or coupled through an unstable linkage which allows the coated liposomes to shed the coating of polymer chains as they circulate in the bloodstream or in response to a stimulus.
  • the therapeutic or diagnostic agent of choice can be incorporated into liposomes by standard methods, including (i) passive entrapment of a water-soluble compound by hydrating a lipid film with an aqueous solution of the agent, (ii) passive entrapment of a lipophilic compound by hydrating a lipid film containing the agent, and (iii) loading an ionizable drug against an inside/outside liposome pH gradient.
  • Other methods such as reverse evaporation phase liposome preparation, are also suitable.
  • Polynucleotides, oligonucleotides, other nucleic acids, such as a DNA plasmid can be entrapped in the liposome by condensing the nucleic acid in single-molecule form.
  • the nucleic acid is suspended in an aqueous medium containing protamine sulfate, spermine, spermidine, histone, lysine, mixtures thereof, or other suitable polycationic condensing agent, under conditions effective to condense the nucleic acid into small particles.
  • the solution of condensed nucleic acid molecules is used to rehydrate a dried lipid film to form liposomes with the condensed nucleic acid in entrapped form.
  • a similar approach to condensing nucleic acids for entrapment in liposomes is described in co-pending U.S. patent application Ser. No. 09/103,341.
  • the pre-formed liposomes of the invention are preferably prepared to have substantially homogeneous sizes in a selected size range, typically between about 0.01 to 0.5 microns, more preferably between 0.03-0.40 microns.
  • One effective sizing method for REVs and MLVs involves extruding an aqueous suspension of the liposomes through a series of polycarbonate membranes having a selected uniform pore size in the range of 0.03 to 0.2 micron, typically 0.05, 0.08, 0.1, or 0.2 microns.
  • the pore size of the membrane corresponds roughly to the largest sizes of liposomes produced by extrusion through that membrane, particularly where the preparation is extruded two or more times through the same membrane.
  • Homogenization methods are also useful for down-sizing liposomes to sizes of 100 nm or less (Martin, F. J., in S PECIALIZED D RUG D ELIVERY S YSTEMS - M ANUFACTURING AND P RODUCTION T ECHNOLOGY , (P. Tyle, Ed.) Marcel Dekker, New York, pp. 267-316 (1990)).
  • the kit or library of the invention also includes a targeting conjugate, now to be described.
  • the targeting conjugate is composed of (i) a lipid having a polar head group and a hydrophobic tail, e.g., a vesicle-forming lipid and any of those described above are suitable; (ii) a hydrophilic polymer attached to the head group of the vesicle-forming lipid, and any of the polymers recited above are suitable; and (iii) a targeting ligand attached to the polymer.
  • the targeting ligand for use in the conjugate can be selected from a wide variety of moieties capable of targeting the pre-formed liposomes to a selected cell or tissue.
  • suitable ligands suitable are listed in Table 1.
  • TABLE 1 LIGAND-RECEPTOR PAIRS AND ASSOCIATED TARGET CELL LIGAND RECEPTOR CELL TYPE Folate folate receptor epithelial carcinomas, bone marrow stem cells water soluble vitamins vitamin receptor various cells Pyridoxyl phosphate CD4 CD4+ lymphocytes Apolipoproteins LDL liver hepatocytes, vascular endothelial cells Insulin insulin receptor pancreatic islet cells Transferrin Transferrin receptor endothelial cells (brain) Galactose Asialoglycoprotein liver hepatocytes receptor Sialyl-Lewis x E, P selectin activated endothelial cells Mac-1 L selectin neutrophils, leukocytes VEGF Flk-1,2 tumor epithelial cells basic FGF FGF
  • One preferred ligand is an antibody or an antibody fragment. It will be appreciated that the antibody or antibody fragment can be of mouse origin and humanized to remove murine surface recognition features.
  • the targeting ligand binds to an extracellular domain of a growth factor receptor.
  • exemplary receptors include the c-erbB-2 protein product of the HER2/neu oncogene, epidermal growth factor (EGF) receptor, basic fibroblast growth receptor (basic FGF) receptor and vascular endothelial growth factor receptor, E-, L- and P-selectin receptors, folate receptor, CD4 receptor, CD19 receptor, ⁇ integrin receptors and chemokine receptors.
  • the targeting ligand is covalently attached to the free distal end of the hydrophilic polymer chain, which is attached at its proximal end to a vesicle-forming lipid.
  • the hydrophilic polymer polyethyleneglycol (PEG) has been widely studied (Allen, T.
  • the PEG chains are functionalized to contain reactive groups suitable for coupling with, for example, sulfhydryls, amino groups, and aldehydes or ketones (typically derived from mild oxidation of carbohydrate portions of an antibody) present in a wide variety of ligands (see Table 1).
  • PEG-terminal reactive groups examples include maleimide (for reaction with sulfhydryl groups), N-hydroxysuccinimide (NHS) or NHS-carbonate ester (for reaction with primary amines), hydrazide or hydrazine (for reaction with aldehydes or ketones), iodoacetyl (preferentially reactive with sulfhydryl groups) and dithiopyridine (thiol-reactive).
  • Synthetic reaction schemes for activating PEG with such groups are set forth in U.S. Pat. Nos. 5,631,018, 5,527,528, 5,395,619, and the relevant sections describing synthetic reaction procedures are expressly incorporated herein by reference.
  • hydrophilic polymers recited above in combination with any of the vesicle-forming lipids recited above can be employed for the targeting conjugate and suitable reaction sequences can be determined by those of skill in the art.
  • a pre-formed therapeutic liposome composition and a targeting conjugate are selected from the library.
  • the two components are combined under conditions effective to achieve insertion of the targeting conjugate into the liposome lipid bilayer to form the target-cell sensitized composition.
  • Sialyl-Lewis x can be used to target liposomes to cells expressing endothelial leukocyte adhesion molecule-1 (ELAM-1 or E-selectin) for delivery of a therapeutic agent to a site of inflammation.
  • ELAM-1 endothelial leukocyte adhesion molecule-1
  • ELAM-1 is expressed on the surface of endothelial cells of blood vessels adjacent to sites of inflammation.
  • ELAM-1 recognizes and binds the polysaccharide moiety sialyl-Lewis x which is present on surfaces of neutrophils, and recruits neutrophils to sites of inflammation.
  • Pre-formed liposomes were prepared as described in Example 1 and were composed of partially hydrogenated soy-bean phosphatidylcholine (PHPC), cholesterol and mPEG-DSPE in a molar ratio of 55:40:3.
  • the liposomes were sized to a diameter of about 100 nm.
  • the liposomes were incubated at 37° C. with 1.2 mole percent sialyl-Lewis x -PEG-DSPE targeting conjugate to achieve insertion of the conjugate into the pre-formed liposomes.
  • FIGS. 2A-2D the liposome fraction of the incubation mixture is represented by the peak centered around fraction 10 and the micellular targeting conjugate is represented by the peak centered around fraction 20.
  • FIG. 2A shows the initial composition mixture, at time zero and FIGS. 2B-2D show the composition after 1, 3 and 5 hours incubation, respectively. Disappearance as a function of incubation time of the conjugate micelles (peak at fraction 20) is apparent, indicating insertion of the targeting conjugate into the pre-formed liposomes.
  • FIG. 3 shows the time-course of insertion of sialyl-Lewis x -PEG-DSPE targeting conjugate into PHPC:Chol:mPEG-DSPE (55:40:3) pre-formed liposomes at 37° C. (open squares) and 25° C. (closed circles). Insertion of the conjugate into the pre-formed liposomes proceeded more rapidly at 37° C., however insertion at ambient temperature was also substantial.
  • Table 2 shows the average particle size determined by dynamic light scattering after a 5 hour incubation period at 37° C. of pre-formed liposomes and a targeting conjugate, either YIGSRG-PEG-DSPE or sialyl-Lewis x -PEG-DSPE.
  • the average particle size after incubation and insertion of the targeting conjugate increased only slightly.
  • the studies above illustrate preparation of a target-cell sensitized liposome composition by incubating pre-formed liposomes with a ligand-polymer-lipid targeting conjugate. It will be appreciated that liposomes having any composition and any selected entrapped therapeutic agent can be used in conjunction with the desired targeting conjugate.
  • the ligand-polymer-lipid conjugate readily inserts into pre-formed liposomes in a time and temperature dependent fashion, and, as will be appreciated, is variable according to the liposome and ligand compositions.
  • Liposomes having an E-selectin Fab fragment targeting ligand were prepared in accordance with the invention for in vivo administration to rodents.
  • an anti-E-selectin Fab fragment was conjugated to PEG-DSPE to form an E-selectin Fab-PEG-DSPE targeting conjugate.
  • the targeting conjugate was incubated with pre-formed 111 In-labelled-liposomes composed of partially hydrogenated soy phosphatidylcholine (PHPC), PEG-DSPE and cholesterol in a 55:40:3 molar ratio in an amount sufficient to obtain 12, 20, 33, 40 and 70 Fab residues per 100 nm liposome (Example 2B).
  • the insertion procedure resulted in greater than 95% of the targeting conjugates being inserted into the pre-formed liposomes.
  • the insertion efficiency is greater than 90%, more preferably greater than 95%.
  • the liposomes containing 30 Fab residues per liposome and 70 Fab residues per liposome were administered to rats to determine the blood circulation lifetime of the liposomes.
  • 111 In-labelled-liposomes of PHPC, cholesterol and PEG-DSPE (molar ratio of 55:40:3) were administered.
  • the results are shown in FIG. 4 , where the liposomes having 70 Fab residues per liposome (solid squares) and 30 Fab residues per liposomes (solid triangles) have a pharmacokinetic profile similar to that of the control liposomes (open circles). As seen, 24 hours after administration, nearly 25% of the injected dose remains in circulation in the bloodstream.
  • FIGS. 5A-5B are scanned images of photomicrographs of the blood vessels under transmitted light prior to liposome administration ( FIG. 5A ) and 5 hours after administration of the target-cell sensitized, fluorescein-labeled liposomes ( FIG. 5B ).
  • the E-selectin Fab liposomes target the endothelial cells along the blood vessels.
  • the appearance of E-selectin antigen peak was around 5 hours after endotoxin treatment, indicating that the binding activity of the E-selectin antibody was retained.
  • a plurality of targeting conjugates and a plurality of liposome formulations with a variety of entrapped therapeutic agents are available for selection according to the indication to be treated.
  • preparation and use of the library will be further demonstrated by describing suitable library components for treatment of an exemplary indication, breast cancer.
  • the library of the invention includes a plurality of targeting conjugates in the form of pre-filled vials containing the conjugate as a purified, sterile micellar suspension in an appropriate buffer.
  • the plurality of targeting conjugates can include the following.
  • the c-erbB-2 receptor of the HER2-neu oncogene is over-expressed in many human breast cancer cells.
  • Humanized monoclonal antibodies have been developed which bind with high affinity to the c-erbB-2 receptor (Baselga J., et al., J Clin Oncol., 14(3):737-44 (1996)).
  • Single chain sFv fragments of the anti c-erbB-2 C6.5 antibody into which a terminal cysteine group is inserted are obtained as described by Schier et al. ( Immunotechnology, 1(1):73-81 (1995)).
  • the whole c-erbB-2 antibody is conjugated to PEG-DSPE having a reactive hydrazide moiety.
  • the sFv fragment containing the terminal cysteine (and thus a free thiol group) is conjugated to PEG-DSPE-maleimide, under conditions like those described for the conjugation of the anti-E selected Fab′ antibody fragment to the same compound in Example 2.
  • EGFR Epidermal Growth Factor Receptor
  • EGFRVIII deletion-mutant form of EGFR
  • the RGD sequence is the cell attachment site for proliferating vascular endothelial cells which form the blood supply to tumors (during angiogenesis). Such attachments are mediated by a v integrins expressed by these endothelial cells.
  • the integrin-binding activity of matrix adhesion proteins can be reproduced by short synthetic peptides containing the RGD sequence.
  • Reagents that bind selectively to only one or a few of the RGD-directed integrins can be designed by cyclizing peptides with selected sequences around the RGD and by synthesizing RGD mimics.
  • RGD peptides can be isolated by using phage display peptide libraries (Pasqualini, R., and Ruoslahti, E., Nature, 380(6572):364-6 (1996)). Two of these peptides—one containing an a v integrin-binding Arg-Gly-Asp motif and the other an Asn-Gly-Arg motif—have been identified that bind selectively to tumor vasculature. These can be linked to liposomes using the methods described herein.
  • PEG-DSPE conjugates of ligands such as folate or transferin, which may bind to receptors on human breast cancer cells are prepared according to the examples set herein and by methods known in the art.
  • the library further includes a therapeutic liposome composition or a plurality of liposome compositions containing encapsulated agents appropriate for treating human breast cancer cells in vivo.
  • the pre-formed liposomes are in the form of pre-filled vials containing the liposomes as a sterile suspension in appropriate buffers is created.
  • Liposome containing the following entrapped agents are exemplary for the human breast cancer example: doxorubicin, cisplatin, water-soluble camptothecin derivatives (e.g. topotecan), navelbine, vincristine, antisense oligonucleotides, p53 gene, HSVtk gene, a radiation sensitizer and an angiogenesis inhibitor.
  • a targeting conjugate and a therapeutic liposome composition are selected. Selection of the targeting conjugate is based upon the expression of the conjugate's cognate receptor on individual patient's breast cancer cells. For example, it is common to test for the expression of a variety of receptors on cancer cells obtained from patients during biopsy. Clinical reference laboratories routinely screen biopsy specimens for estrogen receptor status and c-erbB-2 expression status is becoming routine with the clinical development of HERCEPTIN an anti-tumor therapeutic antibody product described by Baselga, et al, ( J. Clin Oncol., 14(3):737-44 (1996)). Exemplary methods for determining c-erbB-2 receptor status are given by Sjogren, et al.
  • a pre-formed therapeutic liposome composition is selected from the library.
  • a variety of methods exist to screen for the sensitivity of breast cancer cells taken at biopsy to the cell killing effects of drugs in vitro and in vivo chemosensitivity testing
  • exemplary methods are described by Tomikawa, et al. ( Anticancer Res., 18(2A):1059-62 (1998)) and by Coley, et al. ( Anticancer Res. 17(1A):231-6 (1997)) and by Andreotti, et al. ( Cancer Res., 55(22):5276-82 (1995)).
  • In vitro cytotoxicity is often expressed as the concentration of a particular cancer drug needed to inhibit cancer cell proliferation by 50% in culture (IC 50 ).
  • a typical screening test cells obtained from a patient's biopsy specimen are teased apart (mechanically and/or by enzyme treatment), suspended in a medium which supports their growth and placed in wells of a culture plate. Drugs at various dilutions are added and any growth inhibition of the cells caused by the drug is measured. IC 50 values are derived from these measurements. Drugs that kill the cells or inhibit growth at concentrations at or below IC 50 values that can be achieved in vivo are considered as candidates for therapeutic intervention.
  • a therapeutic agent can be selected on the basis of historical information and accepted clinical practice (see for example, Handbook of Cancer Chemotherapy, 3 rd edition, R. T. Skeell, editor, A, Little Brown, Boston, 1991, pp 77-138.).
  • doxorubicin is known to be one of the most active agents against human breast cancer. Therefore, in a plurality of liposome-encapsulated cancer drugs, doxorubicin would represent an obvious selection for the treatment of breast cancer based on accepted clinical practice.
  • the two reagents are combined to create target cell-sensitized therapeutic liposome composition tailored to an individual patient's cancer.
  • Aseptic technique is used, preferably in a hospital pharmacy or other appropriate setting.
  • the liposomes are typically in suspension form and are administered parenterally, preferably intravenously.
  • Other routes of administration are suitable, including subcutaneous, intramuscular, interlesional (to tumors), intertracheal by inhalation, topical, internasal, intraocular, via direct injection into organs and intravenous.
  • tailoring the formulation in this way to the individual patient maximizes the likelihood of therapeutic benefit provided by the targeting component and the encapsulated drug.
  • the dosage will depend on the liposome composition and the condition to be treated. Suitable dosages can be readily determined by those of skill in the art.
  • a hematological disease e.g. a B-cell or T-cell malignancy, such as B-cell leukemias/lymphomas, multiple myeloma, T-cell lymphoma and acute lymphocytic leukemia.
  • the library includes a plurality of targeting conjugates.
  • Targeting conjugates suitable for selection include lipid-polymer-antibody conjugates, where the antibody is a monoclonal antibody or antibody fragment having a specific recognition to a B-cell or a T-cell epitope, as has been described in U.S. Pat. No. 5,620,689, which is incorporated herein by reference.
  • the antibody can be one that recognizes the B-cell epitopes CD19, CD20, CD22 or CD77.
  • the antibody can be one that recognizes the T-cell epitopes CD4, CD7 or CD8.
  • the library further includes liposomes having entrapped agents.
  • liposomes having the following entrapped agents are potential candidates for selection from the library: doxorubicin, vincristine, lomustine, interferon, melphalan, cyclophosphamide, prednisone, chlorambucil, carmustin and dexamethasone.
  • a blood or tissue sample is taken from the patient suffering from the hematological disorder for determination of the expression of various receptors, such as CD19, CD20, CD22, CD4, CD7, CD8.
  • various receptors such as CD19, CD20, CD22, CD4, CD7, CD8.
  • the receptor screening can of course be more selective, e.g., if the disorder is B-cell related, then the sample can be tested for expression of CD19, CD20 and CD22. Based on the results of the screening, a suitable targeting conjugate is chosen.
  • a therapeutic agent for treatment of the disorder is selected from the library using the procedures described in the breast cancer example above.
  • the selected conjugate and liposome composition are incubated together as described above to form the target-cell sensitized, therapeutic liposome composition specific for the patient.
  • Suitable dosages for the composition can be initially based on the standard chemotherapeutic dose and adjusted accordingly over the course of treatment by monitoring the disease progression.
  • Liposomes were prepared by mixing partially hydrogenated soy-bean phosphatiylcholine (PHPC, iodine value of 35, Lipoid (Ludwigshafen, Germany)), cholesterol (Croda (Fullerton, Calif.)) and mPEG-DSPE (prepared as described in Zalipsky, S., et al., Bioconjugate Chemistry, 4:296-299 (1993)) at a molar ratio of 55:40:3 in chloroform and/or methanol in a round bottom flask.
  • PHPC soy-bean phosphatiylcholine
  • cholesterol Choid (Ludwigshafen, Germany)
  • mPEG-DSPE prepared as described in Zalipsky, S., et al., Bioconjugate Chemistry, 4:296-299 (1993)
  • the solvents were removed by rotary evaporation, and the dried lipid film produced was hydrated with either sodium phosphate buffer (10 mM, 140 mM NaCl, pH 7) or HEPES buffer (25 mM, 150 mM NaCl, pH 7) to produce large multilamellar vesicles.
  • the resulting vesicles were passed repeatedly under pressure through 0.2, 0.1 and 0.05 ⁇ m pore size polycarbonate membranes, until the average size distribution for the diameter (monitored by dynamic light scattering using a Coulter N4MD (Hialeah, Fla.)) was approximately 100 nm.
  • the mean particle diameter measured from 12 different batches ranged form 92 to 111 nm with an average 98 nm.
  • Targeting conjugates of and YIGSRG-PEG-DSPE were prepared according to Zalipsky, S., et al., Bioconjugate Chemistry, 8(2):111-118 (1997).
  • targeting conjugates were separated from inserted targeting conjugates (liposomes) by size exclusion chromatography.
  • sialyl-Lewis x -PEG-DSPE conjugate a Biogel A50M column equilibrated with 10 mM sodium phosphate, 140 mM sodium chloride, and 0.02% NaN 3 at pH 6.5 was used.
  • YIGSRG-PEG-DSPE conjugate a Sepharose 4B column was used with 10% sucrose and 10 mM HEPES at pH 7.0 as eluent.
  • An anti-E-selectin Fab fragment was conjugated to PEG-DSPE to form a targeting conjugate as follows.
  • the excess reducing agent was removed on a 10DG-column (Bio-Rad) equilibrated with 25 mM HEPES/0.9% saline buffer. The collected fractions were analyzed spectrophotometrically to determine the fractions containing the Fab fragments. These fractions were pooled and diluted 1:50 in phosphate buffered saline to determine the protein concentration.
  • the Fab fragments (molecular weight of 3,000 Daltons) were mixed in a 1:1 molar ratio with PEG-DSPE (molecular weight 50,000 daltons) having an active maleimide end group (prepared as described in U.S. Pat. No. 5,527,528). The two components were incubated overnight at room temperature. The unreacted maleimide was quenched with 2 mM ⁇ -mercaptoethanol for 30 minutes at room temperature. The free Fab fragments and ⁇ -mercaptoethanol were separated from the Fab-PEG-DSPE conjugate on an S-200 column equilibrated in 25 mM HEPES/0.9%saline at pH 7.2.
  • Fractions of 1 ml were collected and read on the spectrophotometer at 280 nm to determine the fractions containing the conjugate and the free Fab fragments. The fractions were pooled accordingly and the concentration of the Fab-PEG-DSPE micellular solution is determined spectrophotometrically (280 nm). The efficiency of conjugation of the Fab fragment to the maleimide-PEG-DSPE was approximately 40%.
  • Liposomes of partially hydrogenated soy phosphatidylcholine (PHPC), PEG-DSPE and cholesterol in a 55:40:3 molar ratio were prepared as described in Example 1.
  • an amount of the Fab-PEG-DSPE conjugate was added to a suspension of liposomes and incubated overnight at room temperature.
  • a 100 ⁇ l aliquot of the insertion mixture was taken and placed on a SEPHAROSE 4B column (0.7 ⁇ 30 cm) to separate the free Fab conjugate from the liposomes. 1 ml fractions were collected and read on the spectrophotometer to determine the amount of conjugate inserted into the pre-formed liposomes. Greater than 95% of the conjugates were inserted into the pre-formed liposomes.
  • 111 In-labelled-liposomes containing 30 Fab residues per liposome and 70 Fab residues per liposome were administered to rats to determine the blood circulation lifetime of the liposomes.
  • 111 In-labelled-liposomes of PHPC, cholesterol and PEG-DSPE were administered. The results are shown in FIG. 4 .
  • E-selectin Fab-PEG-DSPE targeting conjugate was inserted into pre-formed liposomes as follows.
  • the pre-formed liposomes were composed of hydrogenated soy phosphatidylcholine (HSPC), cholesterol and PEG-DSPE in a molar ratio of 53.5/40/4.
  • the liposomes included 2.5 mole percent of the lipid marker of fluorescein-DHPE (Molecular Probes, Inc.).
  • the pre-formed liposomes were incubated with the micellular solution of the targeting conjugate at 37° C. for 1 hour.
  • the insertion mixture was placed on a Bio-Rad A50m column equilibrated with 25 mM HEPES/saline pH 7.2 and 0.5ml fractions were collected. Spectrophotometric analysis of the fractions indicated that the insertion efficiency of the Fab targeting conjugate into the liposomes was approximately 100% after 2 hours at 37° C.
  • FIGS. 5A-5B are photomicrographs (scanned images) of the blood vessels under transmitted light prior to liposome administration ( FIG. 5A ) and 5 hours after administration of the target-cell sensitized, fluorescein-labeled liposomes ( FIG. 5B ).

Abstract

Reagents for use in preparing a therapeutic liposome composition sensitized to a target cell are described. The reagents include a liposomal composition composed of pre-formed liposomes having an entrapped therapeutic agent and a plurality of targeting conjugates composed of a lipid, a hydrophilic polymer and a targeting ligand. The therapeutic, target-cell sensitized liposome composition is formed by incubating the liposomal composition with a selected conjugate.

Description

  • This application is a continuation of U.S. application Ser. No. 11/050,012, filed Feb. 2, 2005, now pending; which is a continuation of U.S. application Ser. No. 09/876,707 filed Jun. 7, 2001, now allowed; which is a division of U.S. application Ser. No. 09/517,224 filed Mar. 2, 2000, now U.S. Pat. No. 6,316,024; which is a division of U.S. application Ser. No. 09/138,480 filed Aug. 21, 1998, now U.S. Pat. No. 6,056,973; which is a continuation-in-part of U.S. application Ser. No. 08/949,046 filed Oct. 10, 1997, now U.S. Pat. No. 5,891,468; which claims the benefit of U.S. Provisional Application No. 60/028,269 filed Oct. 11, 1996, now abandoned; all of which are incorporated herein by reference in their entirety.
  • FIELD OF THE INVENTION
  • The present invention relates to a target-cell sensitized therapeutic liposome composition and to a method of preparing the composition. A library for preparation of the composition is also described.
  • BACKGROUND OF THE INVENTION
  • Liposomes, spherical, self-enclosed vesicles composed of amphipathic lipids, have been widely studied and are employed as vehicles for in vivo administration of therapeutic agents. In particular, the so-called long circulating liposomes formulations which avoid uptake by the organs of the mononuclear phagocyte system, primarily the liver and spleen, have found commercial applicability. Such long-circulating liposomes include a surface coat of flexible water soluble polymer chains, which act to prevent interaction between the liposome and the plasma components which play a role in liposome uptake.
  • More recently, efforts have focused on ways to achieve site specific delivery of long-circulating liposomes. In one approach, targeting ligands, such as an antibody, are attached to the liposomes' surfaces. This approach, where the targeting ligand is bound to the polar head group residues of liposomal lipid components, results in interference by the surface-grafted polymer chains, inhibiting the interaction between the bound ligand and its intended target (Klibanov, A. L., et al., Biochim. Biophys. Acta., 1062:142-148 (1991); Hansen, C. B., et al., Biochim. Biophys. Acta, 1239:133-144 (1995)).
  • In another approach, the targeting ligand is attached to the free ends of the polymer chains forming the surface coat on the liposomes (Allen. T. M., et al., Biochim. Biophys. Acta, 1237:99-108 (1995); Blume, G., et al., Biochim. Biophys. Acta, 1149:180-184 (1993)). Two approaches have been described for preparing a liposome having a targeting ligand attached to the distal end of the surface polymer chains. One approach involves preparation of lipid vesicles which include an end-functionalized lipid-polymer derivative; that is, a lipid-polymer conjugate where the free polymer end is reactive or “activated”. Such an activated conjugate is included in the liposome composition and the activated polymer ends are reacted with a targeting ligand after liposome formation. The disadvantage to this approach is the difficulty in reacting all of the activated ends with a ligand. The approach also requires a subsequent step for separation of the unreacted ligand from the liposome composition.
  • In another approach, the lipid-polymer-ligand conjugate is included in the lipid composition at the time of liposome formation. This approach has the disadvantage that some of the valuable ligand faces the inner aqueous compartment of the liposome and is unavailable for interaction with the intended target.
  • Both approaches suffer from a lack of flexibility in designing a therapeutic composition that is specific for a target cell for a specific patient. There is then a need for a liposome composition which provides flexibility in choice of the entrapped agent and the targeting ligand.
  • SUMMARY OF THE INVENTION
  • Accordingly, it is an object of the invention to provide a therapeutic liposome composition that is readily tailored and designed for a particular patient.
  • It is another object of the invention to provide a kit for formation of a therapeutic, target-cell sensitive liposome composition.
  • In one aspect, the invention includes a therapeutic liposome composition sensitized to a target cell, comprising (i) a liposomal composition composed of pre-formed liposomes having an entrapped therapeutic agent; and (ii) a plurality of conjugates, each conjugate composed of (a) a lipid having a polar head group and a hydrophobic tail, (b) a hydrophilic polymer having a proximal end and a distal end, where the polymer is attached at its proximal end to the head group of the lipid, and (c) a targeting ligand attached to the distal end of the polymer. The therapeutic, target-cell sensitized liposome composition is formed by combining the liposomal composition with a conjugate selected from the plurality of conjugates.
  • In one embodiment, the targeting ligand is an antibody or an antibody fragment. In one embodiment, the antibody or antibody fragment is of mouse origin and is humanized to remove murine epitopes.
  • In another embodiment, the targeting ligand specifically binds to an extracellular domain of a growth factor receptor. Such receptors are selected from c-erbB-2 protein product of the HER2/neu oncogene, epidermal growth factor receptor, basic fibroblast growth factor receptor, and vascular endothelial growth factor receptor.
  • In another embodiment, the targeting ligand binds a receptor selected from E-selectin receptor, L-selectin receptor, P-selectin receptor, folate receptor, CD4 receptor, CD19 receptor, αβ integrin receptors and chemokine receptors.
  • The targeting ligand can also be folic acid, pyridoxal phosphate, vitamin B12, sialyl Lewisx, transferrin, epidermal growth factor, basic fibroblast growth factor, vascular endothelial growth factor, VCAM-1, ICAM-1, PECAM-1, an RGD peptide or an NGR peptide.
  • The hydrophilic polymer surrounding the pre-formed liposomes is selected from the group consisting of polyvinylpyrrolidone, polyvinylmethylether, polymethyloxazoline, polyethyloxazoline, polyhydroxypropyloxazoline, polyhydroxypropylmethacrylamide, polymethacrylamide, polydimethylacrylamide, polyhydroxypropylmethacrylate, polyhydroxyethylacrylate, hydroxymethylcellulose, hydroxyethylcellulose, polyethyleneglycol, polyaspartamide and hydrophilic peptide sequences.
  • In one embodiment, the hydrophilic polymer is polyethylene glycol of molecular weight between 500-5,000 daltons.
  • The entrapped therapeutic agent is, in one embodiment, a cytotoxic drug. The drug can be an anthracycline antibiotic selected from doxorubicin, daunorubicin, epirubicin and idarubicin and analogs thereof.
  • The cytotoxic agent can also be a platinum compound selected from cisplatin, carboplatin, ormaplatin, oxaliplatin, zeniplatin, enloplatin, lobaplatin, spiroplatin, ((−)-(R)-2-aminomethylpyrrolidine (1,1-cyclobutane dicarboxylato)platinum), (SP-4-3(R)-1,1-cyclobutane-dicarboxylato(2-)-(2-methyl-1,4-butanediamine-N,N′)platinum), nedaplatin and (bis-acetato-ammine-dichloro-cyclohexylamine-platinum(IV)).
  • In another embodiment, the cytotoxic agent is a topoisomerase 1 inhibitor selected from the group consisting of topotecan, irinotecan, (7-(4-methylpiperazino-methylene)-10,11-ethylenedioxy-20(S)-camptothecin), 7-(2-(N-isopropylamino)ethyl)-(20S)-camptothecin, 9-aminocamptothecin and 9-nitrocamptothecin.
  • In another embodiment, the cytotoxic agent is a vinca alkaloid selected from the group consisting of vincristine, vinblastine, vinleurosine, vinrodisine, vinorelbine and vindesine.
  • In another embodiment, the entrapped agent is a nucleic acid. The nucleic acid can be an antisense oligonucleotide or ribozyme or a plasmid containing a therapeutic gene which when internalized by the target cells achieves expression of the therapeutic gene to produce a therapeutic gene product.
  • In another aspect, the invention includes a plurality of targeting conjugates for use in preparing a targeted, therapeutic liposome composition. Each conjugate is composed of a (i) a lipid having a polar head group and a hydrophobic tail, (ii) a hydrophilic polymer having a proximal end and a distal end, the polymer attached at its proximal end to the head group of the lipid, and (iii) a targeting ligand attached to the distal end of the polymer.
  • The lipid in the conjugates is, in one embodiment, distearoyl phosphatidylethanolamine, distearoyl-phosphatidylcholine, monogalactosyl diacylglycerols or digalactosyl diacylglycerols.
  • The hydrophilic polymer in the conjugates is selected from the group consisting of polyvinylpyrrolidone, polyvinylmethylether, polymethyloxazoline, polyethyloxazoline, polyhydroxypropyloxazoline, polyhydroxypropylmethacrylamide, polymethacrylamide, polydimethylacrylamide, polyhydroxypropylmethacrylate, polyhydroxyethylacrylate, hydroxymethylcellulose, hydroxyethylcellulose, polyethyleneglycol, polyaspartamide and hydrophilic peptide sequences.
  • The targeting ligand of the conjugates can be any of those recited above.
  • In another aspect, the invention includes a method of formulating a therapeutic liposome composition having sensitivity to a target cell. The method includes the steps of (i) selecting a liposome formulation composed of pre-formed liposomes having an entrapped therapeutic agent; (ii) selecting from a plurality of targeting conjugates a targeting conjugate composed of (a) a lipid having a polar head group and a hydrophobic tail, (b) a hydrophilic polymer having a proximal end and a distal end, where the polymer is attached at its proximal end to the head group of the lipid, and (c) a targeting ligand attached to the distal end of the polymer; and (iii) combining the liposome formulation and the selected targeting conjugate to form said therapeutic, target-cell sensitive liposome composition.
  • In one embodiment, combining includes incubating under conditions effective to achieve insertion of the selected targeting conjugate into the liposomes of the selected liposome formulation.
  • In another embodiment, selecting a liposome formulation includes determining the sensitivity of the target cell to the therapeutic activity of the entrapped therapeutic agent.
  • In another embodiment, selecting a targeting conjugate includes determining the ability of the targeting ligand to bind cell surface receptors expressed on the target tell.
  • In another embodiment, selecting a targeting conjugate is based on (i) the ability of a targeting ligand to bind to cell surface receptors expressed on the target cell and (ii) the ability of the target cell to internalize liposomes bound to the target cell by binding between the target cell and the targeting ligand.
  • These and other objects and features of the invention will be more fully appreciated when the following detailed description of the invention is read in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a library composed of a plurality of therapeutic pre-formed liposomes and a plurality of targeting conjugates;
  • FIGS. 2A-2D are plots showing the fraction of liposomes (peak centered at fraction 10) and the fraction of micellular targeting conjugates (peak centered at fraction 20) by size exclusion chromatography from samples taken during incubation of a targeting conjugate sialyl-Lewisx-PEG-DSPE with pre-formed liposomes at times of 0 hours (FIG. 2A), 1 hour (FIG. 2B), 3 hours (FIG. 2C) and 5 hours (FIG. 2D);
  • FIG. 3 is a plot showing the time course for insertion of the targeting conjugate sialyl-Lewisx-PEG-DSPE into pre-formed liposomes when incubated at 25° C. (closed circles) and 37° C. (open squares);
  • FIG. 4 is a plot showing the blood circulation lifetime of target-cell sensitized liposome prepared in accordance with the invention, where the percent of injected dose in vivo for liposomes having E-selectin Fab fragments targeting ligands (30 ligands per liposome represented by solid triangles, 70 ligands per liposome represented by solid squares) and for liposomes having a surface coating of polyethyleneglycol chains (open circles) as a function of time after dosing; and
  • FIGS. 5A-5B are scanned images of micrographs of blood vessels in a window chamber of a mouse dorsal fold, where FIG. 5A is the control of the untreated blood vessels under transmitted light, and FIG. 5B is a fluorescence micrograph showing binding of fluorsecin-labeled liposomes bearing an E-selectin Fab fragments to endothelial cells in the blood vessels.
  • DETAILED DESCRIPTION OF THE INVENTION
  • I. Definitions
  • Unless otherwise indicated, the terms below have the following meaning:
  • “Incubating” or “incubating under conditions effective to achieve insertion” refer to conditions of time, temperature and liposome lipid composition which allow for penetration and entry of a selected component, such as a lipid or lipid conjugate, into the lipid bilayer of a liposome.
  • “Pre-formed liposomes” refers to intact, previously formed unilamellar or multilamellar lipid vesicles.
  • “Sensitized to a target cell” or “target-cell sensitized” refers to a liposome which includes a ligand or moiety covalently bound to the liposome and having binding affinity for a receptor expressed on a particular cell.
  • “Therapeutic liposome composition” refers to liposomes which include a therapeutic agent entrapped in the aqueous spaces of the liposomes or in the lipid bilayers of the liposomes.
  • “Vesicle-forming lipid” refers to any lipid capable of forming part of a stable micelle or liposome composition and typically including one or two hydrophobic acyl hydrocarbon chains or a steroid group and may contain a chemically reactive group, such as an amine, acid, ester, aldehyde or alcohol, at its polar head group.
  • II. Liposome and Conjugate Library
  • In one aspect, the invention includes a kit or “library” for preparation of a therapeutic, target-cell sensitized liposome composition. FIG. 1 shows such a library 10, where a plurality 12 of targeting conjugates 12(a), 12(b), 12(c), etc. and a plurality 14 of pre-formed therapeutic liposome compositions, such compositions 14(a), 14(b), 14(c) are shown. The targeting conjugates and pre-formed liposome pluralities are shown in suspension form in vials ready for use, however it will be appreciated that other storage forms are contemplated, such as lyophilized or freeze-dried.
  • The targeting conjugates in the library are lipid-polymer-ligand conjugates and will be described in more detail below. The conjugates in the library differ in the targeting ligand attached to the lipid-polymer, as well as in the lipid and polymer components. Exemplary ligands and lipid and polymer components will be set forth below.
  • The pre-formed liposomes in the library are either conventional liposomes containing an entrapped therapeutic agent or are liposomes having a surface coating of hydrophilic polymer chains, as will be described below. The pre-formed liposomes in the library differ from one another generally in the entrapped therapeutic agent and exemplary agents will be set forth below. The pre-formed liposomes can also differ from one another in the liposome lipid components.
  • A therapeutic, target-cell sensitized liposome composition is prepared from the library as follows. A composition specific for a subject suffering from a particular condition, for example a solid tumor of the lung, a bacterial infection or a viral infection, is prepared by selecting a targeting conjugate from the library. The targeting conjugate is selected either according to knowledge of those of skill in the art of ligand-receptor binding pairs or by obtaining a suitable patient sample, e.g., a fluid sample, a biopsy or the like. The sample is tested by means known to those in the art for expression of a variety of receptors to determine the appropriate targeting ligand.
  • A pre-formed therapeutic liposome composition is selected based on knowledge of those of skill in the art of the therapeutic agents appropriate for treatment of the particular condition. Alternatively, the therapeutic liposome composition is selected after performing chemosensitivity tests to determine the effect of the entrapped agent on cells of concern obtained from the patient biopsy or fluid sample.
  • Following selection of the targeting conjugate and of the pre-formed liposome composition, the target-cell sensitized, therapeutic liposome composition for the subject is prepared by combining the two components. As will be described, the components are combined under conditions effective to achieve insertion of the targeting conjugate into the liposome bilayer to create the target-cell sensitized liposomes. After insertion is complete, the composition is administered to patient.
  • The therapeutic pre-formed liposomes and the targeting conjugate will now be described in more detail.
  • A. Therapeutic Pre-Formed Liposome Component
  • As discussed above, one component of the kit or library for preparing the composition of the invention is a plurality of pre-formed liposomes having an entrapped therapeutic or diagnostic agent. In this section, the liposome lipid components, exemplary agents and methods of preparing the liposomes are described.
  • 1. Liposome Components
  • Liposomes suitable for use in the composition of the present invention include those composed primarily of vesicle-forming lipids. Such a vesicle-forming lipid is one which (a) can form spontaneously into bilayer vesicles in water, as exemplified by the phospholipids, or (b) is stably incorporated into lipid bilayers, with its hydrophobic moiety in contact with the interior, hydrophobic region of the bilayer membrane, and its head group moiety oriented toward the exterior, polar surface of the membrane.
  • The vesicle-forming lipids of this type are preferably ones having two hydrocarbon chains, typically acyl chains, and a head group, either polar or nonpolar. There are a variety of synthetic vesicle-forming lipids and naturally-occurring vesicle-forming lipids, including the phospholipids, such as phosphatidylcholine, phosphatidylethanolamine, phosphatidic acid, phosphatidylinositol, and sphingomyelin, where the two hydrocarbon chains are typically between about 14-22 carbon atoms in length, and have varying degrees of unsaturation. The above-described lipids and phospholipids whose acyl chains have varying degrees of saturation can be obtained commercially or prepared according to published methods. Other suitable lipids include glycolipids, cerebrosides and sterols, such as cholesterol.
  • Cationic lipids are also suitable for use in the liposomes of the invention, where the cationic lipid can be included as a minor component of the lipid composition or as a major or sole component. Such cationic lipids typically have a lipophilic moiety, such as a sterol, an acyl or diacyl chain, and where the lipid has an overall net positive charge. Preferably, the head group of the lipid carries the positive charge. Exemplary cationic lipids include 1,2-dioleyloxy-3-(trimethylamino)propane (DOTAP); N-[1-(2,3,-ditetradecyloxy)propyl]-N,N-dimethyl-N-hydroxyethylammonium bromide (DMRIE); N-[1-(2,3,-dioleyloxy)propyl]-N,N-dimethyl-N-hydroxy ethylammonium bromide (DORIE); N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA); 3β[N-(N′,N′-dimethylaminoethane)carbamoly]cholesterol (DC-Chol); and dimethyldioctadecylammonium (DDAB).
  • The cationic vesicle-forming lipid may also be a neutral lipid, such as dioleoylphosphatidyl ethanolamine (DOPE) or an amphipathic lipid, such as a phospholipid, derivatized with a cationic lipid, such as polylysine or other polyamine lipids. For example, the neutral lipid (DOPE) can be derivatized with polylysine to form a cationic lipid.
  • In another embodiment, the vesicle-forming lipid is selected to achieve a specified degree of fluidity or rigidity, to control the stability of the liposome in serum, to control the conditions effective for insertion of the targeting conjugate, as will be described, and to control the rate of release of the entrapped agent in the liposome.
  • Liposomes having a more rigid lipid bilayer, or a liquid crystalline bilayer, are achieved by incorporation of a relatively rigid lipid, e.g., a lipid having a relatively high phase transition temperature, e.g., up to 60° C. Rigid, i.e., saturated, lipids contribute to greater membrane rigidity in the lipid bilayer. Other lipid components, such as cholesterol, are also known to contribute to membrane rigidity in lipid bilayer structures.
  • On the other hand, lipid fluidity is achieved by incorporation of a relatively fluid lipid, typically one having a lipid phase with a relatively low liquid to liquid-crystalline phase transition temperature, e.g., at or below room temperature.
  • As will be described below, the targeted, therapeutic liposome composition of the invention is prepared using pre-formed liposomes and a targeting conjugate, which are incubated together under conditions effective to achieve insertion of the conjugate into the liposome bilayer. More specifically, the two components are incubated together under conditions which achieve insertion of the conjugate in such a way that the targeting ligand is oriented outwardly from the liposome surface, and therefore available for interaction with its cognate receptor.
  • Vesicle-forming lipids having phase transition temperatures from approximately 2° C.-80° C. are suitable for use in the pre-formed liposome component of the present composition. By way of example, the lipid distearyl phosphatidylcholine (DSPC) has a phase transition temperature of 62° C. and the lipid hydrogenated soy phosphatidylcholine (HSPC) has a phase transition temperature of 58° C. Phase transition temperatures of many lipids are tabulated in a variety of sources, such as Avanti Polar Lipids catalogue and Lipid Thermotropic Phase Transition Database (LIPIDAT, NIST Standard Reference Database 34).
  • In one embodiment of the invention, a vesicle-forming lipid having a phase transition temperature between about 30-70° C. is employed. In another embodiment, the lipid used in forming the liposomes is one having a phase transition temperature within about 20° C., more preferably 10° C., most preferably 5° C., of the temperature to which the ligand in the targeting conjugate can be heated without affecting its binding activity.
  • It will be appreciated that the conditions effective to achieve insertion of the targeting conjugate into the liposome are determined based on several variables, including, the desired rate of insertion, where a higher incubation temperature may achieve a faster rate of insertion, the temperature to which the ligand can be safely heated without affecting its activity, and to a lesser degree the phase transition temperature of the lipids and the lipid composition. It will also be appreciated that insertion can be varied by the presence of solvents, such as amphipathic solvents including polyethyleneglycol and ethanol, or detergents.
  • In one embodiment of the invention, the pre-formed liposomes also include a vesicle-forming lipid derivatized with a hydrophilic polymer. As has been described, for example in U.S. Pat. No. 5,013,556, including such a derivatized lipid in the liposome composition forms a surface coating of hydrophilic polymer chains around the liposome. The surface coating of hydrophilic polymer chains is effective to increase the in vivo blood circulation lifetime of the liposomes when compared to liposomes lacking such a coating.
  • Vesicle-forming lipids suitable for derivatization with a hydrophilic polymer include any of those lipids listed above, and, in particular phospholipids, such as distearoyl phosphatidylethanolamine (DSPE).
  • Hydrophilic polymers suitable for derivatization with a vesicle-forming lipid include polyvinylpyrrolidone, polyvinylmethylether, polymethyloxazoline, polyethyloxazoline, polyhydroxypropyloxazoline, polyhydroxypropylmethacrylamide, polymethacrylamide, polydimethylacrylamide, polyhydroxypropylmethacrylate, polyhydroxyethylacrylate, hydroxymethylcellulose, hydroxyethylcellulose, polyethyleneglycol, polyaspartamide and hydrophilic peptide sequences. The polymers may be employed as homopolymers or as block or random copolymers.
  • A preferred hydrophilic polymer chain is polyethyleneglycol (PEG), preferably as a PEG chain having a molecular weight between 500-10,000 daltons, more preferably between 1,000-5,000 daltons. Methoxy or ethoxy-capped analogues of PEG are also preferred hydrophilic polymers, commercially available in a variety of polymer sizes, e.g., 120-20,000 daltons.
  • Preparation of vesicle-forming lipids derivatized with hydrophilic polymers has been described, for example in U.S. Pat. No. 5,395,619. Preparation of liposomes including such derivatized lipids has also been described, where typically, between 1-20 mole percent of such a derivatized lipid is included in the liposome formulation.
  • 2. Therapeutic Agent
  • The pre-formed liposomes include an agent entrapped in the liposome. Entrapped is intended to include encapsulation of an agent in the aqueous core and aqueous spaces of liposomes as well as entrapment of an agent in the lipid bilayer(s) of the liposomes.
  • Agents contemplated for use in the composition of the invention are widely varied, and include both therapeutic applications and those for use in diagnostic applications.
  • Therapeutic agents include natural and synthetic compounds having the following therapeutic activities: anti-arthritic, anti-arrhythmic, anti-bacterial, anticholinergic, anticoagulant, antidiuretic, antidote, antiepileptic, antifungal, anti-inflammatory, antimetabolic, antimigraine, antineoplastic, antiparasitic, antipyretic, antiseizure, antisera, antispasmodic, analgesic, anesthetic, beta-blocking, biological response modifying, bone metabolism regulating, cardiovascular, diuretic, enzymatic, fertility enhancing, growth-promoting, hemostatic, hormonal, hormonal suppressing, hypercalcemic alleviating, hypocalcemic alleviating, hypoglycemic alleviating, hyperglycemic alleviating, immunosuppressive, immunoenhancing, muscle relaxing, neurotransmitting, parasympathomimetic, sympathominetric plasma extending, plasma expanding, psychotropic, thrombolytic and vasodilating.
  • In a preferred embodiment, the entrapped agent is a cytotoxic drug, that is, a drug having a deleterious or toxic effect on cells. Exemplary cytotoxic agents include the anthracycline antibiotics such as doxorubicin, daunorubicin, epirubicin and idarubicin, and analogs of these, such as epirubidin and mitoxantrone; platinum compounds, such as cisplatin, carboplatin, ormaplatin, oxaliplatin, zeniplatin, enloplatin, lobaplatin, spiroplatin, ((−)-(R)-2-aminomethylpyrrolidine (1,1-cyclobutane dicarboxylato)platinum) (DWA2114R), (SP-4-3(R)-1,1-cyclobutane-dicarboxylato(2-)-(2-methyl-1,4-butanediamine-N,N′)platinum) (CI-973), nedaplatin (254-S) and (bis-acetato-ammine-dichloro-cyclohexylamine-platinum(IV)) (JM-216) (Weiss, R. B., et al., Drugs, 46(3):360-377 (1993)); and vinca alkaloids, such as vincristine, vinblastine, vinleurosine, vinrodisine, vinorelbine (navelbine) and vindesine.
  • Another preferred group of cytotoxic agents is a topoisomerase I inhibitor, such as camptothecin and its analogues, including SN-38 ((+)-(4S)-4,11-diethyl-4,9-dihydroxy-1H-pyrano[3′,4′:6,7]-indolizino[1,2-b]quinoline-3,14(4H,12H)-dione); 9-aminocamptothecin; 9-nitrocamptothecin, topotecan (hycamtin; 9-dimethyl-aminomethyl-10-hydroxycamptothecin); irinotecan (CPT-11; 7-ethyl-10-[4-(1-piperidino)-1-piperidino]-carbonyloxy-camptothecin), which is hydrolyzed in vivo to SN-38); 7-ethylcamptothecin and its derivatives (Sawada, S. et al., Chem. Pharm. Bull., 41(2):310-313 (1993)); 7-chloromethyl-10,11-methylene-dioxy-camptothecin; and others (SN-22, Kunimoto, T. et al., J. Pharmacobiodyn., 10(3):148-151, (1987); DX-8951f and GG-211 ((7-(4-methylpiperazino-methylene)-10,11-ethylenedioxy-20(S)-camptothecin)) (Rothenberg, M. L., Ann. Oncol., 8(9):837-855 (1997)), and 7-(2-(N-isopropylamino)ethyl)-(20S)-camptothecin (Chong Kun Dang Corp., Seoul Dorea, CKD602).
  • In another embodiment, the entrapped therapeutic agent is an angiogenesis inhibitor, such as angiostatin, endostatin and TNFα.
  • In another embodiment, the entrapped therapeutic agent in a nucleic acid, selected from a variety of DNA and RNA based nucleic acids, including fragments and analogues of these. A variety of genes for treatment of various conditions have been described, and coding sequences for specific genes of interest can be retrieved from DNA sequence databanks, such as GenBank or EMBL. For example, polynucleotides for treatment of viral, malignant and inflammatory diseases and conditions, such as, cystic fibrosis, adenosine deaminase deficiency and AIDS, have been described. Treatment of cancers by administration of tumor suppressor genes, such as APC, DPC4, NF-1, NF-2, MTS1, RB, p53, WT1, BRCA1, BRCA2 and VHL, are contemplated.
  • Administration of the following nucleic acids for treatment of the indicated conditions are also contemplated: HLA-B7, tumors, colorectal carcinoma, melanoma; IL-2, cancers, especially breast cancer, lung cancer, and tumors; IL-4, cancer; TNF, cancer; IGF-1 antisense, brain tumors; IFN, neuroblastoma; GM-CSF, renal cell carcinoma; MDR-1, cancer, especially advanced cancer, breast and ovarian cancers; and HSV thymidine kinase, brain tumors, head and neck tumors, mesothelioma, ovarian cancer.
  • The polynucleotide can be an antisense DNA oligonucleotide composed of sequences complementary to its target, usually a messenger RNA (mRNA) or an mRNA precursor. The mRNA contains genetic information in the functional, or sense, orientation and binding of the antisense oligonucleotide inactivates the intended mRNA and prevents its translation into protein. Such antisense molecules are determined based on biochemical experiments showing that proteins are translated from specific RNAs and once the sequence of the RNA is known, an antisense molecule that will bind to it through complementary Watson-Crick base pairs can be designed. Such antisense molecules typically contain between 10-30 base pairs, more preferably between 10-25, and most preferably between 15-20.
  • The antisense oligonucleotide can be modified for improved resistance to nuclease hydrolysis, and such analogues include phosphorothioate, methylphosphonate, phosphodiester and p-ethoxy oligonucleotides (WO 97/07784).
  • The entrapped agent can also be a ribozyme or catalytic RNA.
  • 3. Liposome Preparation
  • The liposomes may be prepared by a variety of techniques, such as those detailed in Szoka, F., Jr., et al., Ann. Rev. Biophys. Bioeng. 9:467 (1980), and specific examples of liposomes prepared in support of the present invention will be described below. Typically, the liposomes are multilamellar vesicles (MLVs), which can be formed by simple lipid-film hydration techniques. In this procedure, a mixture of liposome-forming lipids of the type detailed above dissolved in a suitable organic solvent is evaporated in a vessel to form a thin film, which is then covered by an aqueous medium. The lipid film hydrates to form MLVS, typically with sizes between about 0.1 to 10 microns.
  • As described above, in one embodiment, the pre-formed liposomes include a vesicle-forming lipid derivatized with a hydrophilic polymer to form a surface coating of hydrophilic polymer chains on the liposomes surface. Such a coating is preferably prepared by including between 1-20 mole percent of the derivatized lipid with the remaining liposome forming components, e.g., vesicle-forming lipids. Exemplary methods of preparing derivatized lipids and of forming polymer-coated liposomes have been described in co-owned U.S. Pat. Nos. 5,013,556, 5,631,018 and 5,395,619, which are incorporated herein by reference. It will be appreciated that the hydrophilic polymer may be stably coupled to the lipid, or coupled through an unstable linkage which allows the coated liposomes to shed the coating of polymer chains as they circulate in the bloodstream or in response to a stimulus.
  • The therapeutic or diagnostic agent of choice can be incorporated into liposomes by standard methods, including (i) passive entrapment of a water-soluble compound by hydrating a lipid film with an aqueous solution of the agent, (ii) passive entrapment of a lipophilic compound by hydrating a lipid film containing the agent, and (iii) loading an ionizable drug against an inside/outside liposome pH gradient. Other methods, such as reverse evaporation phase liposome preparation, are also suitable.
  • Polynucleotides, oligonucleotides, other nucleic acids, such as a DNA plasmid, can be entrapped in the liposome by condensing the nucleic acid in single-molecule form. The nucleic acid is suspended in an aqueous medium containing protamine sulfate, spermine, spermidine, histone, lysine, mixtures thereof, or other suitable polycationic condensing agent, under conditions effective to condense the nucleic acid into small particles. The solution of condensed nucleic acid molecules is used to rehydrate a dried lipid film to form liposomes with the condensed nucleic acid in entrapped form. A similar approach to condensing nucleic acids for entrapment in liposomes is described in co-pending U.S. patent application Ser. No. 09/103,341.
  • The pre-formed liposomes of the invention are preferably prepared to have substantially homogeneous sizes in a selected size range, typically between about 0.01 to 0.5 microns, more preferably between 0.03-0.40 microns. One effective sizing method for REVs and MLVs involves extruding an aqueous suspension of the liposomes through a series of polycarbonate membranes having a selected uniform pore size in the range of 0.03 to 0.2 micron, typically 0.05, 0.08, 0.1, or 0.2 microns. The pore size of the membrane corresponds roughly to the largest sizes of liposomes produced by extrusion through that membrane, particularly where the preparation is extruded two or more times through the same membrane. Homogenization methods are also useful for down-sizing liposomes to sizes of 100 nm or less (Martin, F. J., in S PECIALIZED D RUG D ELIVERY S YSTEMS-M ANUFACTURING AND P RODUCTION T ECHNOLOGY, (P. Tyle, Ed.) Marcel Dekker, New York, pp. 267-316 (1990)).
  • B. Targeting Conjugates
  • The kit or library of the invention also includes a targeting conjugate, now to be described. The targeting conjugate is composed of (i) a lipid having a polar head group and a hydrophobic tail, e.g., a vesicle-forming lipid and any of those described above are suitable; (ii) a hydrophilic polymer attached to the head group of the vesicle-forming lipid, and any of the polymers recited above are suitable; and (iii) a targeting ligand attached to the polymer.
  • The targeting ligand for use in the conjugate can be selected from a wide variety of moieties capable of targeting the pre-formed liposomes to a selected cell or tissue. Examples of suitable ligands suitable are listed in Table 1.
    TABLE 1
    LIGAND-RECEPTOR PAIRS AND ASSOCIATED TARGET CELL
    LIGAND RECEPTOR CELL TYPE
    Folate folate receptor epithelial carcinomas, bone
    marrow stem cells
    water soluble vitamins vitamin receptor various cells
    Pyridoxyl phosphate CD4 CD4+ lymphocytes
    Apolipoproteins LDL liver hepatocytes, vascular
    endothelial cells
    Insulin insulin receptor pancreatic islet cells
    Transferrin Transferrin receptor endothelial cells (brain)
    Galactose Asialoglycoprotein liver hepatocytes
    receptor
    Sialyl-Lewisx E, P selectin activated endothelial cells
    Mac-1 L selectin neutrophils, leukocytes
    VEGF Flk-1,2 tumor epithelial cells
    basic FGF FGF receptor tumor epithelial cells
    EGF EGF receptor epithelial cells
    VCAM-1 α4β1 integrin vascular endothelial cells
    ICAM-1 αLβ2 integrin vascular endothelial cells
    PECAM-1/CD31 ανβ3 integrin vascular endothelial cells
    Fibronectin ανβ3 integrin activated platelets
    Osteopontin ανβ1 and ανβ5 integrins endothelial cells and smooth
    muscle cells in
    atherosclerotic plaques
    RGD peptides and peptide ανβ3 integrin tumor endothelial cells,
    mimetics (i.e. amino vascular smooth muscle cells
    acid sequences of matrix
    proteins)
    HIV GP 120/41 or GP120 CD4 CD4+ lymphocytes
    C4 domain peptomers
    HIV GP120/41 (Macrophage Chemokine receptor CC- macrophages, dendritic cells
    tropic isolates) CRK-5
    Anti-cell surface Cell surface receptors erythrocytes, platelets,
    receptor antibodies (or endothelial cells,
    fragments thereof), such lymphocytes, tumors
    as anit-HER2/neu, anti-
    selectin, anti-VEGF
    Anti-cell surface Cell surface receptors bone marrow stem cells,
    receptor antibodies (or such as CD34, CD19, CD4, malignant B and T cells
    fragments thereof) CD7, CD8, CD20, CD22
  • One preferred ligand is an antibody or an antibody fragment. It will be appreciated that the antibody or antibody fragment can be of mouse origin and humanized to remove murine surface recognition features.
  • In another preferred embodiment, the targeting ligand binds to an extracellular domain of a growth factor receptor. Exemplary receptors include the c-erbB-2 protein product of the HER2/neu oncogene, epidermal growth factor (EGF) receptor, basic fibroblast growth receptor (basic FGF) receptor and vascular endothelial growth factor receptor, E-, L- and P-selectin receptors, folate receptor, CD4 receptor, CD19 receptor, αβ integrin receptors and chemokine receptors.
  • 1. Preparation of Targeting Conjugates
  • As described above, the targeting ligand is covalently attached to the free distal end of the hydrophilic polymer chain, which is attached at its proximal end to a vesicle-forming lipid. There are a wide variety of techniques for attaching a selected hydrophilic polymer to a selected lipid and activating the free, unattached end of the polymer for reaction with a selected ligand, and in particular, the hydrophilic polymer polyethyleneglycol (PEG) has been widely studied (Allen, T. M., et al., Biochemicia et Biophysica Acta 1237:99-108 (1995); Zalipsky, S., Bioconjugate Chem., 4(4):296-299 (1993); Zalipsky, S., et al., FEBS Lett. 353:71-74 (1994); Zalipsky, S., et al., Bioconjugate Chemistry, 705-708 (1995); Zalipsky, S., in S TEALTH L IPOSOMES (D. Lasic and F. Martin, Eds.) Chapter 9, CRC Press, Boca Raton, Fla. (1995)).
  • Generally, the PEG chains are functionalized to contain reactive groups suitable for coupling with, for example, sulfhydryls, amino groups, and aldehydes or ketones (typically derived from mild oxidation of carbohydrate portions of an antibody) present in a wide variety of ligands (see Table 1). Examples of such PEG-terminal reactive groups include maleimide (for reaction with sulfhydryl groups), N-hydroxysuccinimide (NHS) or NHS-carbonate ester (for reaction with primary amines), hydrazide or hydrazine (for reaction with aldehydes or ketones), iodoacetyl (preferentially reactive with sulfhydryl groups) and dithiopyridine (thiol-reactive). Synthetic reaction schemes for activating PEG with such groups are set forth in U.S. Pat. Nos. 5,631,018, 5,527,528, 5,395,619, and the relevant sections describing synthetic reaction procedures are expressly incorporated herein by reference.
  • It will be appreciated that any of the hydrophilic polymers recited above in combination with any of the vesicle-forming lipids recited above can be employed for the targeting conjugate and suitable reaction sequences can be determined by those of skill in the art.
  • III. Preparation of the Liposome Composition
  • The section above described preparation of the components in the library of the invention, namely the pre-formed liposomes and the targeting conjugates. This section describes preparation of the target-cell sensitized, therapeutic liposome composition using these two components.
  • As discussed briefly above, a pre-formed therapeutic liposome composition and a targeting conjugate are selected from the library. The two components are combined under conditions effective to achieve insertion of the targeting conjugate into the liposome lipid bilayer to form the target-cell sensitized composition.
  • In studies performed in support of the invention, a targeting conjugate of the ligand sialyl-Lewisx was attached to PEG-DSPE according to known methods (DeFrees, S. A., et al., J. Am. Chem. Soc., 118:6101-6104 (1996)). Sialyl-Lewisx can be used to target liposomes to cells expressing endothelial leukocyte adhesion molecule-1 (ELAM-1 or E-selectin) for delivery of a therapeutic agent to a site of inflammation. ELAM-1 is expressed on the surface of endothelial cells of blood vessels adjacent to sites of inflammation. ELAM-1 recognizes and binds the polysaccharide moiety sialyl-Lewisx which is present on surfaces of neutrophils, and recruits neutrophils to sites of inflammation.
  • Pre-formed liposomes were prepared as described in Example 1 and were composed of partially hydrogenated soy-bean phosphatidylcholine (PHPC), cholesterol and mPEG-DSPE in a molar ratio of 55:40:3. The liposomes were sized to a diameter of about 100 nm. The liposomes were incubated at 37° C. with 1.2 mole percent sialyl-Lewisx-PEG-DSPE targeting conjugate to achieve insertion of the conjugate into the pre-formed liposomes.
  • Insertion of the conjugate into the liposomes was monitored by sampling the mixture and tracking the relative amounts of micellular conjugate and liposomes by size exclusion chromatography, and the results are shown in FIGS. 2A-2D.
  • In FIGS. 2A-2D, the liposome fraction of the incubation mixture is represented by the peak centered around fraction 10 and the micellular targeting conjugate is represented by the peak centered around fraction 20. FIG. 2A shows the initial composition mixture, at time zero and FIGS. 2B-2D show the composition after 1, 3 and 5 hours incubation, respectively. Disappearance as a function of incubation time of the conjugate micelles (peak at fraction 20) is apparent, indicating insertion of the targeting conjugate into the pre-formed liposomes.
  • FIG. 3 shows the time-course of insertion of sialyl-Lewisx-PEG-DSPE targeting conjugate into PHPC:Chol:mPEG-DSPE (55:40:3) pre-formed liposomes at 37° C. (open squares) and 25° C. (closed circles). Insertion of the conjugate into the pre-formed liposomes proceeded more rapidly at 37° C., however insertion at ambient temperature was also substantial.
  • Other experiments in support of the invention were performed using the targeting conjugate YIGSRG-PDG-DSPE, prepared as described in Zalipsky, S., et al., Bioconjugate Chemistry, 8(2):111-118 (1997). The pentapeptide YIGSRG (Tyr-Ile-Gly-Ser-Arg) is the shortest fragment of the basement membrane glycoprotein laminin which retains binding activity to laminin cell surface receptors. In these studies, essentially the same time course of insertion was observed (data not shown) upon incubation with pre-formed liposomes of PHPC:cholesterol:mPEG-DSPE.
  • Table 2 shows the average particle size determined by dynamic light scattering after a 5 hour incubation period at 37° C. of pre-formed liposomes and a targeting conjugate, either YIGSRG-PEG-DSPE or sialyl-Lewisx-PEG-DSPE. The average particle size after incubation and insertion of the targeting conjugate increased only slightly.
    TABLE 2
    Liposome Size
    Targeting Conjugate Before insertion After insertion
    YIGSRG-PEG-DSPE 100 nm 105 nm
    Sialyl-Lewisx-PEG-DSPE  98 nm  99 nm
  • The studies above illustrate preparation of a target-cell sensitized liposome composition by incubating pre-formed liposomes with a ligand-polymer-lipid targeting conjugate. It will be appreciated that liposomes having any composition and any selected entrapped therapeutic agent can be used in conjunction with the desired targeting conjugate. The ligand-polymer-lipid conjugate readily inserts into pre-formed liposomes in a time and temperature dependent fashion, and, as will be appreciated, is variable according to the liposome and ligand compositions.
  • IV. In Vivo Administration of the Composition
  • Liposomes having an E-selectin Fab fragment targeting ligand were prepared in accordance with the invention for in vivo administration to rodents. As described in Example 2, an anti-E-selectin Fab fragment was conjugated to PEG-DSPE to form an E-selectin Fab-PEG-DSPE targeting conjugate. The targeting conjugate was incubated with pre-formed 111In-labelled-liposomes composed of partially hydrogenated soy phosphatidylcholine (PHPC), PEG-DSPE and cholesterol in a 55:40:3 molar ratio in an amount sufficient to obtain 12, 20, 33, 40 and 70 Fab residues per 100 nm liposome (Example 2B). The insertion procedure resulted in greater than 95% of the targeting conjugates being inserted into the pre-formed liposomes. In one embodiment of the invention, the insertion efficiency is greater than 90%, more preferably greater than 95%.
  • The liposomes containing 30 Fab residues per liposome and 70 Fab residues per liposome were administered to rats to determine the blood circulation lifetime of the liposomes. As a control, 111In-labelled-liposomes of PHPC, cholesterol and PEG-DSPE (molar ratio of 55:40:3) were administered. The results are shown in FIG. 4, where the liposomes having 70 Fab residues per liposome (solid squares) and 30 Fab residues per liposomes (solid triangles) have a pharmacokinetic profile similar to that of the control liposomes (open circles). As seen, 24 hours after administration, nearly 25% of the injected dose remains in circulation in the bloodstream.
  • As described in Example 2C, pre-formed liposomes composed of hydrogenated soy phosphatidylcholine (HSPC), cholesterol, PEG-DSPE and fluorescein-labelled DHPE, in a molar ratio of 53.5/40/4/2.5, were incubated with the E-selectin-PEG-DSPE targeting conjugate at 37° C. for 1 hour. The fluorescein-labeled liposomes were administered to mice equipped with a dorsal skin fold window chamber. Endotoxin was applied topically in the window chamber 10 minutes after intravenous injection of the liposomes. FIGS. 5A-5B are scanned images of photomicrographs of the blood vessels under transmitted light prior to liposome administration (FIG. 5A) and 5 hours after administration of the target-cell sensitized, fluorescein-labeled liposomes (FIG. 5B).
  • As can be seen in FIG. 5B, the E-selectin Fab liposomes target the endothelial cells along the blood vessels. The appearance of E-selectin antigen peak was around 5 hours after endotoxin treatment, indicating that the binding activity of the E-selectin antibody was retained.
  • V. Method of Using the Library
  • In accordance with the invention, a plurality of targeting conjugates and a plurality of liposome formulations with a variety of entrapped therapeutic agents are available for selection according to the indication to be treated. In this section, preparation and use of the library will be further demonstrated by describing suitable library components for treatment of an exemplary indication, breast cancer.
  • For treatment of human breast cancer, the library of the invention includes a plurality of targeting conjugates in the form of pre-filled vials containing the conjugate as a purified, sterile micellar suspension in an appropriate buffer. The plurality of targeting conjugates can include the following.
  • 1. Anti c-erbB-2-PEG-DSPE
  • The c-erbB-2 receptor of the HER2-neu oncogene is over-expressed in many human breast cancer cells. Humanized monoclonal antibodies have been developed which bind with high affinity to the c-erbB-2 receptor (Baselga J., et al., J Clin Oncol., 14(3):737-44 (1996)). Single chain sFv fragments of the anti c-erbB-2 C6.5 antibody into which a terminal cysteine group is inserted are obtained as described by Schier et al. (Immunotechnology, 1(1):73-81 (1995)). The whole c-erbB-2 antibody is conjugated to PEG-DSPE having a reactive hydrazide moiety. The sFv fragment containing the terminal cysteine (and thus a free thiol group) is conjugated to PEG-DSPE-maleimide, under conditions like those described for the conjugation of the anti-E selected Fab′ antibody fragment to the same compound in Example 2.
  • 2. Anti-EGFR-PEG-DSPE Targeting Conjugate
  • Epidermal Growth Factor Receptor (EGFR) and a deletion-mutant form of EGFR (EGFRVIII) are over-expressed in certain breast cancers, gliomas and lung tumors (Beckmann, M. W., Geburtshilfe Frauenheilkd, 55(5):258-65 (1995)). Whole mouse monoclonal antibodies which bind this receptor are obtained as described by Wikstrand et al (Cancer Res., 55(14):3140-8 (1995)). These whole antibodies are conjugated to DSPE-PEG having an active hydrazide end as has been described in the art.
  • It will be appreciated that other antibody or antibody fragments which are known to bind receptors over-expressed in breast cancers cells including integrins such as avB5 and interlukin-8 are available and can be linked to PEG-DSPE for preparation of targeting conjuates for use in the library.
  • 3. PEG-DSPE Targeting Conjugates Including av Integrin-Binding RGD Peptides
  • Proteins that contain the Arg-Gly-Asp (RGD) attachment site, together with the integrins that serve as receptors for them, constitute a major recognition system for cell adhesion. The RGD sequence is the cell attachment site for proliferating vascular endothelial cells which form the blood supply to tumors (during angiogenesis). Such attachments are mediated by av integrins expressed by these endothelial cells. The integrin-binding activity of matrix adhesion proteins can be reproduced by short synthetic peptides containing the RGD sequence. Reagents that bind selectively to only one or a few of the RGD-directed integrins can be designed by cyclizing peptides with selected sequences around the RGD and by synthesizing RGD mimics. Such RGD peptides can be isolated by using phage display peptide libraries (Pasqualini, R., and Ruoslahti, E., Nature, 380(6572):364-6 (1996)). Two of these peptides—one containing an av integrin-binding Arg-Gly-Asp motif and the other an Asn-Gly-Arg motif—have been identified that bind selectively to tumor vasculature. These can be linked to liposomes using the methods described herein.
  • As can be appreciated, a plurality of other PEG-DSPE conjugates of ligands, such as folate or transferin, which may bind to receptors on human breast cancer cells are prepared according to the examples set herein and by methods known in the art.
  • Continuing with the example of using the library for treatment of human breast cancer, the library further includes a therapeutic liposome composition or a plurality of liposome compositions containing encapsulated agents appropriate for treating human breast cancer cells in vivo. The pre-formed liposomes are in the form of pre-filled vials containing the liposomes as a sterile suspension in appropriate buffers is created. Liposome containing the following entrapped agents are exemplary for the human breast cancer example: doxorubicin, cisplatin, water-soluble camptothecin derivatives (e.g. topotecan), navelbine, vincristine, antisense oligonucleotides, p53 gene, HSVtk gene, a radiation sensitizer and an angiogenesis inhibitor.
  • To use the library, a targeting conjugate and a therapeutic liposome composition are selected. Selection of the targeting conjugate is based upon the expression of the conjugate's cognate receptor on individual patient's breast cancer cells. For example, it is common to test for the expression of a variety of receptors on cancer cells obtained from patients during biopsy. Clinical reference laboratories routinely screen biopsy specimens for estrogen receptor status and c-erbB-2 expression status is becoming routine with the clinical development of HERCEPTIN an anti-tumor therapeutic antibody product described by Baselga, et al, (J. Clin Oncol., 14(3):737-44 (1996)). Exemplary methods for determining c-erbB-2 receptor status are given by Sjogren, et al. (J Clin Oncol., 16(2):462-9 (1998)). Patients whose tumors overexpress c-erbB-2 receptor are identified by this approach. EGFR receptor status is determined by similar methodology (Newby, J. C. et al., Br J Cancer., 71(6):1237-42 (1995)). Expression of other receptors is determined by similar methodology.
  • Next, a pre-formed therapeutic liposome composition is selected from the library. A variety of methods exist to screen for the sensitivity of breast cancer cells taken at biopsy to the cell killing effects of drugs in vitro and in vivo (chemosensitivity testing) and exemplary methods are described by Tomikawa, et al. (Anticancer Res., 18(2A):1059-62 (1998)) and by Coley, et al. (Anticancer Res. 17(1A):231-6 (1997)) and by Andreotti, et al. (Cancer Res., 55(22):5276-82 (1995)). In vitro cytotoxicity is often expressed as the concentration of a particular cancer drug needed to inhibit cancer cell proliferation by 50% in culture (IC50). In a typical screening test, cells obtained from a patient's biopsy specimen are teased apart (mechanically and/or by enzyme treatment), suspended in a medium which supports their growth and placed in wells of a culture plate. Drugs at various dilutions are added and any growth inhibition of the cells caused by the drug is measured. IC50 values are derived from these measurements. Drugs that kill the cells or inhibit growth at concentrations at or below IC50 values that can be achieved in vivo are considered as candidates for therapeutic intervention.
  • In an alternative approach, a therapeutic agent can be selected on the basis of historical information and accepted clinical practice (see for example, Handbook of Cancer Chemotherapy, 3rd edition, R. T. Skeell, editor, A, Little Brown, Boston, 1991, pp 77-138.). For example, doxorubicin is known to be one of the most active agents against human breast cancer. Therefore, in a plurality of liposome-encapsulated cancer drugs, doxorubicin would represent an obvious selection for the treatment of breast cancer based on accepted clinical practice.
  • After selection of the targeting conjugate and the therapeutic pre-formed liposome composition, the two reagents are combined to create target cell-sensitized therapeutic liposome composition tailored to an individual patient's cancer. The contents of the vial containing the conjugate and the vial containing the pre-formed therapeutic liposome composition, selected as described above and based upon the expression of the appropriate cell surface receptor and the sensitivity of the cell to growth inhibitory action of the encapsulated agent, are combined under the conditions described effective to achieve insertion of the conjugate into the liposome bilayer. Aseptic technique is used, preferably in a hospital pharmacy or other appropriate setting. Once the target-sensitized therapeutic liposome composition is formed, it is administered to the patient for which it was created. The liposomes are typically in suspension form and are administered parenterally, preferably intravenously. Other routes of administration are suitable, including subcutaneous, intramuscular, interlesional (to tumors), intertracheal by inhalation, topical, internasal, intraocular, via direct injection into organs and intravenous.
  • As can be appreciated, tailoring the formulation in this way to the individual patient maximizes the likelihood of therapeutic benefit provided by the targeting component and the encapsulated drug.
  • It will be appreciated that the dosage will depend on the liposome composition and the condition to be treated. Suitable dosages can be readily determined by those of skill in the art.
  • Use of the library will now be demonstrated for treatment of a patient suffering from a hematological disease, e.g. a B-cell or T-cell malignancy, such as B-cell leukemias/lymphomas, multiple myeloma, T-cell lymphoma and acute lymphocytic leukemia.
  • As described above, the library includes a plurality of targeting conjugates. Targeting conjugates suitable for selection include lipid-polymer-antibody conjugates, where the antibody is a monoclonal antibody or antibody fragment having a specific recognition to a B-cell or a T-cell epitope, as has been described in U.S. Pat. No. 5,620,689, which is incorporated herein by reference. For example, the antibody can be one that recognizes the B-cell epitopes CD19, CD20, CD22 or CD77. The antibody can be one that recognizes the T-cell epitopes CD4, CD7 or CD8.
  • The library further includes liposomes having entrapped agents. For treatment of hematological disorders, liposomes having the following entrapped agents are potential candidates for selection from the library: doxorubicin, vincristine, lomustine, interferon, melphalan, cyclophosphamide, prednisone, chlorambucil, carmustin and dexamethasone.
  • A blood or tissue sample is taken from the patient suffering from the hematological disorder for determination of the expression of various receptors, such as CD19, CD20, CD22, CD4, CD7, CD8. If the origin of the disorder is known to be either B-cell or T-cell, the receptor screening can of course be more selective, e.g., if the disorder is B-cell related, then the sample can be tested for expression of CD19, CD20 and CD22. Based on the results of the screening, a suitable targeting conjugate is chosen.
  • A therapeutic agent for treatment of the disorder is selected from the library using the procedures described in the breast cancer example above.
  • The selected conjugate and liposome composition are incubated together as described above to form the target-cell sensitized, therapeutic liposome composition specific for the patient. Suitable dosages for the composition can be initially based on the standard chemotherapeutic dose and adjusted accordingly over the course of treatment by monitoring the disease progression.
  • VI. EXAMPLES
  • The following examples illustrate methods of preparing the composition of the present invention. The examples are in no way intended to limit the scope of the invention.
  • Example 1 Preparation of Pre-Formed Liposomes and Insertion of Targeting Conjugate
  • Liposomes were prepared by mixing partially hydrogenated soy-bean phosphatiylcholine (PHPC, iodine value of 35, Lipoid (Ludwigshafen, Germany)), cholesterol (Croda (Fullerton, Calif.)) and mPEG-DSPE (prepared as described in Zalipsky, S., et al., Bioconjugate Chemistry, 4:296-299 (1993)) at a molar ratio of 55:40:3 in chloroform and/or methanol in a round bottom flask. The solvents were removed by rotary evaporation, and the dried lipid film produced was hydrated with either sodium phosphate buffer (10 mM, 140 mM NaCl, pH 7) or HEPES buffer (25 mM, 150 mM NaCl, pH 7) to produce large multilamellar vesicles. The resulting vesicles were passed repeatedly under pressure through 0.2, 0.1 and 0.05 μm pore size polycarbonate membranes, until the average size distribution for the diameter (monitored by dynamic light scattering using a Coulter N4MD (Hialeah, Fla.)) was approximately 100 nm. The mean particle diameter measured from 12 different batches ranged form 92 to 111 nm with an average 98 nm.
  • Targeting conjugates of and YIGSRG-PEG-DSPE were prepared according to Zalipsky, S., et al., Bioconjugate Chemistry, 8(2):111-118 (1997).
  • The pre-formed liposomes were incubated at either 25° C. or 37° C. with 1.2 mole percent of one of the targeting conjugates. At various time points, targeting conjugates (micelles) were separated from inserted targeting conjugates (liposomes) by size exclusion chromatography. For the sialyl-Lewisx-PEG-DSPE conjugate, a Biogel A50M column equilibrated with 10 mM sodium phosphate, 140 mM sodium chloride, and 0.02% NaN3 at pH 6.5 was used. For YIGSRG-PEG-DSPE conjugate, a Sepharose 4B column was used with 10% sucrose and 10 mM HEPES at pH 7.0 as eluent. The results for the sialyl-Lewisx-PEG-DSPE conjugate are shown in FIGS. 2A-2D for the 0, 1, 3 and 5 hour time points, where the peak centered around fraction 10 corresponds to the liposomes and the peak centered around fraction 20 corresponds to the micellular, targeting conjugate.
  • The collected fractions (1 mL) from the size exclusion chromatograph were diluted 1:10 in methanol, and analyzed for ligand content by HPLC (Shimadzu and Rainin systems), with the results shown in FIG. 3.
  • Example 2 Preparation of Anti-E-Selectin Fab Conjugate and Insertion into Pre-Formed Liposomes
  • A. Preparation of the Targeting Conjugate
  • An anti-E-selectin Fab fragment was conjugated to PEG-DSPE to form a targeting conjugate as follows. An aqueous solution of 750 mM 2-mercaptoethylamine as a reducing agent was prepared. 10 μl of the mercaptoethylamine was added to 1 ml of 5 mg/ml anti E-selectin Fab fragment in 50 mM sodium acetate and 125 mM NaCl, pH=5.0. The final concentration of reducing agent was 7.5 mM. The solution was incubated at 37° C. for 30 minutes. The excess reducing agent was removed on a 10DG-column (Bio-Rad) equilibrated with 25 mM HEPES/0.9% saline buffer. The collected fractions were analyzed spectrophotometrically to determine the fractions containing the Fab fragments. These fractions were pooled and diluted 1:50 in phosphate buffered saline to determine the protein concentration.
  • The Fab fragments (molecular weight of 3,000 Daltons) were mixed in a 1:1 molar ratio with PEG-DSPE (molecular weight 50,000 daltons) having an active maleimide end group (prepared as described in U.S. Pat. No. 5,527,528). The two components were incubated overnight at room temperature. The unreacted maleimide was quenched with 2 mM β-mercaptoethanol for 30 minutes at room temperature. The free Fab fragments and β-mercaptoethanol were separated from the Fab-PEG-DSPE conjugate on an S-200 column equilibrated in 25 mM HEPES/0.9%saline at pH 7.2. Fractions of 1 ml were collected and read on the spectrophotometer at 280 nm to determine the fractions containing the conjugate and the free Fab fragments. The fractions were pooled accordingly and the concentration of the Fab-PEG-DSPE micellular solution is determined spectrophotometrically (280 nm). The efficiency of conjugation of the Fab fragment to the maleimide-PEG-DSPE was approximately 40%.
  • B. Insertion of the Conjugate into Pre-Formed Liposomes
  • Liposomes of partially hydrogenated soy phosphatidylcholine (PHPC), PEG-DSPE and cholesterol in a 55:40:3 molar ratio were prepared as described in Example 1. Depending on the desired number of targeting ligands per liposomes, an amount of the Fab-PEG-DSPE conjugate was added to a suspension of liposomes and incubated overnight at room temperature. A 100 μl aliquot of the insertion mixture was taken and placed on a SEPHAROSE 4B column (0.7×30 cm) to separate the free Fab conjugate from the liposomes. 1 ml fractions were collected and read on the spectrophotometer to determine the amount of conjugate inserted into the pre-formed liposomes. Greater than 95% of the conjugates were inserted into the pre-formed liposomes.
  • Following insertion of the targeting conjugate, an aliquiot of the liposomes were analyzed by amino acid analysis to determine the protein concentration. Another aliquot was analyzed for phosphorus content. Based on these values, the amount of protein per liposome was determined.
  • Using this insertion procedure, liposomes containing 12, 20, 33, 40 and 70 Fab residues per 100 nm liposome, as determined by amino acid analysis, were prepared.
  • 111In-labelled-liposomes containing 30 Fab residues per liposome and 70 Fab residues per liposome were administered to rats to determine the blood circulation lifetime of the liposomes. As a control, 111In-labelled-liposomes of PHPC, cholesterol and PEG-DSPE (molar ratio of 55:40:3) were administered. The results are shown in FIG. 4.
  • C. In Vivo Targeting
  • E-selectin Fab-PEG-DSPE targeting conjugate was inserted into pre-formed liposomes as follows. The pre-formed liposomes were composed of hydrogenated soy phosphatidylcholine (HSPC), cholesterol and PEG-DSPE in a molar ratio of 53.5/40/4. The liposomes included 2.5 mole percent of the lipid marker of fluorescein-DHPE (Molecular Probes, Inc.). The pre-formed liposomes were incubated with the micellular solution of the targeting conjugate at 37° C. for 1 hour. The insertion mixture was placed on a Bio-Rad A50m column equilibrated with 25 mM HEPES/saline pH 7.2 and 0.5ml fractions were collected. Spectrophotometric analysis of the fractions indicated that the insertion efficiency of the Fab targeting conjugate into the liposomes was approximately 100% after 2 hours at 37° C.
  • The fluorescein-labeled liposomes were administered to mice equipped with a window chamber in a dorsal skin fold. Endotoxin was applied topically in the window chamber 10 minutes after intravenous injection of the liposomes. FIGS. 5A-5B are photomicrographs (scanned images) of the blood vessels under transmitted light prior to liposome administration (FIG. 5A) and 5 hours after administration of the target-cell sensitized, fluorescein-labeled liposomes (FIG. 5B).
  • Although the invention has been described with respect to particular embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the invention.

Claims (25)

1. A micellar suspension comprising a plurality of conjugates for use in preparing a liposome composition, each conjugate consisting essentially of (i) a lipid having a polar head group and a hydrophobic tail, (ii) a hydrophilic polymer having a proximal end and a distal end, said polymer attached at its proximal end to the head group of the lipid, and (iii) a targeting ligand having binding affinity for a receptor expressed on a cell, said ligand attached to the distal end of the hydrophilic polymer.
2. The micellar suspension of claim 1, wherein the lipid is selected from the group consisting of distearoyl phosphatidylethanolamine, distearoyl-phosphatidylcholine, monogalactosyl diacylglycerols and digalactosyl diacylglycerols.
3. The micelilar suspension of claim 2, wherein the hydrophilic polymer is polyethylene glycol.
4. The micellar suspension of claim 3, wherein the polyethylene glycol has a molecular weight between 500-5,000 daltons.
5. The micellar suspension of claim 1, wherein the targeting ligand is an antibody or an antibody fragment.
6. The micellar suspension of claim 5, wherein the antibody or antibody fragment is a humanized murine antibody.
7. The micellar suspension of claim 1, wherein the targeting ligand specifically binds to an extracellular domain of a growth factor receptor.
8. The micellar suspension of claim 7, wherein the receptors are selected from the group consisting of c-erbB-2 protein product of the HER2/neu oncogene, epidermal growth factor receptor, basic fibroblast growth factor receptor and vascular endothelial growth factor receptor.
9. The micellar suspension of claim 1, wherein the targeting ligand binds a receptor selected from the group consisting of E-selectin receptor, L-selectin receptor, P-selectin receptor, folate receptor, CD4 receptor, CD19 receptor, αβ integrin receptors and chemokine receptors.
10. The micellar suspension of claim 1, wherein the targeting ligand binds a receptor on a malignant B-cell or T-cell, said receptor selected from the group consisting of CD19, CD20, CD22, CD4, CD7 and CD8.
11. The micellar suspension of claim 1, wherein the targeting ligand is selected from the group consisting of folic acid, pyridoxal phosphate, vitamin B12, sialyl Lewisx, transferrin, epidermal growth factor, basic fibroblast growth factor, vascular endothelial growth factor, VCAM-1, ICAM-1, PECAM-1, RGD peptides and NGR peptides.
12. The micellar suspension of claim 1, wherein the targeting ligand is selected from the group consisting of water soluble vitamins, apolipoproteins, insulin, galactose, Mac-1, PECAM-1/CD31, fibronectin, osteopontin, RGD sequences of matrix proteins, HIV GP 120/41 domain peptomers, GP120 C4 domain peptomers, T cell tropic isolates, SDF-1 chemokines, Macrophage tropic isolates, anti-cell surface receptor antibodies or fragments thereof, pyridoxyl ligands, biotin, RGD peptide mimetics, YIGSRG protein, avB5, IL-8, anti-E-selectin Fab.
13. The micellar suspension of claim 12, wherein the anti-cell surface receptor antibodies or fragments thereof is selected from the group consisting of anti-HER2/neu, anti-selectin and anti-VEGF pyridoxyl.
14. The micellar suspension of claim 12, wherein the pyridoxyl ligand is selected from the group consisting of pyridoxal, pyridoxine, pyridoxamine, pyridoxal 5′-phosphate and N-(4′-pyridoxyl)amines.
15. A conjugate consisting essentially of (i) a lipid having a polar head group and a hydrophobic tail, (ii) a polyethylene glycol polymer chain, said polymer having a proximal end, a distal end, and a molecular weight of between about 500-5000 Daltons, said polymer attached at its proximal end to the head group of the lipid, and (iii) a targeting ligand having binding affinity for a receptor expressed on a cell, said ligand attached to the distal end of the polymer.
16. The conjugate of claim 15, wherein the targeting ligand is an antibody or an antibody fragment.
17. The conjugate of claim 16, wherein the antibody or antibody fragment is a humanized murine antibody.
18. The conjugate of claim 15, wherein the targeting ligand specifically binds to an extracellular domain of a growth factor receptor.
19. The conjugate of claim 18, wherein the receptors are selected from the group consisting of c-erbB-2 protein product of the HER2/neu oncogene, epidermal growth factor receptor, basic fibroblast growth factor receptor and vascular endothelial growth factor receptor.
20. The conjugate of claim 15, wherein the targeting ligand binds a receptor selected from the group consisting of E-selectin receptor, L-selectin receptor, P-selectin receptor, folate receptor, CD4 receptor, CD19 receptor, αβ integrin receptors and chemokine receptors.
21. The conjugate of claim 15, wherein the targeting ligand binds a receptor on a malignant B-cell or T-cell, said receptor selected from the group consisting of CD19, CD20, CD22, CD4, CD7 and CD8.
22. The conjugate of claim 15, wherein the targeting ligand is selected from the group consisting of folic acid, pyridoxal phosphate, vitamin B12, sialyl Lewisx, transferrin, epidermal growth factor, basic fibroblast growth factor, vascular endothelial growth factor, VCAM-1, ICAM-1, PECAM-1, RGD peptides and NGR peptides.
23. The conjugate of claim 15, wherein the targeting ligand is selected from the group consisting of water soluble vitamins, apolipoproteins, insulin, galactose, Mac-1, PECAM-1/CD31, fibronectin, osteopontin, RGD sequences of matrix proteins, HIV GP 120/41 domain peptomers, GP120 C4 domain peptomers, T cell tropic isolates, SDF-1 chemokines, Macrophage tropic isolates, anti-cell surface receptor antibodies or fragments thereof, pyridoxyl ligands, biotin, RGD peptide mimetics, YIGSRG protein, avB5, IL-8, and anti-E-selectin Fab.
24. The conjugate of claim 23, wherein the anti-cell surface receptor antibodies or fragments thereof is selected from the group consisting of anti-HER2/neu, anti-selectin and anti-VEGF pyridoxyl.
25. The conjugate of claim 23, wherein the pyridoxyl ligand is selected from the group consisting of pyridoxal, pyridoxine, pyridoxamine, pyridoxal 5′-phosphate and N-(4′-pyridoxyl)amines.
US11/479,437 1996-10-11 2006-06-30 Therapeutic liposome composition and method of preparation Abandoned US20060246126A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/479,437 US20060246126A1 (en) 1996-10-11 2006-06-30 Therapeutic liposome composition and method of preparation

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US2826996P 1996-10-11 1996-10-11
US08/949,046 US5891468A (en) 1996-10-11 1997-10-10 Fusogenic liposome compositions and method
US09/138,480 US6056973A (en) 1996-10-11 1998-08-21 Therapeutic liposome composition and method of preparation
US09/517,224 US6316024B1 (en) 1996-10-11 2000-03-02 Therapeutic liposome composition and method of preparation
US09/876,707 US7122202B2 (en) 1996-10-11 2001-06-07 Therapeutic liposome composition and method of preparation
US11/050,012 US20050169980A1 (en) 1996-10-11 2005-02-02 Therapeutic liposome composition and method of preparation
US11/479,437 US20060246126A1 (en) 1996-10-11 2006-06-30 Therapeutic liposome composition and method of preparation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/050,012 Continuation US20050169980A1 (en) 1996-10-11 2005-02-02 Therapeutic liposome composition and method of preparation

Publications (1)

Publication Number Publication Date
US20060246126A1 true US20060246126A1 (en) 2006-11-02

Family

ID=46203431

Family Applications (10)

Application Number Title Priority Date Filing Date
US09/138,480 Expired - Lifetime US6056973A (en) 1996-10-11 1998-08-21 Therapeutic liposome composition and method of preparation
US09/517,224 Expired - Lifetime US6316024B1 (en) 1996-10-11 2000-03-02 Therapeutic liposome composition and method of preparation
US09/876,707 Expired - Fee Related US7122202B2 (en) 1996-10-11 2001-06-07 Therapeutic liposome composition and method of preparation
US10/016,324 Expired - Lifetime US6936272B2 (en) 1996-10-11 2001-12-10 10139483Therapeutic liposome composition and method of preparation
US10/115,566 Abandoned US20030215490A1 (en) 1996-10-11 2002-04-02 Therapeutic liposome composition and method of preparation
US10/821,018 Abandoned US20040191250A1 (en) 1996-10-11 2004-04-07 Therapeutic liposome composition and method of preparation
US10/821,021 Abandoned US20040191307A1 (en) 1996-10-11 2004-04-07 Therapeutic liposome composition and method of preparation
US11/049,848 Abandoned US20050136064A1 (en) 1996-10-11 2005-02-02 Therapeutic liposome composition and method of preparation
US11/050,012 Abandoned US20050169980A1 (en) 1996-10-11 2005-02-02 Therapeutic liposome composition and method of preparation
US11/479,437 Abandoned US20060246126A1 (en) 1996-10-11 2006-06-30 Therapeutic liposome composition and method of preparation

Family Applications Before (9)

Application Number Title Priority Date Filing Date
US09/138,480 Expired - Lifetime US6056973A (en) 1996-10-11 1998-08-21 Therapeutic liposome composition and method of preparation
US09/517,224 Expired - Lifetime US6316024B1 (en) 1996-10-11 2000-03-02 Therapeutic liposome composition and method of preparation
US09/876,707 Expired - Fee Related US7122202B2 (en) 1996-10-11 2001-06-07 Therapeutic liposome composition and method of preparation
US10/016,324 Expired - Lifetime US6936272B2 (en) 1996-10-11 2001-12-10 10139483Therapeutic liposome composition and method of preparation
US10/115,566 Abandoned US20030215490A1 (en) 1996-10-11 2002-04-02 Therapeutic liposome composition and method of preparation
US10/821,018 Abandoned US20040191250A1 (en) 1996-10-11 2004-04-07 Therapeutic liposome composition and method of preparation
US10/821,021 Abandoned US20040191307A1 (en) 1996-10-11 2004-04-07 Therapeutic liposome composition and method of preparation
US11/049,848 Abandoned US20050136064A1 (en) 1996-10-11 2005-02-02 Therapeutic liposome composition and method of preparation
US11/050,012 Abandoned US20050169980A1 (en) 1996-10-11 2005-02-02 Therapeutic liposome composition and method of preparation

Country Status (1)

Country Link
US (10) US6056973A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110064794A1 (en) * 2008-01-16 2011-03-17 Shenyang Pharmaceutical University Drug Delivery System, its Preparation Process and Use
US20110123453A1 (en) * 2008-07-10 2011-05-26 Serina Therapeutics, Inc. Polyoxazolines with Inert Terminating Groups, Polyoxazolines Prepared from Protected Initiating Groups and Related Compounds
US9878044B2 (en) 2012-03-16 2018-01-30 Merck Patent Gmbh Targeting aminoacid lipids

Families Citing this family (355)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5795587A (en) * 1995-01-23 1998-08-18 University Of Pittsburgh Stable lipid-comprising drug delivery complexes and methods for their production
US6008202A (en) * 1995-01-23 1999-12-28 University Of Pittsburgh Stable lipid-comprising drug delivery complexes and methods for their production
US5739313A (en) * 1995-11-13 1998-04-14 Regents Of The University Of Minnesota Radionuclide labeling of vitamin B12 and coenzymes thereof
US6056973A (en) * 1996-10-11 2000-05-02 Sequus Pharmaceuticals, Inc. Therapeutic liposome composition and method of preparation
US6210707B1 (en) 1996-11-12 2001-04-03 The Regents Of The University Of California Methods of forming protein-linked lipidic microparticles, and compositions thereof
US6506783B1 (en) * 1997-05-16 2003-01-14 The Procter & Gamble Company Cancer treatments and pharmaceutical compositions therefor
EA200001007A1 (en) 1998-03-31 2001-04-23 Дюпон Фармасьютикалз Компани PHARMACEUTICAL PREPARATIONS FOR THE VISUALIZATION OF ANGIOGENIC DISORDERS
US6548663B1 (en) 1998-03-31 2003-04-15 Bristol-Myers Squibb Pharma Company Benzodiazepine vitronectin receptor antagonist pharmaceuticals
US6524553B2 (en) 1998-03-31 2003-02-25 Bristol-Myers Squibb Pharma Company Quinolone vitronectin receptor antagonist pharmaceuticals
US6537520B1 (en) 1998-03-31 2003-03-25 Bristol-Myers Squibb Pharma Company Pharmaceuticals for the imaging of angiogenic disorders
US20040022788A1 (en) * 1998-05-19 2004-02-05 Moser Tammy L. Compositions and methods for promoting or inhibiting angiogenesis
US20040247662A1 (en) * 1998-06-25 2004-12-09 Dow Steven W. Systemic immune activation method using nucleic acid-lipid complexes
US20030022854A1 (en) * 1998-06-25 2003-01-30 Dow Steven W. Vaccines using nucleic acid-lipid complexes
US6297245B1 (en) * 1998-08-04 2001-10-02 Unitech Pharmaceuticals Cisplatin and folic acid administered to treat breast cancer
CN1205923C (en) * 1998-09-16 2005-06-15 阿尔萨公司 Liposome-entrapped topoisomerase inhibitors
US6511649B1 (en) 1998-12-18 2003-01-28 Thomas D. Harris Vitronectin receptor antagonist pharmaceuticals
AU2371400A (en) 1998-12-18 2000-07-03 Du Pont Pharmaceuticals Company Vitronectin receptor antagonist pharmaceuticals
US6569402B1 (en) 1998-12-18 2003-05-27 Bristol-Myers Squibb Pharma Company Vitronectin receptor antagonist pharmaceuticals
JP2002532440A (en) 1998-12-18 2002-10-02 デュポン ファーマシューティカルズ カンパニー Vitronectin receptor antagonist drug
US6794518B1 (en) * 1998-12-18 2004-09-21 Bristol-Myers Squibb Pharma Company Vitronectin receptor antagonist pharmaceuticals
MXPA01006201A (en) * 1998-12-18 2003-06-06 Hadasit Med Res Service Method of administering a compound to multi-drug resistant cells.
US7311924B2 (en) * 1999-04-01 2007-12-25 Hana Biosciences, Inc. Compositions and methods for treating cancer
IT1306129B1 (en) * 1999-04-13 2001-05-30 Sigma Tau Ind Farmaceuti ESTERS OF L-CARNITINE OR ALCANOYL L-CARNITINE USABLE CATIONIC COMELIPIDS FOR INTRACELLULAR PLACING OF COMPOUNDS
US6806363B1 (en) * 1999-04-16 2004-10-19 Mayo Foundation For Medical Education & Research Cobalamin conjugates useful as antitumor agents
US6852334B1 (en) * 1999-04-20 2005-02-08 The University Of British Columbia Cationic peg-lipids and methods of use
WO2001026625A2 (en) * 1999-10-08 2001-04-19 Alza Corp Neutral-cationic lipid for nucleic acid and drug delivery
US7591995B2 (en) * 1999-10-15 2009-09-22 Mayo Foundation For Medical Education And Research Cobalamin conjugates useful as imaging and therapeutic agents
US20040009229A1 (en) * 2000-01-05 2004-01-15 Unger Evan Charles Stabilized nanoparticle formulations of camptotheca derivatives
AU2001236062A1 (en) * 2000-03-02 2001-09-12 Yasuo Ikeda Gpib-lipid bond construct and use thereof
US7189705B2 (en) * 2000-04-20 2007-03-13 The University Of British Columbia Methods of enhancing SPLP-mediated transfection using endosomal membrane destabilizers
US10293056B1 (en) * 2000-05-24 2019-05-21 Board Of Regents, The University Of Texas System Methods and compositions for non-viral gene therapy for treatment of hyperproliferative diseases
US7355019B2 (en) * 2000-06-06 2008-04-08 Sibtech, Inc. Cysteine-containing peptide tag for site-specific conjugation of proteins
US20030059461A1 (en) * 2000-06-06 2003-03-27 Sibtech, Inc. Molecular delivery vehicle for delivery of selected compounds to targets
AU2001270385B2 (en) * 2000-06-30 2006-05-25 Talon Therapeutics, Inc. Liposomal antineoplastic drugs and uses thereof
US20060177416A1 (en) 2003-10-14 2006-08-10 Medivas, Llc Polymer particle delivery compositions and methods of use
US6462062B1 (en) * 2000-09-26 2002-10-08 The Procter & Gamble Company Compounds and methods for use thereof in the treatment of cancer or viral infections
EP2241308A3 (en) * 2000-10-04 2010-11-17 Kyowa Hakko Kirin Co., Ltd. Method for coating fine particle with lipid membrane
AU2001297913A1 (en) * 2000-10-13 2002-12-23 Ligocyte Pharmaceuticals, Inc. Polyvalent nanoparticles
CA2427146A1 (en) * 2000-10-25 2002-07-18 Mayo Foundation For Medical Education And Research Transcobalamin binding conjugates useful for treating abnormal cellular proliferation
JP2004512345A (en) * 2000-11-02 2004-04-22 スミスクライン・ビーチャム・コーポレイション Receptor antagonist-lipid conjugates and delivery vehicles containing the same
ATE413164T1 (en) 2000-11-09 2008-11-15 Neopharm Inc SN-38 LIPID COMPLEXES AND METHODS OF USE THEREOF
US6509027B2 (en) 2001-02-12 2003-01-21 Supergen, Inc. Injectable pharmaceutical composition comprising coated particles of camptothecin
US6497896B2 (en) 2001-02-12 2002-12-24 Supergen, Inc. Method for administering camptothecins via injection of a pharmaceutical composition comprising microdroplets containing a camptothecin
HUP0303616A3 (en) * 2001-03-26 2006-07-28 Alza Corp Mountain View Liposome composition for improved intracellular delivery of a therapeutic agent
DE60233484D1 (en) * 2001-03-27 2009-10-08 Phares Pharm Res Nv METHOD AND COMPOSITION FOR SOLUBILIZING A BIOLOGICALLY ACTIVE COMPOUND WITH LOW WATER SOLUBILITY
US7875612B2 (en) 2001-04-24 2011-01-25 Purdue Research Foundation Folate mimetics and folate-receptor binding conjugates thereof
AU2002256398A2 (en) * 2001-04-30 2002-11-11 Targeted Genetics Corporation Lipid-comprising drug delivery complexes and methods for their production
WO2003030864A1 (en) * 2001-05-29 2003-04-17 Neopharm, Inc. Liposomal formulation of irinotecan
US7025987B2 (en) * 2001-05-30 2006-04-11 The Scripps Research Institute Delivery system for nucleic acids
US20060074034A1 (en) * 2001-09-17 2006-04-06 Collins Douglas A Cobalamin mediated delivery of nucleic acids, analogs and derivatives thereof
EP1435973A4 (en) * 2001-09-28 2007-05-02 Mayo Foundation Coadministration of transport protein with conjugated cobalamin to deliver agents
US6476068B1 (en) 2001-12-06 2002-11-05 Pharmacia Italia, S.P.A. Platinum derivative pharmaceutical formulations
US20060193906A1 (en) * 2002-01-30 2006-08-31 National Institute Of Advanced Industrial Science And Technology Sugar-modified liposome and products comprising the liposome
EP1485076A1 (en) * 2002-02-27 2004-12-15 The Ohio State University Research Foundation Therapeutic methods for acute myeloid leukemia
US9770517B2 (en) 2002-03-01 2017-09-26 Immunomedics, Inc. Anti-Trop-2 antibody-drug conjugates and uses thereof
EP1534213B1 (en) * 2002-03-13 2013-04-24 Sköld, Thomas Water-based delivery systems
EP2322218A1 (en) 2002-03-15 2011-05-18 Schering Corporation Methods of modulating CD200 receptors
US20050209252A1 (en) * 2002-03-29 2005-09-22 Che-Ming Teng Cancer treatment
US20040009216A1 (en) * 2002-04-05 2004-01-15 Rodrigueza Wendi V. Compositions and methods for dosing liposomes of certain sizes to treat or prevent disease
US7910594B2 (en) * 2002-05-15 2011-03-22 Endocyte, Inc. Vitamin-mitomycin conjugates
FR2840532B1 (en) * 2002-06-11 2005-05-06 Ethypharm Sa FURENT LIPID NANOCAPSULES, PROCESS FOR THEIR PREPARATION AND USE AS VECTOR OF ACTIVE (S) PRINCIPLES
US20050129769A1 (en) * 2002-06-03 2005-06-16 Barry Stephen E. Polymeric articles for carrying therapeutic agents
US20040022842A1 (en) * 2002-06-03 2004-02-05 Mebiopharm Co., Ltd. Liposome preparations containing oxaliplatin
JP3415131B1 (en) * 2002-06-03 2003-06-09 メビオファーム株式会社 Liposome preparation
KR100440725B1 (en) * 2002-06-20 2004-07-15 주식회사 그린진 바이오텍 A Method for Increasing an Abiotic-Resistance in Monocot Plants
EP1393719A1 (en) * 2002-08-23 2004-03-03 Munich Biotech AG Camptothecin-carboxylate formulations
AU2003241598B2 (en) * 2002-07-02 2009-11-05 Nanotx Corp. Radiolabeled compounds and liposomes and their methods of making and using the same
US20040224986A1 (en) * 2002-08-16 2004-11-11 Bart De Corte Piperidinyl targeting compounds that selectively bind integrins
US20060030578A1 (en) * 2002-08-20 2006-02-09 Neopharm, Inc. Pharmaceutically active lipid based formulation of irinotecan
AU2003296897A1 (en) * 2002-08-20 2004-05-04 Neopharm, Inc. Pharmaceutical formulations of camptothecine derivatives
CA2495913A1 (en) * 2002-08-23 2004-03-04 Medigene Oncology Gmbh Non-vesicular cationic lipid formulations
WO2004047800A2 (en) * 2002-11-26 2004-06-10 Gilead Sciences, Inc. Method of drug loading in liposomes by gradient
AU2003288467A1 (en) * 2002-12-13 2004-07-09 Immunomedics, Inc. Immunoconjugates with an intracellularly-cleavable linkage
US8420086B2 (en) * 2002-12-13 2013-04-16 Immunomedics, Inc. Camptothecin conjugates of anti-CD22 antibodies for treatment of B cell diseases
US20040219204A1 (en) * 2002-12-19 2004-11-04 Huang Ken Shi Kun Method of treating angiogenic tissue growth
TWI309571B (en) * 2002-12-31 2009-05-11 Ind Tech Res Inst Delivery carrier for targeting cells haring over-expressed estrogen
US8980310B2 (en) * 2002-12-31 2015-03-17 Bharat Serums and Vaccines, Ltd. Non-pegylated long-circulating liposomes
JP4903036B2 (en) 2003-01-06 2012-03-21 アンジオケム・インコーポレーテッド Aprotinin and analogs as carriers that cross the blood brain barrier
TWI492750B (en) 2003-01-27 2015-07-21 安德賽特公司 Vitamin-receptor binding drug delivery conjugates, pharmaceutical compositions, uses and preparation processes
WO2004070009A2 (en) * 2003-01-31 2004-08-19 Targesome Inc. Targeted multivalent macromolecules
TWI369997B (en) 2003-02-14 2012-08-11 Childrens Hosp & Res Ct Oak Lipophilic drug delivery vehicle and methods of use thereof
US20040171175A1 (en) * 2003-02-28 2004-09-02 Swanson Basil I. Process for conjugating biomolecules to hydrophobic membrane-incorporated molecules
US7160908B2 (en) * 2003-03-04 2007-01-09 Unitech Pharmaceuticals, Inc. Dynamic anticancer platinum compounds
TWI357336B (en) 2003-03-10 2012-02-01 Schering Corp Uses of il-23 agonists and antagonists; related re
EP1603535A4 (en) * 2003-03-18 2008-10-15 Ethicon Inc Aromatase inhibitor diagnosis and therapy
AU2004227847A1 (en) 2003-03-31 2004-10-21 Alza Corporation Lipid particles having asymmetric lipid coating and method of preparing same
AU2003230980A1 (en) * 2003-04-18 2004-11-26 Northeastern University Micelle delivery system loaded with a pharmaceutical agent
US20060165744A1 (en) * 2003-05-22 2006-07-27 Neopharm, Inc Combination liposomal formulations
GB0312309D0 (en) * 2003-05-29 2003-07-02 Gaslini Children S Hospital G Targeted liposome
CA2527625A1 (en) * 2003-05-30 2004-12-23 Alza Corporation Method of pulmonary administration of an agent
US20040247624A1 (en) * 2003-06-05 2004-12-09 Unger Evan Charles Methods of making pharmaceutical formulations for the delivery of drugs having low aqueous solubility
TWI262192B (en) * 2003-07-01 2006-09-21 Univ Nat Taiwan Labeling peptide for nasopharyngeal carcinoma (NPC) cells
US20050266066A1 (en) * 2003-10-20 2005-12-01 Nof Corporation Phospholipid membrane preparation
EP1547580A1 (en) * 2003-12-23 2005-06-29 MediGene Oncology GmbH Loading of a camptothecin drug into colloidal nanoparticles
TWI317286B (en) * 2003-12-31 2009-11-21 Targeting delivery system
WO2005070466A2 (en) * 2004-01-15 2005-08-04 Alza Corporation Liposome composition for delivery of therapeutic agents
AU2005215527B2 (en) 2004-02-17 2011-04-07 Merck Sharp & Dohme Corp. Methods of modulating IL-23 activity; related reagents
NZ549040A (en) 2004-02-17 2009-07-31 Schering Corp Use for interleukin-33 (IL33) and the IL-33 receptor complex
US8658203B2 (en) 2004-05-03 2014-02-25 Merrimack Pharmaceuticals, Inc. Liposomes useful for drug delivery to the brain
US8147867B2 (en) 2004-05-03 2012-04-03 Hermes Biosciences, Inc. Liposomes useful for drug delivery
JP2007536234A (en) * 2004-05-04 2007-12-13 メルク エンド カムパニー インコーポレーテッド 1,2,4-oxadiazole derivatives as dipeptidyl peptidase-IV inhibitors for the treatment or prevention of diabetes
WO2006017179A1 (en) 2004-07-09 2006-02-16 Robert Sabin Compositions and methods of use for treatment of mammalian diseases
US7449196B2 (en) * 2004-07-09 2008-11-11 Robert Sabin Anti tumor compositions and methods of use
JP4433918B2 (en) * 2004-07-15 2010-03-17 コニカミノルタエムジー株式会社 Image forming method
WO2006012527A1 (en) 2004-07-23 2006-02-02 Endocyte, Inc. Bivalent linkers and conjugates thereof
US8119153B2 (en) * 2004-08-26 2012-02-21 Boston Scientific Scimed, Inc. Stents with drug eluting coatings
DE602005008270D1 (en) * 2004-10-08 2008-08-28 Alza Corp METHOD FOR INTRODUCING A LIPID-LINKED PART INTO A PRE-FORMED LIPID ASSEMBLY WITH MICROWAVES
WO2006044660A2 (en) * 2004-10-14 2006-04-27 Vanderbilt University Functionalized solid lipid nanoparticles and methods of making and using same
TW200618820A (en) * 2004-11-05 2006-06-16 Alza Corp Liposome formulations of boronic acid compounds
AU2005304914B2 (en) * 2004-11-05 2012-02-16 Tekmira Pharmaceuticals Corporation Compositions and methods for stabilizing liposomal camptothecin formulations
KR100651728B1 (en) * 2004-11-10 2006-12-06 한국전자통신연구원 Compounds having anchoring group and electronic device including the same and methods for producing the same
WO2006068987A2 (en) 2004-12-20 2006-06-29 Schering Corporation Uses of il-23 antagonists in the treatment of diabetes mellitus
US20120269886A1 (en) 2004-12-22 2012-10-25 Nitto Denko Corporation Therapeutic agent for pulmonary fibrosis
US8173170B2 (en) 2004-12-22 2012-05-08 Nitto Denko Corporation Drug carrier and drug carrier kit for inhibiting fibrosis
US9393315B2 (en) * 2011-06-08 2016-07-19 Nitto Denko Corporation Compounds for targeting drug delivery and enhancing siRNA activity
US20090016959A1 (en) * 2005-02-18 2009-01-15 Richard Beliveau Delivery of antibodies to the central nervous system
PL1859041T5 (en) * 2005-02-18 2015-05-29 Angiochem Inc Aprotinin polypeptides for transporting a compound across the blood-brain barrier
US9707302B2 (en) 2013-07-23 2017-07-18 Immunomedics, Inc. Combining anti-HLA-DR or anti-Trop-2 antibodies with microtubule inhibitors, PARP inhibitors, bruton kinase inhibitors or phosphoinositide 3-kinase inhibitors significantly improves therapeutic outcome in cancer
US10058621B2 (en) 2015-06-25 2018-08-28 Immunomedics, Inc. Combination therapy with anti-HLA-DR antibodies and kinase inhibitors in hematopoietic cancers
JP2006248978A (en) * 2005-03-10 2006-09-21 Mebiopharm Co Ltd New liposome preparation
US8044200B2 (en) * 2005-03-16 2011-10-25 Endocyte, Inc. Synthesis and purification of pteroic acid and conjugates thereof
EP1871424A2 (en) * 2005-04-22 2008-01-02 Alza Corporation Immunoliposome composition for targeting to a her2 cell receptor
US8535750B2 (en) * 2005-05-17 2013-09-17 Cargill, Incorporated Granular lecithins, granular lysolecithins, process for their production and compositions containing them
TW200726485A (en) * 2005-07-01 2007-07-16 Alza Corp Liposomal delivery vehicle for hydrophobic drugs
EP2471555A3 (en) 2005-07-15 2012-10-17 Angiochem Inc. Use of aprotinin polypeptides as carriers in pharmaceutical conjugates
WO2007018759A2 (en) * 2005-07-25 2007-02-15 Centocor, Inc. Ligand-binding reagents for quenching and improved purification of lipidated proteins
US20070055200A1 (en) 2005-08-10 2007-03-08 Gilbert Scott J Needle-free jet injection drug delivery device
WO2007022152A2 (en) * 2005-08-15 2007-02-22 The Research Foundation Of State University Of New York Lipid nano particulates containing antigens as cancer vaccines
JP2009504783A (en) * 2005-08-19 2009-02-05 エンドサイト,インコーポレイテッド Ligand conjugates of vinca alkaloids, analogues and derivatives
JP5475992B2 (en) * 2005-08-19 2014-04-16 エンドサイト,インコーポレイテッド Multidrug ligand conjugate
DE602006009834D1 (en) 2005-09-01 2009-11-26 Schering Corp USE OF IL-23 AND IL-17 ANTAGONISTS FOR THE TREATMENT OF AUTOIMMUNE OF INFLAMMABLE EYE DISEASE
US20110020434A1 (en) * 2005-09-02 2011-01-27 O'halloran Thomas V Nanoparticle arsenic-platinum compositions
EP1926489A2 (en) * 2005-09-12 2008-06-04 Alza Corporation Liposomes for treatment of multiple myeloma
WO2007038246A2 (en) 2005-09-22 2007-04-05 Medivas, Llc Solid polymer delivery compositions and methods for use thereof
CA2623198C (en) 2005-09-22 2014-08-05 Medivas, Llc Bis-(a-amino)-diol-diester-containing poly(ester amide) and poly(ester urethane) compositions and methods of use
US20090099031A1 (en) * 2005-09-27 2009-04-16 Stemmer Willem P Genetic package and uses thereof
US7846445B2 (en) * 2005-09-27 2010-12-07 Amunix Operating, Inc. Methods for production of unstructured recombinant polymers and uses thereof
JP2009509535A (en) * 2005-09-27 2009-03-12 アムニクス, インコーポレイテッド Proteinaceous drugs and their use
US7855279B2 (en) * 2005-09-27 2010-12-21 Amunix Operating, Inc. Unstructured recombinant polymers and uses thereof
US20090123529A1 (en) * 2005-10-03 2009-05-14 Xiaomao Li Nucleic acid immunological composition for human metapneumovirus
DK2484758T3 (en) 2005-10-18 2014-01-06 Prec Biosciences Rationally constructed mechanucleases with altered sequence specificity and DNA binding affinity
CA2631872C (en) 2005-12-08 2014-04-01 Transave, Inc. Lipid-based compositions of antiinfectives for treating pulmonary infections and methods of use thereof
US9572886B2 (en) 2005-12-22 2017-02-21 Nitto Denko Corporation Agent for treating myelofibrosis
EP3363455A1 (en) 2005-12-30 2018-08-22 Zensun (Shanghai) Science & Technology, Co., Ltd. Extended release of neuregulin for improved cardiac function
US20070154403A1 (en) * 2006-01-05 2007-07-05 Thomas Skold Oral, Pulmonary and Transmucosal Delivery Composition
WO2007092944A2 (en) * 2006-02-08 2007-08-16 Introgen Therapeutics, Inc. Compositions and methods involving gene therapy and proteasome modulation
WO2007095175A2 (en) * 2006-02-15 2007-08-23 Massachusetts Institute Of Technology Thermo-responsive materials
EP2020992A2 (en) * 2006-04-24 2009-02-11 The CBR Institute for Biomedical Research, Inc. Method of producing immunoliposomes and compositions thereof
EP2021141A4 (en) * 2006-05-09 2013-07-03 Medivas Llc Biodegradable water soluble polymers
US20070264322A1 (en) * 2006-05-10 2007-11-15 Huang Ken S Method for making liposomes conjugated with temperature-sensitive ligands
JP5072275B2 (en) * 2006-07-03 2012-11-14 テルモ株式会社 Method for separating closed vesicles, method for producing preparation and evaluation method
WO2008082721A2 (en) * 2006-09-05 2008-07-10 Medivas, Llc Polymer-stabilized liposomal compositions and methods of use
CA2600220C (en) * 2006-09-07 2014-12-09 Canadian Blood Services Surface cross-linked lipidic particles, methods of production and uses therefor
US20080213349A1 (en) * 2006-09-11 2008-09-04 Deepak Ramesh Thakker Liposome Complexes Containing Pharmaceutical Agents and Methods
US20080081051A1 (en) * 2006-09-28 2008-04-03 Robert Sabin Method of manufacturing anti-tumor and anti-viral compositions
US8071127B2 (en) * 2006-10-24 2011-12-06 Aradigm Corporation Dual action, inhaled formulations providing both an immediate and sustained release profile
US8268347B1 (en) 2006-10-24 2012-09-18 Aradigm Corporation Dual action, inhaled formulations providing both an immediate and sustained release profile
US8119156B2 (en) * 2006-10-24 2012-02-21 Aradigm Corporation Dual action, inhaled formulations providing both an immediate and sustained release profile
US20080118500A1 (en) * 2006-11-16 2008-05-22 Taiwan Liposome Company Sustained releasing composition via local injection for treating eye diseases
WO2008079976A2 (en) 2006-12-21 2008-07-03 Centocor, Inc. Dimeric high affinity egfr constructs and uses thereof
US8536113B2 (en) * 2006-12-21 2013-09-17 Janssen Biotech, Inc. EGFR binding peptides and uses thereof
WO2008079982A2 (en) 2006-12-21 2008-07-03 Centocor, Inc. Liposome composition for targeting egfr receptor
KR20090115856A (en) * 2007-02-01 2009-11-09 시그마타우 인두스트리에 파르마슈티케 리우니테 에스.피.에이. Pharmaceutical composition comprising a campothecin derivative
WO2008101231A2 (en) 2007-02-16 2008-08-21 Endocyte, Inc. Methods and compositions for treating and diagnosing kidney disease
CN103933573A (en) 2007-02-28 2014-07-23 默沙东公司 Combination therapy for treatment of immune disorders
EP2489372A3 (en) * 2007-03-14 2013-01-02 Endocyte, Inc. Binding ligand linked drug delivery conjugates of tubulysins
TWI407971B (en) 2007-03-30 2013-09-11 Nitto Denko Corp Cancer cells and tumor-related fibroblasts
US9119783B2 (en) 2007-05-07 2015-09-01 Insmed Incorporated Method of treating pulmonary disorders with liposomal amikacin formulations
US20090196913A1 (en) * 2007-05-11 2009-08-06 Ken Shi Kun Huang Anti-Alpha-V Immunoliposome Composition, Methods, and Uses
US9365634B2 (en) * 2007-05-29 2016-06-14 Angiochem Inc. Aprotinin-like polypeptides for delivering agents conjugated thereto to tissues
EP2176293B1 (en) 2007-06-25 2019-04-03 Endocyte, Inc. Conjugates containing hydrophilic spacer linkers
US9877965B2 (en) 2007-06-25 2018-01-30 Endocyte, Inc. Vitamin receptor drug delivery conjugates for treating inflammation
WO2009006311A2 (en) * 2007-06-29 2009-01-08 Wisconsin Alumni Research Foundation Structuring effect of cholesterol in peg-phospholipid micelles, drug delivery of amphotericin b, and combination antifungals
US8889622B2 (en) * 2007-07-25 2014-11-18 Washington University Methods of inhibiting seizure in a subject
EP2626371A1 (en) 2007-07-31 2013-08-14 MedImmune, LLC Multispecific epitope binding proteins and uses thereof
KR100979462B1 (en) * 2007-08-03 2010-09-02 한국화학연구원 Anthracycline anticancer drug-encapsulated liposomes and preparation method thereof
CN103298935A (en) * 2007-08-15 2013-09-11 阿穆尼克斯公司 Compositions and methods for modifying properties of biologically active polypeptides
JP2010536884A (en) * 2007-08-23 2010-12-02 メディバス エルエルシー Biodegradable polymer gene transfer composition containing cationic alpha amino acid
WO2009036368A2 (en) 2007-09-14 2009-03-19 Nitto Denko Corporation Drug carriers
EP2209374B1 (en) 2007-10-25 2014-12-03 Endocyte, Inc. Tubulysins and processes for preparing
JP5761996B2 (en) 2007-10-31 2015-08-12 プレシジョン バイオサイエンシズ,インク. A rationally designed single-chain meganuclease with a non-palindromic recognition sequence
WO2009074569A1 (en) * 2007-12-11 2009-06-18 Bracco International Bv Targeting and therapeutic compounds with a polyproline-comprising spacer and gas-filled microvesicles comprising said compounds
BRPI0907046A2 (en) 2008-01-18 2015-07-28 Medimmune Llc Engineered cysteine antibody, isolated nucleic acid, vector, host cell, antibody conjugate, pharmaceutical composition, methods of detecting cancer, autoimmune, inflammatory or infectious disorders in an individual and inhibiting proliferation of a target cell
RU2518240C2 (en) * 2008-04-18 2014-06-10 Ангиочем Инк. Composition based on hydrophobic agents and method for preparing it (versions)
US8268796B2 (en) 2008-06-27 2012-09-18 Children's Hospital & Research Center At Oakland Lipophilic nucleic acid delivery vehicle and methods of use thereof
US8921314B2 (en) 2008-10-15 2014-12-30 Angiochem, Inc. Conjugates of GLP-1 agonists and uses thereof
EP2346896A4 (en) 2008-10-15 2014-06-25 Angiochem Inc Etoposide and doxorubicin conjugates for drug delivery
CN102272179B (en) * 2008-11-06 2014-03-12 华盛顿大学 Multiblock copolymers
US20100151573A1 (en) * 2008-11-17 2010-06-17 King Michael R Compositions and methods for delivery of molecules to selectin-ligand-expressing and selectin-expressing cells
RU2015151857A (en) 2008-12-02 2019-01-15 Уэйв Лайф Сайенсес Джапан, Инк. METHOD FOR SYNTHESIS OF NUCLEIC ACIDS MODIFIED BY PHOSPHOR ATOMIC
CA2745524C (en) * 2008-12-05 2020-06-09 Angiochem Inc. Conjugates of neurotensin or neurotensin analogs and uses thereof
MX2011006685A (en) 2008-12-17 2011-09-27 Angiochem Inc Membrane type-1 matrix metalloprotein inhibitors and uses thereof.
US20100233270A1 (en) 2009-01-08 2010-09-16 Northwestern University Delivery of Oligonucleotide-Functionalized Nanoparticles
ES2610356T3 (en) 2009-02-03 2017-04-27 Amunix Operating Inc. Extended recombinant polypeptides and compositions comprising the same
JP5392707B2 (en) * 2009-03-31 2014-01-22 株式会社Nttドコモ Membrane vesicle division system
US9173891B2 (en) 2009-04-20 2015-11-03 Angiochem, Inc. Treatment of ovarian cancer using an anticancer agent conjugated to an angiopep-2 analog
WO2010144508A1 (en) 2009-06-08 2010-12-16 Amunix Operating Inc. Glucose-regulating polypeptides and methods of making and using same
JP5805634B2 (en) 2009-06-08 2015-11-04 アムニクス オペレーティング インコーポレイテッド Growth hormone polypeptides and methods of making and using the same
AU2010270979B2 (en) 2009-06-22 2015-04-23 Medimmune, Llc Engineered Fc regions for site-specific conjugation
US9161988B2 (en) 2009-07-02 2015-10-20 Angiochem Inc. Multimeric peptide conjugates and uses thereof
RU2612521C2 (en) 2009-07-06 2017-03-09 Онтории, Инк. Novel prodrugs of nucleic acids and their application methods
GB0913442D0 (en) * 2009-07-31 2009-09-16 Univ Ramot Cell-targeting nanoparticles comprising polynucleotide agents and uses thereof
CA2772051C (en) 2009-08-24 2020-08-18 Amunix Operating Inc. Coagulation factor ix compositions and methods of making and using same
ES2632431T3 (en) 2009-10-30 2017-09-13 Ntf Therapeutics, Inc. Enhanced Neurturin Molecules
WO2011062965A2 (en) 2009-11-18 2011-05-26 University Of Washington Through Its Center For Commercialization Targeting monomers and polymers having targeting blocks
US20130028959A1 (en) * 2009-12-16 2013-01-31 Massachusetts Institute Of Technology Liposomes for Preventing the Spread of HIV
MX2012012441A (en) 2010-05-04 2013-02-26 Merrimack Pharmaceuticals Inc Antibodies against epidermal growth factor receptor (egfr) and uses thereof.
NZ603829A (en) 2010-05-06 2015-03-27 Novartis Ag Compositions and methods of use for therapeutic low density lipoprotein -related protein 6 (lrp6) antibodies
SG185415A1 (en) 2010-05-06 2012-12-28 Novartis Ag Compositions and methods of use for therapeutic low density lipoprotein - related protein 6 (lrp6) multivalent antibodies
KR101198715B1 (en) * 2010-05-14 2012-11-13 한국생명공학연구원 Asymmetric liposomes with higher encapsulation efficiency of nucleic acids and hydrophilic anion chemicals
CA2800693A1 (en) 2010-05-28 2011-12-01 Purdue Research Foundation Delivery of therapeutic agents to inflamed tissues using folate-targeted agents
EP2588490B1 (en) 2010-07-02 2017-02-22 Angiochem Inc. Short and d-amino acid-containing polypeptides for therapeutic conjugates and uses thereof
SI2606070T1 (en) 2010-08-20 2017-04-26 Novartis Ag Antibodies for epidermal growth factor receptor 3 (her3)
US10428019B2 (en) 2010-09-24 2019-10-01 Wave Life Sciences Ltd. Chiral auxiliaries
US20130245233A1 (en) 2010-11-24 2013-09-19 Ming Lei Multispecific Molecules
KR20140026396A (en) * 2011-03-08 2014-03-05 어섹스 팔마큐티칼스 인코포레이티드 Targeted nanocarrier systems for delivery of actives across biological membranes
US8691231B2 (en) 2011-06-03 2014-04-08 Merrimack Pharmaceuticals, Inc. Methods of treatment of tumors expressing predominantly high affinity EGFR ligands or tumors expressing predominantly low affinity EGFR ligands with monoclonal and oligoclonal anti-EGFR antibodies
TWI658830B (en) 2011-06-08 2019-05-11 日東電工股份有限公司 Retinoid-liposomes for enhancing modulation of hsp47 expression
US10196637B2 (en) 2011-06-08 2019-02-05 Nitto Denko Corporation Retinoid-lipid drug carrier
US9873765B2 (en) 2011-06-23 2018-01-23 Dsm Ip Assets, B.V. Biodegradable polyesteramide copolymers for drug delivery
US9963549B2 (en) 2011-06-23 2018-05-08 Dsm Ip Assets, B.V. Biodegradable polyesteramide copolymers for drug delivery
EP2731970B1 (en) 2011-07-15 2018-11-28 MorphoSys AG Antibodies that are cross-reactive for macrophage migration inhibitory factor (mif) and d-dopachrome tautomerase (d-dt)
MX347361B (en) 2011-07-19 2017-04-12 Wave Life Sciences Ltd Methods for the synthesis of functionalized nucleic acids.
US20130115270A1 (en) * 2011-11-09 2013-05-09 Henry John Smith Anti-interleukin-1 (IL-1) antibody used as a targeting agent to treat arthritis and other diseases
TW201328707A (en) 2011-12-05 2013-07-16 Novartis Ag Antibodies for epidermal growth factor receptor 3 (HER3) directed to domain II of HER3
ES2758433T3 (en) 2011-12-05 2020-05-05 Novartis Ag Antibodies to epidermal growth factor receptor 3 (HER3)
MX2014007664A (en) 2011-12-22 2015-05-11 Nuvo Res Gmbh Liposomal chlorite or chlorate compositions.
EP3539982A3 (en) 2011-12-23 2020-01-15 Pfizer Inc Engineered antibody constant regions for site-specific conjugation and methods and uses therefor
KR101347833B1 (en) 2011-12-29 2014-01-16 광주과학기술원 CD7-BPB Capable of Binding Specifically to CD7
CA2864904C (en) 2012-02-15 2023-04-25 Amunix Operating Inc. Factor viii compositions and methods of making and using same
BR112014019901A8 (en) 2012-02-15 2018-01-02 Biogen Idec Inc RECOMBINANT FACTOR VIII PROTEINS
US10080805B2 (en) 2012-02-24 2018-09-25 Purdue Research Foundation Cholecystokinin B receptor targeting for imaging and therapy
HUE040256T2 (en) 2012-03-16 2019-02-28 Merck Patent Gmbh Aminoacid lipids
US20140080175A1 (en) 2012-03-29 2014-03-20 Endocyte, Inc. Processes for preparing tubulysin derivatives and conjugates thereof
IN2014MN01886A (en) 2012-04-18 2015-07-10 Univ Ramot
US10307490B2 (en) * 2012-05-23 2019-06-04 The Ohio State University Lipid nanoparticle compositions for antisense oligonucleotides delivery
US9585970B2 (en) 2012-06-04 2017-03-07 Novartis Ag Site-specific labeling methods and molecules produced thereby
WO2013184939A2 (en) 2012-06-08 2013-12-12 Alkermes, Inc. Fusion polypeptides comprising an active protein linked to a mucin-domain polypeptide
US9982257B2 (en) 2012-07-13 2018-05-29 Wave Life Sciences Ltd. Chiral control
JP6246121B2 (en) 2012-07-13 2017-12-13 株式会社新日本科学 Chiral nucleic acid adjuvant
US9598458B2 (en) 2012-07-13 2017-03-21 Wave Life Sciences Japan, Inc. Asymmetric auxiliary group
WO2014015016A1 (en) 2012-07-18 2014-01-23 Onyx Therapeutics, Inc. Liposomal compositions of epoxyketone-based proteasome inhibitors
BR112015008365A2 (en) 2012-10-16 2017-07-04 Endocyte Inc compound of the formula bl (d) x, or a pharmaceutically acceptable salt thereof, pharmaceutical composition, use of a compound, unit dosage form or unit dose composition, composition for treating a cancer in a patient, and method for treating a cancer in a patient
RU2015115956A (en) 2012-11-09 2017-01-10 Пфайзер Инк. ANTIBODIES SPECIFIC TO THE THROMBOCYTE B GROWTH FACTOR, AND THEIR COMPOSITION AND APPLICATION
EP2922529B1 (en) 2012-11-20 2019-03-13 Spectrum Pharmaceuticals, Inc. Improved method for the preparation of liposome encapsulated vincristine for therapeutic use
CN104884047A (en) 2012-11-29 2015-09-02 英斯梅德股份有限公司 Stabilized vancomycin formulations
US10188728B2 (en) 2012-12-12 2019-01-29 Temple University—Of the Commonwealth System of Higher Education Compositions and methods for treatment of cancer
US10413539B2 (en) 2012-12-13 2019-09-17 Immunomedics, Inc. Therapy for metastatic urothelial cancer with the antibody-drug conjugate, sacituzumab govitecan (IMMU-132)
US9492566B2 (en) 2012-12-13 2016-11-15 Immunomedics, Inc. Antibody-drug conjugates and uses thereof
US9931417B2 (en) 2012-12-13 2018-04-03 Immunomedics, Inc. Antibody-SN-38 immunoconjugates with a CL2A linker
DK2900277T3 (en) 2012-12-13 2022-04-04 Immunomedics Inc DOSES OF IMMUNO CONJUGATES OF ANTIBODIES AND SN-38 FOR IMPROVED EFFICIENCY AND REDUCED TOXICITY
US10206918B2 (en) 2012-12-13 2019-02-19 Immunomedics, Inc. Efficacy of anti-HLA-DR antiboddy drug conjugate IMMU-140 (hL243-CL2A-SN-38) in HLA-DR positive cancers
US9107960B2 (en) 2012-12-13 2015-08-18 Immunimedics, Inc. Antibody-SN-38 immunoconjugates with a CL2A linker
US10137196B2 (en) 2012-12-13 2018-11-27 Immunomedics, Inc. Dosages of immunoconjugates of antibodies and SN-38 for improved efficacy and decreased toxicity
US10744129B2 (en) 2012-12-13 2020-08-18 Immunomedics, Inc. Therapy of small-cell lung cancer (SCLC) with a topoisomerase-I inhibiting antibody-drug conjugate (ADC) targeting Trop-2
US9107947B2 (en) * 2013-01-31 2015-08-18 The Penn State Research Foundation Anti-cancer compositions and methods
WO2014124258A2 (en) 2013-02-08 2014-08-14 Irm Llc Specific sites for modifying antibodies to make immunoconjugates
DK2953976T3 (en) 2013-02-08 2021-06-21 Novartis Ag SPECIFIC MODIFICATION PLACES IN ANTIBODIES FOR THE PRODUCTION OF IMMUNE CONJUGATES
US9498532B2 (en) 2013-03-13 2016-11-22 Novartis Ag Antibody drug conjugates
EP3611189A1 (en) 2013-03-14 2020-02-19 Novartis AG Antibodies against notch 3
CN105007950B (en) 2013-03-15 2019-01-15 诺华股份有限公司 Antibody drug conjugate
AU2014271207B2 (en) * 2013-05-23 2019-11-07 The University Of Newcastle Targeted delivery of drugs to the myometrium
US11253606B2 (en) 2013-07-23 2022-02-22 Immunomedics, Inc. Combining anti-HLA-DR or anti-Trop-2 antibodies with microtubule inhibitors, PARP inhibitors, Bruton kinase inhibitors or phosphoinositide 3-kinase inhibitors significantly improves therapeutic outcome in cancer
CA2919268C (en) 2013-07-25 2023-09-05 Exicure, Inc. Spherical nucleic acid-based constructs as immunostimulatory agents for prophylactic and therapeutic use
US10568898B2 (en) 2013-08-13 2020-02-25 Northwestern University Lipophilic nanoparticles for drug delivery
US10548953B2 (en) 2013-08-14 2020-02-04 Bioverativ Therapeutics Inc. Factor VIII-XTEN fusions and uses thereof
CA2925304C (en) 2013-09-27 2023-04-18 Massachusetts Institute Of Technology Carrier-free biologically-active protein nanostructures
AU2014340568B2 (en) 2013-10-22 2017-02-02 Aradigm Corporation Inhaled surfactant-modified liposomal formulations providing both an immediate and sustained release profile
WO2015066480A1 (en) 2013-11-01 2015-05-07 Regents Of The University Of Minnesota Protein scaffolds and methods of use
SG10201810298VA (en) 2013-11-13 2018-12-28 Pfizer Tumor necrosis factor-like ligand 1a specific antibodies and compositions and uses thereof
CN112107693B (en) 2013-12-03 2023-05-26 西北大学 Liposome particles, method for preparing said liposome particles and use thereof
JPWO2015108047A1 (en) 2014-01-15 2017-03-23 株式会社新日本科学 Chiral nucleic acid adjuvant having immunity induction activity and immunity induction activator
EP3095460A4 (en) 2014-01-15 2017-08-23 Shin Nippon Biomedical Laboratories, Ltd. Chiral nucleic acid adjuvant having anti-allergic activity, and anti-allergic agent
JPWO2015108048A1 (en) 2014-01-15 2017-03-23 株式会社新日本科学 Chiral nucleic acid adjuvant and antitumor agent having antitumor activity
CA2936712A1 (en) 2014-01-16 2015-07-23 Meena Chiral design
WO2015109212A1 (en) 2014-01-17 2015-07-23 Pfizer Inc. Anti-il-2 antibodies and compositions and uses thereof
WO2015110930A1 (en) 2014-01-24 2015-07-30 Pfizer Inc. Modified interleukin 21 receptor proteins
US20170021033A1 (en) 2014-03-12 2017-01-26 Novartis Ag Specific sites for modifying antibodies to make immunoconjugates
WO2015148648A1 (en) 2014-03-25 2015-10-01 The Government Of The United States Of America As Represented By The Secretary Of The Army Non-toxic adjuvant formulation comprising a monophosphoryl lipid a (mpla)-containing liposome composition and a saponin
EP3138558B1 (en) * 2014-04-30 2023-06-07 FUJIFILM Corporation Liposome composition and production method therefor
DK3138555T3 (en) 2014-04-30 2020-12-14 Fujifilm Corp LIPOSOME COMPOSITION AND METHOD OF PREPARATION
AU2015258947B2 (en) 2014-05-15 2020-04-09 Insmed Incorporated Methods for treating pulmonary non-tuberculous mycobacterial infections
PL3164113T3 (en) 2014-06-04 2019-09-30 Exicure, Inc. Multivalent delivery of immune modulators by liposomal spherical nucleic acids for prophylactic or therapeutic applications
EP3160448A4 (en) 2014-06-26 2018-11-14 Ramot at Tel-Aviv University Ltd. Liposomal formulations for delivery of nucleic acids
CN107257691B (en) 2014-07-16 2021-09-21 达娜-法勃肿瘤研究所公司 HER3 inhibition in low-grade serous ovarian cancer
US20160030343A1 (en) * 2014-08-01 2016-02-04 Texas Tech University System Preparation and characterization of bone-targeted vancomycin-loaded liposomes for osteomyelitis treatment
WO2016020791A1 (en) 2014-08-05 2016-02-11 Novartis Ag Ckit antibody drug conjugates
US10583104B2 (en) 2014-08-06 2020-03-10 Indiana University Research And Technology Corporation Tuneable delivery of nanoparticle bound active plasmin for the treatment of thrombosis
EP3180360A1 (en) 2014-08-12 2017-06-21 Novartis AG Anti-cdh6 antibody drug conjugates
US10245393B2 (en) 2014-08-13 2019-04-02 Elwha Llc Methods, systems, and devices related to a supplemental inhaler
US10765817B2 (en) 2014-08-13 2020-09-08 Elwha, Llc Methods, systems, and devices related to delivery of alcohol with an inhaler
US10987048B2 (en) 2014-08-13 2021-04-27 Elwha Llc Systems, methods, and devices to incentivize inhaler use
MX2017004448A (en) 2014-10-06 2017-10-23 Exicure Inc Anti-tnf compounds.
MA40913A (en) 2014-11-14 2017-09-20 Novartis Ag ANTIBODY-DRUG CONJUGATES
CA2968531A1 (en) 2014-11-21 2016-05-26 Northwestern University The sequence-specific cellular uptake of spherical nucleic acid nanoparticle conjugates
WO2016085986A1 (en) 2014-11-24 2016-06-02 Northwestern University High density lipoprptein nanoparticles for inflammation
ES2784900T3 (en) 2014-12-12 2020-10-01 Massachusetts Gen Hospital Treatment of brain metastases from breast cancer
JP6720447B2 (en) 2014-12-18 2020-07-08 ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. Drug delivery system for delivery of acid sensitive drugs
EP3247333B1 (en) 2015-01-20 2021-07-21 Tetraderm Group LLC Versatile topical drug delivery vehicle and multifactorial tissue moisturizer that provides mucosal and skin barrier restoration
TW201632202A (en) 2015-01-30 2016-09-16 諾華公司 Treatment of breast cancer
AU2016252771B2 (en) 2015-04-22 2021-12-16 Immunomedics, Inc. Isolation, detection, diagnosis and/or characterization of circulating Trop-2-positive cancer cells
DK3307326T3 (en) 2015-06-15 2020-10-19 Angiochem Inc METHODS FOR THE TREATMENT OF LEPTOMENINGAL CARCINOMATOSIS
US10975112B2 (en) * 2015-06-16 2021-04-13 Hangzhou Dac Biotech Co., Ltd. Linkers for conjugation of cell-binding molecules
WO2016203432A1 (en) 2015-06-17 2016-12-22 Novartis Ag Antibody drug conjugates
US10195175B2 (en) 2015-06-25 2019-02-05 Immunomedics, Inc. Synergistic effect of anti-Trop-2 antibody-drug conjugate in combination therapy for triple-negative breast cancer when used with microtubule inhibitors or PARP inhibitors
TWI678213B (en) 2015-07-22 2019-12-01 美商史倍壯製藥公司 A ready-to-use formulation for vincristine sulfate liposome injection
CA3025896A1 (en) 2015-07-23 2017-01-26 The Regents Of The University Of California Antibodies to coagulation factor xia and uses thereof
UA126016C2 (en) 2015-08-03 2022-08-03 Біовератів Терапеутікс Інк. Factor ix fusion proteins and methods of making and using same
WO2017027843A1 (en) 2015-08-12 2017-02-16 Massachusetts Institute Of Technology Cell surface coupling of nanoparticles
US9862760B2 (en) 2015-09-16 2018-01-09 Novartis Ag Polyomavirus neutralizing antibodies
BR122021024957B1 (en) 2015-10-16 2023-12-12 Ipsen Biopharm Ltd Processes for producing a storage-stabilized liposomal irinotecan composition
JP7030689B2 (en) 2015-10-23 2022-03-07 ファイザー インコーポレイティッド Anti-IL-2 antibody and its composition and use
MA44334A (en) 2015-10-29 2018-09-05 Novartis Ag ANTIBODY CONJUGATES INCLUDING A TOLL-TYPE RECEPTOR AGONIST
CN108778289B (en) 2015-11-06 2020-11-17 佐剂技术公司 Triterpene saponin analogues
ES2847155T3 (en) 2016-01-21 2021-08-02 Novartis Ag Multispecific molecules targeting CLL-1
WO2017136467A1 (en) * 2016-02-01 2017-08-10 Exicure, Inc. Surface functionaliztion of liposomes and liposomal spherical nucleic acids (snas)
WO2017139623A1 (en) 2016-02-10 2017-08-17 Immunomedics, Inc. Combination of abcg2 inhibitors with sacituzumab govitecan (immu-132) overcomes resistance to sn-38 in trop-2 expressing cancers
CA3016917A1 (en) 2016-04-27 2017-11-02 Immunomedics, Inc. Efficacy of anti-trop-2-sn-38 antibody drug conjugates for therapy of tumors relapsed/refractory to checkpoint inhibitors
WO2017193087A1 (en) 2016-05-06 2017-11-09 Exicure, Inc. Liposomal spherical nucleic acid (sna) constructs prsenting antisense oligonucleotides(aso) for specific knockdown of interleukin 17 receptor mrna
WO2017218533A1 (en) 2016-06-13 2017-12-21 Torque Therapeutics, Inc. Methods and compositions for promoting immune cell function
US11339209B2 (en) 2016-11-14 2022-05-24 Novartis Ag Compositions, methods, and therapeutic uses related to fusogenic protein minion
JOP20190155A1 (en) 2016-12-21 2019-06-23 Novartis Ag Antibody drug conjugates for ablating hematopoietic stem cells
JOP20190187A1 (en) 2017-02-03 2019-08-01 Novartis Ag Anti-ccr7 antibody drug conjugates
CA3056797A1 (en) 2017-03-16 2018-09-20 Children's Medical Center Corporation Engineered liposomes as cancer-targeted therapeutics
RU2758234C2 (en) 2017-03-27 2021-10-26 Иммьюномедикс, Инк. TREATMENT OF TRIPLE-NEGATIVE BREAST CANCER CHARACTERIZED BY Trop-2 EXPRESSION USING SATSITUZUMAB GOVITECAN AND Rad51 INHIBITOR
CN110352201A (en) 2017-04-03 2019-10-18 免疫医疗公司 The subcutaneous administration of antibody drug conjugate for cancer therapy
WO2018185618A1 (en) 2017-04-03 2018-10-11 Novartis Ag Anti-cdh6 antibody drug conjugates and anti-gitr antibody combinations and methods of treatment
BR112019022016A2 (en) * 2017-04-19 2020-05-12 Apa- Advanced Technologies Ltd. FUSOGENIC LIPOSOMES, COMPOSITIONS, KITS AND USE OF THE SAME IN CANCER TREATMENT
WO2018201090A1 (en) 2017-04-28 2018-11-01 Exicure, Inc. Synthesis of spherical nucleic acids using lipophilic moieties
AR111651A1 (en) 2017-04-28 2019-08-07 Novartis Ag CONJUGATES OF ANTIBODIES THAT INCLUDE TOLL TYPE RECEIVER AGONISTS AND COMBINATION THERAPIES
KR20200018407A (en) * 2017-04-28 2020-02-19 텍사스 칠드런스 하스피탈 Targeting Nanoparticles
JP2020526558A (en) 2017-07-13 2020-08-31 ノースウェスタン ユニバーシティ Common and direct methods for preparing oligonucleotide functionalized metal-organic framework nanoparticles
JP7285828B2 (en) 2017-09-05 2023-06-02 トルク セラピューティクス, インコーポレイテッド Therapeutic protein compositions and methods of making and using them
SG11202001826YA (en) 2017-10-16 2020-03-30 Adjuvance Technologies Inc Triterpene saponin analogues
JP7391839B2 (en) 2017-12-01 2023-12-05 ファイザー・インク Anti-CXCR5 antibodies, compositions thereof and uses thereof
CA3083363A1 (en) 2017-12-01 2019-06-06 Novartis Ag Polyomavirus neutralizing antibodies
JP2021519758A (en) 2018-03-29 2021-08-12 ファイザー インコーポレイティッド LFA3 variant and its composition and usage
JP2021519777A (en) 2018-03-30 2021-08-12 インスメッド インコーポレイテッド Continuous manufacturing method of liposome drugs
JP2021525071A (en) 2018-05-31 2021-09-24 ノバルティス アーゲー Hepatitis B antibody
TW202016136A (en) 2018-06-01 2020-05-01 瑞士商諾華公司 Binding molecules against bcma and uses thereof
UY38265A (en) 2018-06-20 2020-01-31 Novartis Ag DRUG ANTIBODY CONJUGATES FOR ABLATION OF HEMATOPOIETIC STEM CELLS
WO2020014298A1 (en) 2018-07-10 2020-01-16 Rush University Medical Center Use of immunomodulators to control infection and stimulate healing in normal and diabetic wounds
BR112021004287A2 (en) 2018-09-07 2021-08-03 Pfizer Inc. anti-avss8 antibodies and compositions and uses thereof
WO2020053742A2 (en) 2018-09-10 2020-03-19 Novartis Ag Anti-hla-hbv peptide antibodies
WO2020128863A1 (en) 2018-12-19 2020-06-25 Novartis Ag Anti-tnf-alpha antibodies
CU20210047A7 (en) 2018-12-21 2022-01-13 Novartis Ag ANTI-PMEL 17 ANTIBODIES AND CONJUGATES THEREOF
CA3132959A1 (en) 2019-03-08 2020-09-17 AbTis Co., Ltd. Site-specific antibody conjugation and antibody-drug conjugate as specific embodiment thereof
AU2020279731A1 (en) 2019-05-20 2022-01-06 Novartis Ag Antibody drug conjugates having linkers comprising hydrophilic groups
US20230181756A1 (en) 2020-04-30 2023-06-15 Novartis Ag Ccr7 antibody drug conjugates for treating cancer
EP4240765A2 (en) 2020-11-06 2023-09-13 Novartis AG Antibody fc variants
US20240025993A1 (en) 2020-11-06 2024-01-25 Novartis Ag Cd19 binding molecules and uses thereof
AU2021374083A1 (en) 2020-11-06 2023-06-01 Novartis Ag Anti-cd19 agent and b cell targeting agent combination therapy for treating b cell malignancies
CA3200858A1 (en) 2020-11-24 2022-06-02 Novartis Ag Anti-cd48 antibodies, antibody drug conjugates, and uses thereof
CA3216880A1 (en) 2021-04-16 2022-10-20 Novartis Ag Antibody drug conjugates and methods for making thereof
WO2023175454A1 (en) 2022-03-14 2023-09-21 Pfizer Inc. Methods for producing an adjuvant

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913902A (en) * 1987-11-10 1990-04-03 North Carolina State University Purification by affinity binding to liposomes
US5013556A (en) * 1989-10-20 1991-05-07 Liposome Technology, Inc. Liposomes with enhanced circulation time
US5370993A (en) * 1987-05-19 1994-12-06 Syntex (U.S.A.) Inc. Reversible agglutination mediators
US5395619A (en) * 1993-03-03 1995-03-07 Liposome Technology, Inc. Lipid-polymer conjugates and liposomes
US5426112A (en) * 1984-04-09 1995-06-20 Scully, Scott, Murphy & Presser, P.C. Growth regulation and related applications of opioid antagonists
US5527528A (en) * 1989-10-20 1996-06-18 Sequus Pharmaceuticals, Inc. Solid-tumor treatment method
US5534241A (en) * 1993-07-23 1996-07-09 Torchilin; Vladimir P. Amphipathic polychelating compounds and methods of use
US5603872A (en) * 1991-02-14 1997-02-18 Baxter International Inc. Method of binding recognizing substances to liposomes
US5620689A (en) * 1989-10-20 1997-04-15 Sequus Pharmaceuuticals, Inc. Liposomes for treatment of B-cell and T-cell disorders
US5719032A (en) * 1992-01-31 1998-02-17 University Of British Columbia Melanoma and prostate cancer specific antibodies for immunodetection and immunotherapy
US5840687A (en) * 1995-02-02 1998-11-24 Schering Aktiengesellschaft Modified ligands for receptor tyrosine kinases
US5891468A (en) * 1996-10-11 1999-04-06 Sequus Pharmaceuticals, Inc. Fusogenic liposome compositions and method
US5932462A (en) * 1995-01-10 1999-08-03 Shearwater Polymers, Inc. Multiarmed, monofunctional, polymer for coupling to molecules and surfaces
US5985852A (en) * 1996-03-01 1999-11-16 The Regents Of The University Of California Inhibition of selectin binding
US6056973A (en) * 1996-10-11 2000-05-02 Sequus Pharmaceuticals, Inc. Therapeutic liposome composition and method of preparation
US6120798A (en) * 1997-06-23 2000-09-19 Alza Corporation Liposome-entrapped polynucleotide composition and method
US6129916A (en) * 1991-04-19 2000-10-10 Tanox, Inc. Method of Increasing activation on proliferation of T cells using antibody-microbead conjugates
US6210707B1 (en) * 1996-11-12 2001-04-03 The Regents Of The University Of California Methods of forming protein-linked lipidic microparticles, and compositions thereof
US6224903B1 (en) * 1996-10-11 2001-05-01 Sequus Pharmaceuticals, Inc. Polymer-lipid conjugate for fusion of target membranes
US20050169880A1 (en) * 1999-11-08 2005-08-04 Water Journey Ltd. Antibacterial compositions and method of using same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800815A (en) * 1903-05-05 1998-09-01 Cytel Corporation Antibodies to P-selectin and their uses
US3539177A (en) * 1968-06-13 1970-11-10 Jacobs Machine Corp Delivery system for cloth
WO1986006959A1 (en) 1985-05-22 1986-12-04 Liposome Technology, Inc. Liposome inhalation method and system
JPH0720857B2 (en) 1988-08-11 1995-03-08 テルモ株式会社 Liposome and its manufacturing method
IL91664A (en) 1988-09-28 1993-05-13 Yissum Res Dev Co Ammonium transmembrane gradient system for efficient loading of liposomes with amphipathic drugs and their controlled release
US4906476A (en) 1988-12-14 1990-03-06 Liposome Technology, Inc. Novel liposome composition for sustained release of steroidal drugs in lungs
JP3220180B2 (en) 1991-05-23 2001-10-22 三菱化学株式会社 Drug-containing protein-bound liposomes
US5370933A (en) * 1992-01-31 1994-12-06 Ppg Industries, Inc. Soil release composition for use with polyester textiles
JPH07173079A (en) 1992-12-22 1995-07-11 Nippon Oil & Fats Co Ltd Amphiphatic polyethylene glycol derivative and its use
WO1994021281A1 (en) 1993-03-23 1994-09-29 Liposome Technology, Inc. Polymer-polypeptide composition and method
CN1125449A (en) * 1993-05-14 1996-06-26 萨依特尔有限公司 Sialyl Lex analogues as inhibitors of cellular adhesion
EP0706374B1 (en) 1993-06-30 1997-12-10 Genentech, Inc. Method for preparing liposomes
US5885613A (en) 1994-09-30 1999-03-23 The University Of British Columbia Bilayer stabilizing components and their use in forming programmable fusogenic liposomes
US5939401A (en) * 1994-12-09 1999-08-17 Genzyme Corporation Cationic amphiphile compositions for intracellular delivery of therapeutic molecules
US5686114A (en) 1995-06-02 1997-11-11 University Of Iowa Research Foundation Uses of inorganic pyrophosphates
AU2549297A (en) 1996-03-28 1997-10-17 Board Of Trustees Of The University Of Illinois, The Materials and methods for making improved echogenic liposome compositions

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5426112A (en) * 1984-04-09 1995-06-20 Scully, Scott, Murphy & Presser, P.C. Growth regulation and related applications of opioid antagonists
US5370993A (en) * 1987-05-19 1994-12-06 Syntex (U.S.A.) Inc. Reversible agglutination mediators
US4913902A (en) * 1987-11-10 1990-04-03 North Carolina State University Purification by affinity binding to liposomes
US5013556A (en) * 1989-10-20 1991-05-07 Liposome Technology, Inc. Liposomes with enhanced circulation time
US5527528A (en) * 1989-10-20 1996-06-18 Sequus Pharmaceuticals, Inc. Solid-tumor treatment method
US5620689A (en) * 1989-10-20 1997-04-15 Sequus Pharmaceuuticals, Inc. Liposomes for treatment of B-cell and T-cell disorders
US5603872A (en) * 1991-02-14 1997-02-18 Baxter International Inc. Method of binding recognizing substances to liposomes
US6129916A (en) * 1991-04-19 2000-10-10 Tanox, Inc. Method of Increasing activation on proliferation of T cells using antibody-microbead conjugates
US5719032A (en) * 1992-01-31 1998-02-17 University Of British Columbia Melanoma and prostate cancer specific antibodies for immunodetection and immunotherapy
US5631018A (en) * 1993-03-03 1997-05-20 Sequus Pharmaceuticals, Inc. Lipid-polymer conjugates and liposomes
US5395619A (en) * 1993-03-03 1995-03-07 Liposome Technology, Inc. Lipid-polymer conjugates and liposomes
US5534241A (en) * 1993-07-23 1996-07-09 Torchilin; Vladimir P. Amphipathic polychelating compounds and methods of use
US5932462A (en) * 1995-01-10 1999-08-03 Shearwater Polymers, Inc. Multiarmed, monofunctional, polymer for coupling to molecules and surfaces
US5840687A (en) * 1995-02-02 1998-11-24 Schering Aktiengesellschaft Modified ligands for receptor tyrosine kinases
US5985852A (en) * 1996-03-01 1999-11-16 The Regents Of The University Of California Inhibition of selectin binding
US20040191307A1 (en) * 1996-10-11 2004-09-30 Alza Corporation Therapeutic liposome composition and method of preparation
US6316024B1 (en) * 1996-10-11 2001-11-13 Sequus Pharmaceuticals, Inc. Therapeutic liposome composition and method of preparation
US5891468A (en) * 1996-10-11 1999-04-06 Sequus Pharmaceuticals, Inc. Fusogenic liposome compositions and method
US7122202B2 (en) * 1996-10-11 2006-10-17 Alza Corporation Therapeutic liposome composition and method of preparation
US6224903B1 (en) * 1996-10-11 2001-05-01 Sequus Pharmaceuticals, Inc. Polymer-lipid conjugate for fusion of target membranes
US20010038851A1 (en) * 1996-10-11 2001-11-08 Alza Corporation Therapeutic liposome composition and method of preparation
US6936272B2 (en) * 1996-10-11 2005-08-30 Alza Corporation 10139483Therapeutic liposome composition and method of preparation
US20030215490A1 (en) * 1996-10-11 2003-11-20 Sequus Pharmaceuticals, Inc. Therapeutic liposome composition and method of preparation
US20050136064A1 (en) * 1996-10-11 2005-06-23 Alza Corporation Therapeutic liposome composition and method of preparation
US6056973A (en) * 1996-10-11 2000-05-02 Sequus Pharmaceuticals, Inc. Therapeutic liposome composition and method of preparation
US20040191250A1 (en) * 1996-10-11 2004-09-30 Alza Corporation Therapeutic liposome composition and method of preparation
US6210707B1 (en) * 1996-11-12 2001-04-03 The Regents Of The University Of California Methods of forming protein-linked lipidic microparticles, and compositions thereof
US6120798A (en) * 1997-06-23 2000-09-19 Alza Corporation Liposome-entrapped polynucleotide composition and method
US20050169880A1 (en) * 1999-11-08 2005-08-04 Water Journey Ltd. Antibacterial compositions and method of using same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110064794A1 (en) * 2008-01-16 2011-03-17 Shenyang Pharmaceutical University Drug Delivery System, its Preparation Process and Use
US20110123453A1 (en) * 2008-07-10 2011-05-26 Serina Therapeutics, Inc. Polyoxazolines with Inert Terminating Groups, Polyoxazolines Prepared from Protected Initiating Groups and Related Compounds
US8883211B2 (en) 2008-07-10 2014-11-11 Serina Therapeutics, Inc. Polyoxazolines with inert terminating groups, polyoxazolines prepared from protected initiating groups and related compounds
US9284411B2 (en) 2008-07-10 2016-03-15 Serina Therapeutics, Inc. Polyoxazolines with inert terminating groups, polyoxazolines prepared from protected initiating groups and related compounds
US9878044B2 (en) 2012-03-16 2018-01-30 Merck Patent Gmbh Targeting aminoacid lipids
US11510988B2 (en) 2012-03-16 2022-11-29 Merck Patent Gmbh Targeting aminoacid lipids

Also Published As

Publication number Publication date
US6316024B1 (en) 2001-11-13
US20040191250A1 (en) 2004-09-30
US6936272B2 (en) 2005-08-30
US20030215490A1 (en) 2003-11-20
US7122202B2 (en) 2006-10-17
US20050136064A1 (en) 2005-06-23
US20010038851A1 (en) 2001-11-08
US20020172711A1 (en) 2002-11-21
US6056973A (en) 2000-05-02
US20050169980A1 (en) 2005-08-04
US20040191307A1 (en) 2004-09-30

Similar Documents

Publication Publication Date Title
US6316024B1 (en) Therapeutic liposome composition and method of preparation
Mamot et al. Epidermal growth factor receptor–targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo
US20060269542A1 (en) Immunoliposome composition for targeting to a HER2 cell receptor
EP0932391B1 (en) Fusogenic liposome composition and method
US6224903B1 (en) Polymer-lipid conjugate for fusion of target membranes
US7465716B2 (en) Targeted drug delivery with a hyaluronan ligand
US20070092558A1 (en) Methods of Preparing Targeted Immunoliposomes
US20100239652A1 (en) Immunoliposomes for treatment of cancer
AU2005295072A1 (en) Method of insertion of a lipid-linked moiety into a pre-formed lipid assembly using microwaves
Raffaghello et al. In vitro and in vivo antitumor activity of liposomal Fenretinide targeted to human neuroblastoma
AU2007307846A1 (en) pH sensitive liposome composition
CN108926719B (en) Long-circulating liposomes modified with c (RGD-ACP-K)
US20070292497A1 (en) Method for treating micrometastatic tumors
Harashima et al. Pharmacokinetics of targeting with liposomes
US20070264322A1 (en) Method for making liposomes conjugated with temperature-sensitive ligands
AU736055B2 (en) Fusogenic liposome composition and method
AU761204B2 (en) Fusogenic liposome composition and method

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALZA CORPORATION,CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALLEN, TERESA M.;USTER, PAUL STEVEN;MARTIN, FRANCIS J.;AND OTHERS;SIGNING DATES FROM 19981028 TO 19981117;REEL/FRAME:023953/0840

Owner name: ALZA CORPORATION,CALIFORNIA

Free format text: MERGER;ASSIGNOR:SEQUUS PHARMACEUTICALS INC.;REEL/FRAME:023953/0920

Effective date: 20000317

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION